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We study the BPS invariants for local del Pezzo surfaces, which can be obtained as
the signed Euler characteristic of the moduli spaces of stable one-dimensional sheaves
on the surface S. We calculate the Poincaré polynomials of the moduli spaces for the
curve classes B having arithmetic genus at most 2. We formulate a conjecture that
these Poincaré polynomials are divisible by the Poincaré polynomials of ((—Ks).8 — 1)-
dimensional projective space. This conjecture motivates the upcoming work on log BPS

numbers [8].

1 Introduction

Given a Calabi-Yau threefold X, physical reasoning was used in [13, 14] to produce

the Gopakumar-Vafa invariants from moduli spaces of one-dimensional sheaves on X.
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2 J. Choi et al.

There are mathematical definitions of these invariants ng € Z given in [19] forg = 0
and (consistently) in [27] for general g. In this paper, we refer to these invariants as the
BPS invariants of X, conjectured to be related to other enumerative invariants of X as

described in [14].
In this paper, we let X be a local del Pezzo surface, the total space of the

canonical bundle Kg of a del Pezzo surface S. In this case, stable one-dimensional

sheaves on X can be identified with stable one-dimensional sheaves on S.
While we include calculations of the refined BPS indices and the higher genus

BPS invariants in Section 4.4, our main focus in this paper is on the genus 0 BPS
invariants ng = ng. Henceforth, local BPS invariants shall mean the genus 0 BPS
invariants, unless specified otherwise.

The moduli space of one-dimensional stable sheaves Mg of class 8 € Hz(S,7Z)
on X is equipped with a symmetric obstruction theory. It follows from [1] that ng =
deg[M]V'". In the local del Pezzo surface case, Mg is smooth and hence the degree of the
virtual cycle is given by the signed topological Euler characteristic of Mg. In the present
paper, we calculate the Betti numbers of Mg. The results of our calculations, stated at

the level of the local BPS invariants, are as follows.

Theorem 1.1 (Theorem 4.14). Let 8 be a line class, a conic class, or a nef and big curve
class on a del Pezzo surface S of arithmetic genus p,(8) at most 2. Let w = (—Kg).8 and
let n be the maximum number of disjoint lines [ such that 8.l = 0. Then we have
(i) if pe(B) =0, then ng = (-1 lw;
(ii) if pa(B) =1 and B # —Ks,, then ng = (=) tw(e(S) — n);
(iii) if B = —Kg,, then ng = 12;
(iv) if pa(B) = 2 and B # —2Ks,, then ng = (-1)"~lw ((“Sg‘") + 5).
Here, e(—) denotes the topological Euler characteristics.
The main observation is that ng is divisible by w. Moreover, if we denote by

P;(M) the Poincaré polynomial of a variety M, our calculations suggest the following.

Conjecture 1.2 (Conjecture 4.15). Let 8 be a line class, a conic class, or a nef and big
curve class on a del Pezzo surface S. Let w = (—Ks).8. Then the Poincaré polynomial
P;(Mg) has a factor P;(P¥~1) and the quotient Pt(Mﬂ)/Pt(IP’W‘l) is a palindromic polyno-
mial. Consequently, ng is divisible by w.

When S = P2, Conjecture 1.2 is shown to be true whenever P;(Mg) or ng is
calculated. See, for example, [6, 7] for calculations of P;(Mg) up to degree 6 and
[20, Section 8.3] for a calculation of ng up to degree 10. In this paper, we prove that

Conjecture 1.2 holds for all del Pezzo surfaces and g with p,(8) < 2.
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Local BPS Invariants 3

In [32, 33], it was observed that up to degree 8, the log BPS numbers for P2
agree with counts of rational curves of given degree, which intersect a fixed smooth
elliptic curve E on P? only at a given special point and are smooth at this point. In
a sequel [8], we generalize this idea to give a rigorous direct definition for the log BPS
numbers by using the log Gromov-Written (GW) theory for the pair of a del Pezzo surface
S and a smooth anticanonical curve E on S. In a different direction, [3, Conjecture 44]
stipulates a relationship, after a change of variable, of P;(Mg) with a generating function
of certain higher genus log Gromov-Witten invariants. Combining [3] and [8] suggests a
reconstruction result of higher genus log Gromov-Witten invariants in terms of genus 0

invariants.
Our strategy to prove Theorem 1.1 is as follows. We use the wall-crossing in the

moduli space of §-stable pairs. The same strategy is used in [6] to study Mg when S = P2,
See Section 3.3 for a review of the §-stable pair theory. When § is sufficiently large, the
space of §-stable pairs is isomorphic to the space of pairs (C,Z) of curves C in class j
and zero-dimensional subschemes Z c C. The latter space is a projective bundle over a
Hilbert scheme provided 8 is sufficiently very ample (Proposition 3.16). More precisely,
in our main situation of pairs with holomorphic Euler characteristic 1, the latter space
is a projective bundle if 8 is very ample (resp. base point free) when the arithmetic genus
of B is 2 (resp. 1).

It is known that g is very ample (resp. base point free) if and only if g has a
positive (resp. nonnegative) intersection with all lines (i.e., (—1)-curves) on S and 8 #
—2Ks, (resp. B # —Ksg). We show that the moduli space Mg remains unchanged under
blowing down S along a (—1)-curve and taking the pushforward of . After blowing
down all (—1)-curves [ with 8.l = 0, the moduli space of stable pairs can be computed
and hence Mg can also be computed through wall-crossing.

The rest of this paper is organized as follows. In Section 2, we collect basic facts
about the curve classes on del Pezzo surfaces. In Section 3, we start by reviewing the
stability of one-dimensional sheaves and give a definition of local BPS invariants in
Section 3.1. We prove the blowup property of BPS invariants in Section 3.2. We review
the theory of §-stable pairs and wall-crossing in Section 3.3. In Section 4, we compute
the Poincaré polynomial of Mg and prove Theorem 1.1. Throughout this paper, we work

over C.

2 Preliminaries

In this section, we collect basic facts about curve classes on del Pezzo surfaces. Let S

be a del Pezzo surface. Denote by S, the blowup of P? along r general points. Then S

610z [dy 2| uo Jasn ubredweyn-eueqln 1e sioul||| J0 AsiaAun AQ Z1LZ90S/1 L AUI/uIW/SE0 L 0 | /I0p/1oBISqe-8|d1le-00UBAPE/UIWI/WO09 dno olwapede//:sdiy Wol) papeojumo(]



4 J. Choi et al.

is either S, for 0 < r < 8 or P! x P!. We will mainly consider the case S = S; and will
make remarks for P! x P! separately whenever needed. The results of this paper hold for

P! x P! as well.

Definition 2.1. A class B € H(S,Z) is a curve class if it can be represented by a

nonempty subscheme of dimension 1. We often consider 8 as a divisor on S.

Since del Pezzo surfaces are rational, by Poincaré duality, Pic(S) = Hz(S,Z). So
when we write |Os(8)| or simply |8|, we mean the complete linear system |L| for the
unique L € Pic(S) such that c; (L) = 8.

For S, let h be the pullback of Op2(1) and let e; for 1 < i < r be the exceptional
divisors. The Picard group Pic(Sy) is generated by & and the e;'s. We use the notation
(d;ay,--- ,ar) for the divisor dh — > a;e;. When there are repetitions in the aq;'s, we
sometimes use superscripts to indicate the number of repetitions. For example, (1; 1?)
means the class h — e; — e2. The anticanonical divisor is —Ks, = (3; 17).

For P! x P!, we denote by h; and h; the pullback of Opi1(1) from each factor. The

anticanonical divisor is —Ks, = 2h; + 2ha.
Definition 2.2. A line class on S is a class I € Pic(S) such that [? = —1 and (—Ks).l = 1.

It is well known that each line class contains a unique irreducible line and there

are only finitely many lines on S.

Example 2.3. By numerical calculation, we list all line classes up to permutation of

the ¢;'s:

e, (1;1%),(2;1%),(3;2,15), (4; 23,19), (5, 25,12, (6; 3, 27).

Definition 2.4. A divisor D on S is said to be nef if D.C > 0 for any curve C. A nef

divisor D is said to be big if in addition D? > 0.

Definition 2.5. A line bundle L on S is said to be k-very ample for an integer k > 0
if given any zero-dimensional subscheme Z of S of length k + 1, the restriction map
HO(L) — HO(L|7) is surjective. A divisor D is said to be k-very ample if the associated

line bundle is k-very ample.

Note that 0-very ample divisors are globally generated divisors and 1-very ample
divisors are very ample divisors. Di Rocco in [11] found the following numerical criterion

for k-very ampleness on a del Pezzo surface.

610z [dy 2| uo Jasn ubredweyn-eueqln 1e sioul||| J0 AsiaAun AQ Z1LZ90S/1 L AUI/uIW/SE0 L 0 | /I0p/1oBISqe-8|d1le-00UBAPE/UIWI/WO09 dno olwapede//:sdiy Wol) papeojumo(]



Local BPS Invariants 5

Lemma 2.6 ([11] and [2, (2.1.1)]). Let D € Pic(S) be a divisor and k > 0 be an integer.
Suppose that D # —kKs, and D # —(k 4+ 1)Ks, and that D # —Ks, when k = 1. Then
D e Pic(S) is k-very ample if and only if
(i) when S =P?, D.h >k,
(ii) whenS=P! xP!,D.h; > kfori=1,2,
(iii) when S = S;, D.l > k for any line class [ and D.(h — e1) >k,

(iv)] when S =S, forr > 2, D.Il > k for any line class l.

Lemma 2.7 ([11]). An effective divisor D € Pic(S) is nef if and only if it is O-very ample,

except for the case D = —Kg,, which is nef but not 0-very ample.

Lemma 2.8 ([22, Section 2.3 (P5, P7)]). If D is base point free, then H(D) = 0 for
i = 1,2. Furthermore, if D is nef and big, then a general member of |D| is smooth and

irreducible.

Definition 2.9. For 8 e Pic(S), we denote by p,(8) the arithmetic genus of . By

adjunction we have

1
Pa(B) = ZB(B+Ks) +1.
Definition 2.10. A conic class on S is the class D € Pic(S) such that pg(D) = 0 and
(—Ks).D = 2.

By the remark after Corollary 3.3 of [34], nef but non-big divisors on S are
multiples of conic classes. The complete linear system of a conic class D has projective

dimension 1, which gives a ruling S — P!. The fiber class of this ruling is D.

Example 2.11. The list of all conic classes is obtained by numerical calculation as

follows (up to permutations of the e;’s). See also [20, Appendix Al.
(1;1),(2;1%),(3;2,1%), (4; 2%,1%), 4;3,17),
(5;25,1),(5;3,2%,1%), (6,32, 2%,12),(7;3%,2%,1),(7; 4,3, 25), (2.1)

(8;37,1),(8;4,3%2%),(9;4%,3%,2),(10; 4% 3%, (11,47, 3).

3 Local BPS Invariants and Pairs
3.1 BPS invariants

Let X be a Calabi-Yau threefold, and fix an ample line bundle L on X. The Hilbert
polynomial of F is defined by x(F ® L™). In case X = Tot(Ks), we consider coherent
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6 J. Choi et al.

sheaves F on X set-theoretically supported on S, so that we can consider its homology
class in Hy (S, Z).

Definition 3.1. A sheaf F supported on a curve of class g is called stable if

(a) F is pure, that is, F has no zero-dimensional subsheaves.

(b) For any proper nonzero subsheaf G of F, we have

x(G) - x (F)
rG)  rE)’

where r(F) is the linear coefficient of the Hilbert polynomial of F.

Definition 3.2. We denote by Mpg,, the moduli space of stable sheaves F on S with
X(F) =n and [FI(:= c¢1(F)) = f. When n = 1, we simply write Mg = Mpg,;.

When X is a smooth projective variety, Mg is projective. The moduli space
Mpg carries a symmetric obstruction theory [19], and hence a virtual invariant is well
defined. It is known that this virtual invariant is independent of the choice of the ample
line bundle L. See, for example, [36, Lemma 4.8]. For a del Pezzo surface S, we take
L = —Kg. Note that when x (F) = 1, a proper nonzero subsheaf G of F is destabilizing if
and only if x(G) > 1. The following proposition is well known (see [24]).

Proposition 3.3.

(i) Provided it is nonempty, Mg is smooth of dimension B+ 1.
(i) ng=(=1)F*ley).

In Proposition 3.3 and below, 82 denotes the self-intersection 8.5.

Proof. The obstruction at F € M is given by Ext?(F, F). By Serre duality, we have

Ext?(F,F) = Hom(F,F ® Ks)".

The latter space is zero because F is stable with respect to —Kg [18, Proposition 1.2.7].

Therefore, Mg is smooth. Moreover, by Riemann-Roch,

x(F,F) =1—ext!(F,F) = / chY (F)ch(F)td(S) = —B2.
S

The dimension of Mg at F is ext!(F,F) = 2 + 1.
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Local BPS Invariants 7

Let X be the total space of Ks and let Mg(X) be the moduli space of stable
sheaves on X with the same numerical condition as Mg. It is elementary to show that
Mg(X) is in fact equal to Mpg. For example, the proof of [31, Lemma 4.24] works under
our assumption that F is a stable sheaf on X = Tot(Ks) when —Kjs is ample. It is well
known that Mg (X) is equipped with a symmetric obstruction theory and hence a virtual
cycle [Mg (X)IVIr e Ao(Mg(X)). Toda in [36] proved that ng = deg[Mﬁ(X)]"ir whenever the
Gromov-Written/Pandharipande-Thomas (GW/PT) correspondence holds, which is the
case for local del Pezzo surfaces. Since Mg is smooth of dimension /32 + 1, we have
deglMg (X)IVIT = (—1)F* +le(Mp). u

Remark 3.4. In Section 4.4, we discuss an sl x sly-action on the cohomology of Mg,

which will allow us to refine the n/gs-

3.2 Blowup property of the BPS invariant

Let 7 : Sr41 — Sy be the blowup at a general point p € S;. Let 8 be a divisor on S;. In this
section, we show that Mg(Sy) and My+g(Sr+1) are isomorphic. Consequently, 7n;+4(Sr+1) =

ng(Sr).
Let F € Mg(Sy). We let supp(F) € |B| be the support scheme defined by the Fitting

ideal. Since F has pure dimension 1 we have a presentation of F as

0—>E1gE2—>F%0, (3.1)

where E; and E; are locally free of the same rank. Then supp(F) € |8]| is the subscheme
of S defined by the vanishing of det¢ and is well known to be independent of the choice

of resolution. This defines the Chow morphism

My — 1B,

Lemma 3.5. For a pure one-dimensional sheaf F on Sy, n*F is pure and

supp(7*F) = n*supp(F).

Proof. Choose a presentation (3.1) of F. Applying 7* we get

0> 7°E, % 7*Ey, - 7*F = 0. (3.2)

The sequence (3.2) is exact on the left because the kernel of 7*(¢) is zero away from the
exceptional curve as 7*(¢) can be identified with ¢, which implies that the kernel is zero

everywhere since 7*E] is locally free.
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8 J. Choi et al.

Then 7*F is pure by the Auslander-Buchsbaum formula, and supp(z*F) is the
subscheme of S, defined by the vanishing of det n*(¢) = n* det ¢, which is equal to the

scheme-theoretic inverse image 7*(supp(F)). |

Thus, we can think of F and 7 *F having “the same” support, after identifying |3|
with |7*8| via C — 7*C.

Lemma 3.6. For a pure one-dimensional sheaf F on S, n,n*F ~ F, R'm,n*F = 0, and
x(w*F) = x(F).

Proof. We apply n. to (3.2), noting by the projection formula that =,7*E; ~ E; and
an*n*Ei =0fori=1,2andj > 0, since each E; is locally free and Rjn*OSrH = 0. We

obtain
0— Ey 3 By - mn*F — 0 (3.3)
and Rz, 7*F = 0. Comparing (3.3) and (3.1) we see that 7, 7*F ~ F. Finally, by Leray

X(@*F) = (.7 *F) = x(R' 7,7 F) = X (F).
|

Proposition 3.7. For a pure one-dimensional sheaf F on S, with x(F) = 1, F is stable if

and only if 7*F is stable.

Proof. Suppose 7n*F is stable. Let G be a saturated subsheaf of F. Since F/G is pure, by
(3.2), Lim*(F/G) = 0 and hence n*G is a subsheaf of 7*F. By Lemma 3.6, if G destabilizes
F, then n*G destabilizes #*F. Hence, F is also stable.

Conversely, suppose that F is stable and G c #*F is a subsheaf with x(G) > 1.
Applying 7. we get that 7.G is a subsheaf of 7,7*F ~ F. Since R'7.G is supported at p,
we have x(R'7,.G) = h°R!7,G) > 0 and

X(1:6) = x(G) + x(R'm.G) = x(G) = 1
by Leray. Hence, 7. G destabilizes F, contradicting the stability of F. |
Lemma 3.8. Let F € M;+g(Sr4+1). Then n,F is pure with ¢ (7,.F) = 8.

Proof. Clearly, n.F can only have torsion at p. Suppose we had a skyscraper sheaf

Cp C 7.F at p. This gives a global section s of 7, F annihilated by m,. Then s corresponds
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Local BPS Invariants 9

to a global section § of F, which is then necessarily annihilated by n‘l(mp)Oer = Tg.
So 5 induces a map Os,,,/Zg ~ O — F, which is injective because Og is pure. Since
x(Og) = 1, this would violate the stability of F.

The class of 7.F is B since n.F|s,—p is identified with F|s,. ., g via 7 and the

restriction map

Pic(Sy+1) — Pic(Sry1 — E) = Pic(Sy — p) = Pic(Sy)

is the left inverse of 7* : Pic(S;) — Pic(Sry1). |
Now we consider the natural map p : n*n,F — F.

Proposition 3.9. Let F € Mg;+4(Sr+1). Then p : n*m,F — F is an isomorphism.
Consequently, 7. F is stable and x (7.F) = 1.

Proof. Let G be the kernel of p. Then 7,G is a subsheaf of n.7*n,F. But m,7*n.F =~
7.F by the 1st statement of Lemma 3.6 applied to =.F. But n.G is supported at p,
contradicting the purity of n,.F unless 7,.G = 0.

By Lemmas 3.5 and 3.8 we see that ¢ (7*7.F) = 7*(8); so letting Q = coker(p), it
follows that ¢;(G) = ¢1(Q).

Finally, we compute the Euler characteristics of 7. F in two different ways. Using
p, we see that y (7*7,.F) = 1 + x(G) — x(Q). By Lemma 3.6, we see that Rz, (7*7,F) = 0.
So by Leray for n,, we compute y (n*n.F) = x (w.F). But again by Leray, we have x (7.F) =
x(F)+h°(Rn,F) = 1+h°(R'n,F). From 7,.G = 0 it follows that x (G) < 0; hence, x(Q) < 0.
We must have Q = 0 since F is stable, and G is zero-dimensional by ¢; (G) = ¢1(Q). Again

by 7.G = 0 we have G = 0, so p is an isomorphism. ]

Proposition 3.10. Letx : Sry1 — Sy be a blowup. Let g be a divisor on S;. Then, Mg(S;)

and M, +g(Sr4+1) are isomorphic.

Proof. Let F be a universal family on Mg(S;) x Sy. The pullback 7' = (id x 7)*F is a
family on Mg(S) x Sr+1, whose fibers are stable sheaves in M +g(Sr4+1) by Proposition 3.7.
So F’ induces the morphism 7* : Mg(Sr) = My+g(Sr+1). By Proposition 3.9, 7* is bijective
and since 7 is an isomorphism away from the exceptional divisor, 7* is a birational
morphism. By Proposition 3.3, the two moduli spaces Mg(S;) and My+g(Sr+1) are smooth.

Therefore, by Zariski's main theorem, 7* is an isomorphism. | |
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10 J. Choi et al.

In Section 4, we will consider curve classes g of arithmetic genus at most 2. By
Lemma 2.6 and Proposition 3.10, with a few exceptions it is enough to calculate the BPS

numbers for very ample classes 8 by blowing down all (—1)-curves [ such that 8. =0.

Remark 3.11. The isomorphism constructed above commutes with the Chow mor-
phisms. Therefore, the higher genus BPS invariants as well as their sl x sl; refinements

as defined in [4, 21, 27] remain unchanged as well.

3.3 §-stable pairs and wall-crossing

Suppose that the BPS invariants n% X)) = ng satisfy the Gopakumar—Vafa formula
g 2g—2 gl ()P k
ZIﬂ(X)qﬂA 9-% = Z nﬁE 2sin (7) q* ), (3.4)
B.9 B.9.k

where Ig (X) are the (local) Gromov-Witten invariants. Using the conjectured GW/PT

correspondence, we would then have the following PT/BPS formula [19]:

ZPT=H lo_o[<1+(_1)j+1qjoﬂ)jn2
B \j=1

(3.5)

oo 2g—2 _1\k+9,,9 (292
T1 11 (1+(—1)g‘kq9‘1‘kaﬁ)( D) ,
g=1 k=0

where Zpr is the generating function for the PT invariants. The GW/PT correspondence is
proven when S (and hence X) is toric by combining the toric Gromov-Written/Donaldson-
Thomas (GW/DT) correspondence [26] with the DT/PT correspondence [5]. The GW/PT
correspondence for a general del Pezzo surface S reduces to the toric cases by taking a
toric blowup of P? and then using deformation invariance of the GW and PT invariants.
See Definition 3.15 for PT-stable pairs.

In [20], Katz, Klemm, and Vafa developed a geometric computational technique
for BPS invariants. Later in [9], the refined BPS invariants are defined from the refined
PT invariants and the method is extended to compute the refined BPS indices.

As a consequence of the product formula (3.5), it was suggested in [20] that the

genus 0 BPS invariant ng := ng can be computed by

ng = PTg,1 — PTg,—1 + correction terms, (3.6)
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Local BPS Invariants 11

where PTg, is the stable pair invariant of degree f and Euler characteristic n. The
correction terms are combinations of lower-degree PT invariants. In [9], the correction
terms are interpreted as a wall-crossing contribution of the moduli spaces of stable
pairs. After the wall-crossing, the moduli spaces of stable pairs are related to the moduli
space of (Gieseker-)stable sheaves. We will formulate and prove a refined version of (3.6)
in Proposition 3.17 below.

To compute the local BPS invariants, we will use Proposition 3.3 and compute
the topological Euler characteristic of the moduli spaces Mg. More generally, we

compute the Poincaré polynomials.

Definition 3.12. For a complex algebraic variety M, we let Ey(u,v) be its E-
polynomial. We define the virtual Poincaré polynomial of M as the polynomial

Py(M) = Epr(—t'/?, —t1/2) in t'/2. The virtual Poincaré polynomial satisfies the properties

(@) P(M) =) ;.qdimg H'(M, Q) t¥/2 if M is nonsingular and projective.
(ii) Py(M) =P;(M\ Y) + P:(Y) for a closed algebraic subset Y of M.

In our cases, the odd cohomology groups of Mg vanish so that P;(Mg) is actually a
polynomial in ¢ and the topological Euler characteristic is given by e(M) = P; (M). Note
that although the Poincaré polynomial is not motivic in general the virtual Poincaré
polynomial is motivic, and since Mg is smooth, the virtual Poincaré polynomial agrees
with the usual Poincaré polynomial in ¢ with ¢!/? substituted for t.

We will freely use the following properties of the virtual Poincaré polynomial,
which follow from the definition (see [12, Section 4.5]).

(iii) If M is a disjoint union of a finite number of locally closed subvarieties M;,
then P;(M) = > P;(M).

(iv) If M is a Zariski locally trivial fibration over Y with fibers F, then P;(M) =
P(F)Py(Y).

To compute the Poincaré polynomial, we relate Mg birationally with the moduli
spaces of §-stable pairs by wall-crossing. This approach is taken in [6] to compute the
Betti numbers for Mz when S = P2 and § = 4 and 5. See also [9].

Definition 3.13. A pair on X is a pair (s, F) of a coherent sheaf F on X of class 8 together
with a nonzero section s € H°(F). A morphism between pairs is a morphism of sheaves,

which preserves the sections up to multiplication by a constant.

The topological data of (s, F) are defined to be those of the sheaf F. The notion of

pairs originated in the work of Le Potier [24] on coherent systems. A coherent system is
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12 J. Choi et al.

a pair (V, F) of a coherent sheaf F with a subspace V ¢ H°(F) of fixed dimension. So, our
pairs are coherent systems of dimension 1. It is often convenient to consider a sheaf as
a coherent system of dimension 0.

Le Potier [24] studied a series of stability conditions on coherent systems, which

reads as follows for pairs. See also [16].

Definition 3.14. Let § € Q4. A pair (s, F) is é-stable if
(@) F is pure.

(b) For any proper nonzero subsheaf G of F, we have

x(G) +€(s,G)d - xX(F)+6
r(G) r(F)

’

where r(F)is thelinear coefficient of the Hilbert polynomial of F and e(s, G) =1
if s factors through G and ¢(s, G) = 0 otherwise.

When the equality is allowed in Condition (2), then the pair is §-semistable.

As in Section 3.1, we use the ample line bundle L = —Kg to define the Hilbert
polynomial of a sheaf on S. So, r(F) = (—Kgs).[F]. We denote by Mgn the moduli space of
3-stable pairs (s, F) on S with [F] = 8 and x (F) = n. When there are no strictly semistable
§-stable pairs, Mg,n is constructed as a projective scheme by Geometric Invariant Theory
(GIT).

The values of §, where there exist strictly §-semistable pairs are called the walls.
Then the moduli space Mgn changes only at the walls. We will see that in our cases there
are only finitely many walls.

One special case is when § is sufficiently large, which we denote by § = co. In
this case, the §-stability condition is equivalent to the stability condition on pairs of

Pandharipande and Thomas [28].

Definition 3.15. A pair (s, F) is PT-stable if

(a) F is pure of dimension 1.

(b) The cokernel of s: Ox — F is zero-dimensional.

We denote by P, (S, 8) the moduli space of PT-stable pairs on S. In other words,
P,(S,B) = Mg?n. By condition (2) in Definition 3.15, it is straightforward to see that
P, (S, B) is empty when n < 1—p,(8). Pandharipande and Thomas [28] proved that P, (X, B)

is equipped with a symmetric obstruction theory when X is a Calabi-Yau threefold.
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In general, when X = Tot(Ks), P,(X, 8) may not be equal to P, (S, 8). However, we will

only consider the wall-crossing of §-stable pairs defined on S.

Proposition 3.16. Let S be a del Pezzo surface. Let p; = pa(8) and assume n > 1 — p,.
Recall that w = (—Kg).8.

(i) If Bis aline class, then P, (S, ) ~ P*1.
(ii) Assume that 8 is base point free. If 8 is (n — 2 + pg)-very ample, then P, (S, B)

is a projective bundle of rank w — n over the Hilbert scheme Hilb"~!*Pe(S).

Proof. The proof is essentially the same as that of [6, Lemma 2.3]. By [29, Proposition
B.8], P, (S, B) is isomorphic to the space of pairs (C, Z), where C is a curve in class 8 and
Z is a subscheme of C of length n — 1 + p,. In particular, the assertion for a line class 8
is straightforward. Note that each line class contains a unique line.

Now, let Z be the universal ideal sheaf on Hilb" '*Pa(S) x S and let p
Hilb" 1*Pe(S) x S — Hilb" '*P2(S) and g : Hilb" '*Pa(S) x S — S be the projections.
Then Py (S, B) is the projective bundle P(p.(Z ® q*Os(8))) provided that p.(Z ® g*Os(8))
is locally free. Since 8 is (n — 2 + pg)-very ample, we have H! (I; ® O(B)) ~ H' (O(B)) for
any subscheme Z of length n — 1 + p,. The latter space vanishes by Lemma 2.8. By the
semicontinuity theorem, p.(Z ® g*Os(B)) is locally free and hence P, (S, 8) is a projective
bundle.

Since H (I;O(B)) ~ H' (O(B)) = 0 for base point free 8, the rank of the projective
bundle P(p.(Z ® g*Os(B))) can be computed by Riemann—-Roch. [ |

On the other extreme when § is sufficiently small, which we denote by § = 07, it
the sheaf F is a stable sheaf provided that

(—Kjs).8 and n are coprime. In this case, we have a forgetful map

is elementary to check that for (s, F) € M2+

n'

+
£ :Mg,n — Mg .

In what follows, we only consider the case where n is either 1 or —1; so the coprime

condition is always satisfied.
Proposition 3.17. Pi(Mj) = P,(M$) — tPy(MJ_)).

Proof. This formula is proven for S = P? in [6, Lemma 5.1]. The same proof applies to

general del Pezzo surfaces. We sketch the proof here.
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14 J. Choi et al.

Let n be either 1 or —1. Let (Mg )i (resp. (M0+ )k) denote the locus in Mg, (resp.
Mg:l) defined by the condition h°(F) = k. Then the forgetful map £ restricted to (M n)k is
a Zariski locally trivial P~!-fibration since any nonzero section of F defines a 0+—stab1e
pair and an automorphism of a stable sheaf is given by scalar multiplication. Therefore,

we have

P,(MJ,) ZPt (M3,)) = > Pe(B*)PL((Mp 1))
k

For a sheaf F € Mg, we define its dual by FP = £xt!(F, ws). Since F is a pure
one-dimensional sheaf, FP? ~ F [18, Proposition 1.1.10]. The local-to-global spectral
sequence qu = HP(Ext(F,ws)) degenerates at level 2 and hence hi(FP) = h!={(F) for
i = 0,1. Thus, the association F — FP induces an isomorphism between (Mg,1); and
(Mg,—1)k—1. The fact that this association is a morphism of schemes is proved in [25]
when S = P?; but the same proof applies to a general del Pezzo surface S.

Therefore, we have

Py(MJ}) — tP (MG ) = > Pi(PF )Py (Mp,1)k) — tPL(PF )Py (M, —1)i)
k

= D" PP P ((Mp,1)k) — tP:(P*1)Pe(Mp 1)k11)
k

= D" (P(P*1) — P (P*) Py (M 1)k)
k

= D Pu(Mp,1)i) = Py(Mp).
k
n

Proposition 3.17 suggests that the correction terms in (3.6) come from wall-
crossing on §-stable pairs. More detail on the correspondence between wall-crossing
terms and the correction terms can be found in [9, Section 9.3].

Now we study how the moduli space changes when we cross a wall. Let §p be a
wall and let §_ and &4 be rational numbers sufficiently close to §p such that §_ < §g <
8+ and there are no walls between §_ and §; other than §o. We want to compare M?n
and Mg,‘n

Let (s,F) be a §,-stable pair that is not §_-stable. Let F” be a subsheaf of F

such that s factors through F”. So X(f(?,,fr)‘s* < X(f();)‘s*. Since r(F”) < r(F), this implies
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XEN+S. _ xF)+8
r(E") r(F)

of F such that

. Therefore, for (s, F) to be not §_-stable, there must be a subsheaf F”

xX(EF") _ XE) +5-
r(F") r(F)

Necessarily, the section s does not factor through F”. Thus, we have an exact sequence

of pairs

0— (0,F) > (s,F) > (s, F)—> 0, (3.7)

where F = F/F” and s’ is the section on F’ induced by s. Here, (0, F”) denotes the sheaf
F” considered as a coherent system of dimension 0.
On the other hand, if (3, F) is a §_-stable pair that is not §,-stable, by the same

reasoning, we have an exact sequence

0— (s,F)—> (,F) - (0,F") - 0. (3.8)

The wall §g is called a simple wall if (s’,F’) is §o-stable and F” is stable (as a
sheaf) so that there are no further decompositions to be considered. In this paper, we
will only consider the cases where all walls are simple walls.

To denote a decomposition as in (3.7) and (3.8), we use the notation

(1, (B.n) = (1,(8',n)) + (0, (", n")), (3.9)

where 8’ = [F'], B’ = [F"], n’ = x(F), and n” = x(F”). So if there is a wall-crossing
for Mg’n, we must have a decomposition (3.9) such that Mg~ ,» and Mgﬁ’,n, are nonempty,
where

n+d  n'+8 n”

(—Ks).p~ (=Ks).p'  (=Ks).p""

In such a case, the pairs in M:;*n of the form (3.7) parametrized by P(Ext! ((s’, F’), (0, F")))
are replaced with the pairs in Mg‘n of the form (3.8) parametrized by P(Ext!((0,F"),
(s',F"))). This wall-crossing phenomenon can be explained by elementary modification
of pairs. See [35, Section 3], [16, Lemma 4.24], and [6]. Now each Ext group can be

computed using the following proposition.
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16 J. Choi et al.

Proposition 3.18. [16, Corollary 1.6] Let A = (s,F) and A’ = (s’, F') be pairs on X. Then

there is a long exact sequence

0 - Hom(A, A') » Hom(F,F') —» HO(F')/(s')
— Extl(A, A) = Ext!(F,F) -» H'(F)

— Ext®(A, A) - Ext?(F,F') > H2(F) - --- .

4 (Calculations of Local BPS Numbers

We calculate the local BPS numbers by applying the wall-crossing techniques described
in the previous sections. In this section, we assume that g is a line class, a conic class,
or a nef and big curve class so that there are smooth irreducible curves in class .

When B is nef and big, we have Hi(,B + Ks) = 0 for i > 0, which is due to
Ramanujam [30] and [23, Theorem 4.3.1]. Therefore,

1
h%(B +Ks) = x (B +Ks) = 5(,3 +Ks)p + 1 =pa(B). (4.1)

4.1 Arithmetic genus 0

For a nef and big curve class of arithmetic genus 0 on S = S;, 8 + Ks is not nef since
(B + Ks)B = —2. Hence, if r > 2, there is a line [l on S with (8 + Ks).Il < 0, and 8.1 =0
follows from the nefness of 8. By blowing down such lines, we see that g is a pullback
of the class (1) or (2) on P?, the class (d;d — 1) on S; with d > 2, or the class (1,k) on
P! x P! with k > 1.

Proposition 4.1. Let 8 be a curve class on S of arithmetic genus 0. If 8 is a line class, a

conic class, or a nef and big curve class, then Mg is isomorphic to pw-l,

Proof. In the nef and big case, we may assume that (S,p) is (P?, (1)), (P?,(2)),
(S1,(d;d — 1)) with d > 2 or (P! x P!, (1,k)) with k > 1 by Proposition 3.10 and the
preceding discussion.

Let F be a stable sheaf with x(F) = 1. Then there is a nonzero section s € HO(F),
which induces a morphism i : Os — F. Let C’ be the curve on S defined by the kernel of
i. Put B’ = [C']. Then if B’ # B, stability is contradicted because p,(8’) < 0 as can be seen
using the description of 8 in each case. We conclude that 8/ = 8 and F ~ O¢, where C is

in class B. Therefore, My is isomorphic to the complete linear system |[O(8)| ~P¥~!. ®
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w

Corollary 4.2. Py(Mg) = — " and ng = (-1)" lw.

4.2 Arithmetic genus 1

By Proposition 3.10, blowing down all lines [ with 8.l = 0 does not change the moduli

space of stable sheaves.

Lemma 4.3. Let 8 be a nef and big curve class on a del Pezzo surface S of arithmetic
genus 1 such that 8.l > 1 for all line classes I. Then § = —Ks, for 0 < r < 8 or 8 =

—KPI xPl-

Proof. We have (B8 +Ks) = 2pq(B) — 2 = 0. By (4.1), we have h°(8 + Ks) = 1. Therefore,
B + K is effective. Hence, it is enough to show that 8 is ample.

If S = S, with r > 2, B8 is ample from the assumption that 8.l > 1 holds for all
line classes I. On P? or P! x P!, any nef and big class is ample. On S, 8 = (d; a) satisfies
B.(h—e;) =d —a > 1. It follows that d > a, and 8 is ample. |

Suppose two distinct lines [; and Iy satisfy 8.l = 8.1 =0, then since (I, +12) = 0,
by the Hodge index theorem, (I; + I)?> < 0, which implies I;.I; = 0. Therefore, they are
mutually disjoint and the number of them is at most r.

After blowing down all lines [ with 8.l = 0, we may assume that § = —Kg. When
0 <r <7, B8 = —Ks is base point free. The case § = —Ks, is the only case where 8 is
neither base point free nor can be blown down to a base point free curve class. We will

study this exceptional case in Example 4.6.

Proposition 4.4. Let 8 be a nef and big curve class on S = S, of arithmetic genus 1 and

B # —Ks,. Let n be the maximum number of disjoint lines [ such that 8.l = 0. Then

w

Py(Mp) = ——

(1 +(e(S)—2—nt+ t2)

and ng = (=1)"~"w(e(S) — n).

Proof. Letn :S — S betheblowing down of all lines [ such that 8.l = 0. By Proposition
3.10, Mg(S) =~ My, g(S'). By the remark before Proposition 3.16, P_;(S', 7.f) is empty,
which implies that the forgetful map & : ngﬂ,l (S') > My, p(S') is an isomorphism by the
proof of Proposition 3.17. Hence, Mg(S) is isomorphic to ngﬂll(s’).
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18 J. Choi et al.

If B # —Kgs,, then by Lemma 4.3 S’ is either P! x P! or S, with 0 < r < 8 and
7. = —Kg, which is base point free. So, by Proposition 3.16, P;(S', 7. 8) is a P"~!-bundle
over S’. One can check that there is no wall-crossing for stable pairs in this case so
that ngﬁyl(s’) is isomorphic to M;fﬁll(s’) = P (S, 7.B). Indeed, at a wall §y, we have a

decomposition of the form

(1, (8, 1)) = (1,(8',n")) + (0, (B",n")), (4.2)

where B =8+ B, n +n”" =1,and § = (_TWWn” — 1. Since §p must be positive, we see
that n’ = 0 and n” = 1. Now to have a nontrivial wall-crossing, there must be a sheaf F’
with [F'] = g’ and x(F') = 0, which in addition has a nontrivial section. Consequently,
pa(B’) > 1. But one can numerically check that when 8 = —Kg, such a decomposition
does not exist. See, for example, the list of curve classes in [20, Appendix Al.

Therefore, Mg(S) is isomorphic to a P"—1l_bundle over S’; hence, the results
follow. |

Remark 4.5. Blowing down in the proof of Proposition 4.4 corresponds to the wall-
crossing in pairs. When g is nef and big, by Proposition 3.16, P;(S, 8) is a P”~!-bundle

over S. For each line [ such that 8.l = 0, we have a decomposition of the form

(1, (B, 1) = (1,(8,0) + (0, (1 1)), (4.3)

where g8’ is a curve of arithmetic genus 1 and B’.l = 1. The corresponding wall is at
8o =w —1> 0. A pairin (1, (p’,0)) is of the form (s, Og) and a pair in (0, (, 1)) is of the
form (0, Oy).

By using Proposition 3.18, we have
Ext'((s, 0p), (0,0p) = C?,

Ext'((0, Oy), (s, Op)) = C.

Hence, by wall-crossing at 8o, n copies of a P! bundle over P¥~! x P? in MZ*I are replaced
with 7 copies of a P° bundle over P¥~1 xP? in Mg,_l- One can check that this wall-crossing

is in fact a blowup p : M — M- along the locus isomorphic to 1 copies of PW~1 x PO,

B.1 B.1
Therefore,

w

1-t¢

Py(Mp) = ((1 F(eS) -t +12) —n(l+t— 1))

as required.
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Example 4.6. Let § = —Ks, on S = Sg. Then g is nef and big but not 0-very ample
because the linear system | — Kg,| has a base point. So Proposition 4.4 does not apply.
In fact by Lemma 2.6, this is the only case where p;(8) = 1 and 8 is not 0-very ample
while there is no line class [ such that 8.I < 0. In this case, we can directly calculate
the local BPS number. Since w = K§8 = 1, there are no wall-crossings. Also, P_;(S, B)
is empty. Hence, Mg =~ P;(Sg, —Ks,). The moduli space P;(Sg, —Ks;) is the space of pairs
(C,p) of a point p on P? and a cubic curve C passing through p and the eight points of
the blowup. Hence, it is the total space of the pencil of cubic curves and is isomorphic
to P2 blown up at nine base points of the pencil. We see that Py(Mg) =1+ 10t + t?> and
ng =12 =e(Sg) + 1.

4.3 Arithmetic genus 2

Now we compute the local BPS invariants for curve classes § # —2Kgs, with arithmetic
genus 2. By Proposition 3.10, it suffices to consider very ample classes by blowing down
all lines I with 8.l = 0. The following lemma shows that there are only finitely many such

classes.

Lemma 4.7. If 8 is a very ample curve class on a del Pezzo surface S of arithmetic
genus 2, then B + K is effective with ps(8 + Ks) = 0 and (—Ks)(8 + Ks) = 2. Hence,

B + Ks is a conic class as in (2.1).

Proof. We have 8.(8 + Ks) = 2pq(B) — 2 = 2. By (4.1), h°(B + Ks) = 2. Therefore, 8 + Ks
is effective.
Let A = (—K5s)(B + Ks) > 0. We have

1
Pa(B+Kg) = 5(,3 +Ks)(B+Ks+Ks)+1

= pa(B) + Ks(B + Ks)

=2—-AX

Thus, pa(B + Ks) < 2 and pa(B + Ks) = (B + Ks)?. Suppose that py(8 + Ks) = 1. Then
A = (—Ks)(B + Ks) = 1 and (8 + Ks)? = 1. By applying the Hodge index theorem to the
lattice generated by —Ks and g + K, we see that this is possible only if § = —2Ks,. But
—2Ks, is not very ample.

Now suppose pg(8 + Ks) < 0. In this case, 8 + Ks is not nef. Since all effective

curve classes on P2 or P! x P! are nef, we have S = S, with r > 1. If > 2, there is a line [
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such that (8 + Ks)I < 0. Then B.I < (—Ks).I = 1, which contradicts that g is very ample.
If r=1and 8 = (d;a), we have d > a > 0 by ampleness and d > a + 2 from p,(8) = 2.
Then (8+Ks).E1 =a—1>0and (8+Ks).(H—E;))=d—a—2 > 0,s0 8+ Ks is nef, a
contradiction.

Therefore, pa (8 + Ks) = 0 and (—K3s)(8 + Ks) = 2. |

Lemma 4.8. Let 8 be a very ample curve class on S of arithmetic genus 2. Then

nontrivial wall-crossings for Mg ,, arise if there is a decomposition

1,8, 1) = (1,(B1,0)) + (0, (B2, 1)), (4.4)

where 8; and B2 are one of the following:
(@) pa(B1) =1, pa(B2) = 0, —Ks.p1 = w — 2, —Ks.f2 = 2, 5 = 0, and f1.62 = 2.
There is a unique such pair (81, 82). It corresponds to the wall §g = %W - 1.
(i) pa(B1) =1, pa(B2) =0, —Ks.p1 =w —1, —Ks.fz = 1, 5 = —1, and B1.82 = 2.
The number of such pairs (81, 82) is 2e(S) — 8. They correspond to the wall

30=W—1.

Proof. By the previous lemma, we have (—Ks).8 = Kg +2 > 2. The list of all very ample
classes of arithmetic genus 2 can be obtained by Lemma 4.7 and Example 2.11. We can
check the assertions for each curve classes. For example, if 8 = (4;2,1,1,1, 1), then the

possible decompositions of 8 on Sy are
L (4; 2/ 17 ]'I 17 1) = (3; ]'l 1’ ]'l 1’ ]') + (1; IIOIOIOIO)I
e (42,1,1,1,1) = (3;1,1,1,1,0) + (1;1,0,0,0,1) (four decompositions of this
type),
e (42,1,1,1,1) = (42,2,1,1,1) + E, (four decompositions of this type).

The 1st decomposition is the case (i) of the statement and the remaining two correspond

to the case (ii). The other cases can be checked similarly. |

Proposition 4.9. Let 8 be a curve class on S = S, of arithmetic genus 2, and assume

that 8 is very ample. Then

W )
Py(My) = 11 _tt (1 +(e(S) — 2)t + ((9(5)2 ) + 4) £2 1 (e(S) — 2)6° + t4)

and ng = (-1)"'w ((9(25)) + 5).
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Proof. By Proposition 3.16, P;(Pg,1) = P;(P"~1)P,(Hilb?(S)) and Pi(Pg,—1) = P;(PW+1,
We have a wall-crossing for each decomposition in Lemma 4.8. By the similar calculation

as before we compute the wall-crossing. For the decomposition in Lemma 4.8(1),

Ext!((s, 0g,), (0, 0p,)) = C3,

Ext!((0,0g,), (s, 0p,)) =~ C2.

Since (s,0g,) € Mgf,o ~ PW=2 and (0,08,) € Mg, = P!, the correction term for the
Poincaré polynomial in this case is t2P;(P¥~2)P;(P1).

For the decomposition in Lemma 4.8(2),

Ext!((s, 0g,), (0, 0g,)) = C3,

Ext' ((0, 0g,), (s, 0p,)) ~ C2.

In this case (s, 0p,) € Mg’ =~ P"~1 and (0, Og,) € Mg, 1 ~ P°. So, the correction term in
this case is (2 e(S) — 8)t2P,(PV~1).

Therefore, we have
Py(Mp) = Py(P" 1P, (Hilb?(S)) — Py(PW 1) — t*Pr(PV~2)P(P!) — (2e(S) — 8)t*P,(PV™1).

The Poincaré polynomial of the Hilbert scheme is well known [15]. For the Hilbert

scheme of two points, we have

e(S)

P,(Hilb?(S)) = 1 + (e(S) — Dt + ( )

)t2 + (e(S) — 1t® + t*.

Then the result follows from elementary calculations. ]

Remark 4.10. Without the very-ampleness assumption, we can calculate P;(Mg) and
ng by using the blowup property. If g is nef and big but not very ample, then we
may blow down all lines [ with 8.l = 0. Let = : S — S’ be the blowdown. After
blowdown, 7, is very ample unless § = —2Kg;, since there are no (—1)-curves that do

not intersect 8. Therefore, we may apply Proposition 4.9 to calculate n;,g on S'. Then by

610z [dy 2| uo Jasn ubredweyn-eueqln 1e sioul||| J0 AsiaAun AQ Z1LZ90S/1 L AUI/uIW/SE0 L 0 | /I0p/1oBISqe-8|d1le-00UBAPE/UIWI/WO09 dno olwapede//:sdiy Wol) papeojumo(]



22 J. Choi et al.

Proposition 3.10, Mg ~ My, g. Hence, if we let  be the number of lines [ such that .l =0
as before, we conclude that
w

Py(Mp) = 11__tt (1 +(e(S) =2 -t + ((e(s) _22 B ”) + 4) 2+ (e(S) —2 -t + t4)

()

Remark 4.11. For P! x P!, we can check the only very ample classes with arithmetic

and

genus 2 are 2h; + 3hy and 3h; + 2hy. The same calculation works for these classes and

we have
10

1-1¢

Py(Mp) = (1+2t+5t2+ 263 + 1,

which matches with the result of Proposition 4.9 as e(P! x P!) = 4.
For these cases, the geometry of Mg is studied in [10]. We remark that the
Poincaré polynomial obtained in [10, Corollary 3.8] using a different birational method

agrees with ours.

Remark 4.12. Let 8 = —2Ks, = (6,28). This curve class is neither very ample nor

contracted to a very ample divisor. So, it is not covered by Proposition 4.9.

In conclusion, we have the following formulas for the Poincaré polynomials and

the local BPS invariants.

Theorem 4.13. Let 8 be a line class, a conic class, or a nef and big curve class on a
del Pezzo surface S of arithmetic genus at most 2. Let w = (—Kg).8 and let n be the
number of disjoint lines I such that 8.l = 0. Then we have the following:

1-—t"

1-t ;

(ii) if pa(B) =1 and B # —Ks,, then Pr(Mg) = 1
(iii) if B = —Ksgg, then Py(Mpg) = 1 + 10t + t2;
(iv) if pe(B) =2 and B # —2Ks,, then

"

— (1+(e(S)—2—n)t+t2);

w

Py(Mg) = 1=t (1 +(e(S) —2 — )t + ((e(s) —Z- ") +4) 2+ (e(S) — 2 — n)t3 +t4).

1-t¢ 2

Theorem 4.14. In the situation as in Theorem 4.13, we have the following:

(i) if pa(B) =0, then ng = (=DHW 1y,
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(i) if po(B) =1 and B # —Ks,, then ng = (=1)" " tw(e(S) — n);
(iii) if B = —Ks,, then ng = 12;
(iv) if pa(B) = 2 and f # —2Ks,, then ng = (=1)"~w ((“Sg‘”) + 5).

In all cases studied in this paper, we see that P;(Mg) has a factor of PPVl =
1—tv
1-t¢
true in general. The stable base locus decomposition of Mg when S = P? is studied in [7].

. This may suggest that Mg has a projective bundle structure. However, it is not

It is shown there that Mg is not itself a projective bundle but is birational to a projective
bundle. We formulate the following conjecture, which we proved for g of arithmetic

genus at most 2.

Conjecture 4.15. Let 8 be a line class, a conic class, or a nef and big curve class
on a del Pezzo surface S. Let w = (—Kgs).8. Then P;(Mg) has a factor of P;(P*~1) and
the quotient P;(Mg)/P;(P"~1!) is a palindromic polynomial. Consequently, ng is divisible
by w.

This conjecture motivated the theory of log BPS numbers.
Definition 4.16. We define the log BPS numbers by mg = (-1)"Ing/w.

Remark 4.17. In a sequel [8], we give a more geometric approach to the log BPS
numbers. We fix a smooth anticanonical divisor E € | — Kg|. The set E(8) of points P
on E such that there is a curve in class 8 meeting E only at P is a finite set. Roughly
speaking, given a point P € E(8), the log BPS number counts the virtual number of
rational curves in class 8, which meet E only at P and are smooth at P. In [8], we
give a precise definition of log BPS numbers using the log Gromov-Witten theory and
conjecture that it is constant along points P € E(8). When P € E(f) is 8-primitive, which
means that there are only reduced irreducible rational curves in class g meeting E only
at P, this is an actual count of curves. In this case, we show that the log BPS numbers
of Definition 4.16 agree with the number of such rational curves when g has arithmetic

genus at most 2.

4.4 Refined BPS indices and higher genus BPS invariants

In [14], physical reasoning was used to assert an sl x slp-representation on the coho-
mology H*(Mp) of the moduli space Mg, which refines the Gopakumar-Vafa invariants.
The left and the right sly-actions are given by the Lefschetz actions from the maps

Mg — |B| — pt respectively. A mathematical proposal for an sl x sl,-representation was
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given in [21]. While a counterexample to this proposal was found in [27]; the problem
does not occur for smooth moduli spaces. We therefore can and will use the proposal of
[21] as a precise mathematical definition.
A computational algorithm for such sl; x sly-representations based on con-
jectures from physics was developed in [20] and generalized in [9] using the refined
k

PT invariants. Adapting the notations in [9] we let [7] denote the irreducible sl;-

representation of dimension k+ 1. Then we may write H*(Mg) = > ; ;- Nfiij[jL,jR] as an
sl x sl-representation, where jr, jr € %Z. The multiplicity NJ’.i ja is called the refined BPS
index. There is a conjectural product formula for the generating function of the refined
PT invariant in terms of the refined BPS indices, see [9, Section 8].

The computation of the previous sections can be applied to the calculation
algorithms in [9] of the refined BPS indices. We present the results here omitting the
details. In the following, we assume [%] =0fork <O.

Let r = e(S) — 3 as before. (For S=P! x P!, r=1.)

If pa(B) = 0, then H*(Mp) = [0, “1].

If po() = 1 and B # —Ks,, then H*(Mp) = [3, %] + (r — [0, %] + [0, %52].
If B = —Ks,, then H*(Mp) = [ 3, 3] + 810,01

If pa(p) = 2 and § # —2Ks,, then H*(Mp) = [1, "4 |+ =)z, F]+[3. “Z2]+
(5" +2) [0, 454 ] + r = m[0, #72] + [0, #2].

These results are consistent with the refined BPS indices obtained by mirror
. . d . . . B
symmetry in [17, Section 5]. We remark that NjL,jR in [17, Section 5] is Z(_Ks).ﬂ:d NlejR.
Upon restricting to the representation (H*(Mg))a of the diagonal (sly)a C sl xslz,

we recover the cohomology of Mg. By simple computation, we see that

(i) if pa(B) =0, then (H*(Mp))a = [%51];
(i) if pa(B) =1 and B # —Ks,, then (H*(Mp))a = [ 2] (1] + (r — pIO]);
(iii) if B = —Kg,, then (H*(Mg))a = [1] + 9[0];
(iv) if pa(B)=2 and B#—2Ks,, then (H*(Mp))a = [ 252 (1214 (r—m)[1]1+(("3") +3) [0]).

In each case, (H*(Mpg))a is divisible by [WT_l], consistent with Conjecture 4.15,

as [%;1] is the Lefschetz representation of PV ~1.
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