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Abstract In this paper, we study a suspension of cells
at a moderate volume fraction flowing in a microchan-
nel filled with Newtonian or viscoelastic fluids and in-
vestigate the role of cell size, cell volume fraction, in-
ertia, deformability and fluid elasticity on the cell dis-
tribution. Our results suggest that the use of constant-
viscosity viscoelastic fluid pushes the cells toward the
channel centerline which can be used in microfluidic
devices used for cell focusing such as cytometers. The
cell-free layer increases which provides larger gap for
separating rare cells in microfluidic devices. Further-
more, we show that the volumetric flow rate can be
significantly enhanced with the addition of polymers in
the suspending fluid. This effect enhances the process-
ing speed which is of interest in designing microfluidic
devices. This fundamental study can provide insight on
the role of rheological properties of the fluid that can
be tuned to control the motion of the cells for efficient
design of microfluidic devices.
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1 Introduction

The motion of synthetic capsules and living cells in mi-
crochannels has been the subject of numerous studies
in the last decade due to its significance in engineer-
ing and biomedical applications [7, 43, 44]. Cell sorting
and separation are common processes that are used for
various purposes such as separation of leukocytes from
blood used in DNA sequencing [21]. Early diagnosis of
lethal diseases such as cancer [58] can be conducted
by isolation of rare cells in blood, which is a complex
suspension of cells. Furthermore, fractionated healthy
blood components are used for different therapeutic ap-
plications such as platelet transfusion [54]. Cell isolation
and enrichment provide a better platform to biologists
to study and analyze various properties of living cells
[21, 25]. In this regard, microfluidic devices provide a
platform to achieve aforementioned needs while over-
coming challenges such as sample contamination, cost
and complexity of the procedures [40]. Besides, these
devices offer higher accuracy for analysis and increased
automation of the process [6, 20]. Accordingly, there is
a high demand for developing techniques to precisely
control trajectories of cells and manipulate them in a
desired manner. Some of the proposed techniques em-
ploy external factors such as electric [42], magnetic [41]
and acoustic [19] fields and sheath flows [23, 30, 56].
Even though they can offer high throughput sample
processing, the complexity of the procedure and high
cost limit their utilization in clinical applications [21].
Furthermore, these methods require cell manipulation
that may change biological properties of the cells [11].
Hence, there is a growing interest in employing label-
free techniques that take advantage of physical prop-
erties of the cells such as size, shape and deformabil-
ity to control their trajectories in microfluidic devices
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[11, 21, 40]. Inertial microfluidics are among the pro-
posed techniques that use inertial forces to induce cell
migration in microchannels [4, 13, 14]. In this technique,
cells focus at an equilibrium position depending on their
physical properties [12, 24, 29]. The particles flowing
in a Newtonian fluid follow the streamlines without
any transversal migration for low Reynolds numbers
[22]. With increasing the Reynolds number the iner-
tial force becomes important and the cross-streamline
migration of particles is observed [31, 33]. In this case,
the particle experiences two opposing forces: (i) shear-
gradient induced force that pushes the particle toward
the wall [1] and (ii) the wall-induced repulsive force that
drives it toward the channel center [61]. The balance
between these two forces determines the equilibrium
position of the flowing particle in the channel cross-
section [34]. This phenomenon was first observed by
Segré and Silberberg [52]. In their experiments, ran-
domly distributed particles at tube inlet assembled at
an annulus with radius of 0.6 times the radius of the
tube. This result was later confirmed numerically [18],
analytically [51] and experimentally [26]. Previous in-
vestigations show that the deformability of the cell can
affect its trajectory in the microchannel [27, 47, 50].
Due to deformability of cell membrane, a deformability-
induced force is generated and the interplay of all the
above forces governs the equilibrium position of the
flowing cells [47]. In our previous work [47], we studied
the effect of cell deformability on the equilibrium posi-
tion of a single deformable cell. Our results show that
deformability-induced force drives the cells toward the
channel centerline in a Newtonian fluid. Recent studies
on microfluidic devices introduced an alternative way
for cell focusing by adding a polymer to the suspending
fluid [8, 16, 38]. In this method, the polymer chains in
the fluid are stretched and generate an uneven normal
stress on the flowing particles. This phenomenon leads
to a net elastic force that interacts with the inertial
force and affects the migration dynamics and equilib-
rium position of the particle [10, 11]. This phenomenon
has been experimentally and analytically [9, 33, 34, 60]
observed. The particle migration depends on the fluid
rheology, cell size, channel geometry and volumetric
flow rate [34, 59]. There are several experimental stud-
ies that showed promising results for cell separation and
focusing using polymeric fluid as the suspending fluid.
Lim et al. [36] used hyaluronic acid (HA) in the sus-
pending fluid and successfully focused solid particles
and leukocytes at the channel center. Furthermore, the
same method was used to separate human breast carci-
noma and leukocyte cells in a straight microchannel [39]
which highlights the effect of cell size and deformability
on the particle migration flowing in a viscoelastic poly-

meric fluid. The effect of size and deformability was
also observed in Liu et al. [37], where solid particles,
living cells and bacteria were separated by focusing in
different locations in the channel cross-section. Previ-
ous studies [33, 47, 49, 53] show that fluid rheological
properties are important on the dynamics of cell mi-
gration in microchannels. In our previous work [47], we
have shown that a constant-viscosity viscoelastic fluid
drives the particle toward the channel centerline, while
a shear-thinning viscoelastic fluid exhibits an opposite
behavior. The equilibrium position of cell depends on
the cell size, deformability and volumetric flow rate.
Our previous results for a single cell migration agree
well with previous experimental and numerical studies
in dilute suspensions [34, 59].

Despite the importance of the dynamics of cell sus-
pensions in a microchannel, previous experimental and
computational studies focus on the migration of cells in
a dilute regime. This limitation prevents us to evaluate
the performance of the developed techniques for rich
samples such as blood which has higher cell concentra-
tions. The optical techniques cannot be effectively used
for quantification of samples at high cell concentrations.
In order to overcome this limitation, we focus on a sus-
pension of deformable cells in Newtonian and polymeric
fluids in semidilute and concentrated regimes and in-
vestigate the role of various factors including cell size,
deformability, inertia and viscoelasticity of the suspend-
ing fluid. Our results provide fundamental understand-
ing of the dynamics of suspension of cells in a straight
microchannel used in various microfluidic devices.

2 Methodology
2.1 Governing equations

Dynamics of the deformable cells flowing in microchan-
nel is governed by the momentum and continuity equa-
tions. In this study, we assume that the inner fluid of
the cell and suspending fluid are incompressible. There-
fore, we have:

Vau=0, @
8(51:1 )9 (puw) = ~Vp+ Vo7 +F. )

Here, p is the density of the fluid, ¢ denotes the time,
u is the velocity vector and p and 7 represent pressure
and stress tensor, respectively. The stress tensor in a
Newtonian fluid is a function of fluid viscosity p and
strain rate tensor D = Vu + Vu?, where 7 = uD. We
use a front-tracking [57] method to track the interface
and capture the change in fluid properties across the
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membrane. In this method, a single set of equations is
solved in the entire computational domain. In equation
2, F represents the smoothed elastic force generated
due to the deformation of cell membrane which can be
obtained as:

F(x,t) = F(x,t)0(x — x;)dV. (3)

OB

Here, f is the membrane resistive force exerted on the
fluid. This force is zero everywhere in the domain ex-
cept for the membrane interface. In equation 3, x and x;
denote an arbitrary point in the computational domain
and a point on the cell membrane, respectively. Further-
more, 0 and V are the Dirac delta function and volume,
respectively. In order to distribute the resistive force
on Eulerian grid points surrounding the membrane, a
smoothed delta function is employed:

§(x) = D(z)D(y)D(2), (4)
D) = iu + cos(; ) Jal < 24, (5)

where A is the Eulerian grid size. In order to simulate
the cell membrane we use the Skalak [55] model. Ra-~
manujan et al. [48] showed that the Skalak model can
capture the behaviour of deformable cells under vari-
ous conditions and their results agreed well with exper-
iments [2]. In this model, the cell is assumed to behave
as a deformable capsule that has a resistance against
shear deformation and area dilatation. Accordingly, a
strain energy function is assigned to the membrane as
follows:
Es o o 2 2 2, 2 2 2
W= E((El +€3—2)" +2(ef +e3 —2) — 2(e1e; — 1))+
Zr@g -y,

(6)

where F, and E, denote shear and dilatation moduli
and €; and ey are principal strains. In this study, we con-
sider % = 2 following Kriiger et al. [28]. For the range
of Reyrslolds and Laplace numbers used in this study,
the area extension is less than 8%. We use a finite el-
ement method [3] to obtain the force f in equation
3. The validation of this model against previously pub-
lished results is presented in our previous work [46]. The
Navier Stokes equations are solved using a finite volume
method. The time derivatives are discretized using an
explicit Euler scheme and discretization for the convec-
tive and diffusive terms are conducted using Quadratic
Upstream Interpolation for Convective Kinematics [32]
(QUICK) and central difference schemes, respectively.
The pressure-velocity coupling is conducted using a pro-
jection method [5].

In order to solve for a viscoelastic suspending fluid,
the total stress 7 is split into two parts: (i) solvent stress
tensor 75 and (ii) polymeric stress tensor 7, as follows:

T ="Ts+ Tp. (7)
Here, 75 can be written as:
Ts = psD, (8)

where ps is the solvent viscosity. In this study, the
Oldroyd-B constitutive equation is used to represent
the stress tensor.

)‘7YP +7p = 11D, 9)

In this equation, p, is the polymer viscosity and A rep-
resents the fluid relaxation time. Equation 9 models a

constant-viscosity viscoelastic fluid. Here, 7Yp is the up-
per convected time derivative defined as:
v O1p T

Tp = ¥ +u.Vt, —Vur, — ,,Vu-,
The details of the numerical scheme used to solve equa-
tion 9 and its validation are explained in our previous
work [46].

(10)

2.2 Problem setup

In this work, the computational domain is a straight
squared channel illustrated in Fig. 1. The edge of the
channel is 2W and the channel length is set to be 4.
We applied a periodic boundary condition in x direc-
tion and a no-slip boundary condition is implemented
in y and z directions. In this problem, W and Uy (the
undisturbed centerline velocity of the channel in the ab-
sence of capsules) are used as the characteristic length
and velocity scales, respectively. Here in this work, di-

mensionless variables are defined as t* = % (time),
*x X el ¥ _ u . . pW
x* = ¢ (position), u* = - (velocity) and P* = £7-

(pressure). Hence, the dimensionless numbers governing
the problem are: (i) the Reynolds number Re = %
that represents the ratio of inertial to the viscous forces,
(ii) the Laplace number La = 22Z:% denoting the de-
formability of the cell, (ili) ¢ that shows the volume
fraction of cells in the microchannel, (iv) the Weis-
senberg number Wi = % showing the ratio of elastic
to viscous forces, (v) 8 = %" representing the ratio of
the polymer viscosity to total viscosity (1 = s + pp)
and finally (vi) the aspect ratio AR = {§ that shows
the blockage ratio in the microchannel. We assume that
the inner fluid of the cells is a Newtonian fluid with a
density and viscosity equal to those of the outer fluid
((//fs + ,up)outer = (Ms)inner and pinner = pouter)~ Un-
less otherwise stated, 3 is set to 0.9 and the cells are
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initially spherical. The computational domain and cell
membrane are discretized using 128 x 76 x 76 Eule-
rian grid points in x, y and z directions and 20000 La-
grangian grid points. The mesh and domain size inde-
pendency tests are provided in the Appendix.

2W

Xy

Fig. 1: Schematic of problem setup

3 Result and discussion
3.1 Newtonian fluid

In this section, the migration of cells flowing in a New-
tonian fluid is investigated and the effects of various fac-
tors including deformability (La), cell volume fraction
(¢), inertia (Re) and cell size (5%) on cell distribution
are explored. The computational domain is filled with a
homogeneous suspension of randomly distributed cells
(cells with the same size and deformability) along the
channel. A constant pressure gradient is applied to gen-
erate a flow in the microchannel and cells flow and mi-
grate across the microchannel due to cell-cell and cell-
fluid interactions. The simulation is run long enough
that the suspension reach a statistically steady state.
The Reynolds number is set to 37.8 unless otherwise
stated.

Figure 2 illustrates the cell suspension at two time
instances t* = 0 and t* = 1336 for La = 1, ¢ = 10%
and > = 0.2. The cells interact and deform in the chan-
nel. Due to the low shear rate in the central region of
the channel, cells maintain their initial spherical shape,
while cell deformation is more significant as the cells get
closer to the wall, where the shear rate is higher. Cells
migrate in the cross-stream direction and accumulate
near the center of the channel. This migration behavior

Rif

VDV

a

&

(b)

Fig. 2: The distribution of cells at (a) t* = 0 and (b) at
#* = 1336 for ¢ = 10%, % = 0.2, La = 1 and Re = 37.8

toward the centerline is caused by the deformability-
induced force acting on the cells. The interplay between
this force, inertial lift force and wall-induced force de-
termines the focal location of cells [27, 47, 50] in the mi-
crochannel. In addition to the above mentioned forces,
the cell-cell interaction becomes important when we
consider cell suspensions at a moderate volume frac-
tion. The migration of cells toward the center can also
be observed by comparing cell distribution at two dif-
ferent time instances in Fig. 2, where the accumula-
tion of cells near the center of channel is significant.
To study the motion of a suspension of cells, the en-
semble average of cell distance from the centerline (r*)
is computed. Figure 3 shows the temporal evolution of
average distance of cells from the channel centerline for
various La number at ¢ = 10%, 33 = 0.3. Accord-
ing to this figure, (r*) initially decreases and reaches
a quasi-steady state. The initial decrease in (r*) shows
the net migration of cells toward the centerline due to
the deformability-induced force acting on the cells. The
steady value of cell position is computed by temporally
averaging (r*) over the time period during which statis-
tically steady state is reached (see Fig. 4 for Re = 37.8).
The cell distance from centerline increases with increas-
ing La number (decreasing deformability) which is in
agreement with the behavior of a single cell in a mi-
crochannel [27, 47, 50]. This change is attributed to
the effect of La number on the deformability-induced
force. As La increases this force gets weaker and the
inertial and wall-induced forces become dominant fac-
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Fig. 3: Average cell distance from the centerline for ¢ =
10%, % = 0.3 and Re = 37.8
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Fig. 4: Quasi-steady cell distance from the centerline
for various La at Re = 37.8

tors. Hence, the location of cells with a high Laplace
number is close to that of solid particle flowing in a mi-
crochannel. Figure 4 also exhibits that increasing the
cell volume fraction leads to increase in the cell dis-
tance from the channel centerline. This behavior is due
to the increase in the cell-cell interaction as the number
of cells flowing in the channel increases. Furthermore,
the cell size has an important role on the net motion
of cells. Comparing the average distance for different
blockage ratios (yjz = 0.2 and 0.3) indicates that bigger
cells get closer to the centerline. According to Schaaf et
al. [50], the deformability-induced forces scale propor-
tionally with the size of the cells. Hence, bigger cells
experience a larger force towards the centerline. In or-
der to study the quasi-steady distribution of cells in
a microchannel, two quantities including radial volume
fraction (¢,) and local volume fraction (¢;) are defined.
The local volume fraction represents the cell distribu-
tion across the microchannel and is defined as the frac-
tion of volume AyAzL, (L, is the channel length in
x direction) occupied by the cells at different y and z

br 03

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

e $=10% & =03
—m 6=20% & =03
e $=10% & =02

¢7‘ 0'3

0.0 0.2 0.4 0.6 0.8 1.0 1.2 14

Fig. 5: Radial volume fraction for (a) ¢ = 10%, {3 = 0.3
and Re = 37.8 and (b) for La = 500 and Re = 37.8

across the channel cross-section. To find ¢,., eq. 11 is
introduced.

1 r+Ar
_— / @i 2mrdr, (11)
.

Ar,r+Ar

gbr:

In this equation, r is the distance from the channel cen-
terline and A, 4+, is the area between r and r + Ar.
Hence, the radial volume fraction (¢, ) is the fraction
of microchannel volume between r and r + Ar that is
occupied by cells. The radial volume fraction for ¢ =
10%, ¢ = 0.3 is plotted for various Laplace number
in Fig. 5(a). According to this figure, the cells are not
evenly distributed across the channel. The results show
that the radial volume fraction of cells decreases with
the distance from the channel centerline and it reaches
to zero at a particular radius. The region in the mi-
crochannel in which the radial volume fraction is zero is
called cell-free layer (CFL). The formation of this layer
has been numerically and experimentally observed in
previous studies [45, 62]. Furthermore, the same phe-
nomenon occurs in blood vessels where the concentra-
tion of the red blood cells close to the vessel wall is far
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less than its value in the core region [17]. The thick-
ness of this layer is an important factor in designing
microfluidic devices as it specifies the gap between the
wall and suspending cells in the sample, where the rare
cells should fall into to easier get separated. One of
the important factors affecting the thickness of CFL is
La number. The thickness of CFL increases with de-
creasing La number (Fig. 5(a)). The reason for this be-
havior is the tendency of deformable cells to migrate
toward the core region and this tendency is enhanced
by decreasing La number. Hence, the concentration of
cells is higher in the central region leading to a thicker
cell-depleted layer near the wall. The maximum radial
volume fraction of cells at La = 1 occurs at the center-
line and it decreases monotonously with the distance.
The occurrence of the peak at the centerline is caused
by two factors: (i) cell migration toward the centerline
that yields to a significant cell accumulation in that
region and (ii) the small area of the region (A, ,4a,)
over which the radial volume fraction is computed in
the central region. As the Laplace number increases an
off-center peak in the radial volume fraction occurs, al-
though the maximum radial volume fraction still occurs
at the centerline due to the aforementioned reasons. In
order to better understand this trend in cell distribu-
tion, the effect of deformability on the focal position
of cells should be considered. Increasing the La num-
ber pushes the focal position of cells toward the wall
of a microchannel [47, 50]. Therefore, a significant in-
crease in the local volume fraction of cells is observed
at off-center locations in the cross-section. This rise in
the local volume fraction leads to the second peak in
the radial volume fraction in Fig. 5(a). The effect of
the cell volume fraction (¢) and the cell size on the cell
distribution is plotted in Fig. 5(b). The thickness of
CFL decreases with ¢ due to the increase in the num-
ber of cells and their interaction. Hence, the cells are
more spread across the channel cross-section leading to
a decrease in CFL thickness. Furthermore, decrease in
the cell size results in decrease in the CFL thickness.
This effect is attributed to the role of the cell size on
the equilibrium position of cells shown in Fig. 4. The
formation of the second peak is also observed for all
the cases shown in Fig. 5(b). In order to elaborate the
formation of the second peak in the radial volume frac-
tion in details, the local volume fraction of cells (¢;)
in the channel cross-section at ¢ = 20%, La = 10 and
1w = 0.3 is plotted in Fig. 6. The blue region near the
channel wall with zero concentration of cells is the cell
free layer. According to this figure, ¢; has its maximum
values at the center and at off-center locations shown
by red regions. The off-center red regions in the channel
cross-section lead to the formation of the second peak in

I0.5865
0.4888

0.5 1.0 1.5

Fig. 6: Local volume fraction of cells at ¢ = 20%, La =

10, i = 0.3 and Re = 37.8

radial volume fraction (¢,) in Fig. 5. This phenomenon
is also observed in previous studies [35, 45| in which
suspension of droplets and capsules were studied.

One of the important factors in evaluating the per-
formance of microfluidic devices is the sample through-
put. Hence, we plot the dimensionless volumetric flow
rate of the suspension exiting the microchannel (Q*)
for various Laplace numbers in Fig. 7. Our results show

1.8

1.6

Q*

1.4

¢ =10% & = 0.3
1.2 = (15:20%%:03
e 6=10% & =02

10" 10! 107
La

Fig. 7: The volumetric flow rate of the suspension for
various La, ¢ and size at Re = 37.8

that the volumetric flow rate deceases with increasing
Laplace number. This effect can be elaborated by con-
sidering the single cell dynamics in a microchannel. Ac-
cording to our previous study [47], a single cell flowing
in the microchannel lags the surrounding fluid and its
velocity is smaller than the local velocity of the fluid in
the absence of the cell. This effect becomes more signif-
icant as the Laplace increases. Hence, the reduction of
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r0.2933

0.1955

0.0978

0.0000
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volumetric flow rate with increase in La is expected. In
order to quantify the effect of the cell deformability on
the flow field, the velocity profile in the cross-section of
microchannel is plotted for various La in Fig. 8. Our re-

0.8

—o— La=10
—&— La=>50

0.6 —+— La =500
.
U™ 04
0.2
0.0
00 02 04 06 08 10 12 14

Fig. 8: The velocity profile in the microchannel at ¢ =
10%, 3 = 0.3 and Re = 37.8

sults show that decreasing the cell deformability results
in decrease in the velocity across the cross-section. Fur-
thermore, the velocity profiles for various La numbers
are identical in the cell depleted region, while they are
different in the regions occupied by the flowing cells.
Figure 7 shows that the volumetric flow rate is also in-
fluenced by the cell volume fraction (¢) and the cell size.
Accordingly, the reduction in the volumetric flow rate is
observed with increasing the volume fraction (¢), while
increasing the cell size (73;) enhances Q*. Here, we also
study the effect of Reynolds number on the cell migra-
tion in the microchannel. In this work, we simulate the
motion of cells at ¢ = 10%, La = 500 and two different
cell sizes (1 = 0.2 and 0.3) for various Re numbers.
The average distance of the cells ({(r*)) is plotted in
Fig. 9. Our result shows that the average cell distance

06l g w0 o

— ¢ e

e 0=10% &=03
e 0=10% & =02

<r*>04

0.2

0.0

=

50 100 150 200 250 300
Re

Fig. 9: Average cell distance for ¢ = 10%, La = 500
and > = 0.2 and 0.3

is not influenced by Reynolds number. This behavior is
in agreement with previous studies [34, 47] that investi-

gated the dynamics of a solid particle and a deformable
capsule with high La number in a microchannel. Fur-
thermore, the radial volume fraction distribution (¢,.)
for the cell suspension with > = 0.2 is plotted in Fig.
10. This result also emphasizes that the steady spa-

—o— Re=2378
—&— Re =100
—¥— Re =200
Re = 300

r

0.0 0.2 0.4 0.6 0.8 1.0 1.2 14
r

Fig. 10: Radial volume fraction distribution for ¢ =
10%, La = 500 and 3 = 0.2

tial distribution of flowing cells is not affected by the
Reynolds number and the change in the CFL thickness
is negligible.

3.2 Viscoelastic fluid

In this section, the effect of the polymeric fluid on the
cell migration behavior is investigated. As it is men-
tioned in section 3.1, the migration of the cells is gov-
erned by the interplay between inertial lift force, de-
formability induced force, wall-induced force and cell-
cell interaction. However, the cells flowing in a poly-
meric fluid experience an elastic force in addition to
other forces. The elastic force is generated due to the
deformation of polymer chains in the channel flow. The
interplay between various forces determines the cell dis-
tribution in the channel. The motion and consequently
the quasi-steady distance of cells suspended in a poly-
meric fluid is significantly influenced by the fluid elas-
ticity.

Figure 11 plots the temporal evolution of the av-
erage cell distance from the channel centerline at ¢ =
10%, La = 500 and 3> = 0.3 for various Wi numbers
(Wi = 0 corresponds to a Newtonian fluid). Our re-
sults show that the cell distance decreases as Wi num-
ber increases. Therefore, a constant-viscosity viscoelas-
tic fluid pushes the cells toward the channel centerline.
This behavior is in agreement with previous numeri-
cal and experimental studies [34, 36, 47] for an isolated



Amir Hossein Raffiee et al.

—o— Wi=(
—— Wi=1
—¥— Wi=2

0 200 400 600 800 1000 1200 1400
t*
Fig. 11: Temporal evolution of cell distance from the

centerline for ¢ = 10%, > = 0.3, La = 500 and Re =
37.8

. Vi=0
= 06  WVi=2
S
E
S 05
e
< 04
E
T 03
S
<
|02
3
O o0l

0.0
0.38 0.62 0.88 1.12 1.38

distance from center

Fig. 12: Cell-fraction distribution of cells with 3> = 0.2,
La = 500 and ¢ = 10% with Wi =0 and 2

cell. This result suggests that the polymeric fluid can be
used as a passive method in devices in which the main
goal is cell focusing at the centerline such as cytometers.
Furthermore, this method adds another variable to be
tuned by the user to control the focal position of the
cells in microfluidic devices. According to the results,
the deformability-induced force and elastic force have
reinforcing effect that drives the cells toward the center-
line, while the inertial force has the opposite effect that
pushes the cells toward the channel wall. Therefore, for
a low Wi number, the inertial force is dominant and the
resulting average cell distance is close to that of cells
flowing in a Newtonian fluid, while for a high W4 num-
ber the elastic force has a significant effect and the cells
accumulate in the centerline. In order to observe the ef-
fect of the polymeric fluid, the cell-fraction distribution
of the cells with > = 0.2, La = 500 and ¢ = 10%
is plotted in Fig. 12. This figure shows the extent to
which the cells are distributed across the microchannel.
The fraction of cells located close to the centerline in-

(b)

Fig. 13: The distribution of cells at ¢ = 10%, La = 500,
Re =378, % = 0.2 and (a) Wi =0 and (b) Wi =2

creases and the fraction of the cells close to the wall
decreases significantly with increasing the Wi number.
The cell fraction at r* = 1.38 and 1.12 reaches nearly to
zero. Furthermore, the location at which the maximum
cell fraction occurs approaches to the centerline when
polymers are added to the flowing fluid. The polymeric
effect is also exhibited in Fig. 13, which shows the cell
configuration for ¢ = 10%, La = 500 and > = 0.2 for
two different values of Weissenberg number (Wi = 0
and 2). According to this figure, the cells flowing in a
constant-viscosity viscoelastic fluid (Fig. 13(b)) focus
more in the centerline compared to the cells flowing in
a Newtonian fluid (Fig. 13(a)). In order to quantify the
effect of polymeric fluid, the quasi-steady value of the
average cell distance ((r*}) for various cell sizes and vol-
ume fractions is plotted as a function of Wi number in
Fig. 14. The cell distance from the centerline decreases
with increase in Wi number for various ¢ and 3;. The
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decrease in (r*) continues until the Wi number reaches
a critical value above which the cell distance does not
reduce further and reaches a plateau. This behavior is
attributed to the cell-cell interaction that has an oppos-
ing effect against elastic effect and does not allow the
cells to focus at the centerline. In other words, the cells
are accumulated in the core region and the distance be-
tween the cells cannot be further reduced. This effect
can be seen in Fig. 13 (b) that illustrates the distri-
bution of cells in the central region. As it is shown in
Fig. 14, the cell distance is not computed for Wi above
2 for two cases (¢ = 20%, v = 0.3 and ¢ = 10%,
1 = 0.2). The lack of data for these cases is due to the
numerical instability occurring for larger Wi numbers
and volume fractions. The effect of the cell volume frac-
tion (¢) and the cell size () is similar to their effect
in a Newtonian fluid. Increasing the volume fraction
increases the cell distance and increasing the cell size
decreases the cell distance from the centerline. In order

0.70
_ o7 a __
e e G=10% & =03
0.60 — 0= 10k =02
' e 0=20% & =03
055
*

ST 050
0.45
0.40
035
0307 i 3 3 i 5

Wi

Fig. 14: Quasi-steady cell distance from the centerline
for various Wi numbers at Re = 37.8

to study the effect of elasticity on CFL thickness, the
radial volume fraction is plotted in Fig. 15 for ¢ = 10%,
1w = 0.3 and Re = 37.8. The thickness of the CFL in-
creases with increasing Wi number. This change is at-
tributed to the polymer chains driving the cells more ef-
fectively toward the centerline with increasing Wi num-
ber. Hence, a larger region in the vicinity of channel
walls remain depleted from the cells. Furthermore, the
location of the off-center peak in the radial volume frac-
tion of the cells approaches to the centerline as the elas-
ticity of the suspending fluid increases which is also due
to the enhanced tendency of the cells in accumulating
in the core region. The effect of the polymeric fluid on
the throughput of microfluidic devices is also studied
in this section. The volumetric flow rate of the exiting
suspension is measured under various Wi numbers and

—o— Wi=0
—a— Wi=05
—¥— Wi=2

Wi=5

&r 03

0.0 0.2 0.4 0.6 0.8 1.0 1.2 14

Fig. 15: Radial volume fraction of cells for ¢ = 10%,

w = 0.3 and Re = 37.8

constant pressure-gradient at ¢ = 10%, % = 0.3 and
Re = 37.8 and is plotted in Fig. 16(a). Our results show
that the volumetric flow rate increases with increasing
Wi number. In order to elaborate this effect, the ve-
locity profile of the corresponding cases in the channel
cross-section is plotted in Fig. 16(b). As Wi number in-
creases, the velocity at centerline (r* = 0) increases and
the velocity profile becomes flatter in the central region.
Therefore, the change in the velocity distribution across
the microchannel due to the change in fluid elasticity
results in the enhanced sample throughput in microflu-
idic devices. Furthermore, Fig. 16(a) shows that there
is a critical Wi, number above which the volumetric
flow rate reaches a plateau. This change is attributed
to the accumulation of cells in the core region where
cells cannot be more compact above the critical Wi,
number. Besides, the effect of Reynolds number on the
performance of the microfluidic devices in presence of
polymeric fluids is investigated. The quasi-steady cell
distance is plotted for various Re numbers at ¢ = 10%,
La = 500 and Wi = 2 in Fig. 17. As it is shown, the
distance of the cells from the centerline increases with
increasing the Re number. This finding is in agreement
with previous studies [34, 47] in which the dynamics of
an isolated solid and deformable particle were studied
in a microchannel. This behavior can be elaborated ac-
cording to the strong dependence of inertial and elastic
forces on Re number. The interaction between various
forces such as inertial and elastic forces determines the
final position of cells in the microchannel. The inertial
effect is the dominant factor when Re > Wi and the
cells are expected to be driven toward the walls, while
for the case with Wi > Re the elastic force becomes
dominant and the cells tend to accumulate in the cen-
tral region of the microchannel.
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(2) Fig. 17: Quasi-steady cell distance for various Re num-
bers at ¢ = 10%, La = 500 and Wi = 2
0.6
a polymer in suspending fluid pushes the cells further
U* o4 toward the centerline compared to a Newtonian fluid
’ and can be used in devices that require centerline fo-
cusing of the cells such as cytometers. It is shown that
0.2 increasing fluid elasticity (W+i) yields the reduction in
cell distance from the centerline, while it increases the
volumetric flow rate of the exiting flow. Furthermore,
0.0
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Fig. 16: (a) Volumetric flow rate of suspension for var-
ious Wi numbers at Re = 37.8 and (b) the velocity
profile at ¢ = 10%, La = 500, % = 0.3 and Re = 37.8

4 Conclusions

In this work, the dynamics of a cell suspension flow-
ing in Newtonian and viscoelastic fluids is investigated.
We study the effect of the cell size (yj7), cell volume
fraction (¢), inertia (Re), deformability (La) and fluid
elasticity (W) on the motion of cell suspension and
the performance of the microfluidic devices composed
of a straight microchannel. The variation of the afor-
mentioned factors modulates the governing forces and
influences the distribution of cells in the microchannel.
Our results show that increasing the La number leads
to the increase in the cell distance from the channel cen-
terline (r*) and reduction in the volumetric flow rate of
the exiting flow (Q*). These variables are also affected
by the cell size and cell volume fraction. Increasing the
cell size pushes the cells further toward the wall and
this effect can be reinforced by increasing the cell vol-
ume fraction. However, the increase in yj; and ¢ has an
opposite effect on the volumetric flow rate and causes
the decrease in Q*. Our findings suggest that adding

the effect of the inertia (Re) is investigated for both
Newtonian and viscoelastic fluids. The results indicate
that the change in the Reynolds number does not signif-
icantly affect the suspension dynamics, while an oppo-
site behavior is observed in a viscoelastic fluid in which
the cells are driven further toward the wall due to in-
crease in the inertial effects.
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C Appendix

In order to check the mesh and the domain size independency
of the computational results, we follow the method used in
Doddi et. al [15] where the volumetric flow rate of the flow is
investigated for various grid and domain sizes. Figure 18.(a)
shows the volumetric flow rate of the cell suspension in a
Newtonian fluid at Re = 100, ¢ = 10% and 3 = 0.3 for
various La numbers with 128 x 76 x 76 and 200 x 133 x 133
grid points in x, y and z directions, respectively. The maxi-
mum error between two different grid sizes is 2.44%. Hence,
our results indicate that the numerical simulation performed
in this study is independent of the mesh sizes. The results
for the domain independency of the simulation is also plotted
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L7 '\\'
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1.50
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Fig. 18: The volumetric flow rate at Re = 100, ¢ = 10%
and f = 0.3 (a) for 128 x 76 x 76 and 200 x 133 x 133
grid points and (b) for L, = 4W and 8W in x direction

La

in Fig. 18(b) . The variation of the volumetric flow rate at
Re = 100, ¢ = 10% and 3z = 0.3 for two different domain
sizes (L, = 4W and 8W) in the x direction along which the
periodic boundary condition is considered. The maximum er-
ror between two channel geometries is 0.71% that proves the
independency of the numerical results against the computa-
tional domain size.
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