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Abstract

Motivation: Cellular function is closely related to the localizations of its sub-structures. It is, how-

ever, challenging to experimentally label all sub-cellular structures simultaneously in the same cell.

This raises the need of building a computational model to learn the relationships among these sub-

cellular structures and use reference structures to infer the localizations of other structures.

Results: We formulate such a task as a conditional image generation problem and propose to use

conditional generative adversarial networks for tackling it. We employ an encoder–decoder net-

work as the generator and propose to use skip connections between the encoder and decoder to

provide spatial information to the decoder. To incorporate the conditional information in a variety

of different ways, we develop three different types of skip connections, known as the self-gated

connection, encoder-gated connection and label-gated connection. The proposed skip connections

are built based on the conditional information using gating mechanisms. By learning a gating

function, the network is able to control what information should be passed through the skip

connections from the encoder to the decoder. Since the gate parameters are also learned automat-

ically, we expect that only useful spatial information is transmitted to the decoder to help image

generation. We perform both qualitative and quantitative evaluations to assess the effectiveness of

our proposed approaches. Experimental results show that our cGAN-based approaches have the

ability to generate the desired sub-cellular structures correctly. Our results also demonstrate that

the proposed approaches outperform the existing approach based on adversarial auto-encoders,

and the new skip connections lead to improved performance. In addition, the localizations of gener-

ated sub-cellular structures by our approaches are consistent with observations in biological

experiments.

Availability and implementation: The source code and more results are available at https://github.

com/divelab/cgan/.

Contact: sji@tamu.edu

1 Introduction

Sub-cellular structures are the structures localized within a cell, and

typical examples are cell membrane, nucleus, cytoskeleton, chloro-

plast and different proteins. It is of great importance to understand

the localizations of sub-cellular structures in a cell, since they deter-

mine the functions of cells. For example, proteins are the key com-

ponents in the cell and carry out most of the cell functions (Lodish

et al., 1995). However, even the same protein may lead to different
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cell functions when localized at different locations (Faust and

Montenarh, 2000). Hence, it is especially important to study the

localizations of different proteins in different cells. A popular ap-

proach is to build cell models, such as the location proteomics

(Murphy, 2005), to learn the relationships between cell states, cell

functions and sub-cellular structure locations. It is, however, diffi-

cult to experimentally distinguish and label all sub-cellular struc-

tures simultaneously in the same cell. It is hence important to build

computational models to capture the localizations of different sub-

cellular structures. Then such computational models can predict the

locations of unlabeled sub-cellular structures and improve the pre-

dictions of cell models. Specifically, in this work, our models try to

learn the relationships among cell membrane, nucleus and different

types of proteins. If we let each channel of an image contains the in-

formation about one of the sub-cellular structures in the cell, the

relationships between different structures can be represented

by the relationships between image channels. In this way, we formu-

late the problem as an image generation task which generates the

specific channel we need, given the other channels of an image.

Recently, several studies investigated the synthesis of sub-cellular

structures (Ulman et al., 2016). One straightforward way is to merge

multiple neighboring point-like signals to obtain complicated struc-

tures (Baddeley et al., 2010; Ulman et al., 2016; Wu et al., 2010).

Another way is to employ image feature based approaches to model

different cell components (Boland and Murphy, 2001; Carpenter

et al., 2006; Rajaram et al., 2012). In addition, a few seminal studies

have proposed generative models for such tasks and obtained prom-

ising results (Peng and Murphy, 2011; Zhao and Murphy, 2007).

They built different parametric sub-models to learn different cell

components, such as nuclear shape, cell shape, protein size and

shape and organelle distributions. Their models also learn to capture

relationships among different cell components. Such parametric

approaches can model different types of sub-cellular structures and

are expected to generate images following the same underlying dis-

tribution as the training set images. However, different sub-cellular

structures are highly correlated in cells. The relationships among

them are complicated and non-linear. Most of these approaches

only employ traditional learning techniques, which may not fully

capture highly complex relationships as compared with deep learn-

ing methods.

With the widespread use of computational methods, several

studies have shown that generative models are particularly useful for

such tasks (Peng and Murphy, 2011; Zhao and Murphy, 2007).

By learning relationships among different sub-cellular structures, we

can experimentally label a few structures in each cell and computa-

tionally predict the remaining ones. Recent work (Johnson et al.,

2017b) proposed an image generative model based on adversarial

auto-encoders (AAEs) (Makhzani et al., 2015). The AAE networks

are derived from Variational Auto-encoders (VAEs) (Kingma and

Welling, 2013) and follow an encoder–decoder structure. Instead of

employing the Kullback–Leibler divergence as in VAEs, AAEs apply

discriminators to encourage the latent variables to fit a normal dis-

tribution. As far as we know, this is the only deep learning method

dealing with this sub-cellular structure generation problem. The

method builds two different adversarial auto-encoder networks to

learn the relationships between different sub-cellular structures.

However, VAE-based methods tend to generate blurry images, espe-

cially for high resolution and intricate datasets (Dosovitskiy and

Brox, 2016; Zhao et al., 2017). In addition, the existing approach

generates images from the vectorial latent representations of the in-

put and hence tends to generate images with large variations during

the testing phase. Furthermore, the spatial information is largely lost

due to the down-sampling operations and up-sampling operations in

its model. Then the generated structures may not localize accurately,

which is demonstrated in our experiments.

It is known that GAN-based approaches usually generate more

photorealistic images and the generated images tend to have smaller

variations (Isola et al., 2016; Kim et al., 2017; Yi et al., 2017; Zhu

et al., 2017). Hence, we propose approaches based on conditional

GANs for this task. The conditional information consists of two

parts; namely labeled reference structures (cell membrane and nu-

cleus) and the protein type. We design the generator of our model as

an encoder–decoder network (Badrinarayanan et al., 2015; Long

et al., 2015) with skip connections (He et al., 2016a, b) to share spa-

tial information between the encoder and decoder. Furthermore, in

such a conditional generation task, we believe that the conditional

information should be incorporated to determine what should be

shared between the encoder and decoder. Hence, we develop three

different types of connections known as self-gated connection,

encoder-gated connection and label-gated connection, respectively.

All of the proposed skip connections are built based on the condi-

tional information and employing the gating mechanisms (Dauphin

et al., 2016). There are two main contributions in our work; these

are, we propose to adaptively apply conditional GANs for such

tasks to generate more photorealistic images with smaller variations

and we propose three different types of skip connections to incorp-

orate the conditional information to control the information flow in

the networks.

In order to show the effectiveness of our proposed approaches,

we conduct several experiments and evaluate the results both quali-

tatively and quantitatively. Qualitative results show that our

approaches are visually better than the existing method. The shape

and location of the structures generated by our approach match the

ground truths in the test set and are consistent with experimental

observations in biological sciences. Furthermore, we evaluate

different approaches quantitatively using the Parzen window log-

likelihood estimation (Breuleux et al., 2011). Results indicate that

our methods outperform the existing method and the newly pro-

posed connections can improve the performance of models.

2 Background and related work

In this section, we present a brief introduction of generative adver-

sarial networks (GANs) in Subsection 2.1. Then we describe existing

work on conditional generative adversarial networks in Subsection

2.2. We also discuss an existing approach for the cellular structure

generation problem.

2.1 Generative adversarial networks
Estimating high-dimensional distributions is a challenging task as it

requires a tremendous amount of training samples. Recent studies

have shown the success of GANs in learning high-dimensional distri-

butions implicitly, and they have been used to generate photorealis-

tic images (Denton et al., 2015; Radford et al., 2015). GANs do not

produce an explicit density function from the training data, but can

be used to generate samples from the learned distributions. They

consist of two distinct networks; namely, a generator G and a dis-

criminator D. The generator G learns to capture the data distribu-

tion, and the discriminator D learns to discriminate samples

generated from the generator G and those from the training data.

These two networks are trained iteratively. Specifically, D is trained

to distinguish real samples X from generated samples X̂, while G is

trained to fool the discriminator by trying to generate samples that
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are similar to the real ones. The training process can be interpreted

as a two-player minimax game.

Given a noise vector z sampled from a prior distribution pzðzÞ, G

generates a sample X̂ using the learned mapping from pzðzÞ to the

true data distribution. Meanwhile, D takes a sample as input and

outputs a single scalar representing the probability that this sample

belongs to the true data distribution. Mathematically, the objective

function of GANs can be expressed as

min
G

max
D

EX�pdataðXÞ½log DðXÞ�
þEz�pzðzÞ½logð1�DðGðzÞÞ�;

(1)

where pdataðXÞ represents the true data distribution.

2.2 Conditional generative adversarial networks
Although GANs are capable of learning high-dimensional distribu-

tions, they cannot be directly applied to many image-related applica-

tions, since they do not take conditional information into

consideration. To this end, conditional GANs (cGANs) have been

proposed by incorporating conditional information in image gener-

ation. In cGANs, many different types of conditional information

can be used, including discrete class information (Mirza and

Osindero, 2014), text information (Reed et al., 2016; Zhang et al.,

2016) and image information (Denton et al., 2016; Isola et al.,

2016; Zhu et al., 2017).

Different from GANs, both the generator G and discriminator D

in cGANs are coupled with the conditional information y. Given y

and the sampled noise z, G generates an image X̂. For the discrimin-

ator D, the input is a pair consisting of an image X and the condi-

tional information y. Then D estimates the probability of such a pair

being real. Note that in cGANs, a real pair not only requires that

both the image and the conditional information are from the true

data distribution, but also requires them to be consistent with each

other. Formally, the objective function of cGANs can be written as

min
G

max
D

EX;y�pdataðX;yÞ½log DðX; yÞ�
þEy�pdataðyÞ;z�pzðzÞ½logð1�DðGðy; zÞ; yÞÞ�;

(2)

where pdataðyÞ denotes the distribution of the conditional information.

It is worth noting that we can feed the paired input into cGANs in

many ways. For example, if y is a one-hot vector representing class in-

formation, y and z can be concatenated and fed into G. In this case,

the input pair of D contains an image and a vector. One can replicate

the vector y multiple times spatially and perform concatenation with

the image in the depth dimension before feeding it into D (Radford

et al., 2015). When y represents text information, it can be converted

to a high-dimensional vector using embedding and then compressed to

a lower dimension using a fully-connected layer. Then it can be used in

a similar way as discussed above. If the conditional information y is an

image, the input of D is a pair of images. It is straightforward to con-

catenate them and feed it into D. For the generator, one can apply a

trainable network to extract vectorized representations of the input

image and concatenate them to the noise z (Isola et al., 2016).

2.3 Cellular structure modeling
In Johnson et al. (2017b), a deep learning model for cellular struc-

ture modeling is proposed. This method uses a conditional genera-

tive model based on adversarial auto-encoders (AAE). Note that

AAE networks are derived from VAE networks, which also follow

an encoder–decoder structure. Instead of employing the Kullback–

Leibler divergence as in VAE, AAE applies a discriminator to en-

courage the latent variable to follow a normal distribution.

The model in Johnson et al. (2017b) consists of two different

AAE networks. The first one takes information of cell membrane

and nucleus as input and learns their shapes. It produces encoded la-

tent representations of inputs and encourages the latent variables to

follow a normal distribution. In addition, it generates a recon-

structed image which is expected to be close to the input. The second

AAE network learns the relationships between sub-cellular struc-

tures dependent on the encoded latent representations. The latent

variables consists of three parts; namely encoded representations of

the cell and nucleus, encoded representations of sub-cellular struc-

ture and the type information. It encourages the encoded representa-

tions of cell and nucleus to be similar to the latent encodings of the

first network and the type information to be close to the vectorized

representations of ground truth type. In addition, it encourages the

encoded representations of sub-cellular structure to follow the nor-

mal distribution. After training, the decoder of the second AAE net-

work is employed to generate the desired sub-cellular structure

based on cell membrane, nucleus and the type of sub-cellular struc-

ture. The input consists of three parts: the latent encodings of cell

membrane and nucleus from the first AAE network, the randomly

sampled representations of sub-cellular structure and the vectorized

representations of type information. In this model, discriminators

are used to make the reconstructed images similar to the input

images.

The approach in Johnson et al. (2017b) is based on AAE. It is

known that GAN-based approaches usually outperform VAE-based

methods in many image generation tasks. This is because VAE-

based approaches tend to produce blurry images on complex data-

sets (Dosovitskiy and Brox, 2016; Zhao et al., 2017). Since AAEs

are derived from VAEs, they also inherit the blurry image generation

problem. In addition, in their model, only the decoder of the second

AAE network is employed to generate the desired sub-cellular struc-

ture based on three latent vectors. It tends to generate images with

large variations because there are fewer constraints in these vectors.

Furthermore, the spatial information is largely lost in its information

flow while this information is important to determine the shape and

location of the desired sub-cellular structures. Without explicit in-

formation shared between encoders and decoders, the generated

structures may not localize correctly. Hence, in this work, we pro-

pose to employ conditional GANs for such tasks and design our net-

works to overcome these limitations.

3 Conditional generative models for cellular
structure modeling

In this section, we describe the cellular structure generation problem in

Subsection 3.1. Then the general framework of our model is presented

in Subsection 3.2. After that, we introduce our design of generators

and three types of proposed models in Subsection 3.3. Finally, the

architecture of discriminator networks is discussed in Subsection 3.4.

3.1 The cellular structure generation problem
Understanding cellular organization and sub-cellular structure local-

ization is of significant importance, since they are highly related to

cell functions. Due to the diversity of different molecular complexes,

it is challenging to experimentally label all structures in the same cell

simultaneously and determine the cellular organization. Hence, it is

important to apply a computational approach to learn the underly-

ing relationship and representations of those structures. We formu-

late this problem as an image generation task in which we use

images channels to represent different sub-cellular structures.

Computational modeling of cellular structures using conditional deep generative networks 3
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Formally, let X denotes a cellular image with three channels. The

first channel contains information of cell membrane; the second

channel contains the distribution of one sub-cellular structure, such

as one type of proteins and the third channel is the nucleus, as

shown in Figure 1. The cell membrane channel and the nucleus

channel together serve as the reference channels, denoted as Xr, as

they are available in all images. The sub-cellular structure channel

serves as the structure channel, denoted as Xs (Johnson et al.,

2017b). Then each cellular image X consists of the reference chan-

nels Xr and the structure channel Xs; that is, X ¼ Xr;s ¼ ½Xr;Xs�. We

use y to represent the type of the sub-cellular structure in Xs. Given

the reference channels Xr of a cellular image and any desired sub-cel-

lular structure type y, we aim at generating the corresponding struc-

ture channel Xŝ , which is expected to be similar to the true Xs. Some

examples are presented in Figure 2. By using the same Xr and differ-

ent y as inputs, we can obtain the localizations of different sub-cellu-

lar structures in the same cell.

3.2 Problem formulation
The problem mentioned above can be considered as a conditional

generation task, where the conditional information consists of the

reference channels Xr and the type information y. We propose to

employ conditional GANs for such tasks. Specifically, we build an

encoder–decoder network with skip connections as the generator to

incorporate the conditional information. It follows the general struc-

ture of the ‘U-Net’ network (Ronneberger et al., 2015), but is

coupled with different ways of connections instead of applying the

original skip connections. The generator of our model consists of

two parts; namely an encoder and a decoder. It incorporates the con-

ditional information Xr and y with the sampled noise z and outputs

the generated structure channel, denoted as Xŝ . The input to our dis-

criminator is a tuple, which contains three parts: the reference chan-

nels Xr, the type information y and the structure channel Xs (or Xŝ ).

It is noteworthy that we integrate the structure channel with the ref-

erence channels and they together become one image Xr;s (or Xr;ŝ ).

Finally, the discriminator estimates the probability of such a

tuple being real. The structure of our model is shown in Figure 3.

The generator tries to generate structure channels similar to the

real ones and fool the discriminator. The discriminator is trained

to distinguish if the structure channels come from the true distribu-

tion. Mathematically, the objective function of cGANs can be

expressed as

min
G

max
D

EXr;s ;y�pdataðXr;s ;yÞ½log DðXr;s; yÞ�
þEXr ;y�pdataðXr ;yÞ;z�pzðzÞ½logð1�Dð½Xr;GðXr; y; zÞ�; yÞÞ�;

(3)

where ½Xr;GðXr; y; zÞ� ¼ ½Xr;Xŝ � ¼ Xr;ŝ , and the discriminator D

tries to maximize this objective while the generator G tries to min-

imize it.

Recently, a few studies have shown that it is beneficial to train

GANs with another auxiliary loss, such as the L1 or L2 distance loss

(Isola et al., 2016; Ledig et al., 2016; Pathak et al., 2016). In our model,

we use the L2 loss to help the training of the generator. This means that

the generator not only tries to fool the discriminator, but also generates

images that are close to the ground truths in an L2 sense. Formally, the

objective function associate with L2 loss can be written as

min
G

EXr ;Xs ;y�pdataðXr ;Xs ;yÞ;z�pzðzÞ½jjXs �GðXr; y; zÞjj2�: (4)

Note that the generator tries to minimize this objective while the dis-

criminator is not related. We combine the cGANs objective and the L2

objective to train the model. The generator and discriminator are trained

iteratively; that is, we train the discriminator one step to maximize the

cGANs objective and then train the generator one step to minimize both

the cGANs objective and L2 objective. These steps are repeated.

3.3 The proposed generator networks
Different from traditional conditional image generation tasks, the

conditional information of sub-cellular structure generation tasks

Fig. 1. Illustration of channels in a cellular image containing the alpha actinin

protein. The leftmost image contains all channels, and the following ones rep-

resent cell membrane (magenta), alpha actinin structure (yellow) and nucleus

(cyan), respectively. The images have been colored and cropped for visualiza-

tion purpose

Fig. 2. Examples of the cellular structure generation problem. The first col-

umn is the input Xr and shows the type of protein we try to generate. The se-

cond column represents the generated protein X ŝ . The last column is the

image integrating Xr and X ŝ together. The scale bar at the bottom left repre-

sents 10 lm, and the examples in this figure share the same scale ratio

Fig. 3. The general structure of our proposed model

4 H.Yuan et al.
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consists of two parts; those are, the reference channels Xr and the

type information y. In our work, Xr is represented as an image, and

y is a one-hot vector. We need to combine these two parts together

with the sampled noise z to generate the structure channel. As dis-

cussed in Subsection 2.2, to combine the information of an image

and a vector, we can map the image to a vector representation

through a trainable network and concatenate it to the vector.

Hence, we employ an encoder–decoder network for our generator.

The encoder consists of several convolutional layers (LeCun

et al., 1998) with stride equal to two and a final fully-connected

layer. It takes the reference channels Xr as inputs and extracts a vec-

torized representation of Xr, denoted as zr. Then zr is combined with

the one-hot vector y and a sampled noise vector z via concatenation.

After that, the combined information is fed into the decoder net-

work, which contains a fully-connected layer followed by several

de-convolutional layers of stride two (Gao et al., 2017). Finally, the

decoder outputs the generated structure channel, denoted as Xŝ .

Note that the number of de-convolutional layers in the decoder

should be equal to the number of convolutional layers in the

encoder.

In addition, the localizations of sub-cellular structures in a cell

are highly related to the shape and location of its membrane and nu-

cleus. For example, the protein LaminB1 always surrounds the

DNA, which means it always localizes to the inner boundaries of nu-

cleus. Such spatial information is useful for the sub-cellular structure

generation, but it cannot be perfectly conveyed because of the

down-sampling and up-sampling operations in our encoder–decoder

generator. Adding skip connections between the encoder and de-

coder is shown to be beneficial in many tasks where global spatial

information is of great importance, such as in image segmentation

task (Ronneberger et al., 2015). Hence, we use skip connections in

our model and the structure of our generator network is shown in

Figure 4.

In traditional ‘U-Net’, the skip connections use concatenation,

which means the information in the encoder is simply copied and

concatenated to the information of decoder. However, in such a

conditional generation task, we believe it is beneficial to only share

useful information between the encoder and decoder, and what is

useful depends on the conditional information. For example, the

protein LaminB1 always surrounds the DNA so that the shape and

location of DNA are more important to the generation of LaminB1.

In another case, the protein Alpha-actinin always localizes to the

inner cell membranes and hence the localization of membrane is

more useful for the generation of Alpha-actinin. Therefore, it is

desirable to incorporate the conditional information, especially the

label information y, when building skip connections between the en-

coder and decoder.

We propose to apply gating mechanisms to build the skip con-

nections. The skip connections can be considered as paths through

which information flows from the encoder to the decoder. The gat-

ing mechanisms can control such information flow and have shown

their benefits in many tasks (Chung et al., 2014; Dauphin et al.,

2016). By learning a gating function, the networks are allowed to

determine what information should be passed through the skip con-

nections between the encoder and decoder. In this work, we propose

several different gated connections to guide the flow of conditional

information.

Self-Gated Connections: First of all, instead of simply copying

the information of encoder and concatenate it to the decoder, we

propose to take the conditional information Xr into account when

building the skip connections. The gating function learns to propa-

gate only a fraction of information from the encoder to decoder. As

shown in Figure 5, X1 is the information of one layer in the encoder

that contains the low-level features of input Xr, while X2 refers to in-

formation of the corresponding layer in the decoder.

Mathematically, the self-gated connection can be represented as

g ¼ rðcðX1ÞÞ; o ¼ ½X1 � g;X2�; (5)

where cð�Þ represents convolution, rð�Þ denotes sigmoid function, �
refers to element-wise multiplication, ½�; �� denotes concatenation

and o represents the output.

First, X1 passes through a convolutional layer with a sigmoid ac-

tivation function to obtain a weight matrix. This weight matrix has

the same spatial dimensions as those of X1, and the value of each

element is between 0 and 1. We perform element-wise multiplication

between X1 and the weight matrix, and then concatenate it with X2

to obtain the output. In this way, only a fraction of X1 is shared

with X2, and the weight matrix determines what to be shared. We

term it self-gated connection because the weight matrix is calculated

from X1 and is used to multiply by X1 itself.

Encoder-Gated Connections: We also propose another type of

gated connection, termed encoder-gated connection. Instead of using

gating functions to control the information flow from the encoder to

the decoder, we propose to use the information in encoder to guide

what information should be propagated through the decoder layers.

The operations of the proposed encoder-gated connection are illus-

trated in Figure 6, where X1 and X2 have been defined above.

Formally, the encoder-gated connection can be represented as

g ¼ rðcðX1ÞÞ; o ¼ X2 � g: (6)

The way to compute the weight matrix is similar to the case of

self-gated connection in that X1 is fed to a convolutional layer with

sigmoid activation function and produces a weight matrix. Note

that the weight matrix has the same spatial dimensions as those of

Fig. 4. The structure of the generator in our model. The operation among zr, z

and y is concatenation

Fig. 5. Illustration of the self-gated connection, where r denotes the sigmoid

activation function and ‘Concat’ denotes concatenation

Computational modeling of cellular structures using conditional deep generative networks 5

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/advance-article-abstract/doi/10.1093/bioinform
atics/bty923/5162747 by Xi'an Jiaotong U

niversity user on 12 April 2019



X2, not X1. Instead of multiplying the weight matrix with X1 itself,

we perform element-wise multiplication between the weight matrix

and X2. The weight matrix can select useful information in X2 to be

preserved as output. Since the output of current layer is also the in-

put of the next layer, the weight matrix controls the information

flow between different decoder layers. The main difference between

self-gated connection and encoder-gated connection is that the for-

mer controls information sharing between the encoder and decoder

while the latter determines the information flow between decoder

layers.

Label-Gated Connections: Both of the above connections are

built based on the conditional information Xr. As can be seen from

the examples mentioned above, the type information y also contrib-

utes to the localizations of generated structures. Hence, we propose

another type of gated connection, termed label-gated connection, to

incorporate the type conditional information between the encoder

and decoder. Different from the self-gated connections and encoder-

gated connections, the weight matrix here is generated from the type

information y. The operations of label-gated connections are shown

in Figure 7. The type information y first passes through a

fully-connected layer with no activation function, which maps the

one-hot vector y to a high dimensional space. Then it is fed into a

convolutional layer with a sigmoid function to obtain a weight ma-

trix, whose spatial dimensions are the same as those of X1. After

that, X1 is multiplied by the weight matrix, and we concatenate the

result with X2 to produce the output. In this way, both the condi-

tional type information y and reference channels Xr are incorporated

to control the information flow from the encoder to the decoder.

The mathematic formulation of label-gated connection can be

expressed as

g ¼ rðcðf ðyÞÞÞ; o ¼ ½X1 � g;X2�; (7)

where f ð�Þ denotes the fully-connected layer.

3.4 Discriminator networks
The discriminator of our model consists of several convolutional

layers and fully-connected layers. It takes a tuple as input,

which consists of the reference channels Xr, the structure channel

Xs (or Xŝ ) and the type information y. As shown in Figure 3, the ref-

erence channels and structure channel can be integrated together as

one image (Xr;s or Xr;ŝ ). Then the input becomes a pair consisting of

an image and a one-hot vector. In order to combine these two parts

together, we choose to replicate y multiple times spatially and per-

form a depth concatenation with the image before feeding it into the

discriminator. It is noteworthy that such operations will be per-

formed twice, in the different layers of the discriminator. Finally,

the discriminator outputs a single value, which estimates the prob-

ability of the input tuple being real. Note that the input tuple is real

if all components are from true data distribution and they are con-

sistent with each other. In addition, we add noise to the input of dis-

criminator, since it is shown to be useful to improve the stability of

GAN-based models (Arjovsky and Bottou, 2017).

4 Experimental studies

4.1 Dataset and experimental setup
We use the 2D cellular image dataset released by Allen Institute for

Cell Science. The data are obtained from a 3D confocal microscopy

dataset by maximum intensity projection (Johnson et al., 2017b).

There are 6077 cellular images in total and each image contains

channels representing the cell membrane, nucleus and a labeled sub-

cellular structure (protein). There are 10 different types of sub-cellu-

lar structures in this dataset, including a-actinin, a-tubulin, b-actin,

desmoplakin, fibrillarin, lamin B1, myosin IIB, Sec61b, TOM20 and

ZO1. We randomly split the dataset into training set (5000 images)

and testing set (1077 images). Each image is scaled to 256�256 pix-

els by bilinear interpolation, and the resolution is 0.317 lm/pixel

(Johnson et al., 2017b).

The encoder part of our generator consists of six convolutional

layers followed by a fully-connected layer. The stride is set to 2, and

the kernel size is set to 4�4 in convolutional layers. The numbers of

output channels are doubled in each layer, starting from 64. For all

layers in the encoder, batch normalization (Ioffe and Szegedy, 2015)

is applied and parametric rectified linear unit (PReLU) (He et al.,

2015) is employed as activation functions. The dimension of latent

variables zr is set to 16. We set the dimension of the sampled noise z

to 16 as well and sample it from the normal distribution N(0, I).

There are 10 types of sub-cellular structures in total, so the dimen-

sion of y is 10.

In the decoder of our model, there is a fully-connected layer fol-

lowed by six deconvolutional layers with a stride equal to 2.

The kernel size of de-convolutional layers is set to 4�4. The num-

ber of output channels for each de-convolutional layer is the same as

its corresponding layer in the encoder. We choose the PReLU as the

activation function and apply batch normalization for all layers.

In addition, different skip connections between the encoder and de-

coder are also applied in different models.

The discriminator consists of four convolutional layers followed

by two fully-connected layers. The stride and kernel size are the

same as above. The output channels of convolutional layers are

doubled in each layer, starting from 32. We choose to apply leaky

rectified linear unit (LReLU) as the activation function for convolu-

tional layers and the sigmoid function for fully-connected layers. As

mentioned in Section 3.4, the one-hot vector y is replicated spatially

and concatenated with the image. Such operations are performed

twice; that is, on the input of the first and the third convolutional

layers. In addition, the noise we add to the input of discriminator is

sampled from a normal distribution with mean equal to 0 and SD

equal to 0.01.

Fig. 7. Illustration of the label-gated connection, where r denotes the sigmoid

activation function and Concat denotes simple concatenation

Fig. 6. Illustration of the encoder-gated connection, where r denotes the sig-

moid activation function
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We implement our methods using TensorFlow and conduct our

experiments on one Tesla K80 GPU. The learning rate is 2� e�4

and the batch size is 10. We follow the standard procedure to train

cGANs by performing one gradient descent step on discriminator

first, then one step on generator and repeat. We apply the Adam

optimizer (Kingma and Ba, 2014) with momentum parameters b1 ¼
0:9 and b2 ¼ 0:999.

4.2 Qualitative results
We conduct experiments to compare the performance of different

gated connections in the conditional GAN models; namely the self-

gated connection, encoder-gated connection, label-gated connection

and the original skip connection. Note that, we term the original

skip connection in ‘U-Net’ as copy connection to avoid confusion.

In addition, we compare our GAN-based approaches with the AAE-

based approach mentioned in Section 2.3. To the best of our know-

ledge, this is the only existing deep learning method dealing with

such structure generation problem. We use the source code released

by the original authors to produce their results.

Given the reference channels Xr and the sub-cellular structure

type information y of an image from the test set, we compare the

generated structure channels of different models. The results are

shown in Figure 8, where all samples are randomly selected. We

conduct experiments for all 10 types of sub-cellular structures, and

each row corresponds to one type. In each row, the leftmost column

is the reference channels Xr of a cell and the second one is the

observed sub-cellular structure (ground truth), which shows the true

shape, location and density distribution. The following columns rep-

resent the generated sub-cellular structures of different models. We

can observe that the localizations of sub-cellular structures gener-

ated by cGANs models can match the ground truths precisely, which

means cGANs models can learn the underlying relationships be-

tween Xr, y and Xs well. However, the shape and location of images

generated by AAE-based approaches are different from the ground

truths. Furthermore, the existing AAE-based approach tends to gen-

erate blurrier images than ours. On the other hand, the sub-cellular

structures generated by cGANs approaches also match the proper-

ties observed in biological experiments. For example, the localiza-

tion of protein a-tubulin is consistent with the shape and position of

the membrane; protein fibrillarin always localizes within the nu-

cleus, and protein LaminB1 always localizes to the inner boundaries

of the nucleus.

For the proteins Desmoplakin and ZO1, our cGANs models can

learn the shape and location correctly but not for the density distri-

bution. This is because these two types of proteins have much fewer

training examples than the others. The AAE-based approach learns

better density distributions for these two types of proteins, but

the localizations do not match the ground truths. Overall, our

cGAN-based approaches outperform the AAE-based method in

term of visual comparison. It is difficult to visually compare the

results of different cGANs models since the generated structures are

very similar in term of localization and only vary slightly for the

density distribution. Hence, we present quantitative evaluation in

the next subsection. More experimental results are released online.

4.3 Quantitative results
We perform quantitative analysis using the Parzen window log-

likelihood estimation (Breuleux et al., 2011). The underlying idea of

Parzen window log-likelihood estimation is to estimate the probabil-

ity of the test set data under the probability distribution of generated

samples. It fits a Gaussian Parzen window to the generated samples

and estimates the log-likelihood (Goodfellow et al., 2014). This ap-

proach is widely used in many generative models where the exact

likelihood is not tractable (Goodfellow et al., 2014; Makhzani et al.,

2015).

We first perform this quantitative evaluation on the whole test

dataset, regardless of the type information. The evaluation results

are reported in Table 1. Among the five approaches, cGANs with

label-gated connection have the best quantitative results. The three

cGAN methods with our proposed skip connections share very simi-

lar results, and their results are all better than the one with copy con-

nection. Furthermore, all cGANs approaches perform better than

Fig. 8. Qualitative comparison between different approaches. Different rows

show the results for different types of sub-cellular structure. In each row, the

leftmost image is the input Xr and the second one is the ground truth. The fol-

lowing ones are generated structures using different approaches in the fol-

lowing order: cGANs with self-gated connection, cGANs with encoder-gated

connection, cGANs with label-gated connection, cGANs with copy connection

and the existing AAE-based approach. The scale bar at the bottom left repre-

sents 10 lm, and the examples in this figure share the same scale ratio

Table 1. Parzen window log-likelihood estimates on the whole test

dataset

Model Log-Likelihood

cGANs with self-gated connection 88 700 6 42

cGANs with encoder-gated connection 88 721 6 42

cGANs with label-gated connection 88 791 6 40

cGANs with copy connection 88 568 6 39

AAE-based approach 87 689 6 55

The bold characters indicate the best evaluation scores.
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the AAE-based approach in term of Parzen window log-likelihood

estimation.

We also perform quantitative evaluations for different sub-cellu-

lar structure types, as shown in Table 2. We can observe from the

results that the cGANs with self-gated connection have the best per-

formance for six types of proteins. In addition, cGANs with

encoder-gated connection outperform other methods for proteins

b-actin and TOM20. The AAE-based approach performs better for

Desmoplakin and Fibrillarin. Generally speaking, the results of

cGANs approaches are better than the existing AAE-based ap-

proach. Together with the qualitative results, we can conclude that

our proposed cGANs approaches perform better than the existing

approach both qualitatively and quantitatively. In addition, the

three proposed skip connections are shown to be useful for such

conditional generation task.

4.4 Integrating structures
As mentioned in Subsection 3.1, the challenging task in biological

experiments is to experimentally label all structures simultaneously.

We propose to apply a computational approach to build a model for

such a task so that it can generate the localizations of different struc-

tures. In order to show the effectiveness of our methods, we conduct

experiments using the same input Xr but different input y. It indi-

cates how different sub-cellular structures localize in the same cell

and how different sub-cellular structures are related to each other.

We report the results obtained from cGANs with label-gated con-

nection in Figure 9. In this experiment, we randomly select three

images from test set and use their reference channels Xr as input. In

the results, we show the generated structures for proteins a-actinin,

Fibrillarin, LaminB1 and Tom20. The localizations of generated

sub-cellular structures are consistent with the properties observed in

biological experiments. It also matches our observations in

Subsection 4.2. In this way, we can obtain the localization of any

needed sub-cellular structure in a cell based on other structures and

the learned relationships.

5 Conclusions and discussions

The localizations of sub-cellular structures in a cell are important

because knowing such localizations is helpful to determine the func-

tions of the cell. However, it is difficult to experimentally observe all

structures of the same cell. We formulate such problem as a condi-

tional image generation problem and apply conditional GANs to

learn the relationships among different sub-cellular structures. We

design the generators of our model as an encoder–decoder network

with skip connections to incorporate the conditional information.

Furthermore, instead of applying the original copy connection in

‘U-Net’, we propose to incorporate the conditional information to

build the skip connections. Three different types of skip connections

are proposed, including self-gated connection, encoder-gated con-

nection and label-gated connection.

We conduct experiments to compare the performance of our

proposed models with an existing AAE-based approach. Qualitative

results show that the structures generated by our approaches match

the ground truths precisely, in both shape and location. In addition,

the localizations of different sub-cellular structures are consistent

with biological observations. The results of cGANs methods are

visually better than those of the existing approach. Furthermore,

quantitative evaluations are performed using the Parzen window

log-likelihood estimation. It is shown that our approaches outper-

form the AAE-based approach and the proposed skip connections

can improve the performance. Overall, our proposed approaches

have demonstrated the ability to learn the underlying relationships

between different structures.

It is noteworthy that our model can be extended to learn rela-

tionships among different proteins. For examples, the reference

channels may contain the information of two types of proteins, and

the structure channel refers to another type of protein. In this way,

the models can learn the relationships among different types of pro-

teins, without knowing the information of nucleus and cell mem-

brane. In addition, the AAE-based approach was extended to deal

with 3D images recently (Johnson et al., 2017a). Our model can

also be extended to handle 3D data by designing 3D networks.

For convolutional and de-convolutional layers, we can employ 3D

convolutional and deconvolutional layers. The 3D version of

Table 2. Parzen window log-likelihood estimates for different types of proteins

Structure type Self-gated Encoder-gated Label-gated Copy connection AAE-based

a�actinin 86 701 6 191 86 498 6 208 86 565 6 204 86 696 6 193 85 761 6 220

a�tubulin 87 467 6 108 87 466 6 108 87 096 6 95 87 103 6 99 86 578 6 98

b�actin 86 985 6 108 87 024 6 111 87 020 6 105 86 854 6 101 86 598 6 114

Desmoplakin 85 633 6 221 85 964 6 255 85 737 6 272 86 249 6 231 86 440 6 233

Fibrillarin 85 041 6 334 85 067 6 319 85 133 6 325 85 369 6 308 86 004 6 280

LaminB1 86 460 6 182 86 408 6 186 86 423 6 187 86 337 6 184 85 820 6 187

Myosin IIB 85 883 6 236 85 256 6 288 85 743 6 257 85 676 6 264 84 854 6 283

Sec61 b 86 483 6 104 86 401 6 110 86 283 6 114 86 301 6 112 85 515 6 118

Tom20 86 832 6 162 86 939 6 160 86 754 6 156 86 923 6 149 85 905 6 174

ZO1 85 857 6 316 84 905 6 315 85 062 6 304 85 370 6 292 85 068 6 297

The bold characters indicate the best evaluation scores.

Fig. 9. Examples showing localizations of different proteins in the same cell.

Results of different cells are shown in different rows. In each row, the leftmost

image is the input Xr, and the following ones are different types of generated

sub-cellular structures. The scale bar at the bottom left represents 10 lm, and

the examples in this figure share the same scale ratio
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fully-connected layers contains a large number of parameters and

may lead to memory issues. We can replace the fully-connected

layers by 3D convolutional layers to avoid this issue.
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