ACM Transactions on Storage 2018

Cluster and Single-Node Analysis of Long-Term
Deduplication Patterns

ZHEN “JASON” SUN, National University of Defense Technology
GEOFF KUENNING, Harvey Mudd College

SONAM MANDAL, Stony Brook University

PHILIP SHILANE, Dell EMC

VASILY TARASOV, IBM Research

NONG XIAOQO, National University of Defense Technology

EREZ ZADOK, Stony Brook University

Deduplication has become essential in disk-based backup systems, but there have been few long-term studies
of backup workloads. Most past studies either were of a small static snapshot or covered only a short period
that was not representative of how a backup system evolves over time. For this article, we first collected 21
months of data from a shared user file system; 33 users and over 4,000 snapshots are covered. We then analyzed
the data set, examining a variety of essential characteristics across two dimensions: single-node deduplication
and cluster deduplication. For single-node deduplication analysis, our primary focus was individual-user data.
Despite apparently similar roles and behavior among all of our users, we found significant differences in their
deduplication ratios. Moreover, the data that some users share with others had a much higher deduplication
ratio than average. For cluster deduplication analysis, we implemented seven published data-routing algorithms
and created a detailed comparison of their performance with respect to deduplication ratio, load distribution,
and communication overhead. We found that per-file routing achieves a higher deduplication ratio than
routing by super-chunk (multiple consecutive chunks), but it also leads to high data skew (imbalance of space
usage across nodes). We also found that large chunking sizes are better for cluster deduplication, as they
significantly reduce data-routing overhead, while their negative impact on deduplication ratios is small and
acceptable. We draw interesting conclusions from both single-node and cluster deduplication analysis, and
make recommendations for future deduplication systems design.

ACM Reference format:

Zhen “Jason” Sun, Geoff Kuenning, Sonam Mandal, Philip Shilane, Vasily Tarasov, Nong Xiao, and Erez Zadok.

2018. Cluster and Single-Node Analysis of Long-Term Deduplication Patterns. ACM Trans. Storage 14, 2,
Article 13 (May 2018), 28 pages.
https://doi.org/10.1145/3183890

1 INTRODUCTION

The explosive growth of data in recent years [38] has made deduplication an important research
area. Deduplication systems split data into identifiable pieces (“chunks”) and then use hashes to
identify and eliminate redundant chunks. This approach has proven highly effective in saving space,
especially in backup storage [44].

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2018 Copyright held by the owner/author(s). Publication rights licensed to Association for Computing Machinery.
1553-3077/2018/5-ART13 $$15.00

https://doi.org/10.1145/3183890

ACM Transactions on Storage, Vol. 14, No. 2, Article 13. Publication date: May 2018.

13

Many researchers have analyzed data sets from various environments, such as disk and tape
backups [14, 39], primary storage [6, 18, 25, 30], archival systems [17], and HPC centers [29]. By
understanding such data sets’ characteristics, we can design more efficient storage systems [10,
11, 35]. However, data sets may vary significantly across different environments (e.g., whole-file
chunking efficiencies range between 20% and 87% compared to sub-file chunking [6, 29, 39]). As a
result, conclusions drawn from only a few data sets cannot be used to guide the design of a practical
and efficient deduplication system. Thus, new, large-scale studies using different types of data sets
and investigating new metrics are desirable.

High data redundancies in backups [15] make deduplication an integral part of backup systems.
The space savings of deduplication made the transition from tape-based to disk-based backup
systems possible [44]. However, our understanding of these systems’ real-life performance is still
poor, because there are few long-term studies of large backup data sets: most prior studies draw
conclusions based on the entire data set, whereas we show that studying per-user trends is valuable
and produces surprising results.

For many backup storage systems, data sizes are growing rapidly, and although deduplication can
reduce the space consumption by a factor of 10X or more, single-node storage systems still gradually
fail to meet capacity and throughput needs. Cluster deduplication is an appealing approach to
address these challenges by distributing the load and aggregating throughput from multiple nodes.
Data-routing algorithms are a key component of cluster deduplication; selecting the best destination
node for data assignment has a direct impact on the overall (and per-node) deduplication ratio, load
balance, and routing overheads. Many data-routing algorithms have been proposed with various
goals, such as design simplicity or maximizing the deduplication ratio.

Because there are significant differences in the characteristics of data sets from various environ-
ments, the performance of a particular algorithm may vary significantly depending on the data
set. We have classified data-routing algorithms and implemented seven published algorithms that
adopt different strategies. We provide a detailed comparative analysis of the performance of each
algorithm using key metrics and also draw interesting conclusions.

In this article, we first introduce the data set that we have been collecting and have released
publicly, and the tools we developed. Our data set, Homes, has a longer duration than previously
published studies, which is important for investigating realistic, long-term trends: 21 months of
daily snapshots taken over a 2.5-year period. One of our goals was to find out whether previously
published findings still hold with our much longer data set.

We then present an analysis of single-node deduplication based on this data set, with sometimes
expected and sometimes unexpected results. For example, we found that because of the size of the
chunk index itself, smaller chunk sizes are not always better at saving space, as others discovered as
well [30, 39]. We also found that whole-file chunking identifies significantly fewer duplicates than
sub-file chunking, because larger files tend to dominate space usage and have a small deduplication
ratio (defined as the logical storage space divided by the physical storage space after deduplication);
this was also reported before [30].

In addition, we studied the data set from the users’ point of view. Given that our users were
largely similar in their background, behavior, and job function, we expected their storage footprints
and deduplication patterns to be similar too. Yet that was not the case. We found, investigated, and
explained three surprising new results:

(1) The deduplication ratios of each user’s own data set varied significantly, and their sensitivity
to chunking size was also different. This suggests that even similar users behave quite
differently; this should be taken into account in future deduplication systems.

(2) Deduplication ratios across users ranged widely. Yet, in combination with other information,
the deduplication ratio can help us group users together to improve the effectiveness of
clustered deduplication systems.

(3) The data that users share with each other had a higher deduplication ratio than average, and
the duplicate data shared by different user pairs tended to be fairly similar. This knowledge
can benefit the caching and prefetching components of deduplication systems.

Next, we studied the Homes dataset by using cluster deduplication techniques. We introduce
five important parameters that allow us to classify many cluster deduplication algorithms. We
implemented seven published algorithms that cover several combinations of these parameters,
and simulated their behavior accurately using our extensive data set. We plan to release the
implementations of these algorithms in the future, so that others can run or modify the parameters
and thresholds of each algorithm easily. We analyzed the behavior of these seven algorithms in
terms of cluster deduplication ratios, load distributions, and communication overheads. We have
come to three conclusions:

(1) Using whole file as the routing unit leads to a better deduplication ratio at the cost of poor
load balance. In addition, communication overheads increase, because most files in Homes
are small.

(2) Physical and logical load distribution are not always consistent. Here, the physical load
means the data that is stored in each node after deduplication; and the logical load means
the data that is assigned to each node before deduplication. The physical load shows the
real space consumption, while the logical load includes the meta-data size (mainly the file
recipe) and the number of I/O requests. We show in our results that algorithms that can
achieve a good physical load balance may lead to a huge skew in their logical distribution.

(3) For our data set, larger chunking sizes are a preferred choice, considering that they reduce
both deduplication and routing overheads, while the drop in effective deduplication ratio
remains acceptable.

The rest of this article is organized as follows: Section 2 provides background and related work.
In Section 3 we give a brief introduction of the Homes data set and the tools used to collect the
snapshots. We discuss our single-node-based analysis results in Section 4. Cluster deduplication
analysis results are shown in Section 5. Section 6 concludes our contributions.

2 BACKGROUND AND RELATED WORK

Now that deduplication has become essential in backup and at times even in primary storage,
researchers have tried to improve its performance, for example by enhancing storage efficiency [16,
41], enabling scaling [1, 4, 5, 8, 12, 22, 36], and resolving bottlenecks [3, 10, 19, 21, 27, 44]. Among
these studies, those that analyzed real-world data played an important role because they helped
improve design decisions based on data characteristics [6, 18, 29, 31, 39].

2.1 Single-Node-Based Data-set Analysis

Most prior deduplication-based data-set analyses have focused on single node deduplication. A
study of Microsoft primary storage [30] collected data from 857 users over four weeks. They found
that whole-file chunking works well in their specific environment, and fragmentation is not a serious
problem when a defragmenter runs weekly. Follow-on work by Microsoft [6] implemented a scalable
deduplication system in Windows Server 2012, based on the findings from the primary deduplication
analysis. Wallace et al. [39] investigated EMC’s Data Domain backup systems, showing that the
backup characteristics vary significantly with primary workloads. Backup workloads tend to have
a high churn rate, a lot of stream locality, high demand for writing, and high redundancy.

Other studies focused on file analysis [25]; conclusions about file type and size distributions,
and about deduplication and compression ratios, have helped improve the design of deduplication
systems. Data sets from different storage environments, such as high-performance computing [29]
and virtual disk images [18], have also been collected and analyzed, and many of their conclusions
are also applicable to other storage systems.

Most of the aforementioned data sets are static snapshots of storage systems or only cover a short
time period. Our work extends these studies by using a long-term workload that spans March 2012
to November 2014. Because backup systems are designed for long-term storage, our results—based
on a long history—offer new valuable insights.

2.2 Cluster Deduplication

When data sets or I/O requirements grow beyond the capabilities of an individual deduplicated
storage server, creating a clustered deduplication solution is a promising and even necessary
approach. Due to the large differences in the characteristics of the data sets and application
environments, many cluster deduplication schemes have been designed for different situations and
purposes. Extreme Binning [1] exploited file similarity to improve the throughput for data sets that
lack modification locality. It has proven effective for workloads that contain many duplicated files.
DEBAR [42] introduced an effective hash index for parallel fingerprint searching; it also used a
memory cache to optimize disk operations, which improved the throughput and scalability of the
system. MAD2 [40] used file-level and chunk-level deduplication, and employed a hash-bucket
matrix to maintain high data locality, improving throughput and scalability. Both DEBAR and
MAD?2 adopted a fine-grained routing unit, which might lead to larger communication overhead.
HYDRAstor [36] used larger chunking sizes for both deduplication and data routing, which sacrifices
some of the deduplication ratio but achieves a lower data-routing overhead compared with using a
finer-grained routing unit.

Dong et al. proposed two strategies [4] for different purposes. The stateless strategy is designed
for implementation simplicity; it uses a super-chunk as the routing unit and assigns super-chunks
to cluster nodes based on a hash table. It can reduce communication overhead significantly and
keep the system load-balanced. The stateful strategy also routes data by super-chunks, but it checks
the similarity of the super-chunk in all nodes, an approach that achieves a higher deduplication
ratio than the stateless one. Sigma-Dedup [12] introduced a hand-print technique, which uses a
small group of representative hashes from a super-chunk to make a routing decision, reducing
communication overhead. To leverage locality in the data stream, it uses a similarity hash index
that contains mappings from hashes in hand-prints to storage containers. By prefetching the whole
container into the cache, the cache hit ratio is improved and chunk index lookup is accelerated.
Produck [8] used Probabilistic Counting with Stochastic Averaging (PCSA), a technique that can
quickly estimate the cardinality of a collection of hashes using bitmaps. Produck uses PCSA to
quickly select the best destination node for a super-chunk. Its memory and CPU overheads are small,
but to ensure a low estimation error, its super-chunk size is much larger than in other algorithms,
which can hurt the deduplication ratio.

Although many cluster deduplication algorithms have been proposed, their performance using
different data sets can vary significantly due to differing data-set characteristics and to the differ-
ences in the algorithms themselves. In addition, there is little published work that compares several
algorithms together using a single data set (let alone a large data set such as ours). In our work, we
first classified cluster deduplication algorithms based on their characteristics. We then implemented
seven representative algorithms and evaluated them carefully. By showing their performance on
key metrics, we draw interesting conclusions for future cluster deduplication system design.

Finally, in a technical report, Eshgi et al. propose a modification of Auction-based routing called
Sticky-Auction Routing [7]. The main problem they address for clustered deduplicated storage is
that databases tend to interleave data, which is inconsistent from backup to backup. This happens
because a database may choose to read from multiple files in parallel, fill an internal buffer, and then
transfer the buffer to backup storage in a streaming fashion. Our standard routing approaches in a
cluster assume that large transfer units (called super-chunks) will tend to be consistent from backup
to backup. The interleaving pattern from a database, however, can vary from day to day based on
changing disk performance. Sticky-Auction routing modifies a stateful Auction-routing algorithm
to handle this situation. The authors noted that although interleaving patterns change, each page of
the database tends not to move around much in practice because the parallel read streams appear
to vary only within a reasonably small range. Their approach is that when Auction fails to find
a good node—based on a threshold number of chunk matches—this is likely to be the first full
backup; if so, they direct a much larger transfer unit from each node to a lightly loaded node (tens
of GBs instead of a typical 8MB transfer size). The authors call their approach Sticky-Auction: it
outperforms Auction routing for interleaved data-sets and has similar performance as Auction
for non-interleaved data-sets. Load balancing is also similar between Sticky-Auction and Auction
when there are multiple streams to process. We did not investigate the Sticky-Auction algorithm
because our data set includes users’ home directories, which tend to exhibit serial I/Os, as opposed
to database-like random ones. Still, the idea of detecting an initial full backup might be appealing,
and we hope to investigate this option in future work.

3 METHODOLOGY

We now describe the tools we developed, the data set itself, and the limitations of this study. Both
the tools and the data set have been publicly available online [9]; the data set is updated periodically
and released as we continue to collect snapshots. Homes has already been used in a number of
research papers [20, 23, 24, 33, 35, 37, 43].

3.1 Tools

To conduct our analysis, we developed tools that collect and parse file-system snapshots. Fs-hasher
scans a file system and collects snapshots that contain both file system data and rich meta data.
It does not collect actual file content; instead, it chunks each file and collects the hashes, similar
to real-world deduplication systems. Fs-hasher supports both fixed and variable chunking. Users
can specify various parameters (e.g., expected average chunk size for variable chunking) and hash
functions (e.g., MURMUR, MD5, and SHA1) when collecting snapshots. Hash files collected by
Fs-hasher can be parsed by a purpose-written program (linked against the provided libhash library)
or by Hf-stat, which prints hash files in a human-readable and post-processable format. Hf-stat
provides options to control and filter its output. Fs-hasher does not anonymize the snapshots;
however, for privacy protection, we anonymized the released data set during post-processing. Our
tools are similar to fs-c [26, 28] and were developed independently around the same time. Whereas
fs-c was written in Java, our tools were written C with scalability and efficiency in mind. We have
released and continue to maintain our tools on our Web site (http://tracer.filesystems.org).

3.2 Data set

The Homes data set contains daily snapshots of our users’ home directories on a shared file
system; we collected one daily snapshot per user for a total of over 4,000 snapshots. The users
are all Linux systems software developers, mainly graduate students and faculty working in a
Unix/Linux environment, who work on several joint projects; we believe this data set is reasonably

representative of similar software development environments. The snapshots have been collected
from March 2012 to April 2015 with periodic releases of updated data sets. The data presented in
this article includes snapshots up to November 2014 because we had to start analyzing our data at
some points, even though we continued to collect snapshots. (We sampled the newer snapshots and
do not believe that they alter this article’s conclusions substantially.) We used variable chunking
with 7 average chunk sizes (powers of two ranging from 2KB to 128KB) and whole-file chunking
(WFC); this allows us to conduct a detailed comparison of performance and overhead among
common chunking methods. To speed the snapshot collection procedure and reduce the data-set
size, we chose a 48-bit MD5-based hash function. Although we used a short hash, our collision
rate is still acceptable for research purposes [39], because even with 2KB chunking, the number of
unique hashes is about 10%, so the expected number of collisions in Homes is only about 4,000 (or
0.004%). Although this number would be unacceptable in commercial deduplication systems, it has
a negligible impact on our findings. For larger chunk sizes, our collision rate was even lower.

Previous data sets have used static snapshots or have covered a short time period. Homes contains
over 21 months of daily snapshots taken from a nearly 3-year period. It includes data on 33 active
users, allowing us to analyze deduplication on a per-user basis. Although we did not collect the full
file content, the rich meta-data and extensive hashes make it possible to conduct a wide range of
studies. For example, by examining modification and access times, we can simulate various backup
strategies, including full and incremental backups at different periods. Table 1 shows the details of
the Homes data set.

Table 1. Features of the Homes data set.

Data set Homes

Total size 456TB

Start and end time 03/09/2012-11/23/2014

Number of users 33

Number of snapshots 4,181 dailies (about 21 months)

Chunking method Content-defined chunking (CDC), Whole-file chunking (WFC)
Average chunking size 2,4, 8,16, 32, 64, and 128KB

Hash function 48-bit MD5

Number of files 1.3x10°

Number of logical chunks | 1.9x10'! (2KB chunk size)
4.0x10° (128KB chunk size)

Number of unique chunks | 9.8x10% (2KB chunk size)
3.3%107 (128KB chunk size)

Meta-data included File pathname, size, atime, ctime, mtime, UID, GID, permission bits,
device ID, inode number

3.3 Limitations

Since storing full file contents would consume too much space, we recorded only hashes and meta-
data. Thus, we are unable to analyze content-based properties, such as compression performance.
For other properties like backup throughput, we can calculate simulated results from other metrics,
such as the cache miss ratio and average disk I/O latency.

As we discussed in Section 3.2, a 48-bit MD5 hash is long enough to generate an acceptable
collision ratio for research purposes. However, it may become a limitation in some special circum-
stances when longer hash values are needed (e.g., the PCSA technique in Section 5.1 needs a longer
hash to insure its accuracy).

Although we attempted to collect daily snapshots for 3 years, some periods were missed, mainly
due to major power outages (e.g., severe weather events), hardware failures, and long breaks when
most data remain unchanged due to user absence. Still, we believe that our data set is sufficiently
large, long-term, and continuous to serve as the basis for a valuable study.

4 SINGLE-NODE-BASED ANALYSIS

We begin by describing results from analyzing the entire data set as a whole, without assuming it
would be divided among nodes in a storage cluster. Section 4.1 describes our deduplication-ratio
analysis and Section 4.2 describes our file-based analysis. Then, in Section 4.3, we present the
results of the user-centric analysis.

4.1 Deduplication Ratios

One of the key measures of a deduplication system is the deduplication ratio, defined as the size
of original data set divided by the size of what is physically stored on the media. In Homes, the
variety of meta-data that we collected makes it possible to simulate a number of realistic backup
strategies. For this article we chose four typical strategies: (1) Full, (2) Incremental, (3) Weekly-Full (a
full backup each Saturday and incrementals for the rest of the week) and (4) Fixed Retention Period
(snapshots will be deleted after a fixed number of days). Since our full snapshots were collected
daily, they inherently represent full backups. For incremental and weekly-full backups we needed to
detect newly added and modified files. By comparing two consecutive snapshots, we could identify
whether a file was newly added. By checking the mtime, we determined which files were modified
since the previous snapshot. In the first three methods listed above, backups are accumulated daily
and never deleted. But in many deployed systems, backups are deleted periodically to cap storage
costs [13]. This led us to simulate the fixed-retention policy, in which expired daily-full backups
are deleted after a fixed period of time (e.g., 7 days). Table 2 shows the deduplication ratios we
observed when using different backup strategies and chunk sizes.

Table 2. Average raw deduplication ratios for various chunking methods and backup strategies. WFC stands
for Whole-File chunking.

Chunk | Full backup | Incremental backup | Weekly-full backup | 20-Day Retention
size

2KB 218.5 13.6 42.8 41.5
4KB 197.0 12.6 394 39.6
8KB 181.9 11.7 36.5 38.0
16KB 167.4 10.7 33.6 36.3
32KB 153.3 9.8 30.8 34.8
64KB 139.1 8.9 27.9 33.2
128KB 128.0 8.2 25.7 31.6
WEC 16.4 1.1 2.3 2.7

In Table 2, the results for the retention backup policy are averages, since deduplication ratios
change dynamically as we store new snapshots and remove expired ones. Figure 1 shows how
deduplication ratios change with time, given different retention periods and 128KB chunking; we
found similar results for all other chunking sizes. In most cases, longer retention periods achieve
higher deduplication ratios, but in rare circumstances storing more snapshots can produce less
deduplication. We can also see that the deduplication ratio varies over time inside a given data
set. Since the deduplication ratio does not directly reflect the space usage in each storage node.
Figures 2 and 3 show the logical and the physical space consumption, respectively. The results
are similar: both logical and physical consumption change over time. The main reason for this
phenomenon is the large difference in the characteristics among each user’s data, which we discuss
in Section 4.3. The characteristics of Homes vary significantly as users join and leave.

180 T T T T T T T T T
o 160 | .
e} 60-day retention =—%F—
c 140 30-day retention =——e— 7
o 120 20-day retention =—@— i
g 7-day retention =——
-5 100 i
©
o 80]
o i
_g 60
o 40 .
B 20 -
O 1 1 1 1 1 1 1 1
0 50 100 150 200 250 300 350 400 450 500
Days
Fig. 1. Deduplication ratio using fixed retention backup policy.
120 T T T T T T T T T
~ 100 - 60-day retention —o— i
o 30-day retention =—t—
~ gl ' 20-day retention —&—)
9 7-day retention ——
©
Q L i
& 60
S 40} , il
o , ' - ; A
3 o) 2 ’ “
— e~ /
o 1 1 | 1 1
0 50 100 150 200 250 300 350 400 450 500
Days

Fig. 2. Logical space consumption using fixed retention backup policy.

The numbers shown in Table 2 are raw deduplication ratios. However, a smaller chunk size
implies higher meta-data overhead, since more hashes must be stored. To calculate the efficiency

1.8 T T T T T T T T T

16r 60-day retention —=—

1.4 - 30-day retention —a— -
1.2 + 20-day retention —e—]
1| 7-day retention —»— 4

Physical Space (TB)

0 50 100 150 200 250 300 350 400 450 500
Days

Fig. 3. Physical space consumption using fixed retention backup policy.

Table 3. Effective deduplication ratios after accounting for meta-data overheads.

Chunk | Full backup | Incremental backup | Weekly-full backup | 20-day Retention
size

2KB 50.9 11.1 25.8 25.6
4KB 79.3 114 30.2 30.5
8KB 107.9 111 32.0 33.3
16KB 127.2 10.5 31.6 34.0
32KB 133.9 9.7 29.9 33.7
64KB 130.5 8.9 27.6 32.7
128KB 124.3 8.2 25.7 314

of various chunking sizes, we adopted the approach proposed by Wallace et al. [39]. Suppose
L is the size before deduplication, P is the raw data size afterwards, and f is the size of each
chunk’s meta-data divided by the chunk size (i.e., the fraction of meta-data overhead). Then the
raw deduplication ratio is D = %. The meta-data size is f X (L + P); f X L is the size of a file’s recipe
(needed to reconstruct its original contents) and f X P is the size of the hash index. Thus the overall
stored size is P + f X (L + P). Based on this formula, the effective deduplication ratio including all

costs, D’, is:
, L D

TP+ fx(L+P) 1+ fx(D+1))

Although our snapshots used a 6-byte (48-bit) MD5-based hash function, in this analysis we
assume 30 bytes per chunk to show what would happen in a real deduplication system that stores
longer hashes and other information such as chunk pointers and file recipes. This value is chosen
from the middle of a range of common meta-data sizes [28, 39].

Table 3 shows the effective deduplication ratio for each strategy. We can see that 32KB chunking
performed best for full backups; 4KB for incrementals; 8KB for weekly-full ones; and 16KB for
the 20-day retention strategy. This suggests that the best chunk size may depend on the backup
strategy and frequency. Table 3 also shows that as chunk sizes increase, a decrease in deduplication

ratio is not guaranteed. With higher deduplication ratios, meta-data can become a large fraction of
post-deduplication space, so larger chunk sizes reduce the number of meta-data entries significantly
enough to compensate for missing some duplicates. Moreover, reducing the amount of meta-data
also reduces the number of I/Os to the chunk index, so larger chunk sizes can offer benefits beyond
mere storage savings.

4.2 File-Based Analysis

1.0 ad Neau e ° 300
CDF of file counts ==ggm= B 250 1 J
0.8 | (0]
- CDF of space usage cé 200 - B
L2 06 S
] ‘é 150 b
© 4+ L
g0 3 100 1
02r T sof .
a
0.0 : L : 0
1KB 512KB 1MB 512MB 1GB 512GB 1KB 512KB 1MB 512MB 1GB 512GB
File Size File Size

Fig. 4. Distribution of file counts and their space us- Fig.5. Whole-file chunking deduplication ratio of files
age. of different sizes.

The performance of whole-file chunking varies widely based on the characteristics of different
data sets [30, 39], but it is clearly not a good choice in Homes, as shown in Table 2. The reason can
be found in Figures 4 and 5. Figure 4 shows the distribution of file sizes as a fraction of total file
count and their space usage. The upper line of Figure 4 shows that more than 99% of the files are
smaller than 1MB, but the lower line demonstrates that in aggregate, these small files consume less
than 4% of total space. We observed large variations when we grouped files by size and calculated a
separate whole-file deduplication ratio for each group (see Figure 5). Files between 2KB and 256KB
deduplicate well—all are better than 100X and the best is about 290x. In contrast, the average
deduplication ratio for files larger than 1MB is less than 50x. Thus we can conclude that the total
size of Homes is dominated by large files that have a low WFC deduplication ratio. As a result,
whole-file chunking is ineffective at saving space in this situation.

Figure 6 shows the percentage of total space occupied by various common file types; we can see
that virtual-machine images (vmdk files) account for nearly 60% of all data. Figure 7 shows the raw

60
50
40
30
20
10

0

Percentage

N fo . . by dn, - Y,V . . Ay . s O - .
7 "0 Py ”’eof”af%ﬂez % Cop % o Moz Ui P e
e

File Type

Fig. 6. Distribution of total storage by file type before deduplication. The Rest bar represents the file types
that independently contributed less than 0.4% of total storage each.

10

=
o
o
o

8KB .
800 | 16KB
32KB C—3
600 [64KB mmm
400 1128KB C—1

200 |

. e 1 Py]| e

Deduplication Ratio

L/)) \Qe \S‘O ,O@(\ e [/')) (‘% 64F Cf.(('00((OO’ Oé((‘(:9/\ /)20 % O;\S\ o 4
% £ Q/)) %, % o g
/)?O /:S\Q
File Type

Fig. 7. Deduplication ratio of different file types at different chunking sizes.

1.0

0.8 A
[
L2 0.6 .
8 04
L 0.2 — - CDF of chunk counts

L - : CDF of combmed non dedupllcated S|ze " —
0.0 — :
1 10 100 1000

Popularities (log)

Fig. 8. Chunk popularities and their sizes. Because of a few extremely popular chunks, the lower CDF doesn’t
reach 100% until more than 0.3 billion occurences.

deduplication ratio of different file types at various chunking sizes; here we selected the file types
that occupied the most disk space. We can see that the deduplication ratio of different file types
varies significantly: using 8KB chunking, the ratio ranges from 50 (. vdi) to 877 (. h). In addition, file
types also have different sensitivities to the chunking size. For some types, increasing the chunks
from 8KB to 128KB leads to a large drop in deduplication ratio: e.g., a 43% loss (. disk), 34% (. vmdk),
and 26% (. vmem), respectively. However, for most file types this decrease is not significant, with some
types showing no reduction at all (e.g., . gz, .mp3, and . zip). The main reason for this phenomenon
is that most of these file types store compressed data. In a software-development environment,
these files are rarely changed. Furthermore, changing even a single byte in an uncompressed file
causes the whole compressed version to contain completely different data. As a result, the whole
compressed file is completely different from its original version for any chunk size. Therefore, the
deduplication ratio is independent of the chunk size for these file types.

We define chunk popularity as the number of duplicate occurrences of a chunk. In Figure 8 we
present the cumulative chunk popularity distribution for incremental backup with a 4KB chunk
size. (We also evaluated all other chunk sizes and did not find any significant difference from what
we present here.) The upper curve shows that about 60% of all chunk hashes appear only once in
the data set, and according to the lower curve these chunks consume less than 10% of the entire

11

85 30 User-0 C—
© 25 User-3 4
-‘E‘ 20 User-5 /3 |
O 15 F User-11 |
E 10 F User-14 —— |
UV 5t 4
n- 0 PR B
< Y
< g
Ly Ko @ U g % % Y
& & 7S % L

File Size

Fig. 9. Distribution of counts of different file types for a few users.

non-deduplicated data size. In contrast, chunks that appear at least 20 times take more than 70%
of the total non-deduplicated space (lower curve, center to right-hand side) but account for fewer
than 9% of all chunks (upper curve, right-hand portion). Chunks that appear at least 100 times are
fairly important: they take less than 0.6% of the unique chunks but occupy nearly 30% of the whole
space.

This skew in chunk popularity has also been found in primary storage [6, 25] and HPC sys-
tems [29]; those researchers found that chunks that appear 2-32 times contribute the most to the
deduplication ratio in primary storage, while in Homes, the popularity is much higher. Identifying
such popular chunks would be useful in optimizing performance. For example, keeping hot chunks
in memory could accelerate chunk indexing and improve cache hit ratios.

We also found that most of the shared data among different users belongs to these popular
chunks, a phenomenon that we discuss in Section 4.3.2.

To study the distribution of file sizes, we chose several representative users (Figure 9). This figure
shows that for those users, most files are between 1KB and 64KB. However, the average file size in
our data set is 366KB due to large VMDK files. Without VMDK files, the average file size is 151KB.
Our average file size is smaller than has been reported in backup workloads [39] because backup
software often combines many smaller files into larger tar files.

4.3 User-Based Analysis

Past studies have often focused on whole data sets and did not study the data from the users’
perspective. Although each user’s data forms a basic unit that is part of the data set, per-user data
can have its own special characteristics. In this section, we show some interesting results from our
33 users with non-empty data. We have studied our data carefully, both individually and in various
groupings. We present a representative sample of these individuals and groups, carefully chosen
to highlight key findings seen repeatedly. For example, when studying each user’s deduplication
ratio, we selected accounts that covered different characteristics, such as the total size or lifetime
of the user’s data. To show how deduplication ratios change over time, we selected users who have
matching start times.

4.3.1 Per-User Analysis. Due to users joining and leaving our system, their snapshots have
varying start and end times. When users leave, we keep all their previous snapshots but stop
collecting new ones. The duration of each user’s observations varied from 1-20 months. The
data-set sizes are also different; the largest user’s data (62TB) is about three orders of magnitude
larger than the smallest (11GB). The deduplication ratio for each user at different chunk sizes is
shown in Figure 10. In the Homes data-set, we anonymized user names to protect their privacy; each
user was given a number rather than a name. We have 39 users (0-38) in our data-set. However,

12

S
o
[(e)
)]

T
2KB

B

o —
; | 4KB ——
% 1024 - 1§Eg —a |
o 32KB C—
c | 64KB C— |
S 256 128KB =
-+

S

.?_J_ 64 N 7
5 R > N

3 i \ N

a 16

Userl Userll Userl5 Userl8 User21 User28 User36
User Number

Fig. 10. Effective deduplication ratios of seven users at different chunking sizes, considering meta-data
overheads and using the Full backup method.

—~ 1000
(@)]
o
.©
)
&o 100
c
.©
TU‘ U 17 —F—
ser
= 10 & User 14 —&—
g— User 3 —@—
S User 19 —¥—
(] User 5 —B—
D 1 1 1 1 1 1 1
0 20 40 60 80 100 120

No. of snapshots

Fig. 11. Users’ deduplication ratios (log) vs. number of snapshots in a backup.

the data for 6 users was empty (i.e., they received accounts but either never created any files or had
their accounts deleted), so for this article we analyzed a total of 33 users.

For Figure 10 we chose 7 representative users based on characteristics such as size and duration;
user 15 has both the longest duration (20 months) and the largest data-set size (62TB). The figure
shows large differences among users’ effective deduplication ratios (considering meta-data over-
head). Using 128KB chunking, the highest deduplication ratio is over 2,400 (uncommon for most
users) while the lowest is less than 40. Moreover, each user’s sensitivity to chunk size also varies
significantly. For Users 18 and 21, the raw deduplication ratio is so large that meta-data takes a
large fraction of the space after deduplication; as a result, their effective deduplication ratio at 2KB
chunking is only about 33% of that achieved by 128KB chunks. But for User 1, the 2KB-chunking
deduplication ratio is about 76% of the 128KB one. The best chunking size for each user is also
different: User 1 does well at 16KB, User 18 at 128KB, and several others are in between. User 18 is
special, as we can see a steady increase in deduplication ratio as the chunking size increases. This
is because several large and highly redundant benchmarking data files represent over 98% of this
user’s total disk usage. This user’s raw deduplication ratio is over 5,000; thus the meta-data takes a
large fraction of the total post-deduplication space.

13

(o)
o

User28 | 10.80 D0l RO 1370 0.38

User21 | 060 |« 1220 390 0.15 1.30 40

User-18 | 0.80 420 7.10 0.07 890 30 §

User-15 | 5.30 4.90 380 051 1.30 20

User-11 | 0.25 ~0f | 800 1.80 | 19.00 ol
User-1 078 [EYEOM 220 0.15 ;

User-1 User-11 User-15 User-18 User-21 User-28

Fig. 12. Data redundancies among users.

One reasonable explanation for the difference in deduplication ratios is the varying user lifetimes
in the system. For full backups, a user’s deduplication ratio will probably increase over time as
more snapshots are added. However, we found that the large differences in deduplication ratios
among users in Homes were independent of their lifetimes. Figure 11 shows how ratios changed
as snapshots accumulated. The snapshots of these five users had the same start times. But as we
can see, User 17°s deduplication ratio increased rapidly from the start. Although User 17 had fewer
snapshots, the final deduplication ratio was over 1,000, far greater than the others, primarily due
to high internal redundancy within a single snapshot. Conversely, User 5’s deduplication ratio
dropped over time, mainly because a high file churn rate led to the addition of many new chunks.
From Figure 11, we can see that the number of snapshots is not the sole factor affecting a user’s
overall deduplication ratio. We also found that the file type is not the main reason for differences
in deduplication ratios. Even users with similar file type distributions (e.g., heavy users of VMDK
files) also varied significantly in deduplication ratio, while some users with similar deduplication
ratios had different file types. The important factors seems to be the characteristics of the users’
own data, such as internal redundancy, and the user’s activity level. Overall, we conclude that
“not all users are created equal,” even when they are performing similar jobs. Therefore, future
deduplication systems should account for such behavior to improve efficiency.

4.3.2 Analysis of Groups of Users. We now turn to cross-user redundancies. We used a represen-
tative sample of users, shown in Figure 12. Each number in the heat map is the percentage of a
user’s data that is also found in another’s. For example, for User 1, more than 40% of that user’s data
can be found in User 15’s data (bottom row, third column), and the same is true for User 28’s (though
precisely what is shared might differ between the two). This figure is not symmetric because each
user’s own data size is different. For example, the third row, first column shows that only 5.3% of
User 15’s data is shared with User 1 because User 15 has much more data overall. The figure shows
that for each user, redundancies with others varied significantly. We confirmed these results for all
users and found no obvious pattern.

While studying inter-user duplication, we found that users can be divided into groups in which
the shared data of any two members occupies a large fraction of their total space. To analyze the
characteristics of the shared data, we selected four representative users (13, 15, 19, and 28) as a
group. Here we define a user’s unique data set as S; |S| means the number of chunks in S; and the
data shared between users X and Y is Sx A Sy. Our results showed that 98% of the chunks shared

14

o
o

User 13 —
User 15 =1 - J

User 19 —1

User 28 ——J . i
™\]]
™\

User 13 User 15 User 19 User 28
User Number

o
o
T

N w H U (o)}
o o
o o
T T

o
o
T

’—l
o
o
T
J /S S S

J S S S

Average Chunk Popularity
o

Fig. 13. The popularity of users’ shared data. From this figure we can see that the shared chunks are much
more popular than the average inner chunk popularity for each user.

between Users 13 and 19 could also be found in the shared data between Users 13 and 15. Stated
mathematically:

|(.513 AS19) AS13 ASis)l _ 0.98 @)
min(|S13 A Siol, [S13 A Si5)

We checked this number for the other combinations in this 4-user virtual group, and the results
were always between 91-98%. Thus, the data shared by the users in this group is fairly similar, so
in a cluster deduplication system, grouping them into one storage node would improve the overall
deduplication ratio.

Lastly, we found that chunks shared among users tended to have much higher popularity than
average. Suppose B is the number of chunks before deduplication, and A is the number of chunks
after deduplication. Then the average chunk popularity of user X is Py = ﬁ—’;. Based on this formula,
the average popularity of shared chunks between users X and Y is:

Bxay 3)

Pxny =
Axny

Note here that Ax,y = Ayax, but Bxay # Byax. This is because although the unique hash
values they share are the same, each user has their own inner deduplication ratio. The popularity
of shared chunks is shown in Figure 13. For User 13, for example, the average chunk popularity
(P13 or P13a13), was 22 (shown as the leftmost bar), while the average popularities of chunks shared
with Users 15 (P13a15), 19 (P13a19), and 28 (Py3a28) were 189, 262, and 192, respectively. This means
there was a 8.6-11.9% increase in these shared chunks’ popularity compared with the average
popularity of all chunks in User 13’s data. Our results for other users and groups supported this
conclusion. Another way to interpret this result is that when a given chunk is shared between two
or more users, it is also more likely to appear several times in any single user’s data, and thus the
deduplication ratio for shared data is higher even for a single user.

5 ANALYSIS OF CLUSTER DEDUPLICATION

As data size continues to grow, especially in backup systems, a single-node storage system will
gradually fail to meet performance requirements such as capacity and throughput. One effective

15

solution is to use a clustered system. There are two main challenges when applying deduplication
techniques in a cluster storage system.

(1) Maintaining high deduplication ratio. In most cluster systems, deduplication is per-
formed individually at each storage node and no information about further duplicates is
exchanged among them. As a result, duplicate chunks may exist in different nodes and the
deduplication ratio of the entire system drops.

(2) Balancing the load across cluster nodes. There is a tradeoff between load balance and
deduplication ratio in cluster deduplication system. At one extreme, placing all data on one
node will maximize deduplication while having the worst load balance. At the other extreme,
placing data with a round-robin approach will lead to balanced usage but duplicates will be
spread across nodes, reducing potential deduplication. As a result, maximizing deduplication
while achieving a balanced load is a a major challenge when designing a cluster storage
system.

In this section, we first describe seven classic cluster-deduplication algorithms that we reimple-
mented and studied. In Section 5.1 we classify them based on their characteristics. Their performance
using a number of key metrics is discussed in Section 5.2. In Section 5.3, we summarize the analysis
results.

5.1 Classification of Cluster Deduplication Algorithms

In cluster deduplication systems, the algorithm for routing data to a particular storage node plays a
key role. It has a direct influence on performance metrics such as the deduplication ratio and load
balance. Because there is no “silver bullet” that can meet both of the challenges mentioned above,
many data-routing algorithms have been proposed to meet different requirements. Based on the
characteristics of a particular data set and storage environment, each algorithm uses different design
principles to trade off among the system’s deduplication ratio, load distribution, and throughput.
We begin with a detailed description of these design choices and their impact.

o Stateless vs. Stateful: By recording the assignment of previous chunks, stateful algorithms
can route similar chunks to the same node. Thus they can get a higher deduplication ratio,
but maintaining all previous routing information and searching for the best destination
node leads to higher RAM and CPU cost. Stateless algorithms assign chunks by considering
only the content of each chunk, such as using a hash of the content to determine assignment
with a simple function. They normally can route chunks faster while achieving a reasonably
balanced load distribution due to their randomized nature.

o Centralized vs. Distributed: In a Centralized system a master node is in charge of data-routing;
information on new chunks is sent to the master node to be assigned. Because the master
node maintains the system’s meta-data (such as file recipes), centralized algorithms can
make full use of this information to optimize its data routing algorithm. However, the
master node itself may become the system bottleneck. In distributed algorithms, clients
can make routing decisions on their own. This can reduce or eliminate the burden on the
master node and reduce network overheads by not having to send chunk information to a
central server all the time.

® Routing Unit: Many cluster deduplication systems assign data using a super-chunk, which is
composed of a number of regular chunks. Comparing with routing using fine-grained units
such as individual (small) files or chunks, routing by super-chunks has several advantages.
It can significantly reduce routing overhead while preserving chunk locality, which is
useful for cache optimization and file restore performance. However, using a coarse-grained

16

routing unit may hurt the deduplication ratio since even the best assignment of a super-
chunk to a node may result in duplicate chunks across nodes.

Deduplication Unit: In most cluster deduplication systems, the deduplication unit is made
much smaller than routing unit so that the system can achieve a higher deduplication ratio.
Although in Section 4.1 we found that smaller chunks do not always improve deduplication
ratios, most cluster deduplication systems use small chunks as the deduplication unit. This
approach is necessary because super-chunks are normally larger than 1MB, which would
result in poor deduplication ratios. The deduplication unit is necessarily smaller than or
equal to the routing unit; a larger routing unit will reduce the data routing overhead and
improve data locality (by grouping related chunks together). Both the deduplication unit
and the routing unit impact the deduplication ratio in cluster system.

Exact vs. Approximate Deduplication: Exact deduplication systems can detect and remove
all redundant chunks in a data set, and thus their deduplication ratio is as high as that
of a single-node system. Chunk-level routing is required to achieve exact deduplication,
resulting in more CPU and memory consumption. Conversely, approximate deduplication
systems focus on improving other metrics, such as the throughput, at the cost of a decrease
in deduplication ratios.

Unlike previously studied data sets, Homes covers a long usage history and comprises many
user-based snapshots. Therefore, we investigated how different cluster deduplication strategies
perform on this unique data set. We implemented seven representative cluster algorithms, which
cover a wide range of design principles and configurations. For uniformity of comparisons, in all
the implementations, we used a 4KB chunking size, except for HYDRAstor [36], which used 64KB
chunking as described in the HYDRAstor paper. Here we describe the implementation of each
algorithm.

(1)

)

®)

4)

Stateless [4]: The main advantage of Stateless algorithms is simplicity. The routing unit is a
super-chunk; a featured chunk is selected as a representative by choosing the smallest hash
value. The featured hash value is looked up in a hash table to assign the super-chunk to a
node. In our implementation, a super-chunk contains 256 chunks: we chose this value so
that the average super-chunk size (about 1MB) matches one that was published previously
in the original paper [4]. Because we are using Content-Defined Chunking (CDC), the size
of the super-chunk is variable; this also applies to all other algorithms that route data by
super-chunk.

Extreme Binning [1]: For workloads that lack locality, Extreme Binning is designed to improve
throughput by exploiting file similarity; the method is similar to stateless when using an
entire-file as the super-chunk. The file is the routing unit. For each file, Extreme Binning
selects the minimum chunk hash as the file’s representative chunk ID, and assigns files
to different bins based on those IDs. By comparing whole-file hashes, duplicate files can
be removed directly. Since similar files are routed to the same bins, Extreme Binning has
proven effective in deduplicating files.

Based on File Type: Since duplicates mainly occur among the files of the same type, routing
files based on their type is a straightforward way to improve deduplication ratios. In our
implementation, we used an index to record the destination nodes for all files of the same
type. When a new file type arrives, it will be assigned to the least-loaded node to achieve
balance.

HYDRAstor [36]: HYDRAstor is a variant of a stateless routing algorithm. It uses a larger
chunk size of 64KB for both routing and deduplication to trade routing overhead off against
the deduplication ratio. Because a 64KB chunk size was used for the HYDRAstor paper, we

17

used the same value for our implementation. This is in contrast to the 4KB size we chose
for all other algorithms.

(5) Stateful [4]: Stateful uses one Bloom filter per storage node, to record all chunk hashes
assigned to that node. These Bloom filters can be kept either in the storage node or together
in the master; in our implementation they reside in the storage node. When assigning
new super-chunks, Stateful searches each Bloom filter to find how many chunks from this
super-chunk are currently on the node, and then selects a destination considering both the
load and the amount of similarity. The filters consume 500MB of memory in each node,
except for our simulation of a 128-node cluster, where we used 128MB Bloom filters to
limit the total size of the simulation. In all cases, the Bloom filters produced a false-positive
rate of 0.2% or less.

(6) Sigma-dedup [12]: Sigma-dedup uses a hand-print technique to reduce the lookup and
network overhead in other stateful routing algorithms. A hand-print is a group of represen-
tative chunk hashes selected from the super-chunk. Thus we can send only the hand-print
to a limited number of candidate nodes to select the best destination. In our implementation,
we tried 8, 16, and 32 hashes for the size of the hand-print; the results showed that using
16 hashes resulted in better deduplication ratios than 8, while the difference between 16
and 32 was negligible. Thus we selected 16 hashes as the hand-print chunk super-unit.

(7) Produck [8]: Produck uses Probabilistic Counting with Stochastic Averaging (PCSA), a
technique to improve the throughput of the system while maintaining a balanced load
distribution. PCSA keeps a set of bitmaps that are used to quickly estimate the cardinality
of the overlap between the incoming super-chunk and super-chunks on each node. In our
implementation, a super-chunk contains 15 X 1,024 = 15, 360 chunks, as suggested in the
original Produck paper. To reduce estimation error, the paper suggests using 8,192 bitmaps
for each super-chunk and storage node. Our data set contains 8 x 10'° chunks using 4KB
chunking, which would require 37 bits to uniquely identify each chunk. Since we used a
48-bit hash function, we chose 1,024 bitmaps, indexed from 10 bits of the hash, to reduce
estimation error. That left 38 bits for calculating the cardinality.

Table 4 summarizes the algorithms and their corresponding design principles and properties.

5.2 Experimental Results on Key Metrics

We used the following three metrics to evaluate the performance of the seven cluster deduplica-
tion algorithms: (1) Cluster-Deduplication Ratio, (2) Load-Distribution, and (3) Communication
Overhead. We now describe each metric as well as the performance of each algorithm using these
metrics.

5.2.1 Cluster Deduplication Ratio. We define the cluster-deduplication ratio as the total logical
data size divided by the combined size of physical data on all storage nodes after deduplication.
This metric directly shows the space savings when using a cluster deduplication system. Since
redundant data may exist among different storage nodes, the deduplication ratio will usually be
smaller than in a single-node system. Thus, one of the main tasks of the data routing algorithm
is to assign duplicated data to the same node so as to increase the deduplication ratio. Figure 14
shows the cluster-deduplication ratio of different data-routing algorithms using Homes.

To check how the deduplication ratio changes as the number of storage nodes in the cluster
increases, we implemented clusters that have one node (corresponding to single-node deduplication),
8, 32, and 128 nodes. The results are shown in Figure 14. We can see that routing data based on the
file type can achieve the best deduplication ratio among all algorithms. In addition, even when using
128 storage nodes, routing by file type can reach a deduplication ratio as high as 192, compared

18

Table 4. Cluster deduplication algorithms used in this study

Cluster Stateless vs.| Centralized | Routing Deduplication Exact Vvs.
Algorithm Stateful vs. Unit Unit Approximate
Distributed Deduplica-
tion
Stateless Stateless Distributed Super-Chunk | Chunk Approximate
Extreme Stateless Distributed File Chunk Approximate
Binning
Based on File | Stateless Distributed File Chunk Approximate
Type
HYDRAstor | Stateless Distributed Large Chunk | Large Chunk | Exact
Stateful Stateful Distributed Super-Chunk | Chunk Approximate
Sigma- Stateful Distributed Super-Chunk | Chunk Approximate
Dedup
Produck Stateful Centralized Large Super- | Chunk Approximate
Chunk
250

° === Stateless

&‘3’ ------ i, € mm e m e - T Staefu

S N ¢ " A ~-¥-eSigma_dedup

E . .',:“'“u.\f: T - wunvons HY DRAStOF

E .o '":“v----------._,______'_-_-_-;3-:-_?_'_:_;_'_::'._.:.-'.-:'17_.:...': = = = Extreme

3 . W T Binning

e . o T -

% 50 Mmoo L M m et e am s N < _'?;";:d on File

o 0 * = ¥+ Produck

1 8 32 128

Number of Storage Nodes

Fig. 14. Cluster-Deduplication Ratios for each algorithm

with 215 on single-node system. This result confirms the conclusion that redundancy mainly exists
in a given file type, and that duplicate data across different file types is negligible.

HYDRAstor is the only exact cluster deduplication algorithm' we implemented, which is why its
deduplication ratio was not influenced as we increased the cluster size. To trade off routing and
deduplication overhead, HYDRAstor uses 64KB chunking for both data routing and deduplication.
Thus its deduplication ratio is lower than that of all other algorithms in single-node mode, but its
exact-deduplication character makes it the second-best algorithm in terms of deduplication ratio in
clusters that have more than 8 nodes.

1Here, “exact” means that all duplicate chunks are routed to the same node, so that precisely one copy of each unique chunk
is stored.

19

Stateful, Sigma-dedup, and Produck are three similar data routing algorithms. They are all stateful
algorithms, using a super-chunk for routing and single chunks for deduplication. Stateful gets
the best deduplication ratio among the three, because it will consider all chunks that belong to a
super-chunk and search for them in each storage node.

Conversely, Sigma-dedup uses a hand-print technique, which only searches representative hashes
in a super-chunk and in fewer nodes. Therefore, its communication (shown in Section 5.2.3) and
CPU overhead are lower but at the cost of a drop in deduplication ratios.

Produck is a special data-routing scheme: it routes data using the PCSA technique. But its
deduplication ratio is not as high as other stateful algorithms, mainly because we are using a short
48-bit hash for each chunk. PCSA uses bitmaps to check the cardinality of the overlap between
chunks in a super-chunk and chunks in a node. In the Produck paper, the authors used 8,192
bitmaps to reduce the error rate. But in Homes, we have 8 x 10'° chunks using 4KB chunking.
Since we use a shorter hash, we have limited bits left to reduce the error rate, which influences the
deduplication ratio. In addition, the strict load-balancing strategy adapted by Produck also affects
the deduplication ratio, which we discuss in Section 5.2.2.

The deduplication ratio of the Stateless routing scheme is not as good as stateful ones, because
Stateless assigns data based on a hash table without considering previous assignment information.

Extreme Binning routes data by files. Although it is also a stateless routing algorithm, it gets a
higher deduplication ratio than Stateful and Sigma-dedup. This result shows that in Homes, routing
by file (both in Extreme Binning and in routing based on file type) can get a better deduplication
ratio than routing by super-chunk. This is mainly because we are collecting data every day, and
most files are not modified daily. As a result, we have many redundant files in our data-set.

Figure 14 shows an interesting phenomenon. Although deduplication ratios for each cluster
algorithm drop as the number of storage nodes grows (except for HYDRAstor, whose deduplication
ratio is not influenced by the number of storage nodes), the figure shows no single point of inversion
for any two algorithms. This means that all these cluster algorithms have good scalability in their
deduplication ratio, and no algorithm’s deduplication ratio will drop more severely than others
when we increase the number of storage nodes.

5.2.2 Load Distribution. Both physical and logical load distributions are important metrics to a
cluster deduplication algorithm. Physical load distribution shows the capacity usage at the nodes.
If the space of each storage node is consumed at a balanced rate, then we can fully use the system’s
capacity without having to redistribute data among nodes. In addition, when a node becomes full,
similar data will be routed to a less loaded node, hurting the overall deduplication ratio. Logical
load distribution has a direct impact on the I/O performance, because a logically overloaded node
tends to deal with more I/O requests. Therefore, a logically load-balanced system can avoid having
one node become I/O-bottlenecked and support more I/O demand from clients. The metric we used
to evaluate the performance of load balance is the Coefficient of Variation (the ratio of the standard
deviation to the mean) of the load across all cluster nodes, measured in bytes stored (for physical
load) or transferred (for logical load).

Figures 15 and 16 show the physical and logical load distribution of each algorithm, respectively.
From Figure 15 we can see that routing based on file type, which achieves the highest deduplication
ratio, performs much worse than other algorithms in terms of physical-data load balance. Extreme
Binning, which also uses files as its routing unit, performs much better than routing by file type, but
is nevertheless worse than algorithms that use a super-chunk as the routing unit. This result shows
that although routing by file can produce a better deduplication ratio, it will also lead to higher
data skew (imbalance), mainly because of the large difference in the sizes among different file types.
For other algorithms, stateless routing algorithms perform better than stateful ones, mainly due

20

(Standard Deviation)/Average

(Standard Deviation)/Average

400% P
=== Stateless —— Stateful R
350% . e
==¥--=: Sigma-dedup v HYDRAStOr ""
300% I . R
==p== Extreme Binning ' =<=:Based on File Type RS
L d
250% = =)¢ = Produck 7
’
200% g
(0} ‘,4‘
150% Pt as
-
100% Pt A
—" -
50% _n——"‘-——‘< ___--.-----"-----_--_-:----------
O%wﬂ—t-—f‘-“Tl=i-EWl\lim--—------ ;::.‘---.----------------.
1 8 32 128

Number of Storage Nodes

Fig. 15. Physical Load Distribution for each algorithm

600%
500% =i Stateless —— Stateful ‘y‘
4
==¥--=: Sigma-dedup wngenn HYDRAStOr ¢“/
0, . . .
400% ==p== Extreme Binning '+=<=:Based on File Type ;"' q;\'a\:m\-
300% = =p¢ = Produck
0
200%
AL mm
100% “.“..‘:“‘3":“.“ ___-------}
‘““_:“- vt _.--*--------
s s - sannnnannip
g e - - m n n w n e n W RN E—
0% ‘“H------—--;H-wa"d'—-—u-—-uu D e e o et s
8 32 128

Number of Storage Nodes

Fig. 16. Logical Load Distribution for each algorithm

to the random nature of the hash table. Produck has the best physical load balance, because of its

strict load-balancing strategy. HYDRAstor, which is a stateless and exact deduplication system,
performs well both in terms of deduplication ratios and physical load balance.

Overall, we can see that when adopting an approximate deduplication strategy, algorithms
that get better deduplication ratios tend to perform poorly in terms of physical load balance,

which means that the deduplication ratio and physical load balance are design trade-offs in cluster
deduplication.

Figure 16 shows an interesting result in logical load distribution. Stateless and HYDRAstor, which
are both stateless routing algorithms, lead to high data skew in terms of the logical load distribution.

21

This is opposite to their performance in terms of physical load distribution. To investigate the
reason for this phenomenon, we checked the deduplication ratio of each node using these two
algorithms. The results are shown in Figure 17. We can see that the per-node deduplication ratio of
one node is much higher than all other nodes; this is caused by the presence of all-zero chunks,
which are frequent in many workloads and can reach the maximal size when using the content-
defined chunking method. In Homes, all-zero chunks occupy 23% of the total space; thus, although
these two algorithms get a good physical load distribution, their logical load balance is poor. We
confirmed that clusters with 32 and 128 nodes show the same results.

250 700
202 600 582
9 200 9
S T 500
€ 150 «
5 5 o
8 10 96 8 a0
3 60 59 62 53 59 61 59 S 200 164
B 80 3 102 103 106 102 104 102 103
- e N EERENEN
0 0
Node 0 Node 1 Node 2 Node 3 Node 4 Node 5 Node 6 Node 7 Total Node 0 Node 1 Node 2 Node 3 Node 4 Node 5 Node 6 Node 7 Total
Node Number Node Number

(a) Deduplication Ratio of each node in Stateless (b) Deduplication Ratio of each node in HYDRAstor

Fig. 17. Deduplication Ratio of each node using Stateless and HYDRAstor algorithms.

5.2.3 Communication Overhead. To ensure a fair comparison of communication overheads
among all algorithms, we made two pragmatic assumptions. First, in all routing algorithms, after
a destination node is selected, only chunk hashes are sent to storage nodes to detect duplicate
chunks; afterwards, only non-duplicate chunks are sent to storage nodes in large (1MB) packets.
This reduces the total amount of data transferred in the cluster significantly, considering our
high deduplication ratio. Second, variations in meta-data transfer overheads, such as sending the
file recipes, are not included in our comparison. This is because the papers that presented the
algorithms [1, 4, 8, 12, 36] did not detail how file recipes are transferred and stored in the master
node. For example, recipes can be sent to master node by super-chunk or by file, or they can
be sent after the whole snapshot is stored. For simplicity, we chose the second strategy in our
implementation: because each snapshot has its own recipe, sending per-snapshot recipes is more
straightforward. As a result, the meta-data communication overheads for all algorithms are the
same. We plan to evaluate more comprehensive file-recipe transfer and storage policies in the
future.

Figure 18 shows the communication overheads of each algorithm, which are represented by
the number of messages2 needed to route all the data. As we can see, Stateful incurs the most
communication overhead, because our implementation is a distributed Stateful algorithm. To route
a super-chunk, its information will be sent to all storage nodes to request its similarity index (i.e.,
how many chunks in a super-chunk can be found in that node). An alternative approach would be to
store all the Bloom filters in the master node, which would significantly decrease the communication

2Because the data itself is so much larger than its hash, the overhead in terms of total bytes transferred is similar in character
to the deduplication ratio. For that reason, we measure overhead in terms of message count, which captures the latency and
networking costs of communicating hashes (which currently are not batched) to nodes without being distorted by the data
transfers—which must take place in any case.

22

80 »
---0--- Stateless —— Stateful

0 ---¥%--= Sigma-dedup e HYDRAStOr '

60 -=9-=:Extreme Binning ' =<=:Based on File Type /

50 -+ %¢ - - Produck

No. of Messages (Billion)

Number of Storage Nodes

Fig. 18. Communication overheads in each cluster deduplication algorithm.

overhead. Doing so would not influence the deduplication ratio and load distribution, but the master
node might become a bottleneck as the system scales up.

Another stateful algorithm, Sigma-dedup, is less expensive than Stateful because the hand-print
technique reduces the number of candidate nodes, but its stateful nature causes more communication
overhead than stateless approaches.

Produck incurs the least communication overhead, because (1) its average routing size (15,360
chunks) is much larger than other algorithms, and (2) routing is performed by the master node,
which means that it does not need to broadcast super-chunk information to all storage nodes.

Routing by files (Extreme Binning and Routing by File Type) rank between super-chunk-based
stateful algorithms (Stateful and Sigma-dedup) and super-chunk-based stateless ones (Stateless
and HYDRAstor). Extreme Binning has much less communication overhead than Routing by File
Type, because Extreme Binning removes duplicate files directly based on whole-file hashes. As we
discussed in Section 4.2, many small duplicate files exist in our data set, so the communication
overhead of Extreme Binning is reduced significantly.

Stateless and HYDRAstor cause lower communication overhead than other algorithms (except
for Produck), because each of their clients can choose the destination node without sending any
messages. In our HYDRAstor implementation, chunks are not assigned directly to storage nodes,
because that would lead to excessive communication. Our strategy is to put all chunks that are
sent to the same node into a buffer and to wait until the buffer is full before sending its contents
together. Each of our buffers can store 16 chunks; we chose 16 so that the buffer size would be close
to the super-chunk size adopted by other algorithms. The network cost of HYDRAstor is slightly
higher than Stateless, since our use of content-defined chunking causes many chunks to be much
smaller than the chunking size. This results in HYDRAstor needing more messages to transfer the
same amount of data.

5.3 Summary of Cluster Deduplication

Based on our analysis of cluster deduplication ratios, logical and physical load distribution, and
communication overhead, we draw the following four conclusions:

23

0 - 2507 .. _ 200 20
[Produck / e = o Stateful
| N \
f /2/00; [Based on File Type | | .
50 A _oe TN 1501 \ 15
Vv - — / X, \
-~ . A% *
- VAN . *
g 1501 N
/. \‘ _
100 e A 100+ \ 107
Y N
N\ 7 1004 [Extreme "\ \
\.\\;/ . Binning \ N A
T . \ <
1504 -\ Bl Tk IR TP ST = 7 5 -
"4 N\: 50 - \ - o \
’ AN \ o~ A
// HYDRAstor] ~ Sl P ~es
Y e e
: N - - — Y e
200 N T T T
Deduplication Logical Load-Distribution Physical Load Balance Number of Messages
ratio (Std dev/Avg)x100 (Std dev/Avg)x100 (Billion)

Fig. 19. Summary of the performance of each algorithm as evaluated on key metrics. For all metrics, values
at the lower end of the vertical scale are better.

(1)

)

®)

4)

Routing by files can generally achieve a better deduplication ratio than other schemes
using Homes, because most of the duplicate data exists in matching file types. In addition,
since Homes is a daily backup system, many duplicated files exist in our data set. However,
routing by files leads to poor load balance, since there are large differences in file sizes
among different file types.

Using a larger chunking size does not lead to a large difference in deduplication ratio,
especially when considering meta-data overhead as we discussed in Section 4.1. Therefore,
HYDRAstor, which adopts 64KB chunking, actually performs well in terms of deduplication
ratios, especially when the system scales up.

Super-chunk and large-chunk based stateless routing strategies (Stateless and HYDRAstor)
can achieve good physical load distributions; however, unexpectedly, their logical load
distributions are much worse due to the fact that in Homes, a small number of chunks have
a fairly high deduplication ratio: all these chunks will be assigned to the same node using
these routing algorithms, making the node overloaded in terms of its logical size.
Distributed, stateful routing algorithms lead to much higher communication overhead than
others. Using a stateless strategy, routing by files leads to higher communication overhead
than routing by super-chunk, because most files in Homes are small.

Figure 19 shows the overall performance of each algorithm using a parallel coordinates graph,
where every axis (coordinate) represents a metric (deduplication ratio, physical and logical load
distribution, and communication overhead) and each algorithm is depicted as a line crossing the
axes at the corresponding coordinates.

6 CONCLUSIONS, LIMITATIONS, AND FUTURE WORK

We studied a locally collected data set that spans a period of 2.5 years (over 4,000 daily user snapshots
accounting for over 21 months). Our data is publicly available, with continuing release updates.

24

The long time span and rich meta-data make the data valuable for studies of realistic long-term
trends. Our findings can help guide future deduplication storage designs.

We analyzed our data set, Homes, as it would be seen by both a single-node deduplication system
and a cluster deduplication system. In our single-node analysis, we found that a smaller chunk size
does not always save more space, given the cost of additional meta-data. In Homes, a 32KB or even
larger chunk size made the system the most space-efficient. Whole-file chunking produced the
worst results in our study, because large files tended to dominate the data and had much lower
deduplication ratios than smaller files. Surprisingly, our user-centric studies showed that data
belonging to each user varies significantly in deduplication ratio and sensitivity to chunk size. We
also found a large difference in deduplication ratios across users, an observation that could help in
grouping users for future cluster storage. Our detailed study of users who shared data showed that
they have a higher deduplication ratio than average, which suggests that data shared among users
tends to be more popular in general.

In our cluster deduplication analysis, we first classified several well known data-routing algo-
rithms based on their characteristics; we then studied their performance in terms of deduplication
ratios, load balance, and communication overhead. The results showed that routing data to nodes
by whole files can get the best deduplication ratio, but it also leads toward large data skews because
of significant differences in file sizes. Using a larger chunking size, such as 64KB in HYDRAstor, is a
good choice for cluster deduplication using Homes. Both data-routing and deduplication overheads
(including chunking, indexing, and meta-data overheads) are reduced, while the drop in dedu-
plication ratio is small when using a large chunk size. The logical and physical load distribution
using a given cluster algorithm can be fairly different, because some chunks have a much higher
deduplication ratio than others, making the nodes that store highly repetitive chunks experience
much higher logical load.

Limitations and Future Work. Although we believe this work is the first of its kind from the
perspective of both dataset size and clustering analysis, there are a few limitations to this study.
Several of these limitations are part of our future work, some of which we have begun to investigate
using this data set and additional data sets we have been collecting.

First, this study does not consider aging and fragmentation effects, which are complex topics
that are orthogonal to this work. These effects are very sensitive to file system types, device types,
and specific layouts on media [2]. Since Homes has a long duration, a future study can investigate
how fragmentation accumulates and how it affects backup and restore speeds. While collecting the
snapshots, we also found that fragmentation decreases backup throughput because a traditional
depth-first scan of the file system causes newly added or modified chunks to be stored into new
containers, leading to cache misses in future scans. We are currently investigating alternative scan
orders to improve cache hit ratios and restore speeds.

Second, this study does not evaluate restore performance, which is affected by various factors and
techniques that either write duplicates to maintain restore locality or analyze the file being restored
to reduce random I/O [10, 21, 32]. To our knowledge such techniques have not been investigated in
depth for deduplication clusters [34].

Third, due to serious privacy concerns, we were able to collect data only within our own local
environment, which includes a few dozen (mostly graduate) students and faculty. This home-
directories environment approximates engineers and software developers working on Unix-based
sites. We hope that our study and the massive data set we released will encourage others to collect,
release, and investigate multi-year data sets for other environments (e.g., Windows users, MS
Exchange, databases, Web servers, etc.).

25

ACKNOWLEDGMENTS

We thank the ACM TOS anonymous reviewers for their helpful comments. This work was made
possible in part thanks to Dell-EMC, NetApp, and IBM support; NSF awards CNS-1251137, CNS-
1302246, CNS-1305360, and CNS-1622832; ONR award N00014-16-1-2264; and the National Natural
Science Foundation of China under Grants No. 61433019 and U1435217, and China 863 program
grant 2015AA015305.

REFERENCES

(1]
(2]

(3]

D. Bhagwat, K. Eshghi, D. Long, and M. Lillibridge. Extreme binning: Scalable, parallel deduplication for chunk-based
file backup. In Proceedings of the MASCOTS Conference, pages 1-9, London, UK, 2009. IEEE Computer Society.

Zhen Cao, Vasily Tarasov, Hari Raman, Dean Hildebrand, and Erez Zadok. On the performance variation in modern
storage stacks. In Proceedings of the 15th USENIX Conference on File and Storage Technologies (FAST), pages 329-343,
Santa Clara, CA, February/March 2017. USENIX Association.

B. Debnath, S. Sengupta, and J. Li. ChunkStash: Speeding up inline storage deduplication using flash memory. In
Proceedings of the USENIX Annual Technical Conference, page 16, Boston, MA, USA, 2010. USENIX.

W. Dong, F. Douglis, K. Li, H. Patterson, S. Reddy, and P. Shilane. Tradeoffs in scalable data routing for deduplication
clusters. In Proceedings of the Ninth USENLX Conference on File and Storage Technologies (FAST ’11), pages 15-29, SAN
JOSE, CA, USA, 2011. USENIX.

F. Douglis, D. Bhardwaj, H. Qian, and P. Shilane. Content-aware load balancing for distributed backup. In Proceedings
of USENIX Large Installation System Administration Conference, pages 13-13, SAN Diego, CA, USA, 2011. USENIX.
A. El-Shimi, R. Kalach, A. Kumar, A. Oltean, J. Li, and S. Sengupta. Primary data deduplication—large scale study and
system design. In Proceedings of the USENIX Annual Technical Conference, pages 285-296, BOSTON, MA, USA, 2012.
USENIX.

Kave Eshghi, Mark Lillibridge, Deepavali Bhagwat, and Mark Watkins. Improving multi-node deduplication per-
formance for interleaved data via sticky-auction routing. Technical Report HPL-2015-77, HP Laboratories, 2015.
https://www.labs.hpe.com/techreports/2015/HPL-2015-77.pdf.

D. Frey, A. Kermarrec, and K. Kloudas. Probabilistic deduplication for cluster-based storage systems. In Proceedings of
the Symposium on Cloud Computing (SOCC), page 17, SAN Jose, CA, USA, 2012. ACM.

Fslhomes data set and tools, 2016. tracer.filesystems.org.

Min Fu, Dan Feng, Yu Hua, Xubin He, and Zuoning Chen. Accelerating restore and garbage collection in deduplication-
based backup systems via exploiting history information. In Proceedings of Annual Technical Conference, pages 181-192,
Philadelphia, PA, USA, 2014. USENIX.

Y. Fu, N. Xiao, X. Liao, and F. Liu. Application-aware client-side data reduction and encryption of personal data in
cloud backup services. Journal of Computer Science and Technology, 28(6):1012-1024, November 2013.

Yinjin Fu, Hong Jiang, and Nong Xiao. A Scalable Inline Cluster Deduplication Framework for Big Data Protection. In
Proceedings of International Conference on Middleware, pages 354-373, Montreal, Quebec, Canada, 2012. ACM.

A. George and B. Medha. Identifying trends in enterprise data protection systems. In USENIX Annual Technical
Conference, pages 151-164, SANTA CLARA, CA, USA, 2015. USENIX.

A. Gharaibeh, C. Constantinescu, M. Lu, A. Sharma, R. Routray, P. Sarkar, D. Pease, and M. Ripeanu. DedupT:
Deduplication for tape systems. In Proceedings of 30th Symposium on Mass Storage Systems and Technologies(MSST),
pages 1-11, SANTA CLARA, CA, USA, 2014. IEEE Computer Society.

Jhon Gratz and David Reinsel. The digital universe decade - are you ready? IDC White Paper, www.idc.com, 2010.
F. Guo and P. Efstathopoulos. Building a high-performance deduplication system. In Proceedings of the USENIX Annual
Technical Conference, pages 25-25, Portland, OR, USA, 2011. USENIX.

M. Jianting. A deduplication-based data archiving system. In Proceedings of the International Conference on Image,
Vision and Computing (ICIVC), pages 1-12, Shanghai, China, 2012. ACM.

K. Jin and E. Miller. The effectiveness of deduplication on virtual machine disk images. In Proceedings of the Israeli
Experimental Systems Conference (SYSTOR), page 7, Haifa, Israel, 2009. ACM.

R. Koller and R. Rangaswami. I/O deduplication: Utilizing content similarity to improve I/O performance. ACM
Transaction on Storage (TOS), 6(3):13, 2010.

M. Li, C. Qin, and P. Lee. Cdstore: Toward reliable, secure, and cost-efficient cloud storage via convergent dispersal. In
USENIX Annual Technical Conference, pages 111-124, SANTA CLARA, CA, USA, 2015. USENIX.

M. Lillibridge and K. Eshghi. Improving restore speed for backup systems that use inline chunk-based deduplication.
In Proceedings of the Eleventh USENIX Conference on File and Storage Technologies (FAST ’13), pages 183-197, SAN JOSE,
CA, USA, 2013. USENIX.

26

[29]

(30]
(31]

(32]

(38]

(39]

(40]

[41]

M. Lillibridge, K. Eshghi, D. Bhagwat, V. Deolalikar, G. Trezise, and P. Camble. Sparse indexing: Large scale, inline
deduplication using sampling and locality. In Proceedings of the Seventh USENIX Conference on File and Storage
Technologies (FAST °09), pages 111-123, SAN JOSE, CA, USA, 2009. USENIX.

X. Lin, F. Douglis, J. Li, X. Li, R. Ricci, S. Smaldone, and G. Wallace. Metadata considered harmful ... to deduplication.
In Proceedings of the 7th USENIX Conference on Hot Topics in Storage and File Systems, page 11, SANTA CLARA, CA,
USA, 2015. USENIX.

X. Lin, M. Hibler, E. Eide, and R. Ricci. Using deduplicating storage for efficient disk image deployment. In Proceedings
of IEEE International Conference on Software Testing, Verification and Validation, pages 1-14, Graz, Austria, 2015. IEEE
Computer Society.

M. Lu, D. Chambliss, J. Glider, and C. Constantinescu. Insights for data reduction in primary storage: A practical
analysis. In Proceedings of the Israeli Experimental Systems Conference (SYSTOR), page 14, Haifa, Israel, 2012. ACM.
D. Meister and A. Brinkmann. Multi-level comparison of data deduplication in a backup scenario. In Proceedings of the
Israeli Experimental Systems Conference (SYSTOR), 2009.

D. Meister and A. Brinkmann. dedupv1: Improving deduplication throughput using solid state drives (SSD). In
Proceedings of the MSST Conference, pages 1-6, Inline Village, NV, USA, 2010. IEEE Computer Society.

D. Meister, A. Brinkmann, and T. Suss. File recipe compression in data deduplication systems. In Proceedings of the
Eleventh USENIX Conference on File and Storage Technologies (FAST ’13), pages 175-182, SAN JOSE, CA, USA, 2013.
USENIX.

D. Meister, J. Kaiser, A. Brinkmann, T. Cortes, M. Kuhn, and J. Kunkel. A study on data deduplication in HPC storage
systems. In Proceedings of the International Conference on High Performance Computing, Networking, Storage and
Analysis (SC), page 7, Salt lake City, Utah, USA, 2012. IEEE Computer Society.

D. Meyer and W. Bolosky. A study of practical deduplication. ACM Transaction on Storage (TOS), 7(4):14, 2011.

N. Park and D. Lilja. Characterizing datasets for data deduplication in backup applications. In Proceedings of the IEEE
International Symposium on Workload Characterization (ISWC), pages 1-10, Atlanta, GA, USA, 2010. IEEE Computer
Society.

K. Srinivasan, T. Bisson, G. Goodson, and K. Voruganti. iDedup: Latency-aware, inline data deduplication for primary
storage. In Proceedings of the Tenth USENIX Conference on File and Storage Technologies (FAST ’12), 2012.

Zhen Sun, Geoff Kuenning, Sonam Mandal, Philip Shilane, Vasily Tarasov, Nong Xiao, and Erez Zadok. A long-term
user-centric analysis of deduplication patterns. In Proceedings of the 32nd International IEEE Symposium on Mass
Storage Systems and Technologies (MSST ’16), pages 1-7, Santa Clara, California, May 2016. IEEE.

Yujuan Tan, Dan Feng, Fangting Huang, and Zhichao Yan. Sort: A similarity-ownership based routing scheme to
improve data read performance for deduplication clusters. IJACT, 3(9):270-277, 2011.

V. Tarasov, A. Mudrankitony, W. Buik, P. Shilane, G. Kuenning, and E. Zadok. Generating realistic datasets for
deduplication analysis. In Proceedings of the USENIX Annual Technical Conference, pages 261-272, BOSTON, MA, USA,
2012. USENIX.

C. Ungureanu, B. Atkin, A. Aranya, S. Gokhale, S. Rago, G. Calkowski, C. Dubnicki, and A. Bohra. HydraFS: a
high-throughput file system for the HYDRAstor content-addressable storage system. In Proceedings of the Eighth
USENIX Conference on File and Storage Technologies (FAST ’10), pages 225-239, SAN JOSE, CA, USA, 2010. USENIX.
C. Vaughn, C. Miller, O. Ekenta, H. Sun, M. Bhadkamkar, P. Efstathopoulos, and E. Kardes. Soothsayer: Predicting
capacity usage in backup storage systems. In Proceedings of MASCOTS conference, pages 208—217, Atlanta, GA, USA,
2015. IEEE.

R. Villars, C. Olofson, and M. Eastwood. Big data: What it is and why you should care. A White Paper from
www.idc.com, June 2011.

G. Wallace, F. Douglis, H. Qian, P. Shilane, S. Smaldone, M. Chamness, and W. Hsu. Characteristics of backup workloads
in production systems. In Proceedings of the Tenth USENIX Conference on File and Storage Technologies (FAST ’12),
pages 33-48, SAN JOSE, CA, USA, 2012. USENIX.

J. Wei, H. Jiang, K. Zhou, and D. Feng. MAD2: A scalable high-throughput exact deduplication approach for network
backup services. In Proceedings of the MSST Conference, pages 1-14, Inline Village, NV, USA, 2010. IEEE Computer
Society.

W. Xia, H. Jiang, D. Feng, and Y. Hua. SiLo: A similarity-locality based near-exact deduplication scheme with low
RAM overhead and high throughput. In Proceedings of the USENIX Annual Technical Conference, pages 26-28, Portland,
OR, USA, 2011. USENIX.

T. Yang, H. Jiang, D. Feng, Z. Niu, K. Zhou, , and Y. Wan. DEBAR: A scalable high-performance de-duplication storage
system for backup and archiving. In Proceedings of the IEEE International Parallel & Distributed Processing Symposium
(IPDPS), pages 1-12, Atlanta, GA, USA, 2010. IEEE Computer Society.

27

[43] Y. Zhou, D. Feng, W. Xia, M. Fu, F. Huang, Y. Zhang, and C. Li. Secdep: A user-aware efficient fine-grained secure
dedupication scheme with multi-level key management. In Proceedings of 31th Symposium on Mass Storage Systems
and Technologies(MSST), pages 1-14, SANTA CLARA, CA, USA, 2015. IEEE Computer Society.

[44] B. Zhu, K. Li, and H. Patterson. Avoiding the Disk Bottleneck in the Data Domain Deduplication File System. In

Proceedings of the 6th USENIX Conference on File and Storage Technologies, pages 1-14, SAN JOSE, CA, USA, 2008.
USENIX.

28

