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ABSTRACT

In this paper, we propose a new Automatic Target Recognition (ATR) system, based on Deep Convolutional
Neural Network (DCNN), to detect the targets in Forward Looking Infrared (FLIR) scenes and recognize their
classes. In our proposed ATR framework, a fully convolutional network (FCN) is trained to map the input FLIR
imagery data to a fixed stride correspondingly-sized target score map. The potential targets are identified by
applying a threshold on the target score map. Finally, corresponding regions centered at these target points are
fed to a DCNN to classify them into different target types while at the same time rejecting the false alarms. The
proposed architecture achieves a significantly better performance in comparison with that of the state-of-the-art
methods on two large FLIR image databases.

Keywords: Automatic Target Recognition (ATR), target detector, deep learning, Deep Convolutional Neural
Network (DCNN), FLIR imagery

1. INTRODUCTION

Automatic Target Recognition (ATR) is an important element of many computer vision applications in the
civilian area, such as air traffic control,1 pedestrian tracking,2,3 animal tracking,4 sports,5 and military area.6,7

It generally refers to classification of the targets and characterization of their attributes such as orientation or
sub-class, in a scene of interest without any human intervention. The information about imaged scenes usually
is captured using different types of sensors, e.g., Synthetic Aperture Radar (SAR) or FLIR. Generally, all end-
to-end ATR systems are comprised of three distinct stages, namely detection, low-level classification (clutter
rejection), and high-level classification.8 Passing the input image through the first two stages, the input scene
is classified into targets and clutters (objects that are not targets of interest) regions. Thereafter, the high-level
classifier receives the potential targets and classifies them into different target types.

There is a wide range of ATR algorithms proposed in the literature which can be roughly classified into
two groups, i.e., learning-based (or feature-based) and model-based.7 Learning-based approaches extract dis-
criminative features from the training data or learn a subspace representation of the data for the purpose of
classification. On the other hand, model-based approaches, such as Hausdorff metric, geometric hashing, and
contour matching, use target templates which are built from models of the targets.9–14 Moreover, in recent
past, a hybrid version of learning-based and model-based approaches has emerged in the literature which utilizes
the ideas behind these two approaches.15–17 Even though it is shown in the literature that the model-based
approaches offer better performances in comparison with the learning-based approaches, they usually suffer from
the lack of computational tractability.8

The goal of the learning-based methods is to find a discriminative feature space in which the feature vectors
of different target classes, i.e., imposter samples, are in separable regions, while the feature vectors of samples
from the same target class, i.e., genuine samples, are close in space and form a cluster. Therefore, the feature
extraction phase plays a crucial role in the performance of this group of ATR algorithms. Extensive research have
been carried out in the literature to extract the most discriminative and reliable features of the target classes by
computing certain types of features, such as Principal Ccomponent Analysis (PCA),18 wavelet packets,19 decision
boundaries,20 Histogram of Oriented Gradients (HOG),21 speeded up robust features.22 In addition, some other
ATR algorithms are based on a specific classification scheme, such as Neural Networks (NN),23 Learning Vector
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Quantization (LVQ),24 or sparse representations.25 The fusion of four different classification techniques, namely
CNN, LVQ, modular neural network, and SVM, for target recognition task has also been studied in.26

Different contour-based algorithms have been proposed in the literature to address the ATR problem.13,27,28

Duan et al.13 formulated the ATR in aerial images as an optimization problem and solved it using an improved
chemical reaction optimization algorithm. Their method was developed based on a contour grouping strategy
called contour cut. In27 a graph region merging scheme has been utilized for target segmentation in FLIR
imagery. They evaluated their method on several real IR ship target images.

PCA,29–32 and wavelet33–35 have been also among the most popular feature extraction methods in ATR
applications. Most recently, Sparse Representation-based Classification method (SRC) has been widely used
for FLIR ATR25,36,37 and is considered as one of the most promising ATR algorithms. However, Khan et al.38

proposed a new ATR method based on dense HOG features and Relevance Grouping of Vocabulary (RGV) which
outperformed most of the SRC-based methods.

The ATR task has also been approached as a texture analysis problem. A new soft concave-convex partition
(SCCP) strategy is proposed in39 to improve local binary ternary by dividing local features into distinct groups.
In another research article,40 a novel concave-convex local binary ternary feature extractor is proposed which
outperformed the state of the art the SRC-based methods.

Two comprehensive surveys on different ATR algorithms, one in SAR imagery,8 and the other in visible and
infrared imagery41 have been conducted in the literature recently. Their evaluation results suggested that none
of the state-of-the-art detectors perform well in all datasets, urging for the development of a more accurate and
reliable ATR algorithm.

Over the last few years, DCNN has emerged as a powerful machine learning tool which outperformed the
traditional approaches and made significant improvements in computer vision problems including object recog-
nition, object detection, semantic segmentation and image synthesis.42–48 Recent results indicate that CNNs
can be utilized as a capable feature extractor and surpass handcrafted features.49 However, there are very few
studies that have exploited the power of CNNs in the context of ATR.7,50,51

Motivated by the success of DCNNs, in this paper we proposed a DCNN scheme to perform all the three
distinct stages of ATR, namely detection, low-level classification, and high-level classification, simultaneously.
For the sake of computational tractability, instead of using a sliding window, the DCNN is implemented as
a FCN.47 Consequently, the network can be applied to any arbitrary size imaged data and generates a score
map which provides us the assigned class to each region of the image. Our proposed framework comprises two
cascaded DCNNs for low level and high level classifications. The first network distinguishes between background
clutters and targets and localizes the potential targets in an FLIR imagery scene. The detected target regions
by the first network are fed to the second network to classify them into their target types. The second network is
also trained to reject the false alarms of the first network, i.e., the clutters that are detected as potential targets
by the first network. This paper is organized as follows: Section 2 describes the data and the preprocessing
process; the proposed structure is described in Section 3; Experiment results are discussed in Section 4; and
finally, the paper is concluded in Section 5.

2. DATA DESCRIPTION AND PREPROCESSING

In this paper, we use the Comanche (BoeingSikorsky, USA) FLIR dataset for training and evaluation of the
proposed method. This dataset consists of different targets at different orientations and ranges. The data were
taken under various conditions and divided into two sub-datasets. The first dataset, namely SIG, comprises the
images which are taken with targets in open while the images of the less favorable conditions, such as targets in
different backgrounds and under various weather conditions, make up the ”ROI” dataset.

The ROI dataset has also two sub-datasets, which we will refer to as ROI 2 and ROI 1. The range of targets in
this dataset varies from 688 to 3403 meters. The images of ROI 2 were taken in the summer in the Arizona desert
and therefore the background contains high-temperature spots. Consequently, ROI 2 is more difficult database
in comparison with ROI 1 whose images were taken in the spring in central California and the background is
cool compared with most of the targets in the database. In addition, images in ROI 2 dataset have been taken
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Figure 1: DCNN-detector architecture and its corresponding feature maps for an input frame. Nine sample
feature maps are plotted randomly from (a) first convolutional layer (Conv1 1), (a) seventh convolutional layer
(Conv3 3), and (c) The thirteenth convolutional layer (Conv5 3). The higher convolutional layers represent more
abstract features than those at the lower layers.

from longer distances. More precisely, the range of targets in this dataset varies from 1180 to 5172 meters. The
SIG dataset has ten different target classes while the ROI has only five of the ten target classes. In this paper,
we denote these targets as TG1 to TG10. For each target, there are images for every 5◦ in azimuth from 0◦ to
355◦ with the total of 72 different orientations.

We used the SIG dataset to train our networks and ROI dataset to evaluate the system. The images of both
datasets are 10-bit gray-scale of size 480 × 720 pixels (frames). All the targets of the SIG dataset are cropped
and form 13860 target images (chips) of size 40 × 75. We also created 5227 clutter chips to train the target
detection network. As we have two max-pooling layers with stride 2, we resized the chips to 40 × 72 so we have
feature maps of size 10× 18 pixels in the last convolutional layer. The SIG dataset is also randomly divided into
90% training and 10% validation sets. We used the validation set to stop the training process.

The only preprocessing applied on the images is removing the mean of the training dataset from each image
before passing it to the networks. In addition, as the input to the original VGG16 network,52 which is the basis
of our DCNNs, is assumed to be in color and therefore the input has 3 channels (RGB), we copied each input
on all the three channels before feeding it to the networks.

In the training process, to increase the number of training samples for the sake of over-fitting prevention, and
also to make the network less sensitive to scale, translation, and rotation, we augmented the training dataset by
random scaling, shifting, rotation, and cropping.

3. PROPOSED SYSTEM

3.1 Convolutional Neural Networks

Convolutional neural network is a specific type of neural networks which are specially developed for 2D inputs
such as images. It incorporates a stack of convolutional layers and spatial pooling layers. Convolutional layers
apply linear convolutional filters followed by nonlinear activation functions, such as rectifier, sigmoid, or tanh
to generate feature maps from the input data. A CNN can learn low level features in its early layers and more
semantic features as it goes deeper. That’s the justification behind the development of DCNNs to extract more
semantic and salient features.

DCNNs have shown a remarkable performance on many different image processing and computer vision tasks
such as image classification, segmentation and face recognition. One of the key ideas behind the development
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Figure 2: End-to-End ATR System Architecture

of CNNs is that they are able to automatically learn a complex model which extracts the most useful and
salient features for the defined task. In addition, the learned features are usually robust to translation, scaling,
skewing, and other forms of distortion. On the contrary, most of the traditional feature extraction methods utilize
handcrafted features which are based on the understanding of the human from the data. However, DCNNs rely
on large training datasets to prevent memorization of the training dataset which is referred to as overfitting.

In general, in some tasks such as classification, a CNN is followed by one or more fully connected layers. The
convolutional layers are usually considered as the feature extractor network. The learned feature maps by the
last convolutional layer of CNN are vectorized and fed into several stacked fully connected layers to perform the
classification task. Even though a linear convolution is sufficient in some cases, features that represent a good
abstraction of the input data are generally highly nonlinear functions of them. Therefore, to add nonlinearity
to the network, a nonlinear activation function is applied on the output of each layer. By virtue of translation
invariance and reducing the spatial size, a number of max or mean pooling layers is usually added to a CNN.
Each convolution layer’s filter (kernel) has learnable weight, W , and bias, b. These parameters are trained using
back-propagation algorithm along with an optimization algorithm such as gradient descent.53 Figure 1 shows an
FLIR image and its corresponding learned feature maps at different convolutional layers. Nine sample feature
maps are plotted randomly from the first, seventh, and thirteenth convolutional layers of the network. As it is
shown in this figure, the higher convolutional layers extract more abstract features than those at the lower layers.

In summary, we can formulate a convolutional layer as

ok = g(

nc∑
i=1

(W k
i ∗ xi) + bk), (1)

where ok denotes the output of kth filter, g(.) is the nonlinear activation function, W k
i is the corresponding

weight of the kth filter for ith input channel, bk is the bias, ∗ stands for convolution operation, xl denotes the ith

channel of the input, and nc is the total number of input channels.

In this paper, two distinct DCNNs are utilized for target detection and target classification tasks. The
architecture of our proposed system is shown in Figure 2. The first DCNN, called DCNN-detector, takes a FLIR
imagery data as an input and detect the potential targets in the image. Subsequently, the detected potential
targets are fed to the second DCNN, called DCNN-classifier, which classifies the targets by their classes and
rejects the false alarms (clutters) of the first network at the same time.

The incarnation of both DCNNs are based on a VGG network52 which is pre-trained on the ImageNet dataset.
In the original paper,52 they have proposed multiple structures with different number of layers. There is a trade-
off among speed, memory, and accuracy for a given application which determine the best choice of network in
terms of depth and complexity. We assessed 4 different VGG architectures with distinct depths, namely VGG11,
VGG13, VGG16, and VGG19. Figure 3 compares their performance using their target detection ROC curves for
ROI 1 dataset. As the figure shows, the gain in performance from VGG19 to VGG16 is negligible while there
is a significant difference in the complexity of them in terms of the number of trainable parameters (Table 1).
Utilizing a highly complex network in absence of enough training data can also degrades the performance by
overfitting on the training data. As a consequence, we selected the VGG16 as the core structure of our system.
For the rest of the paper, all the results are reported based on the experiments using VGG16 architecture.

The original VGG16 has five max-pooling and three fully connected layers. However, we removed the last
three max-pooling layers of the networks to increase the size of the output for the sake of more accurate target
localization. The three fully connected layers are also replaced with 1 × 1 convolutional layers47 with different
sizes. This replacement gives the network the flexibility of accepting arbitrary sized images as its input and
provide us with dense target detection and classification score maps. We also added batch-normalization54 to
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Table 1: Complexity of different VGG networks

Network VGG11 VGG13 VGG16 VGG19

Number of Parameters

(in millions)
15.1 15.3 20.6 25.9

Figure 3: ROC curve for VGG network with different number of layers.

all the VGG16 convolutional and fully connected layers to reduces the internal covarience shift, speed up the
training, make the training less sensitive to the initialization, and reduce the chance of overfitting on the training
dataset. Finaly, we initialized the convolutional layers of both DCNNs with the pre-trained VGG16 with the
ImageNet dataset and then fine tuned the layers with our training sets.

3.2 Target Detection DCNN

The architecture of the DCNN-detector is illustrated in Figure 1. The main task of this network is localization
of potential targets in a FLIR image. During the learning process, the input to the network is a chip image
and the output is its corresponding label which could be any of target or clutter classes. A cross-entropy loss
function is minimized as the classification loss using the Adam optimization algorithm55 and is given as follows:

loss1 = −
∑
n

2∑
i=1

y
(n)
i log ŷ

(n)
i , (2)

where y
(n)
i is the true probability of the nth chip in the batch of the training data to belong to the ith class

which can be 0 or 1. Similarly, ŷ
(n)
i is the predicted probability of the nth chip in the batch of the training data

to belong to the ith class which can be any value between 0 and 1.

However, during the testing phase, a complete test frame is input to the network, and the output of the
network is two score maps (heat maps), one for target and the other one for clutter classes. Pixels in each heat
map represent the probability of different regions in the input image belonging to a target or a clutter class. In
other words, the corresponding receptive field of a target heat map’s pixel on the input image belongs to a target
if the pixel gets a high value. Note that the clutter and target heat maps are complementary to each other.
Figure 1 shows an input frame and only its corresponding target heat map.

Clutter Chip Selection: In addition to the target chips, we need a set of clutter chips to train the DCNN-
detector. To maximize the quality of the data, we trained our network using hard negative mining approach56

which is a popular technique in detection problems. In other words, we start by a set of pre-selected clutters and
trained our network. The trained network was tested on the SIG frames (training dataset) and the false alarms
were added to the training dataset as new clutter chips. We performed this procedure twice to have enough
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Figure 4: DCNN-classifier architecture and its corresponding feature maps for an input frame. Nine sample
feature maps are plotted randomly from (a) first convolutional layer (Conv1 1), (a) seventh convolutional layer
(Conv3 3), and (c) The thirteenth convolutional layer (Conv5 3). The higher convolutional layers represent more
abstract features than those at the lower layers.

Figure 5: Different Classes based on the target orientation.

clutter chips for the training phase and the performance of the network on the training dataset were maximized.

3.3 Target Classification DCNN

The architecture of the DCNN-classifier is demonstrated in Figure 4. This network classifies the potential targets
provided by the first network into different target classes. However, because of the huge difference between targets
of the same class but with different orientations, each target class is broken down into three classes based on the
orientation. Targets are sub-classified into front-view, with an orientation in range of [345◦, 15◦], rear-view, with
an orientation in range of [165◦, 195◦], and side-view, with an orientation in range of [15◦, 165◦] or [195◦, 345◦].
Figure 5 shows these three sub-classes of each target type. Therefore, we ended up having 30 different classes
for the total of ten target classes. However, to give the DCNN-classifier an opportunity to reject also the false
alarms, which are clutter chips detected as targets from the DCNN-detector, we add the 31th class which is the
clutter class.

The loss function of this network is the same as the first network but we have 31 prediction output in the
cross-entropy loss:

loss2 = −
∑
n

31∑
i=1

y
(n)
i log ŷ

(n)
i . (3)

Even though the target classification network is trained and tested on both target and clutter chips, however
due to using fully-convolutional layers as substitute for fully-connected layers, DCNN-classifier also can operate
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Figure 6: (a) A batch of false alarms from DCNN-detector. (b) the remaining false alarms after DCNN-classifier.

Figure 7: Confusion Matrix - Validation dataset

on the whole frame and predict the classes associated to different regions of the input. In this case, DCNN-
classifier is acting as a detector and a target classifier. However, the performance of the network, to perform
the both tasks of target detection and classification by its own, is quite poor. Therefore, the first network,
DCNN-detector, localizes the potential targets. Subsequently, the predicted target chips are resized to 40 × 72
and fed to the target classification network.

Clutter Chip Selection: For training of the DCNN-classifier, we added a clutter class alongside with the
target classes to reject the false alarms of the DCNN-detector. Therefore, we added the remaining false alarms of
the DCNN-detector, after training on the augmented dataset (explained in Section 3.2), to the training set of the
DCNN-classifier in order to learn the false alarms. Figure 6 shows a batch of false alarms by the DCNN-detector
and their remaining false alarms after false alarm rejection by the target classifier DCNN.

4. EXPERIMENTS

In this section, we evaluate our proposed network by comparing it with the state-of-the-art on the ROI dataset.29

Following the hard negative mining approach, the target detection DCNN is trained three times on the SIG
dataset and the new false alarms are combined with the training dataset. The training process termination is
based on the performance of the proposed network on the validation dataset. After the third training process,
the remaining false alarms are added to the training dataset of the classification DCNN. Thereafter, the target
classification network is trained to classify the potential targets into clutters and 30 different target types (three
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Figure 8: The ROC curves for target detection, (a) ROI 1 and (b) ROI 2. The blue line shows the output of the
DCNN-detector, the orange line shows the ROC curve after clutter rejection by the DCNN-classifier, and the
green line shows the EST-PCA detector.29

target orientation class for each of the ten target classes). Figure 7 shows the confusion matrix corresponding
to the validation dataset. The confusion matrix is plotted based on the accuracy of the predicted target classes
despite the correctness of the detected orientation class. In the confusion matrix, row 1 corresponds to the clutter
class, while the other 10 rows stand for 10 different target classes.

We performed two test experiments on ROI 1 and ROI 2 datasets. In the first step, each FLIR frame is fed to
the first network to localize the potential targets within the frame. It uses a multi-resolution image pyramid in
order to detect targets at different ranges. The detected potential targets are cropped from the frame, resized to
40×72, and fed to the DCNN-classifier. The ROC results of the DCNN-detector for the proposed implementation
as well as the previous state of the art29 are depicted in Figure 8a and 8b for the ROI 1 and ROI 2 databases,
respectively. The detection rate of our DCNN-detector is about 88% for 0.35 false alarm per frame in ROI 1 and
78% for 0.5 false alarm per frame in ROI 2. In these plots, the targets which have an overlap more than %50
with any of the detected potential targets are considered as detected targets.

However, the potential targets are sent to the DCNN-classifier for the false alarm rejection as well as target
classification. The corresponding results after false alarm rejection by the second DCNN are also plotted in
Figure 8a and 8b (orange lines). The DCNN-classifier significantly improved the results by rejecting most of the
false alarms. The detection rate after DCNN-classifier is about 99.8% for 0.35 false alarm per frame in ROI 1 and
97.9% for 0.5 false alarm per frame in ROI 2. For false alarm per frames greater than 0.35 in ROI 1 and 0.5 in
ROI 2 we do not have significant improvement in detection rate. Consequently, we can choose the corresponding
thresholds for the proposed detector.

The DCNN-classifier also classifies the targets into 30 different target classes in addition to the clutter
rejection. Figure 9a and 9b show the confusion matrices of the target classification network for the ROI 1 and
ROI 2 databases, respectively. The confusion matrices are barely scattered in off-diagonal elements, meaning
the targets are less likely to be misclassified. It should be pointed out that in the test experiments with the ROI
dataset, despite the missing five target types (15 classes) but we performed the classification with 31 classes.

To assess the performance of the first network on target localization task, we also calculated the Intersection
of Union (IU) metric for the predicted bounding boxes after adopting non-maximum suppression (NMS) on the
proposal regions. This metric is defined as the intersection of the predicted and ground truth bounding boxes
over their union. Figures 10a and 10b show the histogram of IUs for ROI 1 and ROI 2 datasets, respectively.
The mean IU (mIU) for ROI 1 and ROI 2 are 43.5% and 39.28%, respectively.

In couple of recent state-of-the-art studies in the literature, researchers have randomly partitioned the SIG
dataset into two non-overlapped sub-groups, SIG-TRAIN (about 80%) and SIG-TEST (about 20%). These sub-
groups are used for training and testing respectively. For the sake of comparison we performed a new experiment
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Figure 10: Histogram of Intersection of Union (IoU), (a) ROI 1 and (b) ROI 2.
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Table 2: Comparison of the proposed method with the recent approaches in terms of recognition accuracy (%)
* A single test result on 3456 target chips from both ROI datasets

Proposed DCNN-classifier LVQ24 NN23 Averaged Bayes26 RGV35 SRC25 SCCP39

TEST-SIG 99.85 93.4 95.49 - 99.10 97.69 98.72

ROI 1 84.71
83.23∗ 69.68∗ 75.58∗ 82.1∗

- - -

ROI 2 82.73 - - -

by partitioning the SIG dataset into SIG-TRAIN and SIG-TEST with the same 80%-20% portions. The results
of our proposed DCNN (classifier), LVQ,24 NN,23 Averaged Bayes,26 RGV,35 SRC,25 and SCCP39 methods on
the SIG-Test are reported in Table 2.

5. CONCLUSION

In this work, a framework for ATR using the concept of Deep Convolutional Neural Networks (DCNNs) has been
developed. The framework compromises two DCNNs: the first DCNN detects and localizes the potential targets
in an FLIR imagery scene, and the second network recognizes the class associated with each potential target.
The second DCNN is also able to reject the false alarms of the target detector network. Due to the inherent
nature of DCNNs the proposed approach is robust to scale, translation, rotation, and illumination. To improve
the robustness we augmented the training dataset by random scaling, shifting, rotation, and cropping. Both
networks were fine-tuned with augmented data after we initialized their convolutional layers with the weights of
a pre-trained VGG16 on ImageNet dataset. To show the effectiveness of the proposed framework, we conducted
two experiments on the Comanche (Boeing Sikorsky, USA) FLIR ROI datasets. The experiments have shown
substantial improvements in the target detection and recognition in comparison with the previous sate-of-the-art
for these datasets. The proposed method can be easily adapted to other ATR applications as well.
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