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We study the BPS invariants for local del Pezzo surfaces, which can be obtained as

the signed Euler characteristic of the moduli spaces of stable one-dimensional sheaves

on the surface S. We calculate the Poincaré polynomials of the moduli spaces for the

curve classes β having arithmetic genus at most 2. We formulate a conjecture that

these Poincaré polynomials are divisible by the Poincaré polynomials of ((−KS).β − 1)-

dimensional projective space. This conjecture motivates the upcoming work on log BPS

numbers [8].

1 Introduction

Given a Calabi–Yau threefold X, physical reasoning was used in [13, 14] to produce

the Gopakumar–Vafa invariants from moduli spaces of one-dimensional sheaves on X.
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2 J. Choi et al.

There are mathematical definitions of these invariants ng
β ∈ Z given in [19] for g = 0

and (consistently) in [27] for general g. In this paper, we refer to these invariants as the

BPS invariants of X, conjectured to be related to other enumerative invariants of X as

described in [14].

In this paper, we let X be a local del Pezzo surface, the total space of the

canonical bundle KS of a del Pezzo surface S. In this case, stable one-dimensional

sheaves on X can be identified with stable one-dimensional sheaves on S.

While we include calculations of the refined BPS indices and the higher genus

BPS invariants in Section 4.4, our main focus in this paper is on the genus 0 BPS

invariants nβ = n0
β . Henceforth, local BPS invariants shall mean the genus 0 BPS

invariants, unless specified otherwise.

The moduli space of one-dimensional stable sheaves Mβ of class β ∈ H2(S,Z)

on X is equipped with a symmetric obstruction theory. It follows from [1] that nβ =
deg[Mβ ]vir. In the local del Pezzo surface case, Mβ is smooth and hence the degree of the

virtual cycle is given by the signed topological Euler characteristic of Mβ . In the present

paper, we calculate the Betti numbers of Mβ . The results of our calculations, stated at

the level of the local BPS invariants, are as follows.

Theorem 1.1 (Theorem 4.14). Let β be a line class, a conic class, or a nef and big curve

class on a del Pezzo surface S of arithmetic genus pa(β) at most 2. Let w = (−KS).β and

let η be the maximum number of disjoint lines l such that β.l = 0. Then we have

(i) if pa(β) = 0, then nβ = (−1)w−1w;

(ii) if pa(β) = 1 and β �= −KS8 , then nβ = (−1)w−1w(e(S) − η);

(iii) if β = −KS8 , then nβ = 12;

(iv) if pa(β) = 2 and β �= −2KS8 , then nβ = (−1)w−1w
((e(S)−η

2

) + 5
)
.

Here, e(−) denotes the topological Euler characteristics.

The main observation is that nβ is divisible by w. Moreover, if we denote by

Pt(M) the Poincaré polynomial of a variety M, our calculations suggest the following.

Conjecture 1.2 (Conjecture 4.15). Let β be a line class, a conic class, or a nef and big

curve class on a del Pezzo surface S. Let w = (−KS).β. Then the Poincaré polynomial

Pt(Mβ) has a factor Pt(P
w−1) and the quotient Pt(Mβ)/Pt(P

w−1) is a palindromic polyno-

mial. Consequently, nβ is divisible by w.

When S = P
2, Conjecture 1.2 is shown to be true whenever Pt(Mβ) or nβ is

calculated. See, for example, [6, 7] for calculations of Pt(Mβ) up to degree 6 and

[20, Section 8.3] for a calculation of nβ up to degree 10. In this paper, we prove that

Conjecture 1.2 holds for all del Pezzo surfaces and β with pa(β) ≤ 2.
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Local BPS Invariants 3

In [32, 33], it was observed that up to degree 8, the log BPS numbers for P
2

agree with counts of rational curves of given degree, which intersect a fixed smooth

elliptic curve E on P
2 only at a given special point and are smooth at this point. In

a sequel [8], we generalize this idea to give a rigorous direct definition for the log BPS

numbers by using the log Gromov-Written (GW) theory for the pair of a del Pezzo surface

S and a smooth anticanonical curve E on S. In a different direction, [3, Conjecture 44]

stipulates a relationship, after a change of variable, of Pt(Mβ) with a generating function

of certain higher genus log Gromov–Witten invariants. Combining [3] and [8] suggests a

reconstruction result of higher genus log Gromov–Witten invariants in terms of genus 0

invariants.
Our strategy to prove Theorem 1.1 is as follows. We use the wall-crossing in the

moduli space of δ-stable pairs. The same strategy is used in [6] to study Mβ when S = P
2.

See Section 3.3 for a review of the δ-stable pair theory. When δ is sufficiently large, the

space of δ-stable pairs is isomorphic to the space of pairs (C, Z) of curves C in class β

and zero-dimensional subschemes Z ⊂ C. The latter space is a projective bundle over a

Hilbert scheme provided β is sufficiently very ample (Proposition 3.16). More precisely,

in our main situation of pairs with holomorphic Euler characteristic 1, the latter space

is a projective bundle if β is very ample (resp. base point free) when the arithmetic genus

of β is 2 (resp. 1).

It is known that β is very ample (resp. base point free) if and only if β has a

positive (resp. nonnegative) intersection with all lines (i.e., (−1)-curves) on S and β �=
−2KS8 (resp. β �= −KS8 ). We show that the moduli space Mβ remains unchanged under

blowing down S along a (−1)-curve and taking the pushforward of β. After blowing

down all (−1)-curves l with β.l = 0, the moduli space of stable pairs can be computed

and hence Mβ can also be computed through wall-crossing.

The rest of this paper is organized as follows. In Section 2, we collect basic facts

about the curve classes on del Pezzo surfaces. In Section 3, we start by reviewing the

stability of one-dimensional sheaves and give a definition of local BPS invariants in

Section 3.1. We prove the blowup property of BPS invariants in Section 3.2. We review

the theory of δ-stable pairs and wall-crossing in Section 3.3. In Section 4, we compute

the Poincaré polynomial of Mβ and prove Theorem 1.1. Throughout this paper, we work

over C.

2 Preliminaries

In this section, we collect basic facts about curve classes on del Pezzo surfaces. Let S

be a del Pezzo surface. Denote by Sr the blowup of P
2 along r general points. Then S
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4 J. Choi et al.

is either Sr for 0 ≤ r ≤ 8 or P
1 × P

1. We will mainly consider the case S = Sr and will

make remarks for P1 ×P
1 separately whenever needed. The results of this paper hold for

P
1 × P

1 as well.

Definition 2.1. A class β ∈ H2(S,Z) is a curve class if it can be represented by a

nonempty subscheme of dimension 1. We often consider β as a divisor on S.

Since del Pezzo surfaces are rational, by Poincaré duality, Pic(S) ∼= H2(S,Z). So

when we write |OS(β)| or simply |β|, we mean the complete linear system |L| for the

unique L ∈ Pic(S) such that c1(L) = β.

For Sr, let h be the pullback of OP2(1) and let ei for 1 ≤ i ≤ r be the exceptional

divisors. The Picard group Pic(Sr) is generated by h and the ei’s. We use the notation

(d; a1, · · · , ar) for the divisor dh − ∑
aiei. When there are repetitions in the ai’s, we

sometimes use superscripts to indicate the number of repetitions. For example, (1; 12)

means the class h − e1 − e2. The anticanonical divisor is −KSr = (3; 1r).

For P
1 × P

1, we denote by h1 and h2 the pullback of OP1(1) from each factor. The

anticanonical divisor is −KSr = 2h1 + 2h2.

Definition 2.2. A line class on S is a class l ∈ Pic(S) such that l2 = −1 and (−KS).l = 1.

It is well known that each line class contains a unique irreducible line and there

are only finitely many lines on S.

Example 2.3. By numerical calculation, we list all line classes up to permutation of

the ei’s:

ei, (1; 12), (2; 15), (3; 2, 16), (4; 23, 15), (5; 26, 12), (6; 3, 27).

Definition 2.4. A divisor D on S is said to be nef if D.C ≥ 0 for any curve C. A nef

divisor D is said to be big if in addition D2 > 0.

Definition 2.5. A line bundle L on S is said to be k-very ample for an integer k ≥ 0

if given any zero-dimensional subscheme Z of S of length k + 1, the restriction map

H0(L) → H0(L|Z) is surjective. A divisor D is said to be k-very ample if the associated

line bundle is k-very ample.

Note that 0-very ample divisors are globally generated divisors and 1-very ample

divisors are very ample divisors. Di Rocco in [11] found the following numerical criterion

for k-very ampleness on a del Pezzo surface.
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Local BPS Invariants 5

Lemma 2.6 ([11] and [2, (2.1.1)]). Let D ∈ Pic(S) be a divisor and k ≥ 0 be an integer.

Suppose that D �= −kKS8 and D �= −(k + 1)KS8 and that D �= −KS7 when k = 1. Then

D ∈ Pic(S) is k-very ample if and only if

(i) when S = P
2, D.h ≥ k,

(ii) when S = P
1 × P

1, D.hi ≥ k for i = 1, 2,

(iii) when S = S1, D.l ≥ k for any line class l and D.(h − e1) ≥ k,

(iv) when S = Sr for r ≥ 2, D.l ≥ k for any line class l.

Lemma 2.7 ([11]). An effective divisor D ∈ Pic(S) is nef if and only if it is 0-very ample,

except for the case D = −KS8 , which is nef but not 0-very ample.

Lemma 2.8 ([22, Section 2.3 (P5, P7)]). If D is base point free, then Hi(D) = 0 for

i = 1, 2. Furthermore, if D is nef and big, then a general member of |D| is smooth and

irreducible.

Definition 2.9. For β ∈ Pic(S), we denote by pa(β) the arithmetic genus of β. By

adjunction we have

pa(β) = 1

2
β(β + KS) + 1.

Definition 2.10. A conic class on S is the class D ∈ Pic(S) such that pa(D) = 0 and

(−KS).D = 2.

By the remark after Corollary 3.3 of [34], nef but non-big divisors on S are

multiples of conic classes. The complete linear system of a conic class D has projective

dimension 1, which gives a ruling S → P
1. The fiber class of this ruling is D.

Example 2.11. The list of all conic classes is obtained by numerical calculation as

follows (up to permutations of the ei’s). See also [20, Appendix A].

(1; 1), (2; 14), (3; 2, 15), (4; 23, 14), (4; 3, 17),

(5; 26, 1), (5; 3, 23, 14), (6; 32, 24, 12), (7; 34, 23, 1), (7; 4, 3, 26), (2.1)

(8; 37, 1), (8; 4, 34, 23), (9; 42, 35, 2), (10; 44, 34), (11; 47, 3).

3 Local BPS Invariants and Pairs

3.1 BPS invariants

Let X be a Calabi–Yau threefold, and fix an ample line bundle L on X. The Hilbert

polynomial of F is defined by χ(F ⊗ Lm). In case X = Tot(KS), we consider coherent
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6 J. Choi et al.

sheaves F on X set-theoretically supported on S, so that we can consider its homology

class in H2(S,Z).

Definition 3.1. A sheaf F supported on a curve of class β is called stable if

(a) F is pure, that is, F has no zero-dimensional subsheaves.

(b) For any proper nonzero subsheaf G of F, we have

χ(G)

r(G)
<

χ(F)

r(F)
,

where r(F) is the linear coefficient of the Hilbert polynomial of F.

Definition 3.2. We denote by Mβ,n the moduli space of stable sheaves F on S with

χ(F) = n and [F](:= c1(F)) = β. When n = 1, we simply write Mβ = Mβ,1.

When X is a smooth projective variety, Mβ is projective. The moduli space

Mβ carries a symmetric obstruction theory [19], and hence a virtual invariant is well

defined. It is known that this virtual invariant is independent of the choice of the ample

line bundle L. See, for example, [36, Lemma 4.8]. For a del Pezzo surface S, we take

L = −KS. Note that when χ(F) = 1, a proper nonzero subsheaf G of F is destabilizing if

and only if χ(G) ≥ 1. The following proposition is well known (see [24]).

Proposition 3.3.

(i) Provided it is nonempty, Mβ is smooth of dimension β2 + 1.

(ii) nβ = (−1)β
2+1e(Mβ).

In Proposition 3.3 and below, β2 denotes the self-intersection β.β.

Proof. The obstruction at F ∈ Mβ is given by Ext2(F, F). By Serre duality, we have

Ext2(F, F) = Hom(F, F ⊗ KS)∨.

The latter space is zero because F is stable with respect to −KS [18, Proposition 1.2.7].

Therefore, Mβ is smooth. Moreover, by Riemann–Roch,

χ(F, F) = 1 − ext1(F, F) =
∫

S
ch∨(F)ch(F)td(S) = −β2.

The dimension of Mβ at F is ext1(F, F) = β2 + 1.
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Local BPS Invariants 7

Let X be the total space of KS and let Mβ(X) be the moduli space of stable

sheaves on X with the same numerical condition as Mβ . It is elementary to show that

Mβ(X) is in fact equal to Mβ . For example, the proof of [31, Lemma 4.24] works under

our assumption that F is a stable sheaf on X = Tot(KS) when −KS is ample. It is well

known that Mβ(X) is equipped with a symmetric obstruction theory and hence a virtual

cycle [Mβ(X)]vir ∈ A0(Mβ(X)). Toda in [36] proved that nβ = deg[Mβ(X)]vir whenever the

Gromov-Written/Pandharipande-Thomas (GW/PT) correspondence holds, which is the

case for local del Pezzo surfaces. Since Mβ is smooth of dimension β2 + 1, we have

deg[Mβ(X)]vir = (−1)β
2+1e(Mβ). �

Remark 3.4. In Section 4.4, we discuss an sl2 × sl2-action on the cohomology of Mβ ,

which will allow us to refine the ng
β .

3.2 Blowup property of the BPS invariant

Let π : Sr+1 → Sr be the blowup at a general point p ∈ Sr. Let β be a divisor on Sr. In this

section, we show that Mβ(Sr) and Mπ∗β(Sr+1) are isomorphic. Consequently, nπ∗β(Sr+1) =
nβ(Sr).

Let F ∈ Mβ(Sr). We let supp(F) ∈ |β| be the support scheme defined by the Fitting

ideal. Since F has pure dimension 1 we have a presentation of F as

0 → E1
φ→ E2 → F → 0, (3.1)

where E1 and E2 are locally free of the same rank. Then supp(F) ∈ |β| is the subscheme

of S defined by the vanishing of det φ and is well known to be independent of the choice

of resolution. This defines the Chow morphism

Mβ → |β|.

Lemma 3.5. For a pure one-dimensional sheaf F on Sr, π∗F is pure and

supp(π∗F) = π∗supp(F).

Proof. Choose a presentation (3.1) of F. Applying π∗ we get

0 → π∗E1
π∗(φ)−→ π∗E2 → π∗F → 0. (3.2)

The sequence (3.2) is exact on the left because the kernel of π∗(φ) is zero away from the

exceptional curve as π∗(φ) can be identified with φ, which implies that the kernel is zero

everywhere since π∗E1 is locally free.
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8 J. Choi et al.

Then π∗F is pure by the Auslander–Buchsbaum formula, and supp(π∗F) is the

subscheme of Sr+1 defined by the vanishing of det π∗(φ) = π∗ det φ, which is equal to the

scheme-theoretic inverse image π∗(supp(F)). �

Thus, we can think of F and π∗F having “the same” support, after identifying |β|
with |π∗β| via C �→ π∗C.

Lemma 3.6. For a pure one-dimensional sheaf F on Sr, π∗π∗F 
 F, R1π∗π∗F = 0, and

χ(π∗F) = χ(F).

Proof. We apply π∗ to (3.2), noting by the projection formula that π∗π∗Ei 
 Ei and

Rjπ∗π∗Ei = 0 for i = 1, 2 and j > 0, since each Ei is locally free and Rjπ∗OSr+1 = 0. We

obtain

0 → E1
φ→ E2 → π∗π∗F → 0 (3.3)

and R1π∗π∗F = 0. Comparing (3.3) and (3.1) we see that π∗π∗F 
 F. Finally, by Leray

χ(π∗F) = χ(π∗π∗F) − χ(R1π∗π∗F) = χ(F).
�

Proposition 3.7. For a pure one-dimensional sheaf F on Sr with χ(F) = 1, F is stable if

and only if π∗F is stable.

Proof. Suppose π∗F is stable. Let G be a saturated subsheaf of F. Since F/G is pure, by

(3.2), L1π∗(F/G) = 0 and hence π∗G is a subsheaf of π∗F. By Lemma 3.6, if G destabilizes

F, then π∗G destabilizes π∗F. Hence, F is also stable.

Conversely, suppose that F is stable and G ⊂ π∗F is a subsheaf with χ(G) ≥ 1.

Applying π∗ we get that π∗G is a subsheaf of π∗π∗F 
 F. Since R1π∗G is supported at p,

we have χ(R1π∗G) = h0(R1π∗G) ≥ 0 and

χ(π∗G) = χ(G) + χ(R1π∗G) ≥ χ(G) ≥ 1

by Leray. Hence, π∗G destabilizes F, contradicting the stability of F. �

Lemma 3.8. Let F ∈ Mπ∗β(Sr+1). Then π∗F is pure with c1(π∗F) = β.

Proof. Clearly, π∗F can only have torsion at p. Suppose we had a skyscraper sheaf

Cp ⊂ π∗F at p. This gives a global section s of π∗F annihilated by mp. Then s corresponds
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Local BPS Invariants 9

to a global section s̃ of F, which is then necessarily annihilated by π−1(mp)OSr+1 = IE .

So s̃ induces a map OSr+1/IE 
 OE → F, which is injective because OE is pure. Since

χ(OE) = 1, this would violate the stability of F.

The class of π∗F is β since π∗F|Sr−p is identified with F|Sr+1−E via π and the

restriction map

Pic(Sr+1) → Pic(Sr+1 − E) 
 Pic(Sr − p) 
 Pic(Sr)

is the left inverse of π∗ : Pic(Sr) → Pic(Sr+1). �

Now we consider the natural map ρ : π∗π∗F → F.

Proposition 3.9. Let F ∈ Mπ∗β(Sr+1). Then ρ : π∗π∗F → F is an isomorphism.

Consequently, π∗F is stable and χ(π∗F) = 1.

Proof. Let G be the kernel of ρ. Then π∗G is a subsheaf of π∗π∗π∗F. But π∗π∗π∗F 

π∗F by the 1st statement of Lemma 3.6 applied to π∗F. But π∗G is supported at p,

contradicting the purity of π∗F unless π∗G = 0.

By Lemmas 3.5 and 3.8 we see that c1(π∗π∗F) = π∗(β); so letting Q = coker(ρ), it

follows that c1(G) = c1(Q).

Finally, we compute the Euler characteristics of π∗F in two different ways. Using

ρ, we see that χ(π∗π∗F) = 1 + χ(G) − χ(Q). By Lemma 3.6, we see that R1π∗(π∗π∗F) = 0.

So by Leray for π∗, we compute χ(π∗π∗F) = χ(π∗F). But again by Leray, we have χ(π∗F) =
χ(F)+h0(R1π∗F) = 1+h0(R1π∗F). From π∗G = 0 it follows that χ(G) ≤ 0; hence, χ(Q) ≤ 0.

We must have Q = 0 since F is stable, and G is zero-dimensional by c1(G) = c1(Q). Again

by π∗G = 0 we have G = 0, so ρ is an isomorphism. �

Proposition 3.10. Let π : Sr+1 → Sr be a blowup. Let β be a divisor on Sr. Then, Mβ(Sr)

and Mπ∗β(Sr+1) are isomorphic.

Proof. Let F be a universal family on Mβ(Sr) × Sr. The pullback F ′ = (id × π)∗F is a

family on Mβ(Sr)×Sr+1, whose fibers are stable sheaves in Mπ∗β(Sr+1) by Proposition 3.7.

So F ′ induces the morphism π∗ : Mβ(Sr) → Mπ∗β(Sr+1). By Proposition 3.9, π∗ is bijective

and since π is an isomorphism away from the exceptional divisor, π∗ is a birational

morphism. By Proposition 3.3, the two moduli spaces Mβ(Sr) and Mπ∗β(Sr+1) are smooth.

Therefore, by Zariski’s main theorem, π∗ is an isomorphism. �
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10 J. Choi et al.

In Section 4, we will consider curve classes β of arithmetic genus at most 2. By

Lemma 2.6 and Proposition 3.10, with a few exceptions it is enough to calculate the BPS

numbers for very ample classes β by blowing down all (−1)-curves l such that β.l = 0.

Remark 3.11. The isomorphism constructed above commutes with the Chow mor-

phisms. Therefore, the higher genus BPS invariants as well as their sl2 × sl2 refinements

as defined in [4, 21, 27] remain unchanged as well.

3.3 δ-stable pairs and wall-crossing

Suppose that the BPS invariants ng
β(X) = ng

β satisfy the Gopakumar–Vafa formula

∑
β,g

Ig
β(X)qβλ2g−2 =

∑
β,g,k

ng
β

1

k

(
2 sin

(
kλ

2

)2g−2

qkβ

)
, (3.4)

where Ig
β(X) are the (local) Gromov–Witten invariants. Using the conjectured GW/PT

correspondence, we would then have the following PT/BPS formula [19]:

ZPT =
∏
β

⎛
⎝

∞∏
j=1

(
1 + (−1) j+1q jQβ

)jn0
β

·
∞∏

g=1

2g−2∏
k=0

(
1 + (−1)g−k qg−1−kQβ

)(−1)k+gng
β(

2g−2
k )

⎞
⎠ ,

(3.5)

where ZPT is the generating function for the PT invariants. The GW/PT correspondence is

proven when S (and hence X) is toric by combining the toric Gromov-Written/Donaldson-

Thomas (GW/DT) correspondence [26] with the DT/PT correspondence [5]. The GW/PT

correspondence for a general del Pezzo surface S reduces to the toric cases by taking a

toric blowup of P2 and then using deformation invariance of the GW and PT invariants.

See Definition 3.15 for PT-stable pairs.

In [20], Katz, Klemm, and Vafa developed a geometric computational technique

for BPS invariants. Later in [9], the refined BPS invariants are defined from the refined

PT invariants and the method is extended to compute the refined BPS indices.

As a consequence of the product formula (3.5), it was suggested in [20] that the

genus 0 BPS invariant nβ := n0
β can be computed by

nβ = PTβ,1 − PTβ,−1 + correction terms, (3.6)
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Local BPS Invariants 11

where PTβ,n is the stable pair invariant of degree β and Euler characteristic n. The

correction terms are combinations of lower-degree PT invariants. In [9], the correction

terms are interpreted as a wall-crossing contribution of the moduli spaces of stable

pairs. After the wall-crossing, the moduli spaces of stable pairs are related to the moduli

space of (Gieseker-)stable sheaves. We will formulate and prove a refined version of (3.6)

in Proposition 3.17 below.

To compute the local BPS invariants, we will use Proposition 3.3 and compute

the topological Euler characteristic of the moduli spaces Mβ . More generally, we

compute the Poincaré polynomials.

Definition 3.12. For a complex algebraic variety M, we let EM(u, v) be its E-

polynomial. We define the virtual Poincaré polynomial of M as the polynomial

Pt(M) = EM(−t1/2, −t1/2) in t1/2. The virtual Poincaré polynomial satisfies the properties

(i) Pt(M) = ∑
i≥0 dimQ Hi(M,Q) ti/2 if M is nonsingular and projective.

(ii) Pt(M) = Pt(M \ Y) + Pt(Y) for a closed algebraic subset Y of M.

In our cases, the odd cohomology groups of Mβ vanish so that Pt(Mβ) is actually a

polynomial in t and the topological Euler characteristic is given by e(M) = P1(M). Note

that although the Poincaré polynomial is not motivic in general the virtual Poincaré

polynomial is motivic, and since Mβ is smooth, the virtual Poincaré polynomial agrees

with the usual Poincaré polynomial in t with t1/2 substituted for t.

We will freely use the following properties of the virtual Poincaré polynomial,

which follow from the definition (see [12, Section 4.5]).

(iii) If M is a disjoint union of a finite number of locally closed subvarieties Mi,

then Pt(M) = ∑
Pt(Mi).

(iv) If M is a Zariski locally trivial fibration over Y with fibers F, then Pt(M) =
Pt(F)Pt(Y).

To compute the Poincaré polynomial, we relate Mβ birationally with the moduli

spaces of δ-stable pairs by wall-crossing. This approach is taken in [6] to compute the

Betti numbers for Mβ when S = P
2 and β = 4 and 5. See also [9].

Definition 3.13. A pair on X is a pair (s, F) of a coherent sheaf F on X of class β together

with a nonzero section s ∈ H0(F). A morphism between pairs is a morphism of sheaves,

which preserves the sections up to multiplication by a constant.

The topological data of (s, F) are defined to be those of the sheaf F. The notion of

pairs originated in the work of Le Potier [24] on coherent systems. A coherent system is
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12 J. Choi et al.

a pair (V, F) of a coherent sheaf F with a subspace V ⊂ H0(F) of fixed dimension. So, our

pairs are coherent systems of dimension 1. It is often convenient to consider a sheaf as

a coherent system of dimension 0.

Le Potier [24] studied a series of stability conditions on coherent systems, which

reads as follows for pairs. See also [16].

Definition 3.14. Let δ ∈ Q+. A pair (s, F) is δ-stable if

(a) F is pure.

(b) For any proper nonzero subsheaf G of F, we have

χ(G) + ε(s, G)δ

r(G)
<

χ(F) + δ

r(F)
,

where r(F) is thelinearcoefficient of the Hilbert polynomialof F and ε(s, G)=1

if s factors through G and ε(s, G) = 0 otherwise.

When the equality is allowed in Condition (2), then the pair is δ-semistable.

As in Section 3.1, we use the ample line bundle L = −KS to define the Hilbert

polynomial of a sheaf on S. So, r(F) = (−KS).[F]. We denote by Mδ
β,n the moduli space of

δ-stable pairs (s, F) on S with [F] = β and χ(F) = n. When there are no strictly semistable

δ-stable pairs, Mδ
β,n is constructed as a projective scheme by Geometric Invariant Theory

(GIT).

The values of δ, where there exist strictly δ-semistable pairs are called the walls.

Then the moduli space Mδ
β,n changes only at the walls. We will see that in our cases there

are only finitely many walls.

One special case is when δ is sufficiently large, which we denote by δ = ∞. In

this case, the δ-stability condition is equivalent to the stability condition on pairs of

Pandharipande and Thomas [28].

Definition 3.15. A pair (s, F) is PT-stable if

(a) F is pure of dimension 1.

(b) The cokernel of s : OX → F is zero-dimensional.

We denote by Pn(S, β) the moduli space of PT-stable pairs on S. In other words,

Pn(S, β) = M∞
β,n. By condition (2) in Definition 3.15, it is straightforward to see that

Pn(S, β) is empty when n<1−pa(β). Pandharipande and Thomas [28] proved that Pn(X, β)

is equipped with a symmetric obstruction theory when X is a Calabi–Yau threefold.
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Local BPS Invariants 13

In general, when X = Tot(KS), Pn(X, β) may not be equal to Pn(S, β). However, we will

only consider the wall-crossing of δ-stable pairs defined on S.

Proposition 3.16. Let S be a del Pezzo surface. Let pa = pa(β) and assume n ≥ 1 − pa.

Recall that w = (−KS).β.

(i) If β is a line class, then Pn(S, β) 
 P
n−1.

(ii) Assume that β is base point free. If β is (n − 2 + pa)-very ample, then Pn(S, β)

is a projective bundle of rank w − n over the Hilbert scheme Hilbn−1+pa(S).

Proof. The proof is essentially the same as that of [6, Lemma 2.3]. By [29, Proposition

B.8], Pn(S, β) is isomorphic to the space of pairs (C, Z), where C is a curve in class β and

Z is a subscheme of C of length n − 1 + pa. In particular, the assertion for a line class β

is straightforward. Note that each line class contains a unique line.

Now, let I be the universal ideal sheaf on Hilbn−1+pa(S) × S and let p :

Hilbn−1+pa(S) × S → Hilbn−1+pa(S) and q : Hilbn−1+pa(S) × S → S be the projections.

Then Pn(S, β) is the projective bundle P(p∗(I ⊗ q∗OS(β))) provided that p∗(I ⊗ q∗OS(β))

is locally free. Since β is (n − 2 + pa)-very ample, we have H1(IZ ⊗ O(β)) 
 H1(O(β)) for

any subscheme Z of length n − 1 + pa. The latter space vanishes by Lemma 2.8. By the

semicontinuity theorem, p∗(I ⊗ q∗OS(β)) is locally free and hence Pn(S, β) is a projective

bundle.

Since H1(IZ⊗O(β)) 
 H1(O(β)) = 0 for base point free β, the rank of the projective

bundle P(p∗(I ⊗ q∗OS(β))) can be computed by Riemann–Roch. �

On the other extreme when δ is sufficiently small, which we denote by δ = 0+, it

is elementary to check that for (s, F) ∈ M0+
β,n, the sheaf F is a stable sheaf provided that

(−KS).β and n are coprime. In this case, we have a forgetful map

ξ : M0+
β,n → Mβ,n.

In what follows, we only consider the case where n is either 1 or −1; so the coprime

condition is always satisfied.

Proposition 3.17. Pt(Mβ) = Pt(M0+
β,1) − tPt(M0+

β,−1).

Proof. This formula is proven for S = P
2 in [6, Lemma 5.1]. The same proof applies to

general del Pezzo surfaces. We sketch the proof here.
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14 J. Choi et al.

Let n be either 1 or −1. Let (Mβ,n)k (resp. (M0+
β,n)k) denote the locus in Mβ,n (resp.

M0+
β,n) defined by the condition h0(F) = k. Then the forgetful map ξ restricted to (M0+

β,n)k is

a Zariski locally trivial Pk−1-fibration since any nonzero section of F defines a 0+-stable

pair and an automorphism of a stable sheaf is given by scalar multiplication. Therefore,

we have

Pt
(
M0+

β,n

) =
∑

k

Pt
((

M0+
β,n

)
k

) =
∑

k

Pt(P
k)Pt((Mβ,n)k).

For a sheaf F ∈ Mβ , we define its dual by FD = Ext1(F, ωS). Since F is a pure

one-dimensional sheaf, FDD 
 F [18, Proposition 1.1.10]. The local-to-global spectral

sequence Epq
2 = Hp(Extq(F, ωS)) degenerates at level 2 and hence hi(FD) = h1−i(F) for

i = 0, 1. Thus, the association F �→ FD induces an isomorphism between (Mβ,1)k and

(Mβ,−1)k−1. The fact that this association is a morphism of schemes is proved in [25]

when S = P
2; but the same proof applies to a general del Pezzo surface S.

Therefore, we have

Pt
(
M0+

β,1

) − tPt
(
M0+

β,−1

) =
∑

k

Pt(P
k−1)Pt((Mβ,1)k) − tPt(P

k−1)Pt((Mβ,−1)k)

=
∑

k

Pt(P
k−1)Pt((Mβ,1)k) − tPt(P

k−1)Pt((Mβ,1)k+1)

=
∑

k

(Pt(P
k−1) − tPt(P

k−2))Pt((Mβ,1)k)

=
∑

k

Pt((Mβ,1)k) = Pt(Mβ).

�

Proposition 3.17 suggests that the correction terms in (3.6) come from wall-

crossing on δ-stable pairs. More detail on the correspondence between wall-crossing

terms and the correction terms can be found in [9, Section 9.3].

Now we study how the moduli space changes when we cross a wall. Let δ0 be a

wall and let δ− and δ+ be rational numbers sufficiently close to δ0 such that δ− < δ0 <

δ+ and there are no walls between δ− and δ+ other than δ0. We want to compare Mδ+
β,n

and Mδ−
β,n.

Let (s, F) be a δ+-stable pair that is not δ−-stable. Let F ′′ be a subsheaf of F

such that s factors through F ′′. So χ(F ′′)+δ+
r(F ′′) <

χ(F)+δ+
r(F)

. Since r(F ′′) ≤ r(F), this implies
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Local BPS Invariants 15

χ(F ′′)+δ−
r(F ′′) <

χ(F)+δ−
r(F)

. Therefore, for (s, F) to be not δ−-stable, there must be a subsheaf F ′′

of F such that

χ(F ′′)
r(F ′′)

>
χ(F) + δ−

r(F)
.

Necessarily, the section s does not factor through F ′′. Thus, we have an exact sequence

of pairs

0 → (0, F ′′) → (s, F) → (s′, F ′) → 0, (3.7)

where F ′ = F/F ′′ and s′ is the section on F ′ induced by s. Here, (0, F ′′) denotes the sheaf

F ′′ considered as a coherent system of dimension 0.

On the other hand, if (s̃, F̃) is a δ−-stable pair that is not δ+-stable, by the same

reasoning, we have an exact sequence

0 → (s′, F ′) → (s̃, F̃) → (0, F ′′) → 0. (3.8)

The wall δ0 is called a simple wall if (s′, F ′) is δ0-stable and F ′′ is stable (as a

sheaf) so that there are no further decompositions to be considered. In this paper, we

will only consider the cases where all walls are simple walls.

To denote a decomposition as in (3.7) and (3.8), we use the notation

(1, (β, n)) = (1, (β ′, n′)) + (0, (β ′′, n′′)), (3.9)

where β ′ = [F ′], β ′′ = [F ′′], n′ = χ(F ′), and n′′ = χ(F ′′). So if there is a wall-crossing

for Mδ
β,n, we must have a decomposition (3.9) such that Mβ ′′,n′′ and Mδ0

β ′,n′ are nonempty,

where

n + δ0

(−KS).β
= n′ + δ0

(−KS).β ′ = n′′

(−KS).β ′′ .

In such a case, the pairs in Mδ+
β,n of the form (3.7) parametrized by P(Ext1((s′, F ′), (0, F ′′)))

are replaced with the pairs in Mδ−
β,n of the form (3.8) parametrized by P(Ext1((0, F ′′),

(s′, F ′))). This wall-crossing phenomenon can be explained by elementary modification

of pairs. See [35, Section 3], [16, Lemma 4.24], and [6]. Now each Ext group can be

computed using the following proposition.
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16 J. Choi et al.

Proposition 3.18. [16, Corollary 1.6] Let 
 = (s, F) and 
′ = (s′, F ′) be pairs on X. Then

there is a long exact sequence

0 → Hom(
, 
′) → Hom(F, F ′) → H0(F ′)/〈s′〉
→ Ext1(
, 
′) → Ext1(F, F ′) → H1(F ′)

→ Ext2(
, 
′) → Ext2(F, F ′) → H2(F ′) → · · · .

4 Calculations of Local BPS Numbers

We calculate the local BPS numbers by applying the wall-crossing techniques described

in the previous sections. In this section, we assume that β is a line class, a conic class,

or a nef and big curve class so that there are smooth irreducible curves in class β.

When β is nef and big, we have Hi(β + KS) = 0 for i > 0, which is due to

Ramanujam [30] and [23, Theorem 4.3.1]. Therefore,

h0(β + KS) = χ(β + KS) = 1

2
(β + KS)β + 1 = pa(β). (4.1)

4.1 Arithmetic genus 0

For a nef and big curve class of arithmetic genus 0 on S = Sr, β + KS is not nef since

(β + KS)β = −2. Hence, if r ≥ 2, there is a line l on S with (β + KS).l < 0, and β.l = 0

follows from the nefness of β. By blowing down such lines, we see that β is a pullback

of the class (1) or (2) on P
2, the class (d; d − 1) on S1 with d ≥ 2, or the class (1, k) on

P
1 × P

1 with k ≥ 1.

Proposition 4.1. Let β be a curve class on S of arithmetic genus 0. If β is a line class, a

conic class, or a nef and big curve class, then Mβ is isomorphic to P
w−1.

Proof. In the nef and big case, we may assume that (S, β) is (P2, (1)), (P2, (2)),

(S1, (d; d − 1)) with d ≥ 2 or (P1 × P
1, (1, k)) with k ≥ 1 by Proposition 3.10 and the

preceding discussion.

Let F be a stable sheaf with χ(F) = 1. Then there is a nonzero section s ∈ H0(F),

which induces a morphism i : OS → F. Let C′ be the curve on S defined by the kernel of

i. Put β ′ = [C′]. Then if β ′ �= β, stability is contradicted because pa(β ′) ≤ 0 as can be seen

using the description of β in each case. We conclude that β ′ = β and F 
 OC, where C is

in class β. Therefore, Mβ is isomorphic to the complete linear system |O(β)| 
 P
w−1. �
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Local BPS Invariants 17

Corollary 4.2. Pt(Mβ) = 1 − tw

1 − t
and nβ = (−1)w−1w.

4.2 Arithmetic genus 1

By Proposition 3.10, blowing down all lines l with β.l = 0 does not change the moduli

space of stable sheaves.

Lemma 4.3. Let β be a nef and big curve class on a del Pezzo surface S of arithmetic

genus 1 such that β.l ≥ 1 for all line classes l. Then β = −KSr for 0 ≤ r ≤ 8 or β =
−KP1×P1 .

Proof. We have β(β + KS) = 2pa(β) − 2 = 0. By (4.1), we have h0(β + KS) = 1. Therefore,

β + KS is effective. Hence, it is enough to show that β is ample.

If S = Sr with r ≥ 2, β is ample from the assumption that β.l ≥ 1 holds for all

line classes l. On P
2 or P

1 × P
1, any nef and big class is ample. On S1, β = (d; a) satisfies

β.(h − e1) = d − a ≥ 1. It follows that d > a, and β is ample. �

Suppose two distinct lines l1 and l2 satisfy β.l1 = β.l2 =0, then since β(l1+l2) = 0,

by the Hodge index theorem, (l1 + l2)2 < 0, which implies l1.l2 = 0. Therefore, they are

mutually disjoint and the number of them is at most r.

After blowing down all lines l with β.l = 0, we may assume that β = −KS. When

0 ≤ r ≤ 7, β = −KS is base point free. The case β = −KS8 is the only case where β is

neither base point free nor can be blown down to a base point free curve class. We will

study this exceptional case in Example 4.6.

Proposition 4.4. Let β be a nef and big curve class on S = Sr of arithmetic genus 1 and

β �= −KS8 . Let η be the maximum number of disjoint lines l such that β.l = 0. Then

Pt(Mβ) = 1 − tw

1 − t

(
1 + (e(S) − 2 − η)t + t2

)

and nβ = (−1)w−1w(e(S) − η).

Proof. Let π : S → S′ be the blowing down of all lines l such that β.l = 0. By Proposition

3.10, Mβ(S) 
 Mπ∗β(S′). By the remark before Proposition 3.16, P−1(S′, π∗β) is empty,

which implies that the forgetful map ξ : M0+
π∗β,1(S′) → Mπ∗β(S′) is an isomorphism by the

proof of Proposition 3.17. Hence, Mβ(S) is isomorphic to M0+
π∗β,1(S′).
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18 J. Choi et al.

If β �= −KS8 , then by Lemma 4.3 S′ is either P
1 × P

1 or Sr with 0 ≤ r ≤ 8 and

π∗β = −KS′ , which is base point free. So, by Proposition 3.16, P1(S′, π∗β) is a P
w−1-bundle

over S′. One can check that there is no wall-crossing for stable pairs in this case so

that M0+
π∗β,1(S′) is isomorphic to M∞

π∗β,1(S′) = P1(S′, π∗β). Indeed, at a wall δ0, we have a

decomposition of the form

(1, (β, 1)) = (1, (β ′, n′)) + (0, (β ′′, n′′)), (4.2)

where β = β ′ + β ′′, n′ + n′′ = 1, and δ0 = w
(−K)β ′′ n′′ − 1. Since δ0 must be positive, we see

that n′ = 0 and n′′ = 1. Now to have a nontrivial wall-crossing, there must be a sheaf F ′

with [F ′] = β ′ and χ(F ′) = 0, which in addition has a nontrivial section. Consequently,

pa(β ′) ≥ 1. But one can numerically check that when β = −KS′ , such a decomposition

does not exist. See, for example, the list of curve classes in [20, Appendix A].

Therefore, Mβ(S) is isomorphic to a P
w−1-bundle over S′; hence, the results

follow. �

Remark 4.5. Blowing down in the proof of Proposition 4.4 corresponds to the wall-

crossing in pairs. When β is nef and big, by Proposition 3.16, P1(S, β) is a P
w−1-bundle

over S. For each line l such that β.l = 0, we have a decomposition of the form

(1, (β, 1)) = (1, (β ′, 0)) + (0, (l, 1)), (4.3)

where β ′ is a curve of arithmetic genus 1 and β ′.l = 1. The corresponding wall is at

δ0 = w − 1 > 0. A pair in (1, (β ′, 0)) is of the form (s,Oβ ′) and a pair in (0, (l, 1)) is of the

form (0,Ol).

By using Proposition 3.18, we have

Ext1((s,Oβ ′), (0,Ol)) 
 C
2,

Ext1((0,Ol), (s,Oβ ′)) 
 C.

Hence, by wall-crossing at δ0, η copies of a P
1 bundle over Pw−1 ×P

0 in Mδ+
β,1 are replaced

with η copies of a P
0 bundle over Pw−1×P

0 in Mδ−
β,1. One can check that this wall-crossing

is in fact a blowup ρ : Mδ+
β,1 → Mδ−

β,1 along the locus isomorphic to η copies of Pw−1 × P
0.

Therefore,

Pt(Mβ) = 1 − tw

1 − t

(
(1 + (e(S) − 2)t + t2) − η(1 + t − 1)

)

as required.
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Local BPS Invariants 19

Example 4.6. Let β = −KS8 on S = S8. Then β is nef and big but not 0-very ample

because the linear system | − KS8 | has a base point. So Proposition 4.4 does not apply.

In fact by Lemma 2.6, this is the only case where pa(β) = 1 and β is not 0-very ample

while there is no line class l such that β.l ≤ 0. In this case, we can directly calculate

the local BPS number. Since w = K2
S8

= 1, there are no wall-crossings. Also, P−1(S, β)

is empty. Hence, Mβ 
 P1(S8, −KS8). The moduli space P1(S8, −KS8) is the space of pairs

(C, p) of a point p on P
2 and a cubic curve C passing through p and the eight points of

the blowup. Hence, it is the total space of the pencil of cubic curves and is isomorphic

to P
2 blown up at nine base points of the pencil. We see that Pt(Mβ) = 1 + 10t + t2 and

nβ = 12 = e(S8) + 1.

4.3 Arithmetic genus 2

Now we compute the local BPS invariants for curve classes β �= −2KS8 with arithmetic

genus 2. By Proposition 3.10, it suffices to consider very ample classes by blowing down

all lines l with β.l = 0. The following lemma shows that there are only finitely many such

classes.

Lemma 4.7. If β is a very ample curve class on a del Pezzo surface S of arithmetic

genus 2, then β + KS is effective with pa(β + KS) = 0 and (−KS)(β + KS) = 2. Hence,

β + KS is a conic class as in (2.1).

Proof. We have β.(β + KS) = 2pa(β) − 2 = 2. By (4.1), h0(β + KS) = 2. Therefore, β + KS

is effective.

Let λ = (−KS)(β + KS) > 0. We have

pa(β + KS) = 1

2
(β + KS)(β + KS + KS) + 1

= pa(β) + KS(β + KS)

= 2 − λ

Thus, pa(β + KS) < 2 and pa(β + KS) = (β + KS)2. Suppose that pa(β + KS) = 1. Then

λ = (−KS)(β + KS) = 1 and (β + KS)2 = 1. By applying the Hodge index theorem to the

lattice generated by −KS and β + KS, we see that this is possible only if β = −2KS8 . But

−2KS8 is not very ample.

Now suppose pa(β + KS) < 0. In this case, β + KS is not nef. Since all effective

curve classes on P
2 or P

1× P
1 are nef, we have S = Sr with r ≥ 1. If r ≥ 2, there is a line l
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20 J. Choi et al.

such that (β + KS)l < 0. Then β.l < (−KS).l = 1, which contradicts that β is very ample.

If r = 1 and β = (d; a), we have d > a > 0 by ampleness and d ≥ a + 2 from pa(β) = 2.

Then (β + KS).E1 = a − 1 ≥ 0 and (β + KS).(H − E1) = d − a − 2 ≥ 0, so β + KS is nef, a

contradiction.

Therefore, pa(β + KS) = 0 and (−KS)(β + KS) = 2. �

Lemma 4.8. Let β be a very ample curve class on S of arithmetic genus 2. Then

nontrivial wall-crossings for Mδ
β,n arise if there is a decomposition

(1, (β, 1)) = (1, (β1, 0)) + (0, (β2, 1)), (4.4)

where β1 and β2 are one of the following:

(i) pa(β1) = 1, pa(β2) = 0, −KS.β1 = w − 2, −KS.β2 = 2, β2
2 = 0, and β1.β2 = 2.

There is a unique such pair (β1, β2). It corresponds to the wall δ0 = 1
2w − 1.

(ii) pa(β1) = 1, pa(β2) = 0, −KS.β1 = w − 1, −KS.β2 = 1, β2
2 = −1, and β1.β2 = 2.

The number of such pairs (β1, β2) is 2e(S) − 8. They correspond to the wall

δ0 = w − 1.

Proof. By the previous lemma, we have (−KS).β = K2
S +2 > 2. The list of all very ample

classes of arithmetic genus 2 can be obtained by Lemma 4.7 and Example 2.11. We can

check the assertions for each curve classes. For example, if β = (4; 2, 1, 1, 1, 1), then the

possible decompositions of β on S5 are

• (4; 2, 1, 1, 1, 1) = (3; 1, 1, 1, 1, 1) + (1; 1, 0, 0, 0, 0),

• (4; 2, 1, 1, 1, 1) = (3; 1, 1, 1, 1, 0) + (1; 1, 0, 0, 0, 1) (four decompositions of this

type),

• (4; 2, 1, 1, 1, 1) = (4; 2, 2, 1, 1, 1) + E2 (four decompositions of this type).

The 1st decomposition is the case (i) of the statement and the remaining two correspond

to the case (ii). The other cases can be checked similarly. �

Proposition 4.9. Let β be a curve class on S = Sr of arithmetic genus 2, and assume

that β is very ample. Then

Pt(Mβ) = 1 − tw

1 − t

(
1 + (e(S) − 2)t +

((
e(S) − 2

2

)
+ 4

)
t2 + (e(S) − 2)t3 + t4

)

and nβ = (−1)w−1w
((e(S)

2

) + 5
)
.
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Proof. By Proposition 3.16, Pt(Pβ,1) = Pt(P
w−1)Pt(Hilb2(S)) and Pt(Pβ,−1) = Pt(P

w+1).

We have a wall-crossing for each decomposition in Lemma 4.8. By the similar calculation

as before we compute the wall-crossing. For the decomposition in Lemma 4.8(1),

Ext1((s,Oβ1), (0,Oβ2)) 
 C
3,

Ext1((0,Oβ2), (s,Oβ1)) 
 C
2.

Since (s,Oβ1) ∈ M∞
β1,0 
 P

w−2 and (0,Oβ2) ∈ Mβ2,1 
 P
1, the correction term for the

Poincaré polynomial in this case is t2Pt(P
w−2)Pt(P

1).

For the decomposition in Lemma 4.8(2),

Ext1((s,Oβ1), (0,Oβ2)) 
 C
3,

Ext1((0,Oβ2), (s,Oβ1)) 
 C
2.

In this case (s,Oβ1) ∈ M∞
β1,0 
 P

w−1 and (0,Oβ2) ∈ Mβ2,1 
 P
0. So, the correction term in

this case is (2 e(S) − 8)t2Pt(P
w−1).

Therefore, we have

Pt(Mβ) = Pt(P
w−1)Pt(Hilb2(S)) − Pt(P

w+1) − t2Pt(P
w−2)Pt(P

1) − (2e(S) − 8)t2Pt(P
w−1).

The Poincaré polynomial of the Hilbert scheme is well known [15]. For the Hilbert

scheme of two points, we have

Pt(Hilb2(S)) = 1 + (e(S) − 1)t +
(

e(S)

2

)
t2 + (e(S) − 1)t3 + t4.

Then the result follows from elementary calculations. �

Remark 4.10. Without the very-ampleness assumption, we can calculate Pt(Mβ) and

nβ by using the blowup property. If β is nef and big but not very ample, then we

may blow down all lines l with β.l = 0. Let π : S → S′ be the blowdown. After

blowdown, π∗β is very ample unless β = −2KS8 , since there are no (−1)-curves that do

not intersect β. Therefore, we may apply Proposition 4.9 to calculate nπ∗β on S′. Then by
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Proposition 3.10, Mβ 
 Mπ∗β . Hence, if we let η be the number of lines l such that β.l = 0

as before, we conclude that

Pt(Mβ) = 1 − tw

1 − t

(
1 + (e(S) − 2 − η)t +

((
e(S) − 2 − η

2

)
+ 4

)
t2 + (e(S) − 2 − η)t3 + t4

)

and

nβ = (−1)w−1w
((

e(S) − η

2

)
+ 5

)
.

Remark 4.11. For P
1 × P

1, we can check the only very ample classes with arithmetic

genus 2 are 2h1 + 3h2 and 3h1 + 2h2. The same calculation works for these classes and

we have

Pt(Mβ) = 1 − t10

1 − t
(1 + 2t + 5t2 + 2t3 + t4),

which matches with the result of Proposition 4.9 as e(P1 × P
1) = 4.

For these cases, the geometry of Mβ is studied in [10]. We remark that the

Poincaré polynomial obtained in [10, Corollary 3.8] using a different birational method

agrees with ours.

Remark 4.12. Let β = −2KS8 = (6, 28). This curve class is neither very ample nor

contracted to a very ample divisor. So, it is not covered by Proposition 4.9.

In conclusion, we have the following formulas for the Poincaré polynomials and

the local BPS invariants.

Theorem 4.13. Let β be a line class, a conic class, or a nef and big curve class on a

del Pezzo surface S of arithmetic genus at most 2. Let w = (−KS).β and let η be the

number of disjoint lines l such that β.l = 0. Then we have the following:

(i) if pa(β) = 0, then Pt(Mβ) = 1 − tw

1 − t
;

(ii) if pa(β) = 1 and β �= −KS8 , then Pt(Mβ) = 1 − tw

1 − t

(
1 + (e(S) − 2 − η)t + t2

)
;

(iii) if β = −KS8 , then Pt(Mβ) = 1 + 10t + t2;

(iv) if pa(β) = 2 and β �= −2KS8 , then

Pt(Mβ) = 1 − tw

1 − t

(
1 + (e(S) − 2 − η)t +

((
e(S) − 2 − η

2

)
+ 4

)
t2 + (e(S) − 2 − η)t3 + t4

)
.

Theorem 4.14. In the situation as in Theorem 4.13, we have the following:

(i) if pa(β) = 0, then nβ = (−1)w−1w;
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(ii) if pa(β) = 1 and β �= −KS8 , then nβ = (−1)w−1w(e(S) − η);

(iii) if β = −KS8 , then nβ = 12;

(iv) if pa(β) = 2 and β �= −2KS8 , then nβ = (−1)w−1w
((e(S)−η

2

) + 5
)
.

In all cases studied in this paper, we see that Pt(Mβ) has a factor of Pt(P
w−1) =

1 − tw

1 − t
. This may suggest that Mβ has a projective bundle structure. However, it is not

true in general. The stable base locus decomposition of Mβ when S = P
2 is studied in [7].

It is shown there that Mβ is not itself a projective bundle but is birational to a projective

bundle. We formulate the following conjecture, which we proved for β of arithmetic

genus at most 2.

Conjecture 4.15. Let β be a line class, a conic class, or a nef and big curve class

on a del Pezzo surface S. Let w = (−KS).β. Then Pt(Mβ) has a factor of Pt(P
w−1) and

the quotient Pt(Mβ)/Pt(P
w−1) is a palindromic polynomial. Consequently, nβ is divisible

by w.

This conjecture motivated the theory of log BPS numbers.

Definition 4.16. We define the log BPS numbers by mβ = (−1)w−1nβ/w.

Remark 4.17. In a sequel [8], we give a more geometric approach to the log BPS

numbers. We fix a smooth anticanonical divisor E ∈ | − KS|. The set E(β) of points P

on E such that there is a curve in class β meeting E only at P is a finite set. Roughly

speaking, given a point P ∈ E(β), the log BPS number counts the virtual number of

rational curves in class β, which meet E only at P and are smooth at P. In [8], we

give a precise definition of log BPS numbers using the log Gromov–Witten theory and

conjecture that it is constant along points P ∈ E(β). When P ∈ E(β) is β-primitive, which

means that there are only reduced irreducible rational curves in class β meeting E only

at P, this is an actual count of curves. In this case, we show that the log BPS numbers

of Definition 4.16 agree with the number of such rational curves when β has arithmetic

genus at most 2.

4.4 Refined BPS indices and higher genus BPS invariants

In [14], physical reasoning was used to assert an sl2 × sl2-representation on the coho-

mology H∗(Mβ) of the moduli space Mβ , which refines the Gopakumar–Vafa invariants.

The left and the right sl2-actions are given by the Lefschetz actions from the maps

Mβ → |β| → pt respectively. A mathematical proposal for an sl2 ×sl2-representation was
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given in [21]. While a counterexample to this proposal was found in [27]; the problem

does not occur for smooth moduli spaces. We therefore can and will use the proposal of

[21] as a precise mathematical definition.

A computational algorithm for such sl2 × sl2-representations based on con-

jectures from physics was developed in [20] and generalized in [9] using the refined

PT invariants. Adapting the notations in [9] we let
[k

2

]
denote the irreducible sl2-

representation of dimension k+1. Then we may write H∗(Mβ) = ∑
jL, jR Nβ

jL, jR
[ jL, jR] as an

sl2×sl2-representation, where jL, jR ∈ 1
2Z. The multiplicity Nβ

jL, jR
is called the refined BPS

index. There is a conjectural product formula for the generating function of the refined

PT invariant in terms of the refined BPS indices, see [9, Section 8].

The computation of the previous sections can be applied to the calculation

algorithms in [9] of the refined BPS indices. We present the results here omitting the

details. In the following, we assume
[k

2

] = 0 for k < 0.

Let r = e(S) − 3 as before. (For S = P
1 × P

1, r = 1.)

(i) If pa(β) = 0, then H∗(Mβ) = [
0, w−1

2

]
.

(ii) If pa(β) = 1 and β �= −KS8 , then H∗(Mβ) = [1
2 , w

2

] + (r − η)
[
0, w−1

2

] + [
0, w−3

2

]
.

(iii) If β = −KS8 , then H∗(Mβ) = [1
2 , 1

2

] + 8[0, 0].

(iv) If pa(β) = 2 and β �= −2KS8 , then H∗(Mβ) = [
1, w+1

2

]+(r−η)
[1

2 , w
2

]+[1
2 , w−2

2

]+((r−η
2

) + 2
) [

0, w−1
2

] + (r − η)
[
0, w−3

2

] + [
0, w−5

2

]
.

These results are consistent with the refined BPS indices obtained by mirror

symmetry in [17, Section 5]. We remark that Nd
jL, jR

in [17, Section 5] is
∑

(−KS).β=d Nβ

jL, jR
.

Upon restricting to the representation (H∗(Mβ))� of the diagonal (sl2)� ⊂ sl2×sl2,

we recover the cohomology of Mβ . By simple computation, we see that

(i) if pa(β) = 0, then (H∗(Mβ))� = [w−1
2

]
;

(ii) if pa(β) = 1 and β �= −KS8 , then (H∗(Mβ))� = [w−1
2

]
([1] + (r − η)[0]);

(iii) if β = −KS8 , then (H∗(Mβ))� = [1] + 9[0];

(iv) if pa(β)=2 and β �=−2KS8 , then (H∗(Mβ))� =[w−1
2

](
[2]+(r−η)[1]+((r−η

2

)+3
)

[0]
)
.

In each case, (H∗(Mβ))� is divisible by
[w−1

2

]
, consistent with Conjecture 4.15,

as
[w−1

2

]
is the Lefschetz representation of Pw−1.
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