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ABSTRACT

Extensive genome-wide analyses of deregulated gene expression have now
been performed for many types of cancer. However, most studies have focused
on deregulation at the gene-level, which may overlook the alterations of specific
transcripts for a given gene. Clear cell renal cell carcinoma (ccRCC) is one of the best-
characterized and most pervasive renal cancers, and ccRCCs are well-documented
to have aberrant RNA processing. In the present study, we examine the extent of
aberrant isoform-specific RNA expression by reporting a comprehensive transcript-
level analysis, using the new kallisto-sleuth-RATs pipeline, investigating coding and
non-coding differential transcript expression in ccRCC. We analyzed 50 ccRCC tumors
and their matched normal samples from The Cancer Genome Altas datasets. We
identified 7,339 differentially expressed transcripts and 94 genes exhibiting differential
transcript isoform usage in ccRCC. Additionally, transcript-level coexpression network
analyses identified vasculature development and the tricarboxylic acid cycle as the
most significantly deregulated networks correlating with ccRCC progression. These
analyses uncovered several uncharacterized transcripts, including IncRNAs FGD5-AS1
and AL035661.1, as potential regulators of the tricarboxylic acid cycle associated with
ccRCC progression. As ccRCC still presents treatment challenges, our results provide
a new resource of potential therapeutics targets and highlight the importance of
exploring alternative methodologies in transcriptome-wide studies.

One of the characteristic features of ccRCC is the
frequently mutated von Hippel-Lindau (VHL) gene,
found within ~50% of ¢¢cRCC tumors, or loss of the
short arm of chromosome 3 [7—10]. Loss of a functional

INTRODUCTION

Renal cancer is one of the ten most frequently
occurring cancers found in both males and females in

the United States [1]. In 2018, an estimated 65,340 new
cases of renal cancer will be diagnosed within the US
with ~96% of them being renal cell carinomas (RCC)
[2]. Most RCC tumors originate from the epithelial cells
of proximal tubules within the cortex of the kidney, and
RCCs carry with them several therapeutics challenges
[3, 4]. Specifically, both chemotherapy and radiation
treatments are largely ineffective, patients can be
frequently asymptotic, and metastatic RCC has a relatively
high 5-year mortality rate of > 90% [5]. Among the four
major histological RCC subtypes, clear cell renal cell
carcinoma (ccRCC) is the most common, observed within
75% of cases [6].

VHL protein, a E3 ubiquitin ligase, results in enhanced
stability of a family of transcription factors, known as
hypoxia inducible transcription factors (HIFs) [11]. As
a result of elevated HIF proteins, changes to expression
levels of several HIF responsive genes can occur, such as
vascular endothelial growth factor (VEGF), MET proto-
oncogene (¢-MET), and transforming growth factor (7GF),
altering the pro-angiogenic, invasive and proliferative
characteristics of cancer cells. With the advent of large-
platform and high-throughout techniques, we have greatly
improved our understanding of the VHL/HIF pathway,
and we have expanded beyond this classical model to
reveal other key molecular events that occur in ccRCC.
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In a recent comprehensive study examining ccRCC, an
integrative pathway analysis showed one of the most
frequently mutated subnetworks were genes that influence
the epigenetic landscape, such as PBRM1 and genes in the
PBAF SWI/SNF chromatin remodeling complex [7].

However, despite the shift to global gene expression
profiling, little attention has been given to examining
transcript-specific changes in ccRCC and other cancers,
possibly due to the additional computational constraints
compared to conventional gene-level analyses. Aberrant
transcript isoforms from altered transcription initiation,
termination and RNA processing (including altered
alternative splicing) are well-documented phenomena
found within many cancers [8, 12—15]. Furthermore,
abnormal RNA processing events can have profound effects
on the function of coding and non-coding RNA species
[16, 17]. In a recent example, inactivation of a histone
methyltransferase, known as SET domain containing 2
(SETD2), was discovered to be one of the inciting causes
of widespread transcriptional read-through and abnormal
RNA chimera production found in ccRCC [16].

With the advent of alignment-free RNA-Seq
quantification algorithms, larger scale and more
comprehensive transcript-level analyses can now be
performed with a smaller computational footprint. An
example is kallisto, one of the fastest and most accurate
transcript-level quantification programs. Instead of more
time consuming read alignments, it uses a k-mer approach
for quantifying the abundance of transcripts in RNA-
seq experiments [18]. More recently, two R packages,
sleuth and RATs (Relative Abundance of Transcripts),
were developed that exploit the bootstrap estimates
from kallisto to identify events of differential transcript
expression and differential transcript usage, respectively
[19, 20]. Differential transcript expression (DTE) is any
change in the relative abundance of a transcript between
two conditions. Alternatively, differential transcript usage
(DTU) is the proportional change of the transcripts that
a gene encodes. For example, DTU can frequently result
in isoform-switching, in which the major isoform (most
abundant) “switches™ with an alternative transcript, and
thereby that isoform is longer the major isoform of that
particular gene. To our knowledge, there are relatively
few transcriptome-level studies examining differential
transcript expression in ccRCC, and these studies have
either relied on microarray platforms or focused largely
on one aspect of differential transcript expression (e.g.
differential splicing) [21-26]. Importantly, transcript-level
analyses can add greater resolution to a transcriptome-
wide study, as significant DTE can evade traditional gene-
level analysis techniques.

The current study uses a multifaceted approach
with new highly accurate computational methods, not
employed by previous studies, quantifying all transcript-
level alterations in ccRCC, and places these alterations
in the context of key biological pathways involved

in ccRCC progression (Figure 1A). In doing so, we
identified several previously uncharacterized deregulated
genes implicated in ccRCC. We analyzed 100 RNA-seq
datasets (50 matched pair samples) from The Cancer
Genome Altas (TCGA) with kallisto to quantify all
putative coding and non-coding transcripts, sleuth to
identify significant differentially expressed transcripts
(DETs) and RATs to discover events of differential
transcript usage (DTU). We identified 7,339 DETs and
94 DTU genes of which 68 genes are uncharacterized.
Furthermore, we performed a comparative differential
expression analysis, using both gene-level and transcript-
level analyses, and identified novel deregulated genes
in ccRCC. Additionally, we performed one of the first
weighted transcript-level coexpression network analyses
in ccRCC. Using WGCNA, we found that transcript
networks controlling vascular development and TCA
cycle were most significantly deregulated and correlated
with ccRCC tumor stage. These analyses identified
several uncharacterized genes as potential modulators of
pathways deregulated in ccRCC.

RESULTS

Global identification and validation of DTE in
ccRCC

From the kallisto analysis, a total of 217,082
transcripts quantifications (160,717 protein-coding and
56,365 non-coding) for each of the 100 samples were
used in the differential expression analyses, comparing 50
normal adjacent renal samples against 50 ccRCC samples.
Using the Wald test, with a log, transformation, 90,002
transcripts passed the initial filtering process used by the
sleuth R package. With a ¢g-value of < 0.005, we identified
32,642 DETs, encoded by 14,767 genes (Supplementary
Table 1, Supplementary Figure 1). With additional
filtering, using the bias estimator, referred to as the beta
value of > 1 or < -1 and an average absolute transcript
expression of > 1 TPM, 7,339 high confidence DETs were
identified (Figure 1B, Supplementary Table 1).

Gene ontology analyses using the express analysis
in Metascape of the unique genes encoding the DETs are
consistent with previous reports (Supplementary Table 1)
[25, 27]. There is significant enrichment of gene sets and
GO terms related to the immune response for the 3,366
upregulated DETs (encoded by 2,023 genes). Conversely,
there is enrichment in GO terms related to metabolic
processes and transport of small molecules and ions for
the 3,973 downregulatd DETs (encoded by 2,518 genes).
Previously reported and contained within the 7,339 DETs,
is ras-related C3 botulinum toxin substrate 1 (RACY), that
shows a statistically significant downregulation of one
of its transcripts, ENST00000356142.4 (Supplementary
Figure 2) [13]. ENSTO00000356142.4 contains an
additional exon, referred to as exon 3b that is frequently
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spliced out in ccRCC. The most abundant RAC/ transcript,
ENST00000348035.8, is unaffected in ccRCC.

As mutations in key epigenetic modifiers, such
as SETD2, PBRMI and BAPI, among ccRCCs have
demonstrated to have significant effects on the epigenetic
landscape and consequently splicing events, we compared
the DETs observed in the current study against 6,207 RefSeq
transcripts previously found to have defects in splicing and
intron retention [14]. Among the 6,207 transcripts, 6,070
transcripts were readily converted to an ensembl annotation,
and 1,857 transcripts were identified as differentially
expressed. In a similar study, among 30 genes found to have
a deficiency in H3K36me3 and SE7D2-mediated alternative
splicing [15], we found 27 of these genes to have at least one
DET in the current study (using an FDR < 0.005).

Among the 7,339 DETs discovered (4,470 individual
loci), ~89% were protein-coding (6,546 transcripts) and
~11% were non-coding (793 transcripts) (Figure 1C,
left). These DETs represented only ~4% and ~1% of the
total putative protein-coding and non-coding transcripts,
respectively (Figure 1C, right). Further characterization of
the DETs showed that the number of transcripts affected
remained relatively static, regardless of the number of
putative transcripts derived from a given gene (Figure 1D).
With genes encoding > 2 transcripts, > 80% of the genes
had < 3 detectable DETs.
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Lastly, as previous gene-level expression analyses
may not have detected some cases of DTE, we performed a
comparative differential expression analysis of the matched
pair samples evaluating the results of edgeR and sleuth
[24] (Figure 2A). For the gene-level edgeR analysis, read
counts were generated within the systemPipeR package,
using HISAT? for the alignment of the sequence reads and
summarizeOverlaps for the generation of the gene counts.
With thresholds of > 2 fold change and FDR < 0.005,
edgeR identified 5,665 differentially expressed genes
(DEGS). In an alternative gene-level analysis, using kallisto
generated gene counts, the sleuth gene-level analysis
discovered 6,441 DEGs, with a beta value of > 1 or < -1
and a FDR < 0.005. Among the 4470 genes, encoding
the 7,339 DETs (described above), a total of 1,159 genes
were found exclusively within the sleuth transcript-level
analysis (Supplementary Table 1). Interestingly, only ~4%
(51 genes) of the 1,159 genes harbored both upregulated
and downregulated DETs. A moderate degree of overlap
was observed between the four differential expression
analyses, sharing 1,581 genes in common. Similarly, all
gene-level analyses shared 1,932 genes in common, while
the kallisto gene-level and our edgeR analyses had the most
in common, sharing 3,632 DEGs.

One example of significant differentially expressed
transcripts, not detected by gene-level analyses and not
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Figure 1: Global identification of differential transcript expression in ¢ccRCC. (A) Overview of pipeline used in identification
and characterization of DTE and DTU in ccRCC. (B) Unsupervised hierarchical clustering of 7,339 DETs identified using sleuth (FDR <
0.005 and beta value of < -1 or > 1). (C) Percentage of protein-coding and non-coding genes for the 7,339 DETs identified using sleuth. (D)
Proportion of genes with » identified DETs relative to total number of encoded transcripts.
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identified by previous ccRCC studies, are derived from
Pleckstrin homology like domain family B member
2 (PHLDB2) known commonly for its association
with vascular dementia (Figure 2B) [28]. PHLDB2
encodes for 18 putative transcripts, and two transcripts
ENST00000393923.7 and  ENST00000431670.6
are downregulated in ccRCC (Supplementary
Table 1). ENST00000393923.7 is the most abundant
protein-coding PHLDB?2 transcript, and it is the most
significantly downregulated in ccRCC (Figure 2C).
ENST00000393925.7 is a slightly less abundant PHLDB?2
transcript, and it is unaffected in ccRCC. Evaluation of
the tumor/normal TPM ratios of the 50 matched pair
samples showed that patients with a high degree of
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ENST00000393923.7 downregulation exhibited lower
survival rates over ~12 years (p = 0.0015, Figure 2D).
Two additional examples of genes harboring DETs,
solute carrier family 37 member 3 (SLC3743) and high-
density lipoprotein binding protein (HDLBP) were also
found to correlate with patient survival (Supplementary
Figure 3). ENST00000393923.7 downregulation was
validated wusing transcript-specific qPCR with 12
independent matched pair ccRCC samples (Figure 2E).
Using a Wilcoxon signed-rank test, ENST00000393923.7
was found to be significantly downregulated in ccRCC
with a median downregulation of ~6.3 fold change. No
statistically significant difference was observed with
ENST00000393925.7.
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Figure 2: Comparative differential expression analysis identifies novel genes implicated in ¢ccRCC. (A) Comparison of
DEGs/DTE genes discovered with sleuth, edgeR, and a previous study by Scelo et al. (B) Transcript abundances in normal renal and ccRCC
tissues for the two most abundant PHLDB?2 transcripts. Each box plot represents 50 calculated bootstrap values of an individual sample
(red = normal, blue = ccRCC). (C) ENST00000393923.7 harbors an alternative exon 1 and 2 and excludes exon 6 of ENST00000393925.7.
Differences colored in blue. (D) Kaplan-Meier plot assessing survival of patients with high vs low/no ENST00000393923.7 downregulation.
Median T/N ratio was used to partition samples into low/no and high downregulation groups. Log rank test was used to calculate statistical
significance. (E) qPCR validation of PHLDB2 DTE showing log?2 fold change of 12 ccRCC tissues relative to their normal adjacent tissues.
Results normalized to PPIA reference gene. Two-tailed Wilcoxon signed-rank test was used to determine statistical significance. Error bars
= average standard deviation of technical replicates of pair samples. ns = non-significant (> 0.05).
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Weighted transcript-level coexpression network
analysis

As our previous analyses suggest some transcripts
derived from the same gene exhibiting different expression
profiles, we sought to better understand the isoform-
specific changes occurring within ccRCCs. Therefore, we
pursued a weighted coexpression network analysis using
the calculated transcript quantifications as a framework.
Using WGCNA and the calculated TPM values from
10,000 of the most variable transcripts, a coexpression
network was performed across five stages of ccRCC
progression (normal, stage I, stage 11, stage III, stage ['V).
A total of 26 coexpression modules were identified (Figure
3A), with 7 coexpression modules highly correlated with
ccRCC progression (pearson coefficient > 0.5 or <-0.5 and
p <0.05). Using the Reactome, KEGG pathway, CORUM
gene sets and the conventional GO terms, a Metascape
analysis was performed separately with each of the 7
correlated coexpression modules. Among the 4 positively
correlated coexpression modules, vascular development,
ribosome, cytokine signaling and collagen formation were
the most enriched terms found within each of the modules.
Conversely, the 3 negatively correlated coexpression
modules revealed TCA cycle, extracellular matrix
organization and organic acid catabolic processes as the
most significant terms (Supplementary Table 1). Identified
within each of the modules were transcripts with the
highest module membership, as these transcripts are likely
extensively connected intramodular hubs (Figure 3A).
These transcripts included: ENST00000381125.8 encoded
by Phosphofructokinase, Platelet (PFKP),
ENST00000356892.3 encoded by SAM And SH3
domain containing 3 (SASH3), ENST00000225430.8
encoded by Ribosomal Protein L19 (RPLI19),
ENST00000296388.9 encoded by Prolyl 3-Hydroxylase
1 (P3HI), ENST00000295887.5 encoded by CDP-
Diacylglycerol Synthase 1 (CDSI), ENST00000257290.9
encoded by Platelet Derived Growth Factor Receptor
Alpha (PDGFRA), and ENST00000354775.4 encoded
by Aldehyde Dehydrodenase 9 Family Member 1
(ALDH9A1I).

Further characterization of the coexpression
networks showed that the majority of the transcripts
comprising the networks, and all the transcripts used in
the network construction, were encoded from separate
individuals genes (Supplementary Figure 4). Additionally,
validation of the network and gene set analyses showed
24 out of the top 30 coexpressed transcripts (transcripts
with high adjacency scores) contained within the vascular
development coexpression module, are derived from
genes comprising the core signature angiogenesis genes
described previously (Figure 3B, right) [29]. Moreover,
among the top 30 coexpressed transcripts contained within
the TCA coexpression module, 28 transcripts are produced
by genes previously discovered as being downregulated in

ccRCC (Figure 3B, left) [30]. The remaining transcripts,
ENST00000424349.1 encoded by FGDS5 antisense
RNA 1 (FGD35-4S1) and ENST00000620459.1 encoded
by AL035661.1 are uncharacterized IncRNAs highly
downregulated in ccRCC.

Differential transcript usage in ccRCC

Using the kallisto transcript abundances, the RATs
R package identified 97 events of differential transcript
usage (Figure 4A, left, Supplementary Figure 5). These 97
transcripts were identified using the RATs transcript-level
test, which examines each transcript individually and then
merges the transcript information to form a gene-level
finding. Alternatively, the gene-level DTU test, which
collectively evaluates the transcripts of a gene, identified
only 26 DTU genes (Figure 4A, right, Supplementary
Figure 5). Among both transcript-level and gene-level
DTU tests, 7 DTU genes (API1M2, CAB39L, CCDC146,
Cl6orf89, DAB2, MAPKSIPI, FGFR2) have been
identified previously [25, 26]. Collectively, 94 DTU genes
(68 uncharacterized DTU genes) in total were discovered
(using both DTU tests) when comparing normal adjacent
and ccRCC tissues (Supplementary Table 1). No
statistically significant GO terms were enriched within the
94 DTU genes, using a corrected p-value. However, the
Metascape analysis showed the top GO term (p = 0.0007)
was carboxylic acid transport, supporting previous results
demonstrating metabolic derangements as a cornerstone
of ccRCC [7, 31]. Seven DTU genes were found to have
a carboxylic acid transport GO classification, which
included: AGXT, SLC3845, SLC9A44, SLC3A42, UNC13B,
FABP6 and FOLRI.

Examination of the DTU events showed that non-
primary (i.e. non-major) isoform switches are more
frequent than primary isoform switches in ccRCC (Figure
4B). On average, we identified approximately twice as
many non-primary isoform switches relative to primary
isoform switches. Among the 8 primary isoform switches
(in common between the DTU tests), all of them also had
non-primary isoform switches. The DTU genes (described
previously) APIM2, DAB2 and FGFR?2 exhibited both
primary and non-primary isoform switching events
(Supplementary Figures 6—7). Constituting the majority
of DTU genes, a total of 76 DTU protein-coding genes
were observed. The remaining DTU genes encompassed
11 ncRNA and 7 unclassified genes. Two examples of
mostly uncharacterized DTU genes, with high isoform-
switch frequencies, were FOLRI and BABAM?2 (Figure
4C, Supplementary Figure 6). FOLRI, known as folate
receptor 1, produces 4 putative transcripts, and was
found to be one of the most significant primary isoform
switches. ENST00000393676.4 has an alternative 5° end
and is the most abundant FOLR! transcript in normal
renal tissue (Figure 4D); however, ENST00000393681.6
switches with ENST00000393676.4 becoming the
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most abundant or primary FOLR] transcript in ccRCC.
FOLRI had the highest isoform-switch frequency with
61% of ccRCC samples exhibiting the primary isoform-
switch (Figure 4E). BABAM? encodes for a component
of the BRCA1-A complex, and it produces 11 putative
transcripts, 4 of which were eligible for DTU analysis.
ENST00000436924.5 was the only BABAM?2 transcript to
show a significant proportional increase in its abundance
in ccRCC, becoming the second most abundant B4ABAM?2
transcript in ccRCC (Supplementary Figure 6).

DISCUSSION

In the current study, we identified the global isoform-
specific alterations in ccRCC and explored the deregulated
networks implicated in ¢ccRCC progression. Using the
kallisto-sleuth pipeline, we discovered 7,339 DETs of which
~90% of the transcripts were derived from protein-coding
genes. Additionally, comparative differential expression
and coexpression network analyses aided in the discovery
of several potentially clinically relevant genes and the major
deregulated networks in ccRCC progression. Lastly, we

A Organic acid catabolic process (n=113)

discovered 68 uncharacterized high-frequency DTU genes
in ccRCC with a suggested enrichment of genes involved in
metabolic function.

Differential exon usage (DEU) has frequently
been used as an inference for DTE in ¢ccRCC [21, 23,
25]; however, this approach could present challenges
in identifying DETs among transcripts sharing exons.
Additionally, gene-level expression analyses could
potentially overlook deregulated transcripts from clinically
relevant genes that give rise to multiple transcripts.
Therefore, we sought to identify deregulated transcripts
and cognate genes that were not discovered readily by
gene-level analyses by using novel methods that are not
subject to the disadvantages of the DEU approach. In a
typical gene-level analysis, all exonic reads from a gene
are consolidated and used to determine if the expression
of a gene is altered between two conditions. However,
this approach could be disadvantageous in specific
circumstances. One potential pitfall to a gene-level
analysis is that if the other transcripts from the same gene
are of similar abundance to the DET, then a conventional
gene-level analysis may not detect a gene-level difference
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Figure 3: Vascular development and TCA cycle coexpression modules are the highest correlated networks in ccRCC
progression. (A) ccRCC correlated coexpression network modules identified with WGCNA. Using a correlation coefficient of > 0.5 or <
-0.5 and p <0.05, 4 positively correlated networks (blue bars, right of dotted line), and 3 negatively networks were identified to be in ccRCC
(red bars, left of dotted line). Networks with no significant correlation with ccRCC (grey, p > 0.05). Most significant GO term for each
module shown in bold, and the transcript with the highest module membership shown below. (B) Top 30 highest coexpressed transcripts
(gene names shown) within the TCA cycle (left) and vascular development modules (right). Novel genes highlighted in red.
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between the two conditions. Additionally, while isoform
switching was found to be a relatively rare occurrence
in ¢ccRCC, isoform switching could also account for
a “masking” of a relevant gene. PHLD2, HDLBP and
SLC37A3 are examples of this “masking” effect, in which
DTE was not detected using conventional gene-level
analyses. While we acknowledge that the degree of overlap

between gene-level and transcript-level analyses could
vary greatly depending on methodology and experimental
thresholds, the current study highlights the importance of
considering transcript-level analyses in comprehensive
transcriptome-wide studies. Lastly, comparisons with
previous studies, focused on SE7D2 mutational status/
H3K36me3 prevalence of ccRCC tumors and the resulting
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Figure 4: Few high frequency DTU genes observed in ccRCC. (A) Transcript and gene-level tests using RATs to identify DTU
events in ccRCC (red dot = non-DTU, blue dot = DTU). (B) Number of primary and non-primary isoform switches discovered in ccRCC.
“Both” represents the number of shared DTU genes identified in both the transcript and gene-level tests. (C) FOLRI exhibiting significant
proportional isoforms changes in ccRCC. Circle = significant DTU. Square = tested in DTU analysis, but not significant. X = did not meet
abundance threshold for DTU anlaysis. (D) Schematic of FOLRI transcripts analyzed in DTU analysis. (E) Frequency of FOLRI and 17

other isoform switches shared between both DTU tests.
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effects on splicing [14, 15], suggest that genes subject to
splicing defects can also harbor DETs. However, additional
studies with large cohorts of mutation-specific ccRCCs are
needed to determine isoform-specific expression changes
that may be dependent on mutational status. As only 12
ccRCC tumors had a mutated SETD2, in the current study,
our findings largely reflect SE7D2-independent isoform-
specific changes.

The discovery of two uncharacterized transcripts
encoded by IncRNAs genes FGD3-AS1 and AL035661.1
identified in the network analysis suggest these IncRNAs
transcripts could be potential regulators of TCA cycle
genes or alternatively regulated by a common factor.
These IncRNAs could be of particular importance to
understanding ¢ccRCC because of their implications in
metabolic function. However, further investigation is
needed, as the function of these IncRNAs is unknown.
Another interesting transcript found within the TCA cycle
coexpression module, identified with the highest module
membership, is ENST00000295887.5 encoded by CDS].
CDS]1 encodes an integral membrane enzyme, located on
the membranes of the mitochondrion and endoplasmic
reticulum, that catalyzes the conversion of phosphatidic
acid into CDP-diacylaglycerol [32, 33]. CDSI is
uncharacterized in ccRCC and there is limited information
on its role in cancer; however, in a recent study, CDS/
was suggested to potentiate limitless growth and genomic
instability in breast cancer [34].

We identified a total of 94 genes exhibiting
differential transcript usage in ccRCC of which 7 DTU
genes were reported previously [25, 26]. However, when
considering the findings of an alternative study [24],
which also evaluated lower frequency isoform-switches,
the current study identified 26 DTU genes in common.
Therefore, the differences observed in the DTU genes are
likely attributed to different computational techniques/
thresholds and/or the use of different transcript annotations
[19]. While our findings show that the majority of isoform
switching events involves non-primary isoforms, which
is consistent with a previous result [24], alterations in
the expression of non-primary isoforms could still be
clinically relevant, as supported by the survival analyses
seen with the non-primary SLC3743 and HDLBP
deregulated transcripts. However, the mechanisms
involved require further investigation. Recent studies
have illustrated how isoform-specific alterations could
be highly influential in ccRCC and other cancers. For
instance, alternatively spliced isoforms of VHL were
shown to alter VHL binding affinity to components of the
pS3 pathway [35]. Additionally, isoform-switching events
have been demonstrated to alter the invasive properties
of cancer cells [17, 36]. From our analyses and previous
similar studies, mentioned above, it is highly suggestive
that isoform-specific deregulations are a critical part
to characterizing and understanding the molecular
underpinnings of ccRCC, and suggest that isoform-

level transcriptomic analyses should more generally be
considered to obtain a more comprehensive view of the
genetic deregulations in cancer.

MATERIALS AND METHODS

Transcript quantification and differential
expression analyses

A total of 100 fastq RNA-seq files (50 primary
ccRCC and 50 normal adjacent renal samples,
Supplementary Table 1) were downloaded from The
Cancer Genome Atlas (TCGA) legacy archive (https://
portal.gdc.cancer.gov/legacy-archive/search/f). Human
c¢cDNA and ncRNA FASTA formatted transcript files
(Ensembl v89 annotation) were acquired form the Ensembl
ftp site (https://www.ensembl.org/info/data/ftp/index.
html), and merged to create a master file of all putative
coding and non-coding transcripts. All quantification and
differential expression analyses were performed using the
kallisto-sleuth pipeline. Using the default settings, kallisto
was used to create an index for quantification using the
aforementioned FASTA master file. Subsequently, kallisto
was used to quantify all putative transcripts using 50
bootstrap samples. Differential expression analysis was
performed with sleuth using the Wald test with a cutoff
g-value of 0.005. RATs was performed using the read
counts and bootstrap values calculated from kallisto. As
ccRCC is a highly heterogeneous cancer, and there are
4 major subtypes of ccRCC, a replicate reproducibility
of 0.25 was used in the analysis. All other parameters
remained on default settings.

For the edgeR analysis, alignment of the fastq files
was performed first with HISAT2 using the hg38 human
assembly [37-39]. Read counting was performed using the
summarizeOverlaps package, with union mode [40]. Using
the read counts, an edgeR analysis was performed using
the default settings. The entire pipeline was performed
within the systemPipeR package [41].

Weighted coexpression network analysis

All 217,082 TPM transcripts quantifications were
initially filtered for an average absolute expression of
> 1 TPM. Subsequently, 10,000 of the most variable
transcripts, using the mean absolute deviation, were
used for the proceeding WGCNA pipeline [42]. A soft
thresholding power of 6 was used in a signed transcript
coexpression network framework. All other parameters
remained on the default recommended settings. ccRCC
correlated coexpression networks were exported to
VisANT with an adjacency threshold 0.08 for visualization
purposes [43]. For the gene-level Metascape analysis
(http://metascape.org) of each of the network modules,
genes were considered only once in the analysis, regardless
of the numbers of transcripts derived from the gene.
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Primer design and quantitiative PCR

Primers sequences were designed using Primer3
plus  (http://primer3plus.com/cgi-bin/dev/primer3plus.
cgi) using the default qPCR settings (Supplementary
Table 1). When possible, primers were designed over
exon junctions to avoid capturing unannotated alternative
transcripts. All primers were synthesized by Integrated
DNA Technologies. Twelve matched pair ccRCC RNA
samples were acquired from Origene (Supplementary
Table 1). Origene RNA samples were verified for
quality and quantity using gel electrophoresis and the
Thermoscientific Nanodrop2000 spectrophotometer.
cDNA was synthesized using 1 ug of total RNA using
the iScript reverse transcription supermix (Biorad,
Irvine, CA) according to the manufacturer’s instructions.
Quantitative PCR was performed using the Biorad iQ
SYBR green supermix and a Biorad CFX Connect
thermocylcer (Biorad, Irvine, CA) and analyzed using
the CFX manager software. Using a single threshold
Cq determination, the Livak method was employed for
all gene expression analyses. All qPCR analyses were
normalized to PPIA, as PPIA was shown to be a suitable
reference gene when comparing normal adjacent tissue to
ccRCC tumor tissue [44, 45].
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