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Abstract

A highly accurate and memory-efficient approach for the solution of polymer self-consistent
field theory (SCFT) is proposed. The central idea is to combine spectral integration in the
polymer chain contour variable with a spectral deferred correction technique to solve the
SCFT modified diffusion equations with arbitrarily high order of accuracy. The result is a
robust method that achieves high accuracy with a minimal number of discrete contour nodes,
which translates into vastly reduced memory requirements and increased computational ef-
ficiency. In particular, this spectral deferred correction method enables the computation
of strongly segregated systems with unprecedented accuracy. Moreover, the framework of
deferred corrections allows us to adaptively increase the order of accuracy during the outer
saddle point iteration to drastically reduce the cost of a SCFT computation.

Keywords: spectral deferred correction, Clenshaw-Curtis, Chebyshev nodes, spectral
integration, mean field approximation

1. Introduction

Self consistent field theory (SCFT) or mean field theory approximation has been a power-
ful tool to investigate and discover polymer phases (see for example [11]). Computationally,
polymer SCFT amounts to three problems: 1) the solution of one or several Fokker-Planck
or modified diffusion equations (MDE’s), 2) the computation of nonlocal, volume fraction
operators, and 3) finding saddle points for the effective Hamiltonian. The third problem is
solved through an iterative method, typically gradient descent-ascent or a combination of
this and the conjugate gradient method [16], and each iteration requires the solution of prob-
lems 1) and 2). The latter are d + 1 dimensional problems (d being the spatial dimension)
as conformational information along the polymer chains is needed in addition to the spatial
variables. This makes polymer SCFT computationally expensive and memory demanding.

In this work, we propose a numerical approach that significantly reduces the cost of
polymer SCFT computations and cuts down the memory requirements by an order of mag-
nitude with respect to existing methods. The central idea is to use spectral integration along
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the contour polymer chain variable s both in the solution of the MDE’s and the computa-
tion of the volume fraction operators to drastically reduce the number of nodes in s for a
given high accuracy. This is achieved with the use of Chebyshev (Gauss-Lobatto) nodes,
Clenshaw-Curtis type quadratures and spectral deferred corrections.

While we focus here on problems 1) and 2), we also propose a strategy to further reduce
the cost of the saddle point iterations, problem 3). By adaptively varying the order of
accuracy in s to solve 1), without changing the resolution (i.e. without increasing memory),
we produce a hierarchy of increasingly more accurate initial guesses for the saddle point
iteration.

The rest of the paper is organized as follows. The diblock copolymer model, which is
used as a test bed problem for the proposed methodology is summarized in Section 2. This
is followed by a brief Section 3 on the idea of spectral contour chain integration. Section 4 is
devoted to the numerical solution of the MDE’s and in particular to high and arbitrary order
methods in s. Important observations on the asymptotic behavior at small scales (high wave
numbers) of some methods for the MDE’s, including some commonly used schemes, are also
made. The contour spectral approach is integrated in the SCFT framework in Section 5
while Section 6 is devoted to the faster adaptive order SCFT iterations. Concluding remarks
are made in Section 7 and a detailed derivation and formulas for the spectral integration is
provided in Appendix A.

2. The Diblock Copolymer Model

We take an incompressible melt of flexible AB diblock copolymers as our prototype SCFT
model to discuss and test the proposed new numerical approach.

We assume for simplicity the same statistical segment length of the two blocks in the
diblock chain, bA = bB = b, and employ a Flory parameter χ to describe the strength binary
contacts between A and B. The free energy can be written as [11]

H[µA, µB] =

∫

dr [−fµA − (1− f)µB + (µA − µB)
2/(4χN)]− V lnQc[µA, µB], (1)

where V is the system volume, N is the copolymer degree of polymerization, f is the average
volume fraction of type A blocks. Qc[µA, µB] is the partition function for a single copolymer
experiencing chemical potentials µA and µB that exert forces, respectively, on the A and B
blocks. This single chain partition function is given by

Qc[µA, µB] =
1

V

∫

dr q(r, 1; [µA, µB]), (2)

where the copolymer propagator q[r, s;µa, µB] satisfies the Fokker-Planck or modified diffu-
sion equation (MDE)

∂q

∂s
= ∇2q − ψq, q(r, 0; [µA, µB]) = 1. (3)
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Here ψ is the potential acting on each block:

ψ(r, s) =

{

µA(r), 0 ≤ s ≤ f,

µB(r), f < s ≤ 1.
(4)

The SCFT problem for this model is to find saddle points in which H[µA, µB] is a minimum
with respect to the exchange potential

µ−(r) ≡
1

2
[µB(r)− µA(r)] (5)

and a maximum with respect to the pressure

µ+(r) ≡
1

2
[µA(r) + µB(r)]. (6)

The first variation of H with respect to these fields can be written in terms of the local
volume fractions φA and φB

δH[µ+, µ−]

δµ+(r)
= φA(r; [µ+, µ−]) + φB(r; [µ+, µ−])− 1, (7)

δH[µ+, µ−]

δµ−(r)
= (2f − 1) +

2

χN
µ−(r) + φB(r; [µ+, µ−])− φA(r; [µ+, µ−]). (8)

The local volume fraction operators φA and φB can be computed from the Feynman-Kac
formulas

φA(r; [µ+, µ−]) =
1

Qc[µ+, µ−]

∫ f

0

ds q(r, s; [µ+, µ−])q
†(r, 1− s; [µ+, µ−]), (9)

φB(r; [µ+, µ−]) =
1

Qc[µ+, µ−]

∫ 1

f

ds q(r, s; [µ+, µ−])q
†(r, 1− s; [µ+, µ−]). (10)

The new propagator q† expresses the lack of head-to-tail symmetry of a diblock copolymer,
and satisfies the following MDE:

∂q†

∂s
= ∇2q† − ψ†q†, q†(r, 0; [µ+, µ−]) = 1, (11)

with

ψ†(r, s) =

{

µB(r), 0 ≤ s ≤ 1− f,

µA(r), 1− f < s ≤ 1.
(12)

3. High Order Contour Chain Integration

At the core of the iteration to find a saddle point is the evaluation of the local volume
fractions φA and φB, given by the integrals (9) and (10). To date, a popular quadrature
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to obtain approximations for these operators has been Simpson’s rule using equally-spaced
points, ∆s apart, along the chain contour variable s. This yields a fourth order approximation
in ∆s, assuming the propagators q and q† are computed with at least that accuracy. Note
that the integrals (9) and (10) have to be computed at every node r of the spatial grid.
Thus, these operations are as costly as solving the MDE’s and require considerable memory
because values of q and q† are needed at every point of d + 1 grid (d being here the spatial
dimension).

A spectral quadrature, such as a Gaussian or a Chebychev-node interpolatory quadrature,
gives a desired high accuracy with a largely reduced number of nodes, relative to a fixed
order quadrature, when the integrand is smooth. This would immediately reduce the memory
requirements substantially and could potentially lower also the computational cost of a SCFT
simulation. This is the central idea of this work.

The link of the Chebychev-node based Clenshaw-Curtis quadrature to the discrete cosine
transform (DCT) [12, 13] makes this quadrature computationally very efficient and compet-
itive with the Gaussian quadrature as pointed out in [20]. Moreover, the Chebychev nodes,
unlike the Gaussian nodes, include the end points of the interval of integration and this is of
relevance in SCFT because of the initial value problems (the MDE’s) that have to be solved
to generate the integrands. But to take advantage of this quadrature’s spectral accuracy
and consequently to achieve high accuracy with a minimal number of contour points, we
need highly accurate and stable methods for the MDE’s. Furthermore, these methods have
also to be stable to the outer saddle point iteration. This is a subtle but crucial point in the
design of an effective SCFT method as we discuss in detail below.

We consider next the problem of solving the MDE’s with the goal of constructing robust
and efficient high order methods for the SCFT saddle point iteration.

4. Solving the MDE’s

In this section we take a closer look at the problem of solving the MDE’s of SCFT. Due
to potential discontinuities at the block junctions and at s = 0, the MDE’s should be solved
block by block. Thus, it is sufficient to consider the problem

∂q

∂s
= ∇2q − wq, 0 < s ≤ f,

q(r, 0) = 1,
(13)

where w is a given field. For concreteness we take f = 1/2 and restrict ourselves to the
one-dimensional problem (d = 1). Periodic boundary conditions are used as it is common
in SCFT computations. The Laplacian is approximated spectrally with the discrete Fourier
transform (DFT) using the FFT. We solve (13) on an interval of length L = 10.

4.1. Second Order Methods

Rasmussen and Kalosakas [18] proposed a Strang splitting [19] method that has become
popular in polymer SCFT computations. This second order scheme, which we will denote
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as SS0, can be written as

qj+1(r) = exp

[

−∆s

2
w(r)

]

exp
[

∆s∇2
]

exp

[

−∆s

2
w(r)

]

qj(r), (14)

for all nodes r of a spatial, uniform grid. This method requires only one pair of FFT’s
per step and has apparent unconditional stability. As a one-step method, it also allows
for variable step size although, to our knowledge, this feature has not been exploited. For
smooth fields w, this method is hard to beat, cost and stability-wise, among second order
schemes. It has however one significant drawback for SCFT computations, particularly for
highly segregated systems and for stochastic (complex Langevin) simulations; it has poor
high-modal damping. Indeed, to first order in ∆s

exp

[

−∆s

2
w(r)

]

≈ 1− ∆s

2
w(r) (15)

and consequently the Fourier modes of w, and hence of q, get decreased approximately
by a factor of ∆s/2. Figure 1 shows the spectrum of the approximation of q(s = 1/2, r)
obtained with scheme (14) given a random, uniformly distributed w field of amplitude 10−4,
with a spatial resolution of Nr = 256 nodes, and uniform ∆s = 0.5/Ns for Ns = 32 and
Ns = 256 (Ns is the number of contour nodes). This numerical experiment confirms that
indeed the Fourier modes of q are decreased by approximately a factor of ∆s/2, for Ns / Nr.
Moreover, we observe that asNs increases (for fixedNr) the attenuation factor asymptotically
approaches ∆s. This poor damping is independent of Nr, which is a particularly serious
limitation in the stiff limit, Nr → ∞, relevant for highly segregated systems.

Implicit-Explicit (IMEX) Runge-Kutta (RK) methods [2] offer a wide class of schemes
suitable for problem (13). While in general more expensive than their multistep counter-
parts [3], the IMEX RKmethods have superior stability properties and allow for easy variable
step size and step size control. Out of this wide class, we select a second order IMEX RK
scheme with strongest high modal attenuation. This method corresponds to the (2, 2, 2)
scheme derived by Ascher et al., which we will denote as RK222, and for the MDE (13) can
be written as

[

1− γ∆s∇2
]

q(1)(r) = [1− γ∆sw(r)] qj(r),
[

1− γ∆s∇2
]

qj+1(r) = [1− β∆sw(r)] qj(r) + ∆s
[

(1− γ)∇2 − (1− β)w(r)
]

q(1)(r),
(16)

where γ = (2 −
√
2)/2 and β = 1 − 1/(2γ). This is a two-stage, diagonally implicit RK

(DIRK) method which can be implemented with 4 FFT’s per step . It is L stable (the
amplification factor is zero at the stiffness limit [14]) and stiffly accurate (it gives the exact
solution to y′ = λy as λ∆s→ ∞ [14]).

Figure 2 compares the spectrum of q(s = 1/2, r) obtained with the RK222 (16) and with
SS0 for the same previous test with ∆s = 0.5/32 and Nr = 1024. As remarked above, the
attenuation of SS0 is flat (∆s/2 across modes) and remains the same for Nr = 1024 as it was
for Nr = 256. In marked contrast, high modal damping of the RK222 becomes even stronger
as Nr increases because the method is L-stable.
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a given method, then solves a differential equation system for the error (derived from the
original system) with the same method, add the resulting approximation of the error to the
original approximation, and repeat the process as desired. Unfortunately, due to repeated
numerical differentiation and interpolation at equally-spaced nodes (assuming a uniform step
size) this process is numerically unstable and in practice only a very small number of nodes
can be used. Dutt, Greengard, and Rokhlin [10] proposed a way to overcome these difficulties
and to achieve robust methods of arbitrarily high order. Their SDC methods are based on
the integral form of the differential equation system as it is done in Picard’s iteration, and
on the use of Legendre nodes for interpolation and the corresponding Gaussian quadrature
for integration.

For concreteness, we describe now the SDC approach for the particular case of the MDE
(13) and point out the variations we make to the original method of Dutt et al.[10]. We
start by rewriting (13) as

q(s, r) = q(0, r) +

∫ s

0

[

∇2q(τ, r)− w(r)q(τ, r)
]

dτ. (20)

Suppose we find an approximation q[0] to the solution of (20) with a given method. Define
the residual of this approximation as

ε[0](s, r) = q(0, r) +

∫ s

0

[

∇2q[0](τ, r)− w(r)q[0](τ, r)
]

dτ − q[0](s, r) (21)

and the error

δ[0](s, r) = q(s, r)− q[0](s, r). (22)

Then, the error satisfies the integral equation

δ[0](s, r) =

∫ s

0

[

∇2δ[0](τ, r)− w(r)δ[0](τ, r)
]

dτ + ε[0](s, r). (23)

The same method employed to solve (20) can now be used to solve (23) to find an approxi-
mation of the error, δ[0]. We then define a new, corrected approximation by

q[1](s, r) = q[0](s, r) + δ[0](s, r) (24)

and the process can be repeated to generate q[2], . . . , q[J ], for some pre-determined number
of deferred corrections J . We will denote this SDC method with J corrections and Ns

(Chebyshev) nodes as SDCJ
Ns
.

If the method to solve (20) and (23) is order p and the quadrature to compute each resid-
ual is O(∆s)m accurate then the order of accuracy obtained by doing J deferred corrections
is [5]

O(∆s)α, α = min{(J + 1)p,m}. (25)
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Thus, the deferred correction process can only be repeated as long as the integral in the
residual is evaluated with sufficient accuracy. To this effect, Dutt et al. [10] use the Gaussian
(Legendre nodes) quadrature and hence the adjective spectral in their method. Here, we
propose to employ the interpolatory quadrature based on the Chebyshev (Gauss-Lobatto)
points because of its implementation efficiency via the DCT and to use the end points of
integration, relevant for the SCFT MDE problem. This yields also a spectral quadrature
with a convergence rate about half that of the optimal Gaussian quadrature. But for smooth
integrands, this difference is irrelevant as both quadratures achieve machine precision with
just a few nodes [20]. The standard Clenshaw-Curtis quadrature to evaluate the volume
fraction operators (9) and (10) and a related Chebyshev-node based quadrature to evaluate
the integral operator in (21) are derived in Appendix A.

We propose to use the second order RK222 (16) to solve (20) and (23). In principle, one
can use any non-stiff method that allows for variable step-size, including the SS0 method
(14), with a modification to solve the non-homogeneous equation (23), or the first order
forward-backward Euler scheme (17). Dutt et al. [10] considered only first order schemes but
for the SCFT MDE’s the forward-backward Euler method requires a much larger number of
nodes than the second order scheme (16), and consequently increased memory and ultimately
higher computational cost. We have already argued about the desirability of strong high
modal damping when solving the SCFT MDE’s. We conducted a numerical study and found
that L stability or at least very strong damping appears to be necessary for solving the error
equation (23) during the deferred correction iteration.

The RK222 (16) can be applied directly to solve (20) using a variable step size:
[

1− γ∆sj∇2
]

q(1)(r) = [1− γ∆sj w(r)] qj(r),
[

1− γ∆sj∇2
]

qj+1(r) = [1− β∆sj w(r)] qj(r)

+ ∆sj
[

(1− γ)∇2 − (1− β)w(r)
]

q(1)(r),

(26)

for j = 0, 1, . . . Ns, where now ∆sj = sj+1 − sj and

sj =
f

2
− f

2
cos

(

jπ

Ns

)

, j = 0, 1, . . . Ns, (27)

are the Ns + 1 Chebyshev nodes in [0, f ]. For the error equation, the RK222 becomes
[

1− γ∆sj∇2
]

δ(1)(r) = [1− γ∆sj w(r)] δj(r) + γ(εj+1(r)− εj(r)),
[

1− γ∆sj∇2
]

δj+1(r) = [1− β∆sj w(r)] δj(r) + ∆sj
[

(1− γ)∇2 − (1− β)w(r)
]

δ(1)(r)

+ εj+1(r)− εj(r)

(28)

for j = 0, 1, . . . , Ns − 1.
The cost of SDCJ using the RK222 is approximately 4(J+1) FFT’s whereas that of the J-

times extrapolated Strang splitting scheme (SSJ) is about 2 ·3J FFT’s. SS1 is approximately
30% cheaper than SDC 1 but for J > 1 the cost of SDCJ is a fraction of that of SSJ .

We now compare SS1 and SDC for the MDE (13) for a fixed given field w, i.e. isolated
from the SCFT saddle point iteration. For this test we take

w(r) = 9 cos(6πr/L), 0 ≤ r ≤ L (29)
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Method Error time/(SS1 time)

SS1
64 1.61× 10−6 1.0

SDC4
10 5.67× 10−7 0.65

SS1
128 1.032× 10−7 1.0

SDC4
12 8.11× 10−8 0.50

SS1
512 4.11× 10−10 1.0

SDC5
16 2.46× 10−10 0.18

SS1
1024 2.75× 10−11 1.0

SDC6
20 2.63× 10−12 0.13

Table 1: Comparison of the extrapolated SS (SS1) and the SDC for different levels of accuracy. The subscript
in the methods is the number of nodes in s and the superscript in SDC is the number of deferred corrections.
Nr = 256 and the error is computed using the maximum norm.

5. Contour Spectral SCFT

We now look at the SCFT problem for a diblock copolymer melt. The saddle point
iteration we employ is the semi-implicit Siedel (SIS) scheme [6]:

µj+1
+ − µj

+

∆t
= −(gAA + 2gAB + gBB) ∗ µj+1

+ +
δH[µj

+, µ
j
−]

δµ+

+ (gAA + 2gAB + gBB) ∗ µj
+,

(30)

µj+1
− − µj

−

∆t
= −(2/χN)µj+1

− − δH[µj+1
+ , µj

−]

δµ−

+ (2/χN)µj
−, (31)

where ∗ denotes convolution and the Fourier symbols of the kernels are

ĝAA(k) =
2

k4
[fk2 + exp(−k2f)− 1], (32)

ĝAB(k) =
1

k4
[1− exp(−k2f)][1− exp(−k2(1− f))], (33)

ĝBB(k) =
2

k4
[(1− f)k2 + exp(−k2(1− f))− 1]. (34)

Each update fields is followed by a step in which the zeroth mode of µj+1
+ and µj+1

− is set to
zero.

We consider next two illustrative cases corresponding to a low-moderate χN = 16 and a
high χN = 80 for a symmetric diblock f = 1/2.

The size of the first variation ofH, (7)-(8), in any norm might not be an accurate stopping
criterium for the saddle point iteration [1]. In the numerical experiments to follow, a highly
accurate reference solution is first computed with a high resolution, and many-level SDC
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εH Method Iterations time/(SS1 time)

10−6 SS1
32 44 1.0

SDC5
8 43 0.84

10−8 SS1
80 47 1.0

SDC5
10 47 0.41

10−10 SS1
200 53 1.0

SDC5
20 70 0.40

10−12 SS1
600 78 1.0

SDC5
26 98 0.17

Table 2: Comparison of SS1 and SDC for χN = 16 at different levels of accuracy for the energy. The
subindex in each method indicates the number of contour points per block and the superindex in SDC is the
number of deferred corrections.

asymptotic expansion of these operators at high k, which yields the following expansion for
the first variation of H:

δH[µ+, µ−]

δµ+

= −(gAA + 2gAB + gBB) ∗ µ+ + (gAA − gBB) ∗ µ− + . . . . (37)

δH[µ+, µ−]

δµ−

=
2

χN
µ− − (gAA − 2gAB + gBB) ∗ µ− + (gAA − gBB) ∗ µ+ + . . . (38)

The spectrum of µ+, corresponding to high accuracy computations obtained with SDC6
128

and SS1
600 after 400 iterations is displayed in Fig. 5. There is a clear amplification of the

round-off error, which is now is O(10−13). While it is practically flat across k for SS1
600, it

is smaller and k-dependent for the more accurate SDC6
128, consistent with the inversion of

the leading order term in (37), (ĝAA(k) + 2ĝAB(k) + ĝBB(k))
−1 ≈ k2. The round-off error

application becomes more pronounced as χN increases because the smoothing effect of the
term − 2

χN
µ− diminishes. This phenomenon is inherent to the ill-posedness of the inverse

problem of finding a saddle point for H and not of the particular numerical method employed
to solve the MDE’s, as Fig. 5 demonstrates. If unattended, it could lead to a significant loss
of accuracy and eventually cause instability of the iteration, particularly for large χN .

One approach to control the growth of the round-off error in some ill-posed problems
is to employ a Fourier filter [15, 7] consisting of setting to zero all Fourier modes below a
threshold εF near machine precision. That is, to filter a periodic array we compute its DFT,
set to zero all of the Fourier coefficients whose modulus is less than εF , compute the inverse
DFT.

We now consider χN = 80 and L = 5. Now the spatial resolution is set to Nr = 512 and
the SIS step size is ∆t = 40. We also apply Fourier filtering to µ− and µ+ at every iteration
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highly accurate SDC SCFT iterations.

7. Conclusions

We propose a cost and memory efficient, highly accurate method for the solution of poly-
mer SCFT. The method is built from spectral integration using Chebyshev (Gauss-Lobatto)
nodes in the chain contour variable and an arbitrary order spectral deferred correction (SDC)
method for the modified diffusion (Fokker-Planck) equations. Special attention is paid to
the selection of the core implicit-explicit scheme and its behavior in the stiff limit. The
resulting method is robust and achieves high accuracy with a minimal number of contour
nodes. This translates into an order of magnitude savings in memory, relative to existing
approaches, and superior computational efficiency. The savings in memory are particularly
relevant for GPU implementations as GPU memory is notoriously limited.

We also propose an adaptive approach to significantly accelerate the computation of the
saddle points by systematically adapting the order of the SDC scheme during the iteration,
without the use of interpolation and/or memory increase. The idea is to use initial guess
produced with increasingly high order of accuracy. This approach can also be employed to
obtain good initial fields for higher resolution SCFT iterations in a negligible cpu time.
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Appendix A. Spectral Integration with Chebyshev nodes

We provide here the details of the spectral integration using the (second kind) Chebyshev
or Gauss-Lobatto nodes to compute

∫ b

a

f(s)ds and

∫ sj

a

f(t)dt, (A.1)

where sj, j = 0, . . . , n are the Chebyshev nodes in [a, b]. The interpolatory quadrature using
the Chebyshev nodes for the first integral is known as the Clenshaw-Curtis quadrature [8].
To obtain it we take the interval [−1, 1] and for a general interval [a, b] we use the change of
variables

x =
a+ b

2
+
b− a

2
t, t ∈ [−1, 1]. (A.2)

The Chebyshev nodes in [−1, 1] are

sj = − cos

(

jπ

n

)

, j = 0, 1, . . . , n (A.3)

17



The interpolating polynomial of f at these nodes can be written as

pn(s) =
a0
2

+
n−1
∑

k=1

akTk(s) +
an
2
Tn(s), (A.4)

where Tk(s) stands for the Chebyshev polynomial of degree k. Setting s = − cos θ, for
θ ∈ [0, π] we get

pn(− cos θ) =
a0
2

+
n−1
∑

k=1

ak cos kθ +
1

2
an cosnθ. (A.5)

Then Πn(θ) = pn(− cos θ) interpolates F (θ) = f(− cos θ) at the uniform nodes θj = jπ/n.
Therefore,

ak =
2

n

n
∑′′

j=0

F (θj) cos kθj, k = 0, 1, .., n, (A.6)

where the double prime in the sum means that the first and last coefficient have to be
multiplied by a factor of 1/2. That is, the coefficients a0, a1, . . . , an are the (Type I) Discrete
Cosine Transform (DCT) coefficients of F [12, 13] and we can compute them efficiently in
O(n log2 n) operations with the FFT. With the change of variable s = − cos θ we get

∫ 1

−1

f(s)ds =

∫ π

0

F (θ) sin θdθ,≈
∫ π

0

Πn(θ) sin θdθ. (A.7)

But

∫ π

0

Πn(θ) sin θdθ =
a0
2

∫ π

0

sin θdθ +
n−1
∑

k=1

ak

∫ π

0

cos kθ sin θdθ +
an
2

∫ π

0

cosnθ sin θdθ. (A.8)

Using cos kθ sin θ = 1
2
[sin(1+k)θ+sin(1−k)θ] and assuming n is even we get the Clenshaw-

Curtis Quadrature

∫ 1

−1

f(s)ds ≈ a0 +
n−2
∑

k=2
k even

2ak
1− k2

+
an

1− n2
. (A.9)

For a general interval [a, b], we get an extra factor of (b− a)/2 from the change of variables
(A.2)

We adapt the Clenshaw-Curtis idea to evaluate

∫ sj

−1

f(t)dt =

∫ θj

0

F (θ) sin θdθ ≈
∫ θj

0

Πn(θ) sin θdθ, (A.10)
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at the Chebyshev points (A.3). Since

∫ θj

0

cos kθ sin θdθ =







1
4
− 1

4
cos 2θj for k = 1

1

1− k2
− cos(k + 1)θj

2(k + 1)
+

cos(k − 1)θj
2(k − 1)

, for k 6= 1,
(A.11)

we get

∫ sj

−1

f(t)dt ≈ A0

2
+

n−1
∑

k=1

Ak cos kθj +
1

2
An cosnθj −

an
4(n+ 1)

cos(n+ 1)θj, (A.12)

where

A0 = a0 +
1

2
a1 +

n−1
∑

k=2

2ak
1− k2

+
an

1− n2
, (A.13)

Ak =
1

2k
(ak+1 − ak−1), k = 1, . . . , n− 2, (A.14)

An−1 =
1

2(n− 1)

(an
2

− an−2

)

, (A.15)

An = − 1

2n
an−1. (A.16)

The first three terms in the right hand size of (A.12) can be evaluated fast with the DCT so
the overall cost is again O(n log2 n).
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