Janus: A Hybrid Scalable Multi-Representation
Cloud Datastore

Vaibhav Arora, Faisal Nawab, Divyakant Agrawal, Amr El Abbadi
Department of Computer Science,
University of California, Santa Barbara
{vaibhavarora, nawab, agrawal, amr}@cs.ucsb.edu

Abstract—Cloud-based data-intensive applications have to process high volumes of transactional and analytical requests on
large-scale data. Businesses base their decisions on the results of analytical requests, creating a need for real-time analytical
processing. We propose Janus, a hybrid scalable cloud datastore, which enables the efficient execution of diverse workloads by storing
data in different representations. Janus manages big datasets in the context of datacenters, thus supporting scaling out by partitioning
the data across multiple servers. This requires Janus to efficiently support distributed transactions. In order to support the different
datacenter requirements, Janus also allows diverse partitioning strategies for the different representations. Janus proposes a novel
data movement pipeline to continuously ensure up to date data between the different representations. Unlike existing
multi-representation storage systems and Change Data Capture (CDC) pipelines, the data movement pipeline in Janus supports
partitioning and handles both distributed transactions and diverse partitioning strategies. In this paper, we focus on supporting Online
Transaction Processing (OLTP) and Online Analytical Processing (OLAP) workloads, and hence use row and column-oriented
representations, which are the most efficient representations for these workloads. Our evaluations over Amazon AWS illustrate that
Janus can provide real-time analytical results, in addition to processing high-throughput transactional workloads.

Index Terms—Real-time analytics, Hybrid transaction and analytical processing, Data partitioning, Cloud datastores, Data movement

pipeline

INTRODUCTION

The cloud computing paradigm has been widely
adopted in recent years. It provides a cost effective solu-
tion for deploying new applications, removing the upfront
hardware cost as well as the burden of system maintenance.
The cloud computing model allows resources to be allocated
on demand and provides the ability to elastically scale-out
processing.

With the advent of the cloud, a plethora of web ap-
plications have also emerged. Most of these applications
have to support both high frequencies of updates as well as
diverse real-time analytics on data. Managing and analyzing
advertising click streams, retail applications employing Just-
in-time inventory management and IoT applications moni-
toring health data are some scenarios where insights into
data are needed in real-time. In all the examples mentioned,
real-time analytics must be considered while supporting
high ingestion rates of inserts, updates and deletes. Appli-
cations base their decisions on analytical operations, using
insights from historical data as feedback into the system.
The need for a tighter feedback loop between updates and
analytics has created the demand for fast real time analytical
processing [16].

Owing to the different characteristics of updates and
analytics, many systems use different data representations
to serve them. Traditional Online transaction processing
(OLTP) systems store tuples (or rows) together, referred to
as row-oriented design. In contrast, column stores have been
widely used for Online Analytical Processing (OLAP) work-
loads [14], [52]. Column-oriented design is beneficial for

analytical queries due to the savings in disk bandwidth and
storage cost, owing to compression. Additionally, column
stores provides the ability to perform block iterations and
late materialization [17]. Graph-based storage engines have
been used by different systems for both transactional [9] and
analytical processing [3] of networked data. Storing copies
of data in different representations helps in performing the
update and analytics operations on the representations most
suited for them. One copy of the data can be designated as
update-oriented and others as read-oriented. Some systems
store data in both row and column formats to take advan-
tage of both representations [20], [43], [47].

A major challenge for cloud-based data-intensive appli-
cations is the handling of large-scale data. Cloud datas-
tores [22], [33] have adopted scale-out techniques as a means
to support large-scale data. Data partitioning is a widely
used technique for supporting scale-out, where different
partitions are allocated to different servers. Hence, the data
processing architectures in cloud settings need to support
partitioning. Partitions are organized to limit the amount of
cross-partition operations. But in cases where partitioning is
not perfect, cross-partition operations have to be supported.

To employ multiple data representations in a cloud
setting, data present in different representations needs to
be partitioned. Due to the diverse nature of the represen-
tations and the operations being executed on them, dif-
ferent partitioning strategies might suit these representa-
tions. For example, an e-commerce application might want
to horizontally partition the row-oriented customer data
across regions, to efficiently process transactional requests.
Whereas, for supporting aggregate queries, like calculating

the average revenue earned from a product across regions,
vertically partitioning the column-oriented attributes might
be a better choice.

A data movement pipeline is needed for moving the data
between the update-oriented and read-oriented representa-
tions. Designing a data movement pipeline that provides
real-time analytics in such a large-scale partitioned environ-
ment has many challenges. One of the major challenges is
to maintain freshness of analytical results. Data freshness
requirements mean that traditional ETL (Extract, transform
and load) pipelines, used to move data hourly or daily
between databases and data warehouses, are not a viable
solution. Another challenge is to maintain consistency of
analytical results. The ingestion of atomic updates in one
representation should be atomically observed in other rep-
resentations. Suppose a distributed transaction modifies an
attribute in two different partitions, residing on two differ-
ent servers. Any analytical query executing an aggregate
operation on the attribute at the read-oriented representa-
tion should not observe the partial effect of this distributed
transaction, even in the presence of differently partitioned
representations. Apart from maintaining data consistency,
the data movement pipeline also has to ensure that the write
throughput is not affected while moving data. Since we
target a cloud setting, the data movement pipeline should
also be resistant to failures.

We propose and design a hybrid partitioned cloud data-
store, Janus!, that supports diverse workloads. It maintains
copies of data in different representations. One represen-
tation supports transactional updates and the other repre-
sentations are designated for analytics, and are read-only.
Janus handles the execution of distributed transactions to
ensure transactional consistency of operations over multiple
partitions. To support different characteristics of diverse
representations, Janus allows different partitioning strate-
gies for the different representations.

Janus proposes a data movement pipeline, which ships
data from each update-oriented partition in batches. These
batches are then applied at the corresponding read-oriented
partitions. Unlike existing hybrid representation storage
systems [39], [43], [47] and Change Data Capture (CDC)
pipelines [31], [41], the data movement pipeline in Janus
supports partitioning and handles both distributed transac-
tions and different partitioning strategies. The capturing of
changes as batches at update-oriented partitions is closely
integrated with the concurrency-control mechanism and
the distributed commit protocol. We devise a graph-based
dependency management algorithm for applying batches from
the update-oriented partitions, across to the read-oriented
partitions. The end-to-end pipeline to move the data, across
the partitioned representations, is developed to ensure no
disruption in transactional execution while resulting in min-
imal delays in the incorporation of updates into the read-
oriented partitions.

In this work, we build Janus to support OLTP and OLAP
workloads. Many of the proposed solutions for support-
ing both OLTP and OLAP workloads execute on a single
server [21], [37], [43]. These solutions do not scale out,

1. Janus is a two-headed ancient Roman god of transitions with one
head looking to the past and another to the future

2

which is an essential requirement for a cloud datastore. The
solutions which scale-out [26], [49] use a single partitioning
strategy for both transactional and analytical workloads.
Furthermore, most of these systems [35], [37], [40], [49] are
tailored to a main-memory design, which might not be cost-
effective for many cloud applications. As compared to a
disk based design, a main-memory design does not support
elastically growing and shrinking the memory footprint.
Janus scales-out, allows different partitioning strategies for
both workloads and can be integrated with both disk-based
and main-memory designs.

Based on the OLTP and OLAP workloads, we use
row and column-oriented representations as our update-
oriented and read-oriented representations respectively. In
Janus, transactional requests are executed on the row rep-
resentation and analytical queries are performed on the
column representation. All committed transactional updates
are continuously shipped from the row partitions and con-
sistently merged at the corresponding column partitions.

Our contributions can be summarized as follows:

e We propose a partitioned hybrid representation
store, Janus, for handling diverse workloads in cloud
settings. We design a data movement pipeline, which
caters to partitioned data, and enables real-time ana-
lytics.

e We focus on OLTP and OLAP workloads and deploy
Janus with row and column representations. The
batching scheme within Janus is closely integrated
with the concurrency control and distributed commit
protocol at the row partitions to ensure no disrup-
tion in transactional throughput. The batch creation
scheme is also integrated with the write-ahead trans-
actional log at the row partitions, and is recoverable
from failures.

o The data-movement pipeline employs a graph-based
dependency management algorithm to ensure that
all updates are consistently merged at the read-
oriented representation, even in the presence of
distributed transactions and different partitioning
strategies.

e We provide an evaluation built over two open source
systems, MySQL and MonetDB, and performed
over Amazon AWS cloud platform. The evaluation
demonstrates that Janus is capable of providing real-
time analytical results while scaling-out, without af-
fecting transactional throughput.

We give an outline of the design in Section 2. Section 3
discusses the integration of row and column partitions to
support OLTP and OLAP workloads in Janus. Section 4
describes batch creation and the shipping mechanism dur-
ing transaction processing in Janus. Section 5 discusses the
technique to consistently merge the transactional changes to
column partitions. We then present our evaluation results in
Section 6 and discuss the prior work in Section 7. Section 8
discusses future work and the paper concludes in Section 9.

THE JANUS DESIGN

We now provide an overview of Janus’s design, which
enables the efficient execution of both transactional updates
and consistent read-only analytical operations, at scale. Janus

Engine Servers ‘ |

Transactional
Updates

Ry:By, B, R2 By,B, RaBy B,

Execunon

Analyﬂcal Queries
(Read -Only)

R1:By, Ry:By, Ryt 31 Ri:By, Ry:By, Ry:By

Deita a(each column partition

Batched Cnmmrls at each row partition

Partitioned Row Representation
(Write-Oriented)

Partitioned Columnar Representation
(Read-Oriented)

Fig. 1: Janus Design

provides serializable isolation for transactional updates.
Janus also provides the guarantee that any analytical query
would not observe the partial affect of any transactional
update and would observe the effect of the transactions in
their serialization order. Janus stores multiple copies of data
in different representations. We divide these representations
into update-oriented and read-oriented. One of the repre-
sentations is used for updates and the others are read-only.
Each of these representations is partitioned using a strategy
appropriate for the operations supported, i.e. update or
analytics. In general, these partitions can be row, column,
graph etc. We briefly discuss the major components of Janus.
The system design is illustrated in the Figure 1.

Execution Engine: Application clients send requests
to the execution engine which then determines whether
the request corresponds to an update transaction or an
analytical query. Transactional update requests are routed
to the update-oriented representation and the read-only
analytical queries are sent to the read-oriented represen-
tation, as shown in Figure 1. The execution engine also
maintains the metadata pertaining to the location of data
items, which is used to route queries to the appropriate
partitions. The execution engine is a scalable middleware
layer, similar to ones used in large-scale partitioned and
replicated environments [22], [33]. Like in [33], the execution
engine is scaled by replicating the partitioning information
on multiple servers, and using these multiple execution
engine servers to route operations to appropriate partitions.

Update-Oriented Representation: Janus stores a copy of
the data in an update-oriented representation. The update-
oriented representation supports single-partition as well as
cross-partition transactions. In Figure 1, Janus uses row-wise
storage as update-oriented and splits the data into three
partitions, Ry, R2 and Rs3. When a transaction commits, the
changes made by the transaction are stored in an in-memory
append only structure, referred to as a batch. A batch stores
changes made by committed transactions at an update-
oriented partition and is used to commit these changes at the
read-oriented representation. The methodology for creating
consistent batches is described in the Section 4.1 and 4.3.

Read-Oriented Representations: Janus also stores data
in other representations, which are designated as read-only.
Every partition of a read-oriented representation consists
of a persistent image and a delta of changes. The delta
constitutes of incoming batches from the update-oriented

3

representation which are yet to be ingested into the parti-
tion. In Figure 1, Janus uses column storage as read-oriented
and splits a copy of the data into two partitions, C; and C5.
In the Figure, the row partitions and the column partitions
use different partitioning strategies, and the number of row
partitions (3) is different from the number of column parti-
tions (2). Three batches arriving at C'; are represented by
Ry:B1, Ro:B; and R3:B;. A read-oriented partition receives
batches from all the update-oriented partitions that have
changes mapping to that particular read-oriented partition.
Updates are made to a read-oriented partition by applying
the batches to the persistent image of that partition. A graph
dependency management algorithm is used for applying the
batches, ensuring that the consistency of data is preserved
(Section 5.1).

HYBRID PARTITIONED Row AND COLUMN DATA
MANAGEMENT

In this work, we focus on designing an instance of Janus
to support OLTP and OLAP workloads. Since, row and
column representations have been widely used for OLTP
and OLAP workloads [17], [47], we choose these representa-
tions as update-oriented and read-oriented representations
respectively. First, we discuss the partitioning of data at both
the representations. Then, we explain transaction processing
(Section 4) and the ingestion of the changes at the read-
oriented partitions (Section 5). Although the techniques are
presented for row and column, they can be applied to
different representations, chosen based on the workloads
being handled.

Partitioning: Janus allows applications to partition their
data. Both the row and the corresponding column data
can be partitioned. The row-oriented data is divided into n
partitions, %1, Ry ... R,, and the column data is partitioned
into m partitions, C, Cy ... C),. The partitioning strategy
of the columns may or may not correspond to that of
the rows. Janus provides this flexibility because different
applications have varied characteristics governing the ana-
lytical workloads. For example, a multi-tenant data platform
will partition the data across the tenant boundaries. Hence,
storing the column version of each partition is suitable,
as there would not be a need for analytical operations on
columns across different partitions. Whereas an e-commerce
store might store customers in various regions in different
row partitions. In such cases, there might be a requirement
to perform analytics on columns across the row partitions
to collect aggregate statistics across regions. Therefore, a
partitioning strategy which stores some of the columns
entirely in a single column partition (vertical partitioning)
may be more efficient. Two different instances of partition
mapping schemes that can be employed are:

e The column partitions can be partitioned corre-
sponding to the row partitions. There would be n
column partitions, Cj...C;...C,, where C; is the
columnar version of the row partition, R;, as rep-
resented in Figure 2(a).

e Store the entire column together in a separate parti-
tion. This would lead to r column partitions, where r
is the number of attributes in the partitioned table.
Each column partition, C; would have a column

EXA EXA | EXA | »

Row Partitions Column Partitions

(a) Partitioning - Case 1

xl
X
X3
Xy
Xs
X5

EXA | EXA | EXA | »

Row Partitions Column Partitions

(b) Partitioning - Case 2
Fig. 2: Diverse Partitioning Strategies

stored in its entirety, containing data from across row
partitions, as shown in Figure 2(b).

TRANSACTIONAL PROCESSING

Janus handles both OLTP and OLAP workloads. OLTP
operations are executed on the row partitions and column
partitions are continuously updated by bulk committing the
results of the updates as batches. The read-only analytical
queries are then executed at column partitions.

When a transaction 7" arrives at the execution engine, it
looks up the metadata to determine the partitions involved
in the transaction. The transaction is then sent to the cor-
responding partitions. Each row partition employs a local
concurrency control mechanism to manage the concurrent
execution of transactions. In this specific implementation of
Janus, each row partition uses strong strict two-phase lock-
ing (2PL) as the concurrency control method [24]. However,
Janus can be adapted to other commit-order preserving seri-
alizable concurrency control mechanisms. The concurrency
control protocol needs to be commit-order preserving to
ensure the correctness of the batch generation scheme. In
addition, distributed transactions employ two-phase com-
mit (2PC) for atomic commitment across partitions. When a
transaction commits, the changes made by the transaction
at a partition are stored in a batch. We first describe the
scheme for creating a batch for single-partition transactions.
Then, we discuss the support for distributed transactions
in Section 4.3 and describe the mechanism for sending the
batches to the column partitions in Section 4.4.

Consistent Batch Generation for Single Partition Trans-
actions

Transactional changes are stored in batches at every row
partition. In this subsection, we consider transactions that
are restricted to a single-row partition. A batch is an in-
memory append only structure and comprises a set of
transactional changes executed at a row partition. The batch
structure is analogous to the partial transactional redo com-
mand log used for recovery by main memory databases.
A tag is associated with each batch, indicating whether the
batch is in an active or closed state. Each row partition has

4

only one active batch at any instant. Once an active batch
is closed, it is sent to the column-oriented representation
to ingest the changes present in the batch. Each batch is
also associated with a version number which determines the
order of the batch, as compared to other batches from the
same partition. The batches are continuously shipped and
applied to the corresponding column partitions to keep
them updated. The size of the batch shipped is a trade-
off between maximizing the data freshness of analytical
results and restricting the overhead involved in generating,
shipping and applying the batches. To manage the size of
the batch, batches are shipped after a pre-defined period.
This period is named batch shipping frequency. The batch
generation scheme ensures that all transactions executed at
the row partitions are captured and the serialization order of
such transactions is maintained. Each batch is also assigned
a unique id, referred to as batch-id. The batch-id is a combi-
nation of the row partition and the batch version number.
A batch with batch-id R;:B; refers to changes included in
batch with version number B; from row partition R;. In
Figure 1, ?1:B is a closed batch and has been shipped to the
column representation. Whereas, R;:B is an active batch
and any transactional changes done at R, will be appended
to R1:B2.

On a commit, all the write operations of the transaction
are atomically appended to the batch. All the changes at a
particular row partition resulting from a single transaction
are stored in the same batch. After a pre-set threshold, the
batch is marked closed and a new batch is created and marked
active. Transactions which commit after the old batch is
closed are added to the new batch. The switch from the old
batch to the new batch is done atomically. The new batch
is assigned a version number, which is one more than the
version number of the closed batch. Once a batch is closed it
is shipped to the column partitions. Closed batches at a row
partition can be discarded once the corresponding column
partitions acknowledge its receipt.

Batch generation is integrated with the existing transac-
tional log mechanism for handling failures. When a batch is
closed, an additional record is written to the transactional
log, noting the switch to the new batch. During the recovery
phase, the batch generation scheme recovers the state of the
last active batch before the crash. In addition to the existing
recovery operations, the record marking the closure of the
last batch is noted and is used to reconstruct the state of the
active batch before the crash. Transactions with a commit
record after the record marking the closed batch are added
to the current active batch.

Batch Properties

The batching scheme ensures several invariant proper-
ties, needed for generating consistent batches. We now list
the properties and argue that the batching scheme provides
these guarantees.

Property 1. A closed batch only contains operations from
committed transactions and each transaction is included
in its entirety.

As each transaction is added to an active batch once it is
committed, this ensures that only committed transactions
are present in a batch. When a transaction is committed, all
its changes are added to a batch. Thus, transactional changes

are present in their entirety for every transaction. This
property ensures that all transactional updates performed
at the row partitions are included in the batches.

Property 2. For any two transactions 77 and 75 present in
batch B;, if T} is serialized before Ty, T7 — 15, then T}
is present before 75 in B;.

Transactions are appended to a batch at commit. So, the
order in which transactions are appended to a batch follows
the commit order of transactions. This case is true if the
concurrency control protocol is commit-order preserving se-
rializable. As we are using strong strict 2PL for concurrency
control, this condition is true in Janus. Hence, if T} — T5,
then 77 would have been appended to B; before 15, and
as a batch is append-only, 77 will be present before T3 in
B;. This invariant establishes that the serialization order is
preserved while appending transactions to a batch.

Property 3. For any two transactions 77 and 75, where T} is
serialized before T, T1 — 15, then if Ty € B;, where B;
is a closed or an active batch, then either T € B; too or
Ty € Bj, where B; is closed and V' (B;) <V (B;), where
V(B;) is the version number of batch B;.

The order in which transactions are appended to batches
follows the commit order of transactions. As T} is serial-
ized before T5, it either would have been applied to the
same batch or an earlier batch. As batch version numbers
increase over time, if T} was applied to an earlier batch,
the corresponding batch would have a version number less
than version number of batch B;. This condition guarantees
that batch version order corresponds to serialization order
of transactions.

Property 4. If a transaction T; belongs to a batch B; before
a failure, then after recovery from failure, T; will still be
present in batch ;.

When a transaction commits, it is written to an active batch.
If a failure is encountered, the active batch is reconstructed
from the write-ahead log during recovery, by appending the
update records of every transaction with a commit record
after the record indicating the closure of the old batch. Since
changes corresponding to any committed transaction 7; are
present in the write-ahead log, any transaction 7; which
belongs to the active batch B; before the failure, will also
belong to the active B; after recovery. All the batches which
have been closed have either been already shipped or they
are recovered using the same protocol, hence preserving the
invariant that each transaction is in the same batch as it was
before the failure. This property ensures that batches are
correctly recovered after failure.

These properties guarantee that the batching scheme
generates consistent batches comprising all transactional
changes at a row partition, even in the presence of failures.

Distributed Transaction Support

To enable operations accessing data across partitions,
Janus provides the ability to perform distributed transac-
tions. Janus employs the two-phase commit (2PC) protocol
for executing distributed transactions. The execution engine
acts as a coordinator of 2PC. When the transaction commits,
updates of the transaction corresponding to a row partition,
are stored in the batch at that partition. Hence, transactional

5

changes of a distributed transaction may be present in
multiple batches across different partitions. Furthermore,
since the partitioning scheme supported at the row and
column representation might be different, changes at a
single column partition might correspond to batches from
multiple row partitions. Consider a distributed transaction,
dt, which changes a column attribute A in tuple x at R;
and y at I%5 in Figure 2(b). The column representation uses
the partitioning strategy illustrated in the figure, leading
to entire column A being stored in column partition C.
Suppose the changes done by dt are present in R;:5B; and
Ry:Bs. Since, the changes of dt are present across different
batches, the effect of these batches should be atomically
visible. Hence, the algorithm for creating the batches and
applying them to the column partitions needs to be carefully
designed to guarantee the consistency of analytical results.

We need a method to identify the batch dependencies
at the column partitions. For capturing these dependencies,
metadata is added to each batch, which provides infor-
mation about the distributed transactions present in the
particular batch. The metadata includes the batch-ids of
the set of batches from different row partitions, involved
in distributed transactions present in the given batch. Janus
integrates the bookkeeping of the metadata with the two-
phase commit protocol. The needed metadata is piggy-
backed during the various phases of two-phase commit of a
distributed transaction.

e Prepare Phase. During the prepare phase of two-
phase commit (2PC) of any distributed transaction,
each participant row partition piggybacks the infor-
mation about the batch version number to the re-
sponse of the prepare message.

e Commit Phase. Subsequently, if the transaction is
committed, the 2PC coordinator piggybacks the
batch-ids of all the batches having changes pertain-
ing to the distributed transaction to each row parti-
tion, along with commit status information.

When a distributed transaction is added to a batch, the
set of batches with changes pertaining to the transaction
(sent by the 2PC coordinator along with the commit status),
are added to the metadata of the batch. Each row partition
ensures that the current active batch is not closed between
sending the batch-id to the 2PC coordinator and the addition
of such a transaction to the corresponding batch. In the
example introduced earlier, updates and inserts correspond-
ing to the distributed transaction dt are present in batches,
R1:B1 and R5:Bs. Then, Ry:Bs is added to the metadata of
batch R;:B7 and vice-verse. This added metadata is used to
ensure that the data in column partitions remains consistent,
as we describe in Section 5.1.

Batch Shipping

After a batch is closed, it is shipped to the column
partitions. Batches from each row partition are sent to all the
corresponding column partitions. This is depicted by R;:B;,
R9:By, R3:B; at column partition C; in Figure 1. Each
row partition contacts the execution engine to retrieve the
metadata pertaining to the column partitions corresponding
to the row partition, based on the partitioning strategies
employed. This metadata is cached at the partitions. The

Delta at the column partition

-~
R1:By, Ry:B3, Ry:By Ry:By,
Ri:Bj, Ry:Bs

Column Partition
(Read-Oriented)

Shipped Batches from
Row Partitions

-

Fig. 3: A Column Partition

batches can be pre-filtered by dividing them into sub-batches
corresponding to the different column partitions before
shipping the batches. Alternatively, in an approach we name
as post-filtering, the entire batch is sent to all the correspond-
ing column partitions. Each column partition only applies
the changes which correspond to that partition.

Batch Filtering. The decision of whether to post-filter or
pre-filter can be based on a number of factors. The overall
filtering and batch shipping cost can be divided into two
parts: computation and data transfer. The computation cost
is a function of cpus at the row and column partitions. In
pre-filtering, the computation cost of filtering falls upon row
partitions. In post-filtering, the computation cost is divided
among the column partitions. The data transfer cost is a
function of the available network bandwidth between row
and column partition servers. As the average number of
column partitions mapped from a row partition increase, the
gap between the bandwidth consumed during post-filtering
and that consumed in pre-filtering, increases. One the other
hand, the post-filtering approach has the advantage of of-
floading the filtering of batches from row partitions. As
Janus aims to minimize any affect on transactional through-
put, Janus employs post-filtering.

Batching Threshold. A batch is closed after a fixed dura-
tion known as batch shipping frequency. The shipping fre-
quency provides a time-based threshold to restrict the size
of the batch and to ensure that batches are regularly shipped
and ingested at the column partitions. Although batch ship-
ping frequency provides a simple threshold, which can be
easily adjusted, it has some drawbacks. Since, a shipping
frequency only provides a time-based mechanism, it can
lead to uneven batch sizes. If long running transactions with
a large number of updates are present in the workload or
the workload is write-heavy, this can lead to an increase
in the batch size (in terms of the number of updates),
which can increase the time to ingest batches at the column
partitions, and thus resulting in a larger delay for an update
to be reflected at the columnar representation. To avoid
this bottleneck, we add the ability to combine a time-based
threshold with a threshold on the number of updates in
a batch (referred to as batch shipping update-threshold). 1f
the number of updates in the batch goes above a certain
threshold, then the batch can be closed and shipped to the
column partition without waiting for the batch shipping
frequency duration.

SUPPORTING ANALYTICAL PROCESSING

Janus executes read-only analytical queries on the col-
umn representation. In Section 4, we discussed the pro-
tocol for creating batches containing transactional changes

6

occurring at row partitions. These batches are then sent to
column representation. Each column partition consists of
a persistent column-oriented copy and a delta as shown
in Figure 3. The delta consists of incoming batches from
different row partitions mapping to the particular column
partition. We describe the protocol for merging the incoming
batches to the column partition to guarantee that a read-
only query accessing any single column partition will be
consistent, even in the presence of distributed transactions
at the row partitions. We then provide an extension to
guarantee the consistency of analytical queries spanning
multiple column partitions. Janus ensures that any analytical

query:

o Observes the serialization order of transactions exe-
cuted on the row-oriented representation
e Does not observe the partial effect of any transaction

As analytical queries can be long running, they are executed
on a consistent snapshot of the data.

Consistent Single Column Partition Analytical Opera-
tions

If an incoming batch from a row partition does not have
any change corresponding to a distributed transaction, then
it can be applied atomically to a column partition. This
ensures that analytical operations will observe the effect
of each transaction present in the batch in its entirety. The
update operations in an incoming batch are grouped as a
single transaction. The transaction is then executed using
the concurrency control scheme at the column partition.
Applying the batch as a single transaction ensures that all
the changes in the batch are observed atomically. Batches
from each row partition are ingested in order of their ver-
sion numbers. As Janus ensures that each analytical query
observes a consistent snapshot of the data, any index on
the column partition will be updated synchronously with
the ingestion of the batch. This mechanism ensures that the
serialization order of transactions executed at a single row
partition is maintained at the column partition.

If distributed transactions are present in the workload
and the row and column partitions are not aligned, then the
changes from a distributed transaction can arrive in batches
from different row partitions, as described in Section 4.3.
This may lead to analytical operations not being consistent.
Continuing with the example from Section 4.3, the changes
done by dt are present in [?1:B1 and Ry:Bs. R;:B; includes
changes to column A at tuple x, whereas Ry:By includes
changes to column A at tuple y. Consider the scenario where
we atomically apply R;:5; to the column partition and then
execute an aggregate query on column A involving tuple z
and y, before applying Rs:Bs. The result of such a query
will be inconsistent as it would include partial changes from
transaction dt. Hence, batches with partial changes from
distributed transactions must be ingested atomically.

To ensure the consistency of analytical operations in
the presence of distributed transactions and different par-
titioning strategies, changes are ingested to the column
partitions by a graph-based dependency management algorithm.
The presence of distributed transactions leads to depen-
dencies across batches from different row partitions. Such
batch dependencies are included in the metadata of each

. o ; —_——
R1. Batch-order
dependency
—
Distributed
Transaction
dependency

Rs:

= Batch R5:B,

Fig. 4: Batch Dependency Graph

batch (Section 4.3). At each column partition, the batch
dependencies are modeled as a directed graph, referred to as
the batch dependency graph. As described earlier, each batch
has a unique id. The id of the batch is a combination of
the row partition id and the batch version number, which
guarantees its uniqueness. An incoming batch, with an id
«, is represented as a node with outgoing and incoming
edges. An incoming edge refers to a batch upon which batch
a depends on. Whereas, outgoing edges refer to the other
batches dependent on batch a. The dependencies between
the batches can be classified in two categories. Apart from
the dependencies introduced by distributed transactions,
referred to as distributed transaction dependency, each batch
from a particular row partition is also dependent on the pre-
vious batch from the same row partition. This dependency is
referred to as batch-order dependency and is added to capture
the condition that batches from any particular row partition
are ingested in their batch-id order. An example of a batch
dependency graph at a particular column partition is shown
in Figure 4. In the example shown in the figure, batch with id
R;:B; is dependent on batch with id R»:B5 and vice-verse.
This is a dependency arising out of a distributed transaction,
i.e. a distributed transaction dependency. Batch R;:B; is
dependent on R;:B; but not vice-verse, which represents
a batch-order dependency. This dependency ensures that
batch R;:B> can not be ingested before the batch R;:B5;.

Any batch can only be applied to the column partition
when all its dependencies are satisfied. Batch dependencies
are represented by the incoming edges of the node. This
condition implies that a batch can only be ingested either
after all the batches it depends on are ingested or it can
be ingested atomically with dependent batches. Given this
condition, finding a set of batches to apply at the column
partitions is equivalent to finding strongly connected com-
ponents (SCC) in the batch dependency graph. Such a SCC
should not have any incoming edge connected to any node
outside the SCC. This ensures that any batch does not
have any dependency apart from the batches in the SCC.
Batches in such a SCC are then atomically ingested into the
column partition. All the nodes of the strongly connected
component can then be deleted from the batch dependency
graph. In the Figure 4, batches R;:B;, Ry:By, R3:B; form
a strongly connected component, which will be ingested
atomically after the ingestion of batch Ry:B;. We implement
the detection of SCC in the batch dependency graph using
the union-find data structure [30].

The batch ingestion scheme also handles crash failures
of column partitions. On ingestion of a SCC, the column
partition also persists the batch-ids ingested corresponding
to the row partitions it maps too. As noted in Section 4.1,

7

a row partition only deletes a batch once it receives an ac-
knowledgment from the corresponding column partition(s).
The acknowledgement is only sent after the batch has been
ingested at the column partition. On recovery from a crash, a
column partition informs the corresponding row partitions
of the last batch-ids ingested. The row partitions will then
start sending the batches ordered after the last batch-id
ingested. As the batch dependency graph at the column par-
tition comprises the active batches, it will be reconstructed
when the row partitions start sending the batches which
have not been ingested at the column partition. Since, we
guarantee that only ingested batches are acknowledged, row
partitions will have all the batches which have not been
ingested. Hence, even on crash failures, no batches will be
missed and the batches will be ingested in order.

Supporting Multi Column Partition Analytical Operations

The graph-based dependency management algorithm
ensures that any analytical query accessing a single column
partition will return consistent results. We now provide
an extension to support multi column partition read-only
queries. A query which accesses data at multiple column
partitions, might access an inconsistent snapshot if a batch
from a row partition has only been ingested at some of the
column partitions. Consider that a transaction, ¢, updates
columns A in tuple z and column B in tuple y at R;.
Suppose, the column representation uses the partitioning
strategy shown in Figure 2(b), where column A is stored
in column partition C; for both z and y and column B
is stored in Cs. Updates from transaction ¢ are added to
R;:B;. Now, consider a query which calculates an aggregate
on column A with a select condition on column B. If the
batch R;:B; is only ingested at one of the column partitions,
C}, then the result of the query would be inconsistent.
An inconsistency could also occur even if partitions are
aligned but distributed transactions are present. Consider
the distributed transaction dt, from Section 4.3. The changes
done by dt are present in [?1:B1 and R»:B5. R;:B; includes
changes to column A at tuple x, whereas Ry:By includes
changes to column A at tuple y. Now, suppose that column
partitions use the partitioning strategy in Figure 2(a). Then
R1:B7 would be sent to C; and Rs:B> would be sent to Cs.
Any query executing at both C; and C5 should atomically
observe the changes in these batches.

We design a multiversioning scheme and combine it
with the graph-based dependency management to ensure
the efficient execution of consistent multi column partition
analytical operations. Each column partition updates its
state by ingesting changes from the row partitions, using the
graph dependency algorithm introduced in Section 5.1. Each
ingestion leads to the creation of a new version. A column
partition can be represented in terms of row partitions,
that map to the column partition. A column partition is
represented as a version vector of batch versions from these
row partitions. Suppose column partition C; maps to row
partitions, I?; and Ry and ingests batches I?1:B3 and Ry:B>
to create a new version. Then, the new version at C; can
be represented as the version vector: (B3, Bs). Each version
of the data at the column partition has a vector, known as
version vector tag associated to it. This version vector tag is
used to compare the recency of the versions. The entries of

the version vector tag of the ingested version comprise the
batch version numbers corresponding to the row partitions
that map to the column partition. Among two versions
of data at a column partition, the version with a higher
version vector tag is the newer version. The version vector
tag comparison is based on the corresponding batch version
numbers, which comprise the entries of the version vector
tag. The information about the creation of each version is
sent to the execution engine.

For each multi-column partition query, the execution
engine determines the latest compatible version at each
column partition involved in the query. When a multi-
column partition query arrives, the execution engine first
determines the column partitions involved in the query.
The execution engine then determines the version with the
most recent version vector tag, which corresponds to the
latest ingested batch versions of all the corresponding row
partitions. If some of the column partitions involved in the
query receive data from a common subset of row partitions,
then for each such row partition, we include the latest
common batch version ingested at the column partitions.
For example, suppose the query involves column partition
Ch and (5. C; maps to Ry and Ry and Cy maps to Rs.
We determine the most recent batch version of R; at (4,
and the most recent version corresponding to Ry, present
at both C; and (5. Then, using the batch dependency
metadata defined in Section 4.3, the latest version vector
tag is determined, with the condition that the batch version
entry (in the latest version vector tag) for each mapping
row partition, satisfies all the batch dependencies. Suppose
(B3, By) is the most recent version vector tag corresponding
to the column partitions C; and C. The batch versions are
then iterated to find a version vector tag equal to or older
than the tag, (Bs, Bs), which satisfies the dependencies of
all batches version entries involved. Now suppose, [%1:B3
was dependent on Ry:B3, then the dependencies would be
checked with the version vector tag (B2, Bz). This process
continues until a version vector tag is found that satisfies all
the dependencies. At each column partition involved in the
multi-column partition query, the query is then executed on
the version corresponding to the found version vector tag.
By ensuring that the batch dependencies are satisfied across
column partitions, Janus guarantees that any multi-column
partition query accesses a consistent version of the data.

Since this scheme can result in many versions, there is a
background process which garbage collects older versions.
The background job is also triggered by the execution en-
gine, since it tracks the batch dependencies and versions
maintained at each column partition. The execution engine
maintains the global version of the batch dependency graph.
When a Strongly Connected Component (SCC) in the graph
is ingested at all the corresponding column partitions, then
the versions corresponding to older batches can be garbage
collected at all those column partitions. The ingestion of a
SCC of the batch dependency graph signifies that a newer
version (with a higher version vector tag) is available at all
the dependent column partitions and all the dependencies
of the newer version are satisfied. This is precisely the
condition for using a particular version for an analytical
query. The presence of such a version at the column partition
implies that query would never be scheduled on a older

8

version. Hence, older versions at the column partitions can
be garbage collected. Suppose R;:Bs and Ry:B5 form a SCC
in the batch dependency graph. When batches 121:B; and
Ry:DBs are ingested at all corresponding column partitions,
then any version at a column partition with a version vector
tag smaller than (B, Bs), can be garbage collected.

As the batch ingestion is handled independently by each
column partition, no special recovery needs to be employed
for multi-column partition queries. Each column partition
recovers independently from crash failures. The multiver-
sioning scheme determining the compatible version for a
query only checks the ingested versions, and is independent
of the recovery and ingestion mechanisms.

EVALUATION

Janus is evaluated using a transactional YCSB bench-
mark. We focus on measuring data staleness at column
partitions and evaluating the impact of batching scheme
on transactional throughput. First, we briefly describe the
benchmark and then give information about the experi-
mental setup, baseline and metrics collected during the
experiments.

Benchmark description

We design a benchmark, which is an extension of T-
YCSB (Transactional YCSB) [32]. Apart from adding the
ability to invoke transactions, the benchmark is adapted
to a partitioning environment and can invoke a specified
percentage of distributed transactions. The Yahoo Cloud
Serving Benchmark (YCSB) [28] is a benchmark for evaluat-
ing different cloud datastores. YCSB sends single key-value
read and write operations to the datastore. The workloads
generated by the benchmark sends multiple such operations
combined as transactions. Each transaction consists of a
begin operation followed by multiple read and write opera-
tions, followed by a request to commit the transaction. Each
operation of a transaction is invoked as a blocking opera-
tion, i.e, the client thread blocks until it receives a response.
Unless otherwise mentioned, each transaction constitutes
4 reads and a write. The percentage of writes is varied in
some experiments. The benchmark also provides the ability
to configure the number of clients spawned in parallel.

Workloads generated by the benchmark either comprise
only single-partition transactions or a specified percentage
of distributed transactions. Each transaction first picks a
primary partition for the transaction. If there are no dis-
tributed transactions, then all read and write operations
are uniformly distributed over the primary partition. When
distributed transactions are present, each operation of a
transaction has a uniform probability of accessing a partition
other than the primary partition. If 10% of the transactions in
the workload are distributed, then each operation has a 2%
chance (since each transaction has 5 operations) of accessing
a partition other than the primary partition.

To measure the performance of read-only analytical
queries in Janus, the benchmark issues aggregate queries
which calculate average, minimum and maximum values of
an attribute.

Experimental Setup

The dataset is range partitioned over row partitions.
Each row partition consists of 100,000 data items. Column

partitions employ a different range partitioning scheme with
each column partition comprising 200,000 data items. Hence
two row partitions correspond to a column partition. This
partitioning scheme is a combination of the partitioning
schemes described in Figures 2(a) and 2(b) respectively.
Each experiment uses this partitioning scheme. Each item
in the dataset comprises of 2 attributes: a primary key and a
value. Our standard deployment consists of 20 row and 10
column partitions, along with 4 execution engine servers. As
each of the row partitions, column partitions and execution
engine servers is placed on a separate machine, the standard
deployment employs 34 machines in total.

The evaluations were performed on AWS [1] (Amazon
Web Service) EC2 (Elastic Compute Cloud). We employ
m3.xlarge instances which have 4 virtual CPU cores and
15 GB memory. All machines were spawned in US East
Virginia region in the same availability zone. MySQL [8]
is used as the row-oriented storage engine and MonetDB [7]
as the column-oriented storage engine. Note that Janus im-
plements strict two-phase locking (2PL) concurrency control
protocol, two-phase commit (2PC), as well as the batch
generation and ingestion scheme. As the batch generation
scheme is closely integrated with the concurrency control
and the distributed commit protocol, we choose to imple-
ment both 2PL as well as 2PC at the row partitions. The
implementation, therefore, does not rely on the concurrency
control protocol of MySQL, but only employs it as row-
oriented storage engine. On the other hand, each column
partition uses MonetDB for storage as well as concurrency
control. Hence, Janus employs MonetDB’s optimistic con-
currency control (OCC) mechanism. The concurrency con-
trol mechanism at each column partition is needed by the
batch ingestion scheme to ensure the atomicity of batch
ingestion. Row and column partitions reside on different
EC2 machines. However, Janus can also be deployed with
multiple row and column partitions being placed on the
same machine. Janus is implemented in Java. It uses pro-
tocol buffers [12] for serialization and protobuf-rpc library
for sending messages between the servers.

A number of application clients are spawned in parallel.
Clients are co-located and uniformly distributed over the
execution engine servers. Each client executes 500 transac-
tions.

To analyze Janus’s performance, we compare it against
a baseline setup, where both transactions and analytics are
performed on the transactional engine. To enable this setup,
we turn off the batching in Janus. This comparison enables
us to assess if the batching scheme affects the transactional
throughput. Both setups utilize strong strict 2PL as the
concurrency control protocol, ensuring an equivalent com-
parison.

Unless otherwise stated, the batch shipping frequency
in Janus is set to 250 ms. Batch shipping frequency is the
time period after which a batch is closed and shipped to
the column partitions. To ensure that all row partitions do
not send batches to a column partition at the same instance,
we add some random noise (+/- 20%) to the batch shipping
frequency at every row partition. For a shipping frequency
of 250 ms, each row partition would have a frequency in
the interval of [200,300] ms. Later, we also evaluate the
impact of batch shipping frequency and analyze the optimal

Janus ——
Batching Disabled —#&—

Average Delay —A&—

Average Delay (ms)

Txn Throughput (Txns/s)

20 40 60 80 100 120 140
Number of Clients

Fig. 5: Scaling Up Clients

shipping frequency for our standard deployment. We also
perform an experiment where an update-based threshold
is introduced for batch rollover, in addition to the batch
shipping frequency. Measurements were averaged over 3
readings for smoothing any experimental variations. The
measurements reported are described below.

Transactional Throughput This metric reports the num-
ber of transactions executed per second (tps).

Average Delay gives the measurement of data freshness
in Janus. A delay value for a transaction includes the time
period between the commitment at the row partition and its
ingestion at the column partition(s). Hence, average delay
includes the time period between adding the committed
transaction to the batch and shipping the batch, and the
time taken to ship the batch and the time for merging the
batch at the column partitions. As batching is a feature of
Janus and is turned off for the baseline evaluation, we only
report this metric for Janus. Values reported are average of
the mean delay values observed at the column partitions.
The average delay metric gives a measure of freshness of the
results returned by analytical queries. As row and column
partitions are placed on different machines, average delay
is measured across different machines. The average delay
measurement faced challenges involved in measuring time
in a distributed system. Initially, high clock drift values
were observed at the machines. To circumvent clock drift,
networking time protocol (NTP) synchronization [45] was
employed. The NTP utility in unix synchronizes the clock of
the server with centralized time servers.

Query Response Time is reported for read-only analyti-
cal queries performed during the experiments.
Experimental Results
Scaling Up

Figure 5 evaluates the end-to-end performance of the
data movement pipeline in Janus. We employ a standard
deployment of 20 row and 10 column partitions. The num-
ber of clients running concurrently were varied from 20 to
140. In this set of experiments, the workload only consists
of single partition transactions. In Janus, the transactional
throughput increases from around 900 tps to 3197 tps as the
number of clients increase from 20 to 120. On increasing
the clients to 140, the throughput decreases slightly. The
baseline scenario with batching disabled also achieves simi-
lar transaction throughput illustrating that Janus’s batching
scheme does not adversely affect transactional performance.
Less than .1% of transactions were aborted for each case.
As the highest throughput is observed with 120 clients, we
employ 120 clients for later experiments.

Average delay was measured for Janus. Low average
delay values were observed, ranging from 149 ms with 20

Janus —— Batching Disabled —&—
@ Average Delay —A—
2 m
2 E
= S
= 2
g 9
£ g
c <
= 20 40 60 80 100 120 140
Number of Clients
Fig. 6: Scaling Up Clients with Hot Spots
Janus —— Batching Disabled —#—

@ Average Delay —A&—
g 3500 — S 2500 ’g
X 3000 ——— 4 E
S 2500 | 2000 =
3 2000 + 4 1500 ©
< o
E 1500 1 1000 o
3 1000 - g
S 500 + 1 500 o
£ 500 ?
c 0 0 <
i 5 10 15 20 25 30 35 40

Percentage of Writes
Fig. 7: Varying Read:Write Ratio
clients to 217 ms with 120 clients. The delay value increases
with higher transactional throughput. As each batch com-
prises more transactions, it takes longer to ingest a batch into
column partitions. The variance observed in delay values at
different column partitions was 26.5 with 120 clients. This is
low compared to the mean value of 217 ms.

These results demonstrate that Janus updates the column
partitions in near real-time without impacting the transac-
tional throughput.

Hot Spots. We also performed an experiment using a
skewed workload distribution. In this experiment, 70% of
the transactions access 30% of the partitions. The standard
deployment of 20 row and 10 column partitions is employed
and clients are scaled-up from 20 to 120. Batching still does
not impact throughput and average delay was sub 750 ms,
as seen in Figure 6. Delay values were higher and had
greater variance due to the hot spot, as compared to results
in Figure 5.

Varying Read:Write Ratio. Next, we vary the ratio of
read to writes in the workload, as illustrated in Figure 7.
Instead of issuing a single write for each transaction (20%
writes), the overall percentage of writes in the workload is
varied from 5% to 40%. The throughout slightly decreases as
the percentage of writes in the workload increases. Average
delay increases with the increase in percentage of writes,
since each batch has more operations to ingest at column
partitions. After the percentage of writes increases above
25%, delay increases at a high rate. This is because the batch
shipping duration is not enough to cope with the time to
ingest the batch at MonetDB, and the batches start getting
queued at the column partitions. This illustrates that batch
shipping frequency needs to be carefully chosen based on
the workload.

Impact of Distributed Transactions

Next, Janus is evaluated with workloads comprising
distributed transactions. The standard deployment of 34
machines is employed, with the number of clients set to
120. The results are presented in Figure 8. The presence
of distributed transactions results in a slight decrease in
throughput as Janus has to employ two-phase commit for

10

Janus —— Average Delay —A—

5 Batching Disabled —&—

2 3500 450 @

c

X 30004 — —— 4% £

T 2500 - T30 &

2 2000 A 4 250 g

S 1500F 4200 ©

3 1000 1188 2

= 500 | 15 o
>

c 0 0 <

= 0 25 5 75 10

Percentage of Distributed Txns
Fig. 8: Impact of Distributed Transactions
0% Distributed Txns ——— 10% Distributed Txns —<—
5% Distributed Txns —2—

@ 700

E 600 |

& 500+

o 400

a

> 300 |

S 200 |

o 100

z 0

0 50 100 150 200 250 300 350

Batch Shipping Duration (ms)
Fig. 9: Study of Batch Shipping Duration

such transactions. The results also re-illustrate that the
batching scheme does not affect transactional throughput.
An increase in average delay is also observed, as distributed
transactions lead to dependencies among the batches. The
graph-based dependency management algorithm only in-
gests a batch either after all the dependent batches have
been ingested or with dependent batches. After all the
dependencies of a batch arrive at the column partition,
the batch will be a part of one of the strongly connected
components (SCC) detected by the ingestion scheme, and
will be merged into the column partition. The experiments
illustrate that distributed transactions have impact on the
data freshness. However, even in the presence of distributed
transactions, Janus is capable of updating the column par-
titions in 304 ms and 409 ms with 5% and 10% distributed
transactions respectively.

We also instrument and sub-divide the average delay
duration into 4 components: average waiting time for a
transaction before a batch is shipped (row-wait), network
transmission and processing time (network cost), waiting
time at the analytical partitions before the entire SCC has
arrived (column-wait) and the actual time to ingest the batch
at MonetDB (batch-ingest). For 0% distributed transactions,
the row-wait duration accounts for 67% of the time and
the batch-ingest duration accounts for 30% of the average
delay period. The column-wait time is negligible in this
case (around 1%). As the distributed transactions increase
to 5%, the column-wait duration goes up-to around 5% and
batch-ingest duration goes up-to 32% (batch size increases
because multiple batches are ingested together to satisfy
batch dependencies). With 10% distributed transactions, the
dependencies among the batches cause the column-wait
duration to increase to 10% of the delay duration, and the
batch-ingest duration fraction goes up-to 36%. The network
cost was around 1% in all the cases. The sub-division of the
average-delay illustrates how the dependencies among the
batches due to distributed transactions lead to the increase
of average delay period.

Time-based-Shipping-Threshold —A—
Time and Number of Updates based Shipping Threshold ———

@ 2500
£ N
5 2000 F
@ 1500 -
[a]
o 1000 -
€ 500 | -+
2 oZs & =
5 10 15 20 25 30 35 40
Percentage of Writes
Fig. 10: Combining Batch shipping Frequency with an

update-based Shipping Threshold - 0% Distributed Txns

Study of Batch Shipping Frequency

We now analyze the interplay between batch shipping
frequency and average delay in Janus. The evaluation is per-
formed using the standard deployment with 120 clients. The
results are shown in Figure 9. The transactional throughput
numbers were similar to the ones observed in previous
experiments, and hence, are not reported.

When no distributed transactions are present, as the
batch shipping frequency decreases from 350 ms to 50 ms,
the average delay reduces from 309 ms to 59 ms. The delay
decreases because as the batch shipping period decreases,
the batches are shipped more frequently and the overhead
in ingesting smaller batches at the column partitions is not
high enough to affect performance. But, when the batch
shipping frequency is decreased further, the average delay
for a transaction increases to 127 ms for a shipping fre-
quency of 15 ms. This scenario results in MonetDB being
hit with a high very update rate, which is not suited to its
column-oriented design. Batch shipping frequency values
below 50 ms result in higher delay values. A shipping
frequency less than 50 ms does not benefit from the effect
of batch committing the changes at a column partition.

The presence of distributed transactions makes Janus
more sensitive to a higher batch shipping duration. Dis-
tributed transactions lead to batch dependencies and a
greater shipping period might result in longer chains of de-
pendencies, resulting in higher average delay. In the case of
10% distributed transactions, increasing the shipping period
from 300 to 350 results in the average delay value increasing
by 35%. When no distributed transactions are present, the
same increase in the shipping period only results in a 5%
increase in average delay. On the flip side, dependencies
resulting from distributed transactions also result in reduc-
ing the affect of decrease in shipping duration. Waiting
for batch dependencies to arrive from other row partitions,
reduces the high update rate resulting from a low shipping
frequency value. In the case of 5% distributed transactions,
decreasing the frequency from 50 ms to 15 ms, increases
the delay at a slower rate as compared to the case with no
distributed transactions. This shows that as the percentage
of distributed transactions in the workload increases the
batch shipping frequency value should be reduced.

These results illustrate that the optimal value of batch
shipping frequency for our standard deployment of Janus is
50 ms. Janus can update the column partitions in as little as
59 ms with no distributed transactions and 85 ms with 10%
distributed transactions.

Addition of Update based Shipping Threshold
Section 4.4 discusses the bottleneck of using a time-
based threshold for batch rollover, and how write-heavy

11

Time-based-Shipping-Threshold —A—
Time and Number of Updates based Shipping Threshold ———

z 1000

z 750¢

8 500t

g 250 7o e —5—
g Zj @ = = =

>

< 0

5 10 15 20 25 30 35 40
Percentage of Writes

Fig. 11: Combining Batch shipping Frequency with an

update-based Shipping Threshold - 5% Distributed Txns

| Txn Throughput ——— Average Delay —A— |

2 0
£ — 18 ;
3 000 f B 129 3
£ 6000 | _H 4150
S 4000k i
2 2000l A Ao AR R
= 0 0 2
S 20 40 60 80 <
= Number of Row Partitions
(a) Batching Shipping Frequency: 50 ms
. | TxnThroughput ——§— Average Delay —A— |
2 7
£ 12000 N p—
= 10000°F T N vy A250 T
a 8000 [_— 1 200 2
S 6000 _ {150 29
3 4000 F— 4 100
8 zo00f 150 €
[
= 0 0 2
< 20 40 60 80 <
=

Number of Row Partitions
(b) Batch Shipping Frequency: 250 ms
Fig. 12: Scaling Out Janus

workloads and long running transactions can lead to an
increase in average delay. To mitigate the affect of only using
a time-based threshold, Janus is integrated with the ability
to specify an additional threshold to close a batch based
on the number of updates (batch shipping update-threshold).
We re-perform the experiment where the read-write ratio
is varied (Figure 7), but with an additional batch shipping
update-threshold, which is set to 100 updates. The threshold
is set based on the number of updates present in a batch
before the delay starts increasing (at 25% writes). Results in
Figure 10 illustrate that adding an update-based threshold
helps in reducing the increasing in delay as the percentage
of writes increases.

Figure 11 shows the affect of update-based threshold
in the presence of distributed transactions. We observe
that even with distributed transactions, the update-based
threshold helps in reducing the increase in size of batch
sizes as percentage of writes increases. This leads to a
slower increase in delay when compared to the case where
only a time-based threshold is employed. The absolute
delay increases slowly with distributed transactions (as the
percentage of writes increase), because the dependencies
among the distributed transactions result in ingestion of
multiple batches together and reducing the write-activity
on MonetDB, which leads to avoiding queuing of batches at
the column partitions.

Scaling Out
Figure 12 illustrates the performance of Janus while

scaling-out. The percentage of distributed transactions was
set at 5%. The number of clients invoked per row partition

is kept constant throughout the experiment, and increase
from 120 with 20 row partitions to 480 with 80 row par-
titions. This ensures that the amount of contention would
be the same over the entire experiment. The ratio of row
to column partitions is also kept constant at 2:1, and the
execution engine servers are scaled from 4 to 16. Evaluation
is performed with batch shipping frequency of 250 ms as
well as 50 ms (time-based threshold only). As Janus scales-
out the number of partitions, throughput increases linearly
and the average delay remains constant in the range of 65-
70 ms with 50 ms shipping frequency, and 250-300 ms with
a shipping frequency of 250 ms. These numbers illustrate
that Janus’s architecture is capable of scaling-out, while still
updating the column partitions in real-time.

Performance of Analytical Queries

For studying analytical performance, aggregate queries
calculating the average and minimum value of an attribute
were run on both Janus and the baseline setup. A single
column partition query calculating the average with a filter
predicate took 4.6 ms on Janus and 23.2 ms on the baseline
setup. A query to compute the minimum took 1.80 ms on
Janus and 13.2 ms on the baseline setup. Janus performs
better for analytical queries as it executes such queries on
a column-oriented design, which is more suited for these
queries than the row-oriented design employed by the base-
line setup. As multiversioning support is not provided by
MonetDB, nor by any open source column database, we did
not evaluate the execution of multi-column partition queries
(Section 5.2).

RELATED WORK

Janus is motivated by and related to a wide range of
research in the areas of hybrid OLTP-OLAP systems, hybrid
storage layouts, data shipping and database replication.

Hybrid OLTP-OLAP Systems. Most of the proposed
solutions supporting both OLTP and OLAP workloads,
execute on a single server [21], [37], [43]. These solutions do
not scale out, which is an essential requirement for a cloud
datastore. Furthermore, most of these systems [37], [40], [51]
are tailored to a main-memory design.

Hyper [40] handles both OLTP and OLAP workloads
in either a column or a row-oriented main-memory envi-
ronment, using the operating system’s copy-on write tech-
nique. Virtual memory snapshots are created when read-
only OLAP queries arrive. Hyper’s performance is depen-
dent on efficient forking during copy-on-write. Plattner [46]
proposes supporting both transactional and analytical pro-
cessing using in-memory column stores. Based on this vision,
SAP has introduced SAP HANA [51], a main-memory en-
gine for supporting both transactions and analytics.

Some systems have proposed adaptive layout transfor-
mation to support both OLTP and OLAP workloads in a
single server setting. Arulraj et al. [21] use row, columnar
and hybrid row-column representations (where a vertically
partitioned group of columns are stored together) and then
dynamically transform the storage layout among these rep-
resentations. A multi-versioning engine is employed and
each tuple is inserted in row-oriented layout. A background
mechanism monitors the queries and transforms the layout
by determining the attributes that are accessed together, and
then grouping them. H»o [20] also chooses from among

12

multiple representations and a foreground layout transfor-
mation between the row, column, hybrid row-column repre-
sentations. Although layout transformation can also provide
the ability to take advantage of multiple representations, its
performance is dependent on accurate workload prediction
and can be susceptible to sudden workload shifts.

ES-2 [26] supports partitioning and stores data in a dis-
tributed file system. It uses distributed indexing and parallel
sequential scans to answer OLAP queries, in addition to
supporting OLTP workloads using a multiversion times-
tamping approach. It relies heavily on indexing and can
lead to poor performance for ad hoc queries which access
non-indexed data residing on the distributed file system.
Unlike ES-2, Janus executes transactions and analytics on
different servers as well as different representations, that
are more suited for the respective workloads. ES-2 is based
on a shared-storage architecture, whereas Janus employs a
shared-nothing architecture.

Snappy Data [49] integrates a distributed in-memory
data-store (GemFire) engine with Apache Spark’s runtime
and provides support for OLTP, OLAP and streaming. Data
can be stored in either row or columnar form. OLTP opera-
tions are supported using the in-memory engine and OLAP
operations are supported using Spark’s executors. Such an
architecture removes the overhead of maintaining multiple
data representations. However, it cannot provide separation
of transactions and analytics on different servers or differ-
ent representations. Furthermore, since such an architecture
uses a single data representation, it has to choose one right
partitioning strategy for all workloads.

Storage in Multiple representations. Fractured Mir-
rors [47] was one of the first systems to store data in multiple
representations. A copy of the data is stored in both the
DSM (Decomposition Storage Model) layout [29], where
each column is stored separately, and the row layout. A
differential file is used for updating the columns. Janus is
inspired from this approach and employs storage of replicas
in multiple representations in a distributed setting, with
differently partitioned representations. OctopusDB [34] also
provides the ability to store data in multiple representations.
Updates are executed by appending to a log, which acts as a
primary copy of the data and multiple storage views can
be incarnated in different representations. Other systems
have also explored storing data in hybrid representations
[4], [6], [10], [15], [39], [43], [50]. However, these approaches
do not provide support for data partitioning and distributed
transactions.

Column-Oriented Storage. Column stores are used for
supporting OLAP workloads. MonetDB [7], Druid [2] and
Vertica [14] are some available column-oriented DBMS, op-
timized for high volumes of query processing. C-Store [52]
uses a columnar representation and is optimized for read-
mostly workloads. C-Store has a write store for supporting
transactional updates and a tuple mover for moving the
data into the read store. The write store is also columnar
and stores data in memory. The write store is limited in
size, is co-located with the read store and is designed to
optimize for workloads with low update rates. Some ap-
proaches aim to efficiently update column stores to support
transactions [38], [48]. In contrast to Janus, these systems
are primarily optimized for analytics, but are not designed

to support OLTP workloads, which have a high rate of
transactional updates.

Change Data Capture [31], Pub-Sub systems [41], log
shipping techniques [13], [39] and some recent ETL tools [11]
have been used for continuously consuming changes from
transactional systems at downstream analytical systems.
This approach is amenable to scaling out and provides
separation of transactions and analytics. However, such ap-
proaches provide consistency guarantees only per partition.
A mechanism to overcome this is to use a single log as a
source of truth. The head of the log can become a source of
contention in approaches using a single distributed commit
log for supporting transactions. A recent scale-out approach
from SAP HANA [36] also uses a distributed commit log to
support both OLAP and OLTP workloads.

Database Replication. Many replication techniques have
been developed to improve the read performance of
database systems, while providing some level of replica
consistency guarantees. Techniques providing strong con-
sistency [42], and 1-copy Snapshot Isolation [44] guarantees
have been developed. All these systems use the same rep-
resentation for the replicas. On the other hand, Janus uses
different representations, that update at different rates, and
also aims to attain high transactional throughput. Hence,
Janus updates the read-oriented representation in batches.
Due to this, the read-oriented replica can lag from the pri-
mary update-oriented copy, but provides a transactionally
consistent snapshot of the data. Akal et al. [19] describe
a replication technique which enables updating in batches
and executing 1l-copy serializable read-only transactions
with given freshness guarantees. Their replication technique
can support different partitioning strategies for update and
read-only copies. However, it uses a global log for record-
ing updates, which can be a bottleneck for throughput. In
addition, distributed transactions are not supported.

Real-time Analytics. Recently, several architectures have
been proposed for supporting both event-based processing
and real-time analytical queries [5], [23], [25]. These systems
do not handle transactional updates and hence, do not
support OLTP workloads. Lazybase [27] uses a combination
of batching and pipelined updates, and provides a trade-off
between read query latency and data freshness. AIM [25]
uses a PAX [18] like representation, where records are
grouped into buckets and each bucket is stored column-
wise. It employs differential updates and shared scans to
support event-based processing and analytics in a scale-out
setting. Lambda Architecture [5] stores data in two layers, a
batching layer (like HDFS) optimized for batch processing
and a speed layer, like a stream-processing engine, which
processes data streams in real time. Each ad-hoc query
is sent to both representations, and the results are then
integrated.

DiscuUSSION AND FUTURE WORK

As a part of our future work, we plan to extend and eval-
uate various aspects of Janus. The batch shipping threshold
in Janus is currently set statically, which makes Janus sus-
ceptible to workload shifts. To overcome this, we aim to de-
sign schemes for dynamically setting batch shipping thresh-
old (both shipping duration and update threshold) based
on the workload and the progress of batch ingestion at the

13

column partitions. We also plan to evaluate multi-partition
analytical queries by employing analytical representations
backed by multi-versioned databases. Another avenue for
future research is to evaluate Janus with different represen-
tations supporting transactional and analytical workloads
like graph and hybrid row-column representations.

CONCLUSION

Janus is a hybrid, partitioned, multi-representation
datastore, for handling diverse workloads. In this paper,
an instance of Janus is designed to support OLTP and
OLAP workloads. Janus supports transactional requests
on row-oriented storage and uses an in-memory redo log
inspired batching technique to capture the transactional
changes. Janus then employs a graph-based dependency
management algorithm to ingest the transactional changes
at the column-oriented storage. The analytical queries are
executed on column storage. The devised data movement
pipeline for creating, shipping and ingesting batches
ensures that updates get incorporated at the column
partitions with minimal delay. The data movement
pipeline supports distributed transactions, as well as
diversely partitioned representations. Evaluation with
the transactional YCSB benchmark illustrates that Janus
enables real-time analytics, while scaling-out, and without
effecting transactional throughput. With 80 row partitions
of data and 5% distributed transactions, the data movement
pipeline of Janus is able to update the column partitions
within 70 ms.

Acknowledgments. This work is supported by NSF
grant IIS 1018637. Faisal Nawab is partially funded by a
scholarship from King Fahd University of Petroleum and
Minerals. We would also like to thank Amazon for access to
Amazon EC2.

REFERENCES

[1] Amazon AWS. https://aws.amazon.com/.

[2] Druid. http://druid.io/.

[3] Giraph. http://giraph.apache.org/.

[4] IBM Informix Warehouse Accelerator. http://www.iiug.org/
library /ids_12/IWA%20White%20Paper-2013-03-21.pdf.

[5] Lambda Architecture. http://lambda-architecture.net/.

[6] MemSQL. http://www.memsql.com/.

[7] MonetDB. http://monetdb.com/.

[8] MySQL. https://www.mysql.com/.

[9] Neo4j. http://neodj.com/.

[10] Oracle 12c. http:/ /www.oracle.com/us/corporate/features/
database-12¢/index.html.

[11] Oracle Golden Gate. http:/ /www.oracle.com/technetwork/
middleware/goldengate/overview /index.html.

[12] Protocol Buffers. https:/ /developers.google.com/
protocol-buffers/.

[13] Scribe. https:/ /github.com/facebookarchive/scribe/wiki.

[14] Vertica. http://vertica.com/.

[15] Vertica FlexStore. https:/ /www.vertica.com/2009/12/25/
vertica-3-5-flexstore-the-next-generation-of-column-stores.

[16] Gartner. Hybrid Transaction/Analytical Processing Will Foster
Opportunities for Dramatic Business Innovation. https://www.
gartner.com/doc/2657815/, 2014.

[17] D.]J. Abadi, S. R. Madden, and N. Hachem. Column-stores vs. row-
stores: How different are they really? In Proc. of ACM SIGMOD,
pages 967-980, 2008.

[18] A. Ailamaki, D.J. DeWitt, M. D. Hill, and M. Skounakis. Weaving
relations for cache performance. In VLDB, 2001.

[19] E Akal, C. Tiirker, H.-J. Schek, Y. Breitbart, T. Grabs, and L. Veen.
Fine-grained replication and scheduling with freshness and cor-
rectness guarantees. In Proc. of VLDB, pages 565-576, 2005.

[20]

(21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

(31]

(32]

[33]

[34]

[35]

[36]

(37]

[38]

[39]

(40]

[41]

[42]

[43]

[44]

(45]
[46]

I. Alagiannis, S. Idreos, and A. Ailamaki. H2o: a hands-free
adaptive store. In Proc. of ACM SIGMOD, pages 1103-1114, 2014.
J. Arulraj, A. Pavlo, and P. Menon. Bridging the archipelago
between row-stores and column-stores for hybrid workloads. In
Proc. of ACM SIGMOD, pages 57-63, 2016.

J. Baker, C. Bond, J. C. Corbett, J. Furman, A. Khorlin, J. Larson,
et al. Megastore: Providing scalable, highly available storage for
interactive services. In Proc. of CIDR, pages 223-234, 2011.

R. Barber, M. Huras, G. Lohman, C. Mohan, et al. Wildfire:
Concurrent blazing data ingest and analytics. In Proc. ACM of
SIGMOD.

P. A. Bernstein and N. Goodman. Concurrency control in dis-
tributed database systems. ACM Computing Surveys (CSUR),
13(2):185-221, 1981.

L. Braun, T. Etter, G. Gasparis, M. Kaufmann, D. Kossmann,
D. Widmer, et al. Analytics in motion: High performance event-
processing and real-time analytics in the same database. In Proc.
of ACM SIGMOD, pages 251-264, 2015.

Y. Cao, C. Chen, F. Guo, D. Jiang, Y. Lin, B. C. Ooi, et al. Es 2: A
cloud data storage system for supporting both oltp and olap. In
Proc. of IEEE ICDE, pages 291-302, 2011.

J. Cipar, G. Ganger, K. Keeton, C. B. Morrey III, C. A. Soules,
and A. Veitch. Lazybase: trading freshness for performance in
a scalable database. In ACM EuroSys, pages 169-182, 2012.

B. E. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears.
Benchmarking Cloud Serving Systems with YCSB. In Proc. of
S0CC, pages 143-154, 2010.

G. P. Copeland and S. N. Khoshafian. A decomposition storage
model. In ACM SIGMOD Record, volume 14, pages 268-279, 1985.
T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Data
structures for disjoint sets. Introduction to Algorithms, pages 498—
524, 2001.

S. Das, C. Botev, K. Surlaker, B. Ghosh, B. Varadarajan, et al. All
aboard the databus!: Linkedin’s scalable consistent change data
capture platform. In Proc. of So0CC, page 18, 2012.

S. Das, S. Nishimura, D. Agrawal, and A. El Abbadi. Albatross:
lightweight elasticity in shared storage databases for the cloud
using live data migration. Proc. of VLDB, 4(8):494-505, 2011.

G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, et al.
Dynamo: amazon’s highly available key-value store. In ACM
SIGOPS Operating Systems Review, volume 41, pages 205-220, 2007.
J. Dittrich and A. Jindal. Towards a one size fits all database
architecture. In CIDR, pages 195-198, 2011.

F. Férber, S. K. Cha,]J. Primsch, C. Bornhovd, S. Sigg, and
W. Lehner. Sap hana database: data management for modern
business applications. ACM Sigmod Record, 40(4):45-51, 2012.

A. K. Goel, J. Pound, N. Auch, P. Bumbulis, S. MacLean, F. Farber,
et al. Towards scalable real-time analytics: an architecture for
scale-out of olxp workloads. Proc. of VLDB, 8(12):1716-1727, 2015.
M. Grund, J. Kriiger, H. Plattner, A. Zeier, P. Cudre-Mauroux, and
S. Madden. Hyrise: a main memory hybrid storage engine. Proc.
of VLDB, 4(2):105-116, 2010.

S. Héman, M. Zukowski, N. J. Nes, L. Sidirourgos, and P. Boncz.
Positional update handling in column stores. In Proc. of ACM
SIGMOD, pages 543-554, 2010.

H. Jafarpour, J. Tatemura, and H. Haciglimiis. Transactional
replication in hybrid data store architectures. In Proc. of EDBT,
pages 569-580, 2015.

A. Kemper and T. Neumann. Hyper: A hybrid oltp&olap main
memory database system based on virtual memory snapshots. In
Proc. of IEEE ICDE, pages 195-206, 2011.

J. Kreps, N. Narkhede,]. Rao, et al. Kafka: A distributed messaging
system for log processing. In Proc. of NetDB, pages 1-7, 2011.

K. Krikellas, S. Elnikety, Z. Vagena, and O. Hodson. Strongly
consistent replication for a bargain. In Proc. of IEEE ICDE, pages
52-63, 2010.

P-A. Larson, A. Birka, E. N. Hanson, W. Huang, M. Nowakiewicz,
et al. Real-time analytical processing with sql server. Proc. of VLDB,
8(12):1740-1751, 2015.

Y. Lin, B. Kemme, M. Patifio-Martinez, and R. Jiménez-Peris.
Middleware based data replication providing snapshot isolation.
In Proc. of ACM SIGMOD, pages 419-430, 2005.

D. L. Mills. Network time protocol (ntp). Network, 1985.

H. Plattner. A common database approach for oltp and olap using
an in-memory column database. In Proc. of ACM SIGMOD, pages
1-2, 2009.

[47]

(48]

[49]

(50]

[51]

[52]

14

R. Ramamurthy, D. J. DeWitt, and Q. Su. A case for fractured
mirrors. The VLDB Journal, 12(2):89-101, 2003.

V. Raman, G. Attaluri, R. Barber, N. Chainani, D. Kalmuk, et al.
Db2 with blu acceleration: So much more than just a column store.
Proc. of VLDB, 6(11):1080-1091, 2013.

J. Ramnarayan, S. Menon, S. Wale, and H. Bhanawat. Snappydata:
a hybrid system for transactions, analytics, and streaming: demo.
In Proc. of ACM DEBS, pages 372-373, 2016.

J. Schaffner, A. Bog, J. Kriiger, and A. Zeier. A hybrid row-column
oltp database architecture for operational reporting. In Business
Intelligence for the Real-Time Enterprise, pages 61-74. Springer, 2009.
V. Sikka, F. Farber, W. Lehner, S. K. Cha, et al. Efficient transaction
processing in sap hana database: the end of a column store myth.
In Proc. of ACM SIGMOD, pages 731-742, 2012.

M. Stonebraker, D.]J. Abadi, A. Batkin, X. Chen, M. Cherniack,
et al. C-store: a column-oriented dbms. In Proc. of VLDB, 2005.

Vaibhav Arora is a doctoral student in Computer
Science at the University of California, Santa
Barbara. His current research interests are in
the areas of data management in cloud com-
puting environments, scalable real-time data an-
alytics and heterogeneous data processing. He
received his M.S. in Computer Science from Uni-
versity of California, Santa Barbara and B.Tech.
in Computer Science from National Institute of
Technology, Tiruchirappalli (Nit Trichy).

Faisal Nawab is a doctoral student at the Uni-
versity of California, Santa Barbara. His current
research work is in the areas of global-scale
data management, big data analytics, and data
management on emerging non-volatile memory
technology. He received his M.S. from King Ab-
dullah University of Science and Technology
(KAUST) and his B.S. from King Fahd University
(KFUPM).

Divyakant Agrawal is a Professor of Computer
Science at the University of California, Santa
Barbara. His research expertise is in the ar-
eas of database systems, distributed comput-
ing, and large-scale information systems. Di-
vyakant Agrawal is an ACM Distinguished Sci-
entist (2010), an ACM Fellow (2012), an IEEE
Fellow (2012), and Fellow of AAAS(2016). His
current interests are in the areas of scalable
data management and data analysis in cloud
computing environments, security and privacy of

data in the cloud, and scalable analytics over social networks data.

Amr El Abbadi is a Professor of Computer
Science at the University of California, Santa
Barbara. He received his B. Eng. from Alexan-
dria University, Egypt, and his Ph.D. from Cor-
nell University. Prof. El Abbadi is an ACM Fel-
low, AAAS Fellow, and IEEE Fellow. He cur-
rently serves on the executive committee of the
IEEE Technical Committee on Data Engineer-
ing (TCDE) and was a board member of the
VLDB Endowment from 2002 to 2008. He has
published over 300 articles in databases and

distributed systems and has supervised over 30 PhD students.

