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Abstract

Motivation: Cellular function is closely related to the localizations of its sub-structures. It is, how-
ever, challenging to experimentally label all sub-cellular structures simultaneously in the same cell.
This raises the need of building a computational model to learn the relationships among these sub-
cellular structures and use reference structures to infer the localizations of other structures.
Results: We formulate such a task as a conditional image generation problem and propose to use
conditional generative adversarial networks for tackling it. We employ an encoder-decoder net-
work as the generator and propose to use skip connections between the encoder and decoder to
provide spatial information to the decoder. To incorporate the conditional information in a variety
of different ways, we develop three different types of skip connections, known as the self-gated
connection, encoder-gated connection and label-gated connection. The proposed skip connections
are built based on the conditional information using gating mechanisms. By learning a gating
function, the network is able to control what information should be passed through the skip
connections from the encoder to the decoder. Since the gate parameters are also learned automat-
ically, we expect that only useful spatial information is transmitted to the decoder to help image
generation. We perform both qualitative and quantitative evaluations to assess the effectiveness of
our proposed approaches. Experimental results show that our cGAN-based approaches have the
ability to generate the desired sub-cellular structures correctly. Our results also demonstrate that
the proposed approaches outperform the existing approach based on adversarial auto-encoders,
and the new skip connections lead to improved performance. In addition, the localizations of gener-
ated sub-cellular structures by our approaches are consistent with observations in biological
experiments.

Availability and implementation: The source code and more results are available at https://github.
com/divelab/cgan/.

Contact: sji@tamu.edu

1 Introduction

Sub-cellular structures are the structures localized within a cell, and
typical examples are cell membrane, nucleus, cytoskeleton, chloro-
plast and different proteins. It is of great importance to understand

the localizations of sub-cellular structures in a cell, since they deter-
mine the functions of cells. For example, proteins are the key com-
ponents in the cell and carry out most of the cell functions (Lodish
et al., 1995). However, even the same protein may lead to different
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cell functions when localized at different locations (Faust and
Montenarh, 2000). Hence, it is especially important to study the
localizations of different proteins in different cells. A popular ap-
proach is to build cell models, such as the location proteomics
(Murphy, 2005), to learn the relationships between cell states, cell
functions and sub-cellular structure locations. It is, however, diffi-
cult to experimentally distinguish and label all sub-cellular struc-
tures simultaneously in the same cell. It is hence important to build
computational models to capture the localizations of different sub-
cellular structures. Then such computational models can predict the
locations of unlabeled sub-cellular structures and improve the pre-
dictions of cell models. Specifically, in this work, our models try to
learn the relationships among cell membrane, nucleus and different
types of proteins. If we let each channel of an image contains the in-
formation about one of the sub-cellular structures in the cell, the
relationships between different structures can be represented
by the relationships between image channels. In this way, we formu-
late the problem as an image generation task which generates the
specific channel we need, given the other channels of an image.

Recently, several studies investigated the synthesis of sub-cellular
structures (Ulman et al., 2016). One straightforward way is to merge
multiple neighboring point-like signals to obtain complicated struc-
tures (Baddeley et al., 2010; Ulman et al., 2016; Wu et al., 2010).
Another way is to employ image feature based approaches to model
different cell components (Boland and Murphy, 2001; Carpenter
et al., 20065 Rajaram et al., 2012). In addition, a few seminal studies
have proposed generative models for such tasks and obtained prom-
ising results (Peng and Murphy, 2011; Zhao and Murphy, 2007).
They built different parametric sub-models to learn different cell
components, such as nuclear shape, cell shape, protein size and
shape and organelle distributions. Their models also learn to capture
relationships among different cell components. Such parametric
approaches can model different types of sub-cellular structures and
are expected to generate images following the same underlying dis-
tribution as the training set images. However, different sub-cellular
structures are highly correlated in cells. The relationships among
them are complicated and non-linear. Most of these approaches
only employ traditional learning techniques, which may not fully
capture highly complex relationships as compared with deep learn-
ing methods.

With the widespread use of computational methods, several
studies have shown that generative models are particularly useful for
such tasks (Peng and Murphy, 2011; Zhao and Murphy, 2007).
By learning relationships among different sub-cellular structures, we
can experimentally label a few structures in each cell and computa-
tionally predict the remaining ones. Recent work (Johnson et al.,
2017b) proposed an image generative model based on adversarial
auto-encoders (AAEs) (Makhzani et al., 2015). The AAE networks
are derived from Variational Auto-encoders (VAEs) (Kingma and
Welling, 2013) and follow an encoder—decoder structure. Instead of
employing the Kullback-Leibler divergence as in VAEs, AAEs apply
discriminators to encourage the latent variables to fit a normal dis-
tribution. As far as we know, this is the only deep learning method
dealing with this sub-cellular structure generation problem. The
method builds two different adversarial auto-encoder networks to
learn the relationships between different sub-cellular structures.
However, VAE-based methods tend to generate blurry images, espe-
cially for high resolution and intricate datasets (Dosovitskiy and
Brox, 2016; Zhao et al., 2017). In addition, the existing approach
generates images from the vectorial latent representations of the in-
put and hence tends to generate images with large variations during
the testing phase. Furthermore, the spatial information is largely lost

due to the down-sampling operations and up-sampling operations in
its model. Then the generated structures may not localize accurately,
which is demonstrated in our experiments.

It is known that GAN-based approaches usually generate more
photorealistic images and the generated images tend to have smaller
variations (Isola et al., 2016; Kim et al., 2017; Yi et al., 2017; Zhu
et al., 2017). Hence, we propose approaches based on conditional
GAN:S for this task. The conditional information consists of two
parts; namely labeled reference structures (cell membrane and nu-
cleus) and the protein type. We design the generator of our model as
an encoder—decoder network (Badrinarayanan et al., 2015; Long
et al., 2015) with skip connections (He ez al., 2016a, b) to share spa-
tial information between the encoder and decoder. Furthermore, in
such a conditional generation task, we believe that the conditional
information should be incorporated to determine what should be
shared between the encoder and decoder. Hence, we develop three
different types of connections known as self-gated connection,
encoder-gated connection and label-gated connection, respectively.
All of the proposed skip connections are built based on the condi-
tional information and employing the gating mechanisms (Dauphin
et al., 2016). There are two main contributions in our work; these
are, we propose to adaptively apply conditional GANs for such
tasks to generate more photorealistic images with smaller variations
and we propose three different types of skip connections to incorp-
orate the conditional information to control the information flow in
the networks.

In order to show the effectiveness of our proposed approaches,
we conduct several experiments and evaluate the results both quali-
tatively and quantitatively. Qualitative results show that our
approaches are visually better than the existing method. The shape
and location of the structures generated by our approach match the
ground truths in the test set and are consistent with experimental
observations in biological sciences. Furthermore, we evaluate
different approaches quantitatively using the Parzen window log-
likelihood estimation (Breuleux et al., 2011). Results indicate that
our methods outperform the existing method and the newly pro-
posed connections can improve the performance of models.

2 Background and related work

In this section, we present a brief introduction of generative adver-
sarial networks (GANs) in Subsection 2.1. Then we describe existing
work on conditional generative adversarial networks in Subsection
2.2. We also discuss an existing approach for the cellular structure
generation problem.

2.1 Generative adversarial networks

Estimating high-dimensional distributions is a challenging task as it
requires a tremendous amount of training samples. Recent studies
have shown the success of GANG in learning high-dimensional distri-
butions implicitly, and they have been used to generate photorealis-
tic images (Denton et al., 2015; Radford et al., 2015). GANs do not
produce an explicit density function from the training data, but can
be used to generate samples from the learned distributions. They
consist of two distinct networks; namely, a generator G and a dis-
criminator D. The generator G learns to capture the data distribu-
tion, and the discriminator D learns to discriminate samples
generated from the generator G and those from the training data.
These two networks are trained iteratively. Specifically, D is trained
to distinguish real samples X from generated samples X, while G is
trained to fool the discriminator by trying to generate samples that
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are similar to the real ones. The training process can be interpreted
as a two-player minimax game.

Given a noise vector z sampled from a prior distribution p,(z), G
generates a sample X using the learned mapping from p.(z) to the
true data distribution. Meanwhile, D takes a sample as input and
outputs a single scalar representing the probability that this sample
belongs to the true data distribution. Mathematically, the objective
function of GANs can be expressed as

minmax Ex.p,,x[log D(X)]

(1)
FEzp. @ [log(1 = D(G(2))],

where py.. (X) represents the true data distribution.

2.2 Conditional generative adversarial networks
Although GANSs are capable of learning high-dimensional distribu-
tions, they cannot be directly applied to many image-related applica-
tions, since they do not take conditional information into
consideration. To this end, conditional GANs (cGANSs) have been
proposed by incorporating conditional information in image gener-
ation. In cGANs, many different types of conditional information
can be used, including discrete class information (Mirza and
Osindero, 2014), text information (Reed et al., 2016; Zhang et al.,
2016) and image information (Denton et al., 2016; Isola et al.,
2016; Zhu et al., 2017).

Different from GANSs, both the generator G and discriminator D
in ¢cGANs are coupled with the conditional information y. Given y
and the sampled noise z, G generates an image X. For the discrimin-
ator D, the input is a pair consisting of an image X and the condi-
tional information y. Then D estimates the probability of such a pair
being real. Note that in ¢GANS, a real pair not only requires that
both the image and the conditional information are from the true
data distribution, but also requires them to be consistent with each
other. Formally, the objective function of cGANs can be written as

mcl;n mg-x EX.yNj)dm(X‘y) [lOg D(Xv )’)]

(2)
FEy a2~ (00 108(1 = D(G(y,2), )],

where p .. (y) denotes the distribution of the conditional information.

It is worth noting that we can feed the paired input into cGANSs in
many ways. For example, if y is a one-hot vector representing class in-
formation, y and z can be concatenated and fed into G. In this case,
the input pair of D contains an image and a vector. One can replicate
the vector y multiple times spatially and perform concatenation with
the image in the depth dimension before feeding it into D (Radford
et al., 2015). When y represents text information, it can be converted
to a high-dimensional vector using embedding and then compressed to
a lower dimension using a fully-connected layer. Then it can be used in
a similar way as discussed above. If the conditional information y is an
image, the input of D is a pair of images. It is straightforward to con-
catenate them and feed it into D. For the generator, one can apply a
trainable network to extract vectorized representations of the input
image and concatenate them to the noise z (Isola et al., 2016).

2.3 Cellular structure modeling

In Johnson et al. (2017b), a deep learning model for cellular struc-
ture modeling is proposed. This method uses a conditional genera-
tive model based on adversarial auto-encoders (AAE). Note that
AAE networks are derived from VAE networks, which also follow
an encoder—decoder structure. Instead of employing the Kullback—
Leibler divergence as in VAE, AAE applies a discriminator to en-
courage the latent variable to follow a normal distribution.

The model in Johnson et al. (2017b) consists of two different
AAE networks. The first one takes information of cell membrane
and nucleus as input and learns their shapes. It produces encoded la-
tent representations of inputs and encourages the latent variables to
follow a normal distribution. In addition, it generates a recon-
structed image which is expected to be close to the input. The second
AAE network learns the relationships between sub-cellular struc-
tures dependent on the encoded latent representations. The latent
variables consists of three parts; namely encoded representations of
the cell and nucleus, encoded representations of sub-cellular struc-
ture and the type information. It encourages the encoded representa-
tions of cell and nucleus to be similar to the latent encodings of the
first network and the type information to be close to the vectorized
representations of ground truth type. In addition, it encourages the
encoded representations of sub-cellular structure to follow the nor-
mal distribution. After training, the decoder of the second AAE net-
work is employed to generate the desired sub-cellular structure
based on cell membrane, nucleus and the type of sub-cellular struc-
ture. The input consists of three parts: the latent encodings of cell
membrane and nucleus from the first AAE network, the randomly
sampled representations of sub-cellular structure and the vectorized
representations of type information. In this model, discriminators
are used to make the reconstructed images similar to the input
images.

The approach in Johnson et al. (2017b) is based on AAE. It is
known that GAN-based approaches usually outperform VAE-based
methods in many image generation tasks. This is because VAE-
based approaches tend to produce blurry images on complex data-
sets (Dosovitskiy and Brox, 2016; Zhao et al., 2017). Since AAEs
are derived from VAEs, they also inherit the blurry image generation
problem. In addition, in their model, only the decoder of the second
AAE network is employed to generate the desired sub-cellular struc-
ture based on three latent vectors. It tends to generate images with
large variations because there are fewer constraints in these vectors.
Furthermore, the spatial information is largely lost in its information
flow while this information is important to determine the shape and
location of the desired sub-cellular structures. Without explicit in-
formation shared between encoders and decoders, the generated
structures may not localize correctly. Hence, in this work, we pro-
pose to employ conditional GANS for such tasks and design our net-
works to overcome these limitations.

3 Conditional generative models for cellular
structure modeling

In this section, we describe the cellular structure generation problem in
Subsection 3.1. Then the general framework of our model is presented
in Subsection 3.2. After that, we introduce our design of generators
and three types of proposed models in Subsection 3.3. Finally, the
architecture of discriminator networks is discussed in Subsection 3.4.

3.1 The cellular structure generation problem
Understanding cellular organization and sub-cellular structure local-
ization is of significant importance, since they are highly related to
cell functions. Due to the diversity of different molecular complexes,
it is challenging to experimentally label all structures in the same cell
simultaneously and determine the cellular organization. Hence, it is
important to apply a computational approach to learn the underly-
ing relationship and representations of those structures. We formu-
late this problem as an image generation task in which we use
images channels to represent different sub-cellular structures.
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Fig. 1. lllustration of channels in a cellular image containing the alpha actinin
protein. The leftmost image contains all channels, and the following ones rep-
resent cell membrane (magenta), alpha actinin structure (yellow) and nucleus
(cyan), respectively. The images have been colored and cropped for visualiza-
tion purpose

Formally, let X denotes a cellular image with three channels. The
first channel contains information of cell membrane; the second
channel contains the distribution of one sub-cellular structure, such
as one type of proteins and the third channel is the nucleus, as
shown in Figure 1. The cell membrane channel and the nucleus
channel together serve as the reference channels, denoted as X, as
they are available in all images. The sub-cellular structure channel
serves as the structure channel, denoted as X° (Johnson et al.,
2017b). Then each cellular image X consists of the reference chan-
nels X" and the structure channel X that is, X = X" = [X", X*]. We
use y to represent the type of the sub-cellular structure in X°. Given
the reference channels X" of a cellular image and any desired sub-cel-
lular structure type y, we aim at generating the corresponding struc-
ture channel X*, which is expected to be similar to the true X*. Some
examples are presented in Figure 2. By using the same X" and differ-
ent y as inputs, we can obtain the localizations of different sub-cellu-
lar structures in the same cell.

3.2 Problem formulation

The problem mentioned above can be considered as a conditional
generation task, where the conditional information consists of the
reference channels X" and the type information y. We propose to
employ conditional GANSs for such tasks. Specifically, we build an
encoder—decoder network with skip connections as the generator to
incorporate the conditional information. It follows the general struc-
ture of the ‘U-Net’ network (Ronneberger et al., 2015), but is
coupled with different ways of connections instead of applying the
original skip connections. The generator of our model consists of
two parts; namely an encoder and a decoder. It incorporates the con-
ditional information X" and y with the sampled noise z and outputs
the generated structure channel, denoted as X*. The input to our dis-
criminator is a tuple, which contains three parts: the reference chan-
nels X", the type information y and the structure channel X* (or X°).
It is noteworthy that we integrate the structure channel with the ref-
erence channels and they together become one image X" (or X"*).
Finally, the discriminator estimates the probability of such a
tuple being real. The structure of our model is shown in Figure 3.
The generator tries to generate structure channels similar to the
real ones and fool the discriminator. The discriminator is trained
to distinguish if the structure channels come from the true distribu-
tion. Mathematically, the objective function of ¢GANs can be
expressed as

rr}in m’%x EX”‘-‘.prm(X”,y) [10g D(va y)}

(3)
+]EXY<ywpdm(X"y).ZN[Iz(z) [lOg(l - D([Xr G(Xr7 Vs Z)]~ y))]

where [X7, G(X",y,2)] = [X",X°] = X", and the discriminator D

LaminB1

Fibrillarin

Fig. 2. Examples of the cellular structure generation problem. The first col-
umn is the input X" and shows the type of protein we try to generate. The se-
cond column represents the generated protein X°. The last column is the
image integrating X" and X® together. The scale bar at the bottom left repre-
sents 10 um, and the examples in this figure share the same scale ratio

Discriminator ~ — Real/Fake?

Draw Sample From
p(z)~N(0,.1)

Xrs

Fig. 3. The general structure of our proposed model

tries to maximize this objective while the generator G tries to min-
imize it.

Recently, a few studies have shown that it is beneficial to train
GANSs with another auxiliary loss, such as the L1 or L2 distance loss
(Isola et al., 2016; Ledig et al., 2016; Pathak et al., 2016). In our model,
we use the L2 loss to help the training of the generator. This means that
the generator not only tries to fool the discriminator, but also generates
images that are close to the ground truths in an L2 sense. Formally, the
objective function associate with L2 loss can be written as

min Bx Xy 30X @ [1X° = G 3,2 L) (4)

Note that the generator tries to minimize this objective while the dis-
criminator is not related. We combine the cGANSs objective and the 1.2
objective to train the model. The generator and discriminator are trained
iteratively; that is, we train the discriminator one step to maximize the
c¢GAN' s objective and then train the generator one step to minimize both
the cGANS objective and L2 objective. These steps are repeated.

3.3 The proposed generator networks
Different from traditional conditional image generation tasks, the
conditional information of sub-cellular structure generation tasks
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consists of two parts; those are, the reference channels X" and the
type information y. In our work, X" is represented as an image, and
y is a one-hot vector. We need to combine these two parts together
with the sampled noise z to generate the structure channel. As dis-
cussed in Subsection 2.2, to combine the information of an image
and a vector, we can map the image to a vector representation
through a trainable network and concatenate it to the vector.
Hence, we employ an encoder-decoder network for our generator.

The encoder consists of several convolutional layers (LeCun
et al., 1998) with stride equal to two and a final fully-connected
layer. It takes the reference channels X" as inputs and extracts a vec-
torized representation of X’, denoted as z”. Then 2" is combined with
the one-hot vector y and a sampled noise vector z via concatenation.
After that, the combined information is fed into the decoder net-
work, which contains a fully-connected layer followed by several
de-convolutional layers of stride two (Gao et al., 2017). Finally, the
decoder outputs the generated structure channel, denoted as X°.
Note that the number of de-convolutional layers in the decoder
should be equal to the number of convolutional layers in the
encoder.

In addition, the localizations of sub-cellular structures in a cell
are highly related to the shape and location of its membrane and nu-
cleus. For example, the protein LaminB1 always surrounds the
DNA, which means it always localizes to the inner boundaries of nu-
cleus. Such spatial information is useful for the sub-cellular structure
generation, but it cannot be perfectly conveyed because of the
down-sampling and up-sampling operations in our encoder—decoder
generator. Adding skip connections between the encoder and de-
coder is shown to be beneficial in many tasks where global spatial
information is of great importance, such as in image segmentation
task (Ronneberger er al., 2015). Hence, we use skip connections in
our model and the structure of our generator network is shown in
Figure 4.

In traditional ‘U-Net’, the skip connections use concatenation,
which means the information in the encoder is simply copied and
concatenated to the information of decoder. However, in such a
conditional generation task, we believe it is beneficial to only share
useful information between the encoder and decoder, and what is
useful depends on the conditional information. For example, the
protein LaminB1 always surrounds the DNA so that the shape and
location of DNA are more important to the generation of LaminB1.
In another case, the protein Alpha-actinin always localizes to the
inner cell membranes and hence the localization of membrane is
more useful for the generation of Alpha-actinin. Therefore, it is

Fig. 4. The structure of the generator in our model. The operation among 2/, z
and y is concatenation

desirable to incorporate the conditional information, especially the
label information y, when building skip connections between the en-
coder and decoder.

We propose to apply gating mechanisms to build the skip con-
nections. The skip connections can be considered as paths through
which information flows from the encoder to the decoder. The gat-
ing mechanisms can control such information flow and have shown
their benefits in many tasks (Chung et al., 2014; Dauphin et al.,
2016). By learning a gating function, the networks are allowed to
determine what information should be passed through the skip con-
nections between the encoder and decoder. In this work, we propose
several different gated connections to guide the flow of conditional
information.

Self-Gated Connections: First of all, instead of simply copying
the information of encoder and concatenate it to the decoder, we
propose to take the conditional information X" into account when
building the skip connections. The gating function learns to propa-
gate only a fraction of information from the encoder to decoder. As
shown in Figure 5, X is the information of one layer in the encoder
that contains the low-level features of input X”, while X, refers to in-
formation of the corresponding layer in the decoder.
Mathematically, the self-gated connection can be represented as

&= J(C(Xl))v 0= [Xl X8, Xz], &)

where ¢(-) represents convolution, ¢(-) denotes sigmoid function, ®
refers to element-wise multiplication, |[-,-] denotes concatenation
and o represents the output.

First, X, passes through a convolutional layer with a sigmoid ac-
tivation function to obtain a weight matrix. This weight matrix has
the same spatial dimensions as those of X, and the value of each
element is between 0 and 1. We perform element-wise multiplication
between X and the weight matrix, and then concatenate it with X,
to obtain the output. In this way, only a fraction of X is shared
with X5, and the weight matrix determines what to be shared. We
term it self-gated connection because the weight matrix is calculated
from X, and is used to multiply by X itself.

Encoder-Gated Connections: We also propose another type of
gated connection, termed encoder-gated connection. Instead of using
gating functions to control the information flow from the encoder to
the decoder, we propose to use the information in encoder to guide
what information should be propagated through the decoder layers.
The operations of the proposed encoder-gated connection are illus-
trated in Figure 6, where X; and X, have been defined above.
Formally, the encoder-gated connection can be represented as

g=o0(c(X1)), o=X®g. (6)

The way to compute the weight matrix is similar to the case of
self-gated connection in that X is fed to a convolutional layer with
sigmoid activation function and produces a weight matrix. Note
that the weight matrix has the same spatial dimensions as those of

Out

TN N —
1 rotn (0 o e

—

Fig. 5. Illustration of the self-gated connection, where ¢ denotes the sigmoid
activation function and ‘Concat’ denotes concatenation
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Out

X; [ Convolution w X;

Fig. 6. lllustration of the encoder-gated connection, where ¢ denotes the sig-
moid activation function

Out

T

| y — Fulv- L5 Convolution 4)\ 0,4)‘X *){ Concat &—| X,

connected

] | |

Fig. 7. lllustration of the label-gated connection, where ¢ denotes the sigmoid
activation function and Concat denotes simple concatenation

X5, not X;. Instead of multiplying the weight matrix with X itself,
we perform element-wise multiplication between the weight matrix
and X5. The weight matrix can select useful information in X5 to be
preserved as output. Since the output of current layer is also the in-
put of the next layer, the weight matrix controls the information
flow between different decoder layers. The main difference between
self-gated connection and encoder-gated connection is that the for-
mer controls information sharing between the encoder and decoder
while the latter determines the information flow between decoder
layers.

Label-Gated Connections: Both of the above connections are
built based on the conditional information X". As can be seen from
the examples mentioned above, the type information y also contrib-
utes to the localizations of generated structures. Hence, we propose
another type of gated connection, termed label-gated connection, to
incorporate the type conditional information between the encoder
and decoder. Different from the self-gated connections and encoder-
gated connections, the weight matrix here is generated from the type
information y. The operations of label-gated connections are shown
in Figure 7. The type information y first passes through a
fully-connected layer with no activation function, which maps the
one-hot vector y to a high dimensional space. Then it is fed into a
convolutional layer with a sigmoid function to obtain a weight ma-
trix, whose spatial dimensions are the same as those of X;. After
that, X is multiplied by the weight matrix, and we concatenate the
result with X, to produce the output. In this way, both the condi-
tional type information y and reference channels X" are incorporated
to control the information flow from the encoder to the decoder.
The mathematic formulation of label-gated connection can be
expressed as

g=0(c(f), o=[X1®gX] (7)

where f(+) denotes the fully-connected layer.

3.4 Discriminator networks

The discriminator of our model consists of several convolutional
layers and fully-connected layers. It takes a tuple as input,
which consists of the reference channels X’, the structure channel

X* (or X*) and the type information y. As shown in Figure 3, the ref-
erence channels and structure channel can be integrated together as
one image (X" or X"*). Then the input becomes a pair consisting of
an image and a one-hot vector. In order to combine these two parts
together, we choose to replicate y multiple times spatially and per-
form a depth concatenation with the image before feeding it into the
discriminator. It is noteworthy that such operations will be per-
formed twice, in the different layers of the discriminator. Finally,
the discriminator outputs a single value, which estimates the prob-
ability of the input tuple being real. Note that the input tuple is real
if all components are from true data distribution and they are con-
sistent with each other. In addition, we add noise to the input of dis-
criminator, since it is shown to be useful to improve the stability of
GAN-based models (Arjovsky and Bottou, 2017).

4 Experimental studies

4.1 Dataset and experimental setup

We use the 2D cellular image dataset released by Allen Institute for
Cell Science. The data are obtained from a 3D confocal microscopy
dataset by maximum intensity projection (Johnson et al., 2017b).
There are 6077 cellular images in total and each image contains
channels representing the cell membrane, nucleus and a labeled sub-
cellular structure (protein). There are 10 different types of sub-cellu-
lar structures in this dataset, including a-actinin, a-tubulin, f-actin,
desmoplakin, fibrillarin, lamin B1, myosin IIB, Sec61f, TOM20 and
Z01. We randomly split the dataset into training set (5000 images)
and testing set (1077 images). Each image is scaled to 256 x 256 pix-
els by bilinear interpolation, and the resolution is 0.317 pm/pixel
(Johnson et al., 2017b).

The encoder part of our generator consists of six convolutional
layers followed by a fully-connected layer. The stride is set to 2, and
the kernel size is set to 4 x 4 in convolutional layers. The numbers of
output channels are doubled in each layer, starting from 64. For all
layers in the encoder, batch normalization (Ioffe and Szegedy, 2015)
is applied and parametric rectified linear unit (PReLU) (He et al.,
2015) is employed as activation functions. The dimension of latent
variables 2" is set to 16. We set the dimension of the sampled noise z
to 16 as well and sample it from the normal distribution N(0O, I).
There are 10 types of sub-cellular structures in total, so the dimen-
sion of y is 10.

In the decoder of our model, there is a fully-connected layer fol-
lowed by six deconvolutional layers with a stride equal to 2.
The kernel size of de-convolutional layers is set to 4 x 4. The num-
ber of output channels for each de-convolutional layer is the same as
its corresponding layer in the encoder. We choose the PReLU as the
activation function and apply batch normalization for all layers.
In addition, different skip connections between the encoder and de-
coder are also applied in different models.

The discriminator consists of four convolutional layers followed
by two fully-connected layers. The stride and kernel size are the
same as above. The output channels of convolutional layers are
doubled in each layer, starting from 32. We choose to apply leaky
rectified linear unit (LReLU) as the activation function for convolu-
tional layers and the sigmoid function for fully-connected layers. As
mentioned in Section 3.4, the one-hot vector v is replicated spatially
and concatenated with the image. Such operations are performed
twice; that is, on the input of the first and the third convolutional
layers. In addition, the noise we add to the input of discriminator is
sampled from a normal distribution with mean equal to 0 and SD
equal to 0.01.

6102 Idy Z| uo Josn Ayssaaun Buojoelr ueix A /1/2915/€26K10/SONEWIOUIOIG/EB0 | 0 |/10P/19BISqE-B[OLE-00UBADE/SONEWLIO}UIOIG/ W00  dNO"dlWapede//:sdy Wolj papeojumoq



Computational modeling of cellular structures using conditional deep generative networks 7

We implement our methods using TensorFlow and conduct our
experiments on one Tesla K80 GPU. The learning rate is 2 x e™*
and the batch size is 10. We follow the standard procedure to train
¢GANs by performing one gradient descent step on discriminator
first, then one step on generator and repeat. We apply the Adam
optimizer (Kingma and Ba, 2014) with momentum parameters ff; =

0.9 and B, = 0.999.

4.2 Qualitative results

We conduct experiments to compare the performance of different
gated connections in the conditional GAN models; namely the self-
gated connection, encoder-gated connection, label-gated connection
and the original skip connection. Note that, we term the original
skip connection in ‘U-Net’ as copy connection to avoid confusion.
In addition, we compare our GAN-based approaches with the AAE-
based approach mentioned in Section 2.3. To the best of our know-
ledge, this is the only existing deep learning method dealing with
such structure generation problem. We use the source code released
by the original authors to produce their results.

Given the reference channels X" and the sub-cellular structure
type information y of an image from the test set, we compare the
generated structure channels of different models. The results are
shown in Figure 8, where all samples are randomly selected. We
conduct experiments for all 10 types of sub-cellular structures, and
each row corresponds to one type. In each row, the leftmost column
is the reference channels X" of a cell and the second one is the
observed sub-cellular structure (ground truth), which shows the true
shape, location and density distribution. The following columns rep-
resent the generated sub-cellular structures of different models. We
can observe that the localizations of sub-cellular structures gener-
ated by cGANs models can match the ground truths precisely, which
means ¢GANs models can learn the underlying relationships be-
tween X', y and X* well. However, the shape and location of images
generated by AAE-based approaches are different from the ground
truths. Furthermore, the existing AAE-based approach tends to gen-
erate blurrier images than ours. On the other hand, the sub-cellular
structures generated by cGANs approaches also match the proper-
ties observed in biological experiments. For example, the localiza-
tion of protein o-tubulin is consistent with the shape and position of
the membrane; protein fibrillarin always localizes within the nu-
cleus, and protein LaminB1 always localizes to the inner boundaries
of the nucleus.

For the proteins Desmoplakin and ZO1, our cGANs models can
learn the shape and location correctly but not for the density distri-
bution. This is because these two types of proteins have much fewer
training examples than the others. The AAE-based approach learns
better density distributions for these two types of proteins, but
the localizations do not match the ground truths. Overall, our
c¢GAN-based approaches outperform the AAE-based method in
term of visual comparison. It is difficult to visually compare the
results of different cGANs models since the generated structures are
very similar in term of localization and only vary slightly for the
density distribution. Hence, we present quantitative evaluation in
the next subsection. More experimental results are released online.

4.3 Quantitative results

We perform quantitative analysis using the Parzen window log-
likelihood estimation (Breuleux ez al., 2011). The underlying idea of
Parzen window log-likelihood estimation is to estimate the probabil-
ity of the test set data under the probability distribution of generated
samples. It fits a Gaussian Parzen window to the generated samples

Fig. 8. Qualitative comparison between different approaches. Different rows
show the results for different types of sub-cellular structure. In each row, the
leftmost image is the input X" and the second one is the ground truth. The fol-
lowing ones are generated structures using different approaches in the fol-
lowing order: cGANs with self-gated connection, cGANs with encoder-gated
connection, cGANs with label-gated connection, cGANs with copy connection
and the existing AAE-based approach. The scale bar at the bottom left repre-
sents 10 pum, and the examples in this figure share the same scale ratio

Table 1. Parzen window log-likelihood estimates on the whole test
dataset

Model Log-Likelihood
¢GANs with self-gated connection 88 700 = 42
c¢GANSs with encoder-gated connection 88721 = 42
c¢GANSs with label-gated connection 88 791 + 40
c¢GANs with copy connection 88 568 = 39
AAE-based approach 87689 = 55

The bold characters indicate the best evaluation scores.

and estimates the log-likelihood (Goodfellow ez al., 2014). This ap-
proach is widely used in many generative models where the exact
likelihood is not tractable (Goodfellow et al., 2014; Makhzani et al.,
2015).

We first perform this quantitative evaluation on the whole test
dataset, regardless of the type information. The evaluation results
are reported in Table 1. Among the five approaches, cGANs with
label-gated connection have the best quantitative results. The three
¢GAN methods with our proposed skip connections share very simi-
lar results, and their results are all better than the one with copy con-
nection. Furthermore, all cGANs approaches perform better than
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the AAE-based approach in term of Parzen window log-likelihood
estimation.

We also perform quantitative evaluations for different sub-cellu-
lar structure types, as shown in Table 2. We can observe from the
results that the cGANs with self-gated connection have the best per-
formance for six types of proteins. In addition, cGANs with
encoder-gated connection outperform other methods for proteins
B-actin and TOM20. The AAE-based approach performs better for
Desmoplakin and Fibrillarin. Generally speaking, the results of
c¢GANs approaches are better than the existing AAE-based ap-
proach. Together with the qualitative results, we can conclude that
our proposed cGANs approaches perform better than the existing
approach both qualitatively and quantitatively. In addition, the
three proposed skip connections are shown to be useful for such
conditional generation task.

4.4 Integrating structures

As mentioned in Subsection 3.1, the challenging task in biological
experiments is to experimentally label all structures simultaneously.
We propose to apply a computational approach to build a model for
such a task so that it can generate the localizations of different struc-
tures. In order to show the effectiveness of our methods, we conduct
experiments using the same input X" but different input y. It indi-
cates how different sub-cellular structures localize in the same cell
and how different sub-cellular structures are related to each other.
We report the results obtained from ¢cGANs with label-gated con-
nection in Figure 9. In this experiment, we randomly select three
images from test set and use their reference channels X" as input. In
the results, we show the generated structures for proteins o-actinin,
Fibrillarin, LaminB1 and Tom20. The localizations of generated
sub-cellular structures are consistent with the properties observed in
biological experiments. It also matches our observations in
Subsection 4.2. In this way, we can obtain the localization of any
needed sub-cellular structure in a cell based on other structures and
the learned relationships.

5 Conclusions and discussions

The localizations of sub-cellular structures in a cell are important
because knowing such localizations is helpful to determine the func-
tions of the cell. However, it is difficult to experimentally observe all
structures of the same cell. We formulate such problem as a condi-
tional image generation problem and apply conditional GANs to
learn the relationships among different sub-cellular structures. We
design the generators of our model as an encoder—decoder network
with skip connections to incorporate the conditional information.
Furthermore, instead of applying the original copy connection in

‘U-Net’, we propose to incorporate the conditional information to
build the skip connections. Three different types of skip connections
are proposed, including self-gated connection, encoder-gated con-
nection and label-gated connection.

We conduct experiments to compare the performance of our
proposed models with an existing AAE-based approach. Qualitative
results show that the structures generated by our approaches match
the ground truths precisely, in both shape and location. In addition,
the localizations of different sub-cellular structures are consistent
with biological observations. The results of cGANs methods are
visually better than those of the existing approach. Furthermore,
quantitative evaluations are performed using the Parzen window
log-likelihood estimation. It is shown that our approaches outper-
form the AAE-based approach and the proposed skip connections
can improve the performance. Overall, our proposed approaches
have demonstrated the ability to learn the underlying relationships
between different structures.

It is noteworthy that our model can be extended to learn rela-
tionships among different proteins. For examples, the reference
channels may contain the information of two types of proteins, and
the structure channel refers to another type of protein. In this way,
the models can learn the relationships among different types of pro-
teins, without knowing the information of nucleus and cell mem-
brane. In addition, the AAE-based approach was extended to deal
with 3D images recently (Johnson et al., 2017a). Our model can
also be extended to handle 3D data by designing 3D networks.
For convolutional and de-convolutional layers, we can employ 3D
convolutional and deconvolutional layers. The 3D version of

Fibrillarin

Fig. 9. Examples showing localizations of different proteins in the same cell.
Results of different cells are shown in different rows. In each row, the leftmost
image is the input X', and the following ones are different types of generated
sub-cellular structures. The scale bar at the bottom left represents 10 um, and
the examples in this figure share the same scale ratio

Table 2. Parzen window log-likelihood estimates for different types of proteins

Structure type Self-gated Encoder-gated Label-gated Copy connection AAE-based
o—actinin 86 701 = 191 86498 + 208 86 565 = 204 86 696 = 193 85761 =220
a—tubulin 87467 + 108 87 466 + 108 87096 + 95 87103 + 99 86 578 + 98
f—actin 86 985 = 108 87024 = 111 87020 = 105 86 854 = 101 86 598 = 114
Desmoplakin 85633 =221 85964 + 255 85737 =272 86249 + 231 86 440 + 233
Fibrillarin 85041 = 334 85067 + 319 85133 = 32§ 85369 = 308 86 004 = 280
LaminB1 86 460 = 182 86 408 = 186 86423 = 187 86 337 = 184 85820 = 187
Myosin 1B 85 883 + 236 85256 + 288 85743 + 257 85676 + 264 84 854 + 283
Sec61 f 86 483 = 104 86401 = 110 86283 = 114 86301 = 112 85515 =118
Tom20 86 832 = 162 86 939 + 160 86 754 = 156 86 923 = 149 85905 =174
701 85857 + 316 84905 * 315 85062 + 304 85370 +292 85068 + 297

The bold characters indicate the best evaluation scores.
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Computational modeling of cellular structures using conditional deep generative networks 9

fully-connected layers contains a large number of parameters and
may lead to memory issues. We can replace the fully-connected
layers by 3D convolutional layers to avoid this issue.
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