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Abstract

The state-of-the-art performance of deep learning algo-
rithms has led to a considerable increase in the utilization
of machine learning in security-sensitive and critical appli-
cations. However, it has recently been shown that a small
and carefully crafted perturbation in the input space can
completely fool a deep model. In this study, we explore the
extent to which face recognition systems are vulnerable to
geometrically-perturbed adversarial faces. We propose a
fast landmark manipulation method for generating adver-
sarial faces, which is approximately 200 times faster than
the previous geometric attacks and obtains 99.86% success
rate on the state-of-the-art face recognition models. To fur-
ther force the generated samples to be natural, we intro-
duce a second attack constrained on the semantic structure
of the face which has the half speed of the first attack with
the success rate of 99.96%. Both attacks are extremely ro-
bust against the state-of-the-art defense methods with the
success rate of equal or greater than 53.59%. Code is avail-
able at https://github.com/alldbi/FLM.

1. Introduction

Machine learning models especially deep neural net-
works (DNNs) have obtained state-of-the-art performance
in different domains ranging from image classification [16]
to object detection [26] and semantic segmentation [21].
Despite the excellent performance, it has been shown [30, 7]
that DNNs are vulnerable to a small perturbation in the in-
put domain which can result in a drastic change of pre-
dictions in the output domain. These small perturbations,
which are often imperceptible to humans, can transform
natural examples into adversarial examples that are capable
of manipulating high-level predictions of neural networks.

A crucial characteristic of adversarial examples is that
they are visually similar to the original samples. This
property significantly highlights the vulnerability of DNNs
in critical applications where a carefully crafted adversar-
ial example may remain benign to the human eye while
targeting several machine learning models. For instance,
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Figure 1. Comparison of the proposed attack to an intensity-based
attack. First column: the ground truth image, which is correctly
classified. Second column: the spatially transformed adversarial
image wrongly classified and the corresponding adversarial land-
mark locations computed by our method. Third column: the ad-
versarial image wrongly classified and the corresponding perturba-
tion generated by the fast gradient sign method [7]. The proposed
method leads to natural adversarial faces which are clean from ad-
ditive noise.

autonomous vehicles may be misled by traffic signs con-
structed by an adversary to deceive machine learning meth-
ods, while the same sign may seem natural to human drivers
[17].

Most of the attack methods developed in the previous
works [9, 7, 23] are intensity-based attacks, as they directly
manipulate the intensity of input images to fool the target
model. Intensity-based attacks are computationally cheap
and can prosper from a low-cost similarity constraint by
adopting an £,-norm to force the generated examples to
be similar to the benign samples. Since perturbations for
neighborhood pixels are computed independently, adversar-
ial examples generated using intensity-based attacks often
have high-frequency components that can be used as a mea-
sure to detect and remove them [19]. On the other hand,
the £,-norm is not a perfect measure for perceptual sim-
ilarity since it is sensitive to spatial transformations [14].
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For instance, a small rotation, translation, or scale variation
in the input image, results in a drastic change of similar-
ity. These limitations restrict intensity-based attacks from
incorporating spatial perturbations. Recently, Xiao et al.
[34] proposed a novel method of generating adversarial ex-
amples by spatially transforming natural images. Spatial
transformations provide a convenient way of incorporating
neighborhood information through interpolation.

From the defensive perspective, we divide face recog-
nition systems into two different types, active and passive.
In the active type, the model processes online face images
from devices such as surveillance or access control cameras
to identify the captured face. Therefore, the model has a
limited amount of time to examine whether the input image
is natural or not. In the passive face recognition, individuals
submit a digital or hard copy photo to register their iden-
tity in a system for future identification. The attacker can
submit an adversarial face image that prevents the system
from recognizing the malicious ID in the future. In such a
case, the defense algorithm has unlimited time to examine
the gallery images. Hence, attacking passive face recogni-
tion systems is more challenging than attacking active sys-
tems. However, if the attack on the passive face recognition
system is successful, the attacker may obtain a long-term
immunity against the identification system.

This study explores the extent to which passive face
recognition systems are vulnerable to spatially transformed
adversarial examples. Inspired by [34], we propose a novel
and fast method of generating adversarial faces by altering
the landmark locations of the input images. The resulting
adversarial faces completely lie on the manifold of natural
images, which makes it extremely hard for defense methods
to detect them even by a novelty detector [33]. The contri-
butions of this paper are as follows:

e We have demonstrated that the prediction of a face
recognition model has a linear trend around the actual
value of the landmark locations of the input face im-
age.

e We have introduced a fast method of generating adver-
sarial face images, which is approximately 200 times
faster than the previous geometry-based attacks which
use L-BFGS optimization.

e We have developed a structure-constrained attack that
manipulates face landmarks based on the semantic re-
gions of the face.

e We have demonstrated that constraining the attack to
preserve the natural structure of faces greatly increases
the robustness of the method against the state-of-the-
art defense algorithms.

2. Related Work

Recent advances in technology have led to the genera-
tion of large datasets and powerful computational resources
that made it possible to train deeper learning models. These
models outperformed traditional methods in different ar-
eas ranging from signal processing to action recognition.
Despite the spectacular performance, Szegedy et al. [30]
showed that a small perturbation in the input domain can
fool a trained classifier into making a wrong prediction con-
fidently. In this section, we first review the literature on
intensity-based and geometry-based attacks. Then we ex-
plore the background of adversarial examples for the face
recognition systems.

2.1. Intensity-Based Attacks

Algorithms for generating adversarial examples can be
categorized by the perturbation type. Most of the previ-
ously proposed methods are intensity-based attacks, as they
directly try to manipulate the intensity of the input sample.
Szegedy et al. [30] used a box-constrained L-BFGS [20] to
generate some of the very first adversarial examples. De-
spite the high computational cost, their method was able to
fool many networks trained on different inputs.

Goodfellow et al. [7] proposed a fast and efficient
intensity-based attack called the Fast Gradient Sign Method
(FGSM) and showed that the prediction of a deep leaning
model has a linear trend around the saddle point of the in-
put sample. Hence, they used the sign of the gradient of
the classification loss with respect to the input sample as the
perturbation to manipulate the intensity of the benign exam-
ples. This provides a fast and effective single-step attack.
Although they select a small coefficient for the amplitude
of the gradient sign to make the perturbation imperceptible,
such a noisy pattern can facilitate the process of defending
against it [19, 18]. Various extensions to intensity-based at-
tacks have been developed to explore the vulnerability of
machine learning models. To increase the effectiveness of
the attack, Rozsa et al. [27] proposed to use the actual gra-
dient value instead of the gradient sign used in FGSM [7].
Also, several iterative methods are developed to improve the
robustness of single-step attacks against defenses, including
the iterative version of FGSM [5, 17].

Papernot et al. [24] proposed the use of the Jacobian ma-
trix of the prediction of classes concerning the input sample
to generate Jacobian-based Saliency Map Attack (JSMA).
JSMA reduces the number of pixels that are needed to be
changed during the attack by calculating a saliency map of
the most important pixels in the input space. Carlini and
Wagner [3] modified the JSMA by changing the target layer
used in the algorithm to compute the Jacobian matrix. They
reported the adversarial success rate of 97% by modify-
ing less than 5% of pixels in the input samples. However,
saliency-based methods are computationally expensive due
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Figure 2. The proposed method optimizes a displacement field f to produce adversarial landmark locations P2%”. The spatial transfor-
mation 7 transforms the input sample to the corresponding adversarial image %" such that ® (%) = ®(z) + £, and a state-of-the-art
face recognition model g miss-classifies the transformed image z°%".

to the greedy search for finding the most significant areas in
the input sample.

Almost all intensity-based attacks add high-frequency
components to the input samples and use an £,-norm con-
straint to control the amount of distortion. However, the
£y,-norm is not a perfect similarity measure and does not
guarantee that the adversarial samples lie on the same man-
ifold as the natural samples. This increases the vulnerability
of intensity-based attacks, especially in the passive applica-
tions where the agent has unlimited time to assess the legit-
imacy of the inputs.

2.2. Geometry-Based Attacks

Recently, Xiao et al. [34] proposed stAdv attack in which
they generate adversarial examples by spatially transform-
ing benign images. For this purpose, they define a flow
field f for all pixel locations in the input image. The corre-
sponding location of a pixel in the adversarial image can be
computed by the displacement field. Since the displacement
field can hold fractional values, they use a differentiable bi-
linear interpolation [13] to overcome the discontinuity prob-
lem. Furthermore, they added the sum of the total displace-
ment of any two adjacent pixels to the main loss function to
control the amount of distortion introduced by the displace-
ment field. However, optimizing a flow field for all pixels in
an image produces a highly non-convex cost function. They
used the L-BFGS [20] with a linear backtrack search to find
the optimal flow field f*. Such a computationally expensive
optimization is the critical limitation of this method.

2.3. Attacking Face Recognition

All of the previously proposed attack methods can be
adopted for face recognition models, but the approach is
highly dependent on the type of the face recognition model.
For active face recognition, it has been shown that putting
on enormous amounts of makeup [10] or wearing carefully
crafted accessories [29] can conceal the identity of the at-

tacker. However, wearing heavy makeup or overt acces-
sories may draw attention and increase the chance of de-
fense against the attack.

For passive face recognition, Goel et al. [6] and
Goswami et al. [8] examined several intensity-based attacks
and showed that they are extremely successful in fooling
face recognition systems. However, the noisy structure of
the perturbation makes these attacks vulnerable against con-
ventional defense methods such as quantizing [18], smooth-
ing [6] or training on adversarial examples [30].

2.4. Defense Methods

Since the introduction of adversarial examples, many ap-
proaches have been proposed to detect and mitigate these
threats. Current defenses against adversarial attacks con-
sist of two main approaches which modify either the model
[7, 31, 22] or the input before feeding to the model [4, 32].
The most successful group of defenses to date are methods
based on modifying the model, especially by using adver-
sarial training [22].The adversarial training uses the adver-
sarial examples during the training phase to make the model
robust against the attack. Goodfellow et al. [7] proposed
to utilize FGSM to generate adversarial examples and use
them to train the model to provide robustness against adver-
sarial examples. Later in Section 4.4, we use this method
followed by ensemble adversarial training [31] and pro-
jected gradient descent [22] to examine the performance of
our attacks under these state-of-the-art defenses.

3. Approach

Here we first briefly describe the problem of generating
adversarial examples. We then define a face transformation
model based on the landmark locations in Section 3.2. We
continue by presenting a landmark-based attack in Section
3.3 and developing a structural constraint in Section 3.4.
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3.1. Problem Definition

For the process of generating adversarial faces, we as-
sume that the victim face recognition model is a well-
trained classifier g : * — y over N, different classes, that
predicts a vector of classification scores y € R™¢, given an
input face image x € [0, 1]#>*W>3 with spatial size H x W.
We consider the white-box scenario where the attacker has
full knowledge about the model and its prediction. The at-
tacker tries to manipulate a benign face image x from class
c in a way that the face recognition model miss-classifies
the resulting adversarial face image 2.

3.2. Landmark-Based Face Transformation

Let & be a landmark detector function that maps
the face image x to a set of k£ 2D landmark locations

P = {p1,....px}, pi = (u;,v;). We assume p¢d® =
(ug® v94v) is the transformed version of p;, and defines

the location of the ¢-th landmark in the corresponding adver-
sarial face image £V To manipulate the face image based
on P, we define the per-landmark flow (displacement) field
f to produce the location of the corresponding adversarial
landmarks. For the i-th landmark p¢?’ = (ug®, v@), we
optimize the spatial displacement vector f; = (Au;, Av;)'.
a4 can be obtained from the

The adversarial landmark p§
original landmark p; and the displacement vector f; as:

P =pi + fi, o
(ud? 08 = (u; + Aug,v; + Avy).
Contrary to [34], which estimates the displacement field
f for all pixel locations in the input image, the displacement
field f in the proposed method is only defined for & land-
marks. In a real-world application, especially face recogni-
tion problems, k is notably small compared to the number
of pixels in the input image. As a result, it is possible to use
conventional spatial transformations to transform the input
image. Consequently, limiting the number of control points
reduces the distortion introduced by the spatial transforma-
tion. The resulting adversarial face image is the transformed
version of the benign face image using the transformation T
as follows:

2" = T(P,P"", x), @)

where 7' is the spatial transformation that maps the source
control points P to the target control points P’ Note that
224 is differentiable with respect to the landmark locations

and the input image.

'We assume that 2D coordinates are independent. So in the rest of the
paper, all operations on coordinates are element-wise.

P1: face edge

P2: right eye

P3: left eye

P4 nose

P5: right eyebrow

PG: left eyebrow
4 P7: mouth

Figure 3. Grouping face landmarks based on semantic regions of
the face.

3.3. Fast Landmark Manipulation

It has been shown [12] that landmark locations in the
face image provide highly discriminative information for
face recognition tasks. Indeed, we experimentally show
this in Section 4.2 that even learning based face recognition
systems discriminate face identities based on extracting the
relative geometric features. More specifically, the predic-
tions of face recognition systems are highly linear around
the original landmark locations of the face image. This
property allows the direct employment of the gradient of
the prediction in a face recognition model to geometrically
manipulate benign faces.

We use the gradients of the prediction with respect to
the location of landmarks to update the displacement field
f. For this purpose, we first define a standard for the correct
prediction, and then we use it to compute the formulation of
the attack. As a measure of correct classification, we select
the same softmax cost used in [29, 25]. Given an input z, a
one-hot label vector 3. corresponding to class ¢ and a vector
of classification score g(z) from the victim classification
model, we define the softmaxcost as:

Ve 9(2)
w ) ; 3)

J(g(il?),c) = flog (W

where N, is the number of classes. Besides, we define
a boundary for the amount of displacement to prevent the
model from generating distorted face images. Inspired by
[34], we develop L4, to constrain the displacement field
f as follows:

k
Lyiow(f) = Z(Aui2 + Av;?). 4
im1

El e

Having the measure for the correct classification, and the
term for bounding the displacement field, we define the total
loss for generating adversarial faces as:
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Li(P, P 2, ¢c,) = J(g(T(P,P*™, x)),c,
t (9( ).c2) 5
_)\flowalow(Padv - P)u

where Mg, 18 a positive coefficient used to control the
magnitude of the displacement. The attacker can generate
geometric adversarial perturbations by finding the f* as:

f* = argmax L, (P, P*% z,¢,). 6)
f

As we show in Section 4.2, the prediction of face recog-
nition models is highly linear around the ground truth loca-
tion of the face landmarks; therefore, we use the direction
of the gradient of the prediction (same as FGSM [7]) to find
the landmark displacement field f in an iterative manner.
The ¢-th optimization step for finding f using FGSM is:

f(t+1) _ f(t) +

(N

€ 5ign(V paduct Ly (P, P*® 2 ¢,)),
where P = P 4 f()  We refer to this as the fast
landmark manipulation method (FLM) for generating ad-
versarial faces. Figure 2 shows an overview of the method.

3.4. Semantic Grouping of Landmarks

In the previous section, we developed a model to gener-
ate face images based on manipulating the landmark infor-
mation. Although this method is fast and computationally
cheap, it has a limitation that should be addressed. In Equa-
tion 7, we use the gradients of the classification loss with re-
spect to the landmark locations to update the displacement
field for generating the adversarial face images. These gra-
dients can have any direction in the 2D coordinate space.
As a result, multiple updates of the displacement field f
can severely distort the generated adversarial images. To
prevent this issue, we adopt the total /o—norm of the dis-
placement field f as an additional loss. However, our model
computes the displacement field f for a significantly small
number of locations in the input image, so limiting the size
of f can reduce the effectiveness of the attack.

To overcome this limitation, we propose to semantically
group landmarks and manipulate the group properties in-
stead of perturbing each landmark. Consequently, the total
structure of the face will be preserved. This consideration
allows us to increase the total amount of displacement and,
as a result, extremely increases the effectiveness of the at-
tack. We break down the set of landmarks P into m se-
mantic groups P;, ¢ € {1,...,m}, and p; ; denotes the j-th
landmark in the i-th group which has n; landmarks. These
groups are formed based on their semantic regions in the
face, such as left eye, right eye, mouth, efc. Figure 3 shows
a sample grouping of face landmarks used in this study. We

define a flow field vector for each of the groups by means of
a translation and a scale variable that will apply to all ele-
ments in the group. For the face regions, a rotation is not of
interest because it is not natural to have a face with a rotated
mouth or nose.

Let P; be the i-th landmark group e.g. all landmarks of
the nose. To scale these landmarks, we define the scaling
tuple a; = (v, , @y, ) Where oy, and «,, are the horizontal
and vertical scaling parameters respectively. To translate the
landmarks, we define the translation tuple 53; = (Bu,, Sv;)
where 3, and 3,, are the translation parameters for the hor-
izontal and vertical axes respectively. The location of the
corresponding landmarks in the adversarial image can be
computed as:

P = (P — 7)) + Bi, ®)

where pﬁ:n% Z;L:l p;,; is the average location of all land-
marks in the group P;. We subtract the average of the group
from each landmark location in the group before scaling to
force each part of the face to be scaled regarding its center.

We choose «; and /3; such that they minimize the square
error of P?% between Equation 1 and Equation 8 as:

ng

. o 2
argmin — Z (ailpij —Pi) + Bi—pij — fig) - O

a;,Bi 7 j=1

Solving Equation 9 results in the closed-form solutions for
the «y; and S3; as:

>y (pig — D) (pig + fig)
Z;'Zl(pi,j - i)’ ’

10)

o; =

I
Bi:pi‘FEZfi,j- 1D
7 ]:1

We modeled the effect of the displacement field f; ; for
each group of landmarks as a scaling and a translation func-
tion. While Equation 7 optimizes f, we use Equations 10
and 11 to calculate the corresponding set of scale tuples
{a1,...,ar} and translation tuples {31, ..., B7}. We refer
to this as the grouped fast landmark manipulation method
(GFLM) for generating adversarial faces.

4. Experiments

We first describe the implementation details in Section
4.1. Then we investigate how landmark information in-
fluences the prediction of a face classifier in Section 4.2.
We evaluate the performance of the proposed attacks in the
white-box scenario in Section 4.3 and conclude the experi-
ments by measuring and comparing the performance of our
attacks under several defense methods in Section 4.4.
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Figure 4. Examples of linearly interpolating face properties. Each column from Left to right shows examples of interpolating one of the
eight geometric variables of the face structure described in Section 4.2. The probability of the true class is depicted on the bottom left
corner of samples. The green color specifies the face image with the maximum probability of belonging to the true class. The red color

shows the incorrectly classified face images.

4.1. Implementation Details

To evaluate the performance of the proposed method in
the white-box scenario, we use the face recognition model
developed by Schroff e al. [28] that obtained the state-of-
the-art results on the Labeled Faces in the Wild (LFW) [11]
challenge as the victim model. We train two instances of the
model® on two datasets of face images. The first instance is
trained to recognize 9,101 celebrities from the VGGFace2
dataset [2] with more than 3.3M training images and the
average of 360 images per subject. The second instance
is trained on the CASIA-WebFace [35] dataset which con-
sists of more than 494,000 face images and 10,575 unique
IDs. For extracting the landmark information of the input
face images, we use the DIib [15] landmark detector which
predicts the 2D coordinates for 68 landmarks. We divide
landmarks based on five facial regions as: 1) P;: jaw, 2)
Ps: right eye and eyebrow, 3) Ps: left eye and eyebrow, 4)
Py: nose, and 5) Ps: mouth. The number of landmarks in
each group is as: {n1=17,no=11,n3=11, n4=9, n5=20}.
Figure 3 demonstrates a similar grouping of landmarks.

We opt to use the thin plate spline [1] (TPS) to cover a
broad range of spatial transformations that are capable of

Zhttps://github.com/davidsandberg/facenet

locally manipulating face images. TPS has 2(k + 3) pa-
rameters for mapping k source landmarks P to their cor-
responding P?4”. We first scale coordinates to lie inside
the range [—1, 1]? where (—1, —1) is the top left corner and
(1,1) is the bottom right corner of the image. We assume
all coordinates are continuous values since TPS has no re-
striction on the continuity of the coordinates because of the
differentiable bilinear interpolation [13].

We set the value of A ;,,, for the FLM attack to 100. For
the GFLM we do not set any limit for the amount of dis-
placement since the structural condition developed in Sec-
tion 3.4 is enough to preserve the similarity of the gener-
ated adversarial examples. Therefore, we set Ay, for the
GFLM attack to zero. To further condition the model to
generate realistic faces, we perform an extra modification
for the symmetric parts, such as eyes. We set an equal scale
and an equal vertical position for these parts. Other condi-
tions can be applied by slightly changing Equation 9. For
example, instead of manipulating the horizontal location of
the eyes independently, one can change the horizontal dis-
tance between them to preserve the natural symmetry.
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FLM Ground truth GFLM FLM GFLM FLM

Ground truth GFLM FLM GFLM

Figure 5. Examples of the adversarial faces generated using FLM and GFLM. For each subject, five images are shown including the original
face image (middle face), the result of GFLM (right face), the result of FLM (right image), displacement field f for GFLM (left field) and
displacement field f for FLM (right field). Tags on the bottom left of images show the probability of the true class. Green and red tags

denote the correct and incorrect classified samples respectively.
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Figure 6. Normalized probability of the true classes based on in-
terpolating the eight variables of face geometry defined in Section
4.2.

4.2. Interpolated Perturbation

The geometry of the face is unique and provides highly
discriminative information for face recognition. In this sec-
tion, we perform an experiment to evaluate how spatially
manipulating the face regions affects the performance of a
face recognition system. We extract landmarks for all faces
in the CASIA-WebFace [35] dataset and define eight vari-
ables based on the geometric properties of the face regions.
The first four variables are the translation-based variables
which are: 1) horizontal distance between the eyes and eye-
brows, 2) vertical location of the eyes and eyebrows, 3) hor-
izontal location of the nose, 4) horizontal location of the
mouth. The second set of variables are the scale-related

variables and are as follows: 5) scale of the jaw, 6) scale of
the mouth, 7) scale of the nose, and 8) scale of the eyes. We
interpolated each of these variables independently to mea-
sure the influence of each on the performance of the face
recognition model. Figure 4 shows several examples of the
interpolation.

We calculate the prediction of the true class for faces
which are correctly classified and their manipulated ver-
sions. The predictions are averaged over all the ID’s to
investigate how manipulating face parts affects the pre-
dicted probability of the class. Figure 6 shows the final
averaged values for the predictions. As it is shown, the
global maximum of the model’s prediction for a sample face
is around the ground truth value of the positions and the
scales. These results confirms that the geometry of the face
contains highly discriminative information for face recogni-
tion. Indeed, the prediction of a face recognition model has
a linear characteristic around the actual size and location of
face regions and enables us to directly use the gradient of
the prediction to manipulate landmark locations.

4.3. White-Box Attack

We evaluate the performance of both proposed methods
of FLM and GFLM for the white-box attack scenario on the
CASIA-WebFace [35] dataset. We define six experiments
to investigate the importance of each region of the face in
the FLM and GFLM attack methods. In the first five ex-
periments, we evaluate the performance of the attacks on
each of the five main regions of the face including 1) eye-
brows, 2) eyes, 3) nose, 4) mouth and 5) jaw. In the last
experiment, we evaluated the performance of attacks using
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# Face FLM GFLM stAdv [34]
Region n SR(%) pT T(s) n SR(%) pT T(s) | SR(%) pT T(s)

1 | Eyebrows | 9.6 61.92 0.0156 0473 | 21.1 7945 0.0159 1.019

2 Eyes 11.5 5559 0.0169 0.511 | 18.6 83.06 0.0156 0.781

3 Nose 8.8 82.50 0.0139 0.495 | 10.7 89.37 0.0149 0.575

4 Mouth 104 49.27 0.0152 0455|202 77.13 0.0165 0.868

5 Jaw 8.7 1254 0.0180 0.420 | 37.6 49.26 0.0161 1.804

6 All 28 9986 0.0072 0.126 | 52 9996 0.0120 0.254 | 99.18 0.0166 27.177

Table 1. Comparing results of the proposed attacks to stAdv [34] and exploring the influence of different regions of the face on our attacks.
In each experiment, the average number of iterations (), the success rate of the attack(SR), the average final probability of the true class

(pT), and the average time of the attack are shown.

Defense  FGSM [7] _ stAdv [34] FLM GFLM and GFLM attacks are extremely robust against adversar-
Adv. [7] 19.12 36.96 5479  62.03 ial training compared to FGSM [7] and stAdv [34] because
Ens. [31] 16.27 33.80 53.59 61.84 they are targeting the most important locations in the benign
PGD [22] 18.95 39.15 55.65 67.43 samples using geometric perturbations. These locations

Table 2. Comparing the success rate of the proposed FLM and
GFLM attacks to FGSM [7] and stAdv [34] attacks under the state-
of-the-art adversarial training defenses.

all five regions of the face. Also, in Experiment 6, we com-
pare the performance and speed of the proposed methods
to the method developed by [34] in which the displacement
field f is defined for all pixels in the input image. All the
experiments are conducted on a PC with 3.3 GHz CPU and
NVIDIA TITAN X GPU. Table 1 shows the results for all
the six experiments.

From the results, we observe that both the FLM and
GFLM are generating powerful adversarial face images that
fool the classifier for more than 99.86% of the samples.
An important point is the computation time of these algo-
rithms. The average time of generating adversarial faces for
the FLM and GFLM is 125 and 254 milliseconds respec-
tively, which is significantly shorter than the computation
time of stAdv [34], which is 27.177 seconds on average.
Indeed, the FLM is 215 and GFLM is 106 times faster than
stAdv [34] method. Furthermore, we described in Section
3.4 that the FLM can generate faces with spatial distortions,
and grouping the landmarks in the GFLM overcomes this
problem. Figure 5 demonstrates several examples of the ad-
versarial faces generated by the FLM and GFLM.

4.4. Performance Under Attacks

To evaluate the performance of the proposed methods
under attack, we repeat the sixth experiment in the previ-
ous section. For this purpose, we use three state-of-the-art
defenses of FGSM adversarial training [7], PGD adversar-
ial training [22], and ensemble adversarial training [31].
We compare the performance of our attacks to FGSM [7]
and stAdv [34]. Results are shown in Table 2. The FLM

contain the most critical discriminative information that a
face recognition model needs to identify an individual. De-
fenses based on adversarial training use the intensity-based
attacks to generate samples for training the model. How-
ever, the generated samples do not lie on the manifold of
natural images due to the slight change of intensity of all
pixels in the input image. Furthermore, the GFLM is more
robust against defenses than the FLM since samples gener-
ated by the GFLM are conditioned to have the similar struc-
ture as a natural face.

5. Conclusion

In this paper, we introduced a novel method for gener-
ating adversarial face images by manipulating landmark lo-
cations of the natural images. Landmark locations contain
highly discriminative information for face identification.
Therefore, manipulating landmark locations is a strong way
to change the prediction of a face recognition system. We
experimentally showed that the prediction of a face recog-
nition model has a linear trend around the parameters of the
model and the landmark locations of the input image. This
finding indicates that one can directly manipulate landmark
locations using the gradient of the prediction with respect to
the input image.

Based on this idea, we introduced a fast method of ma-
nipulating landmark locations through spatial transforma-
tion, which is approximately 200 times faster than the pre-
vious geometric attacks, with the success rate of 99.86%.
In addition, we developed a second attack constrained on
the semantic structure of the face. The second attack is ex-
tremely powerful in generating natural-looking samples that
are hard to detect even for the state-of-the-art defense meth-
ods.
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