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ABSTRACT
With benefits of fast query speed and low storage cost,
hashing-based image retrieval approaches have garnered con-
siderable attention from the research community. In this pa-
per, we propose a novel Error-Corrected Deep Cross Modal
Hashing (CMH-ECC) method which uses a bitmap specify-
ing the presence of certain facial attributes as an input query
to retrieve relevant face images from the database. In this
architecture, we generate compact hash codes using an end-
to-end deep learning module, which effectively captures the
inherent relationships between the face and attribute modal-
ity. We also integrate our deep learning module with forward
error correction codes to further reduce the distance between
different modalities of the same subject. Specifically, the
properties of deep hashing and forward error correction codes
are exploited to design a cross modal hashing framework
with high retrieval performance. Experimental results using
two standard datasets with facial attributes-image modali-
ties indicate that our CMH-ECC face image retrieval model
outperforms most of the current attribute-based face image
retrieval approaches.

Index Terms— Cross-modal hashing, deep learning, fa-
cial attributes, error correcting codes, standard array

1. INTRODUCTION

With the fast development of search engines and social net-
works, there exists a vast amount of multimedia data, such
as texts, images and videos being generated on the world
wide web everyday. The presence of multimedia big data
has sparked a rise of content based image retrieval (CBIR)
techniques in the research community. Approximate nearest
neighbors (ANN) based semantic search has garnered a lot of
attention to guarantee the retrieval quality and computing effi-
ciency for CBIR in large-scale datasets. Cross-modal retrieval
is an important paradigm of CBIR, which works with multi-
modal data and supports similarity retrieval across different
modalities, e.g., retrieval of relevant facial images in response
to attribute query such as “an old woman wearing glasses”. In
this paper, we address the problem of cross-modal retrieval of
relevant face images in response to facial attributes queries by
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utilizing a deep cross-modal hashing framework in combina-
tion with error correcting codes.

A fast and promising solution to ANN search for cross-
modal retrieval is cross-modal hashing (CMH), which com-
presses high-dimensional data into compact binary codes and
maintains the semantic similarity by mapping images of sim-
ilar content to similar binary codes. CMH returns relevant
results of one modality in response to query of another modal-
ity, where respective hash codes in the same latent Hamming
space are generated for each individual modality. Recently,
application of deep learning to hash methods for uni-modal
image retrieval [1, 2] and cross-modal retrieval [3, 4] have
shown that end-to-end learning of feature extraction and hash
coding using deep neural networks is more efficient than us-
ing the hand-crafted features [5, 6]. Particularly, it proves
beneficial to jointly learn semantic similarity preserving fea-
tures and also curb the quantization error of binarizing con-
tinuous representation to hash codes.

Searching for facial images of people including identifi-
cation in response to a facial attribute query has been investi-
gated in the past [7, 8, 9, 10]. However, all of these methods
use hand-crafted features to perform a cross-modal retrieval.
We present a novel CMH framework called CMH-ECC for
error-corrected attribute guided deep cross-modal hashing for
face-image retrieval from large datasets. The main contri-
butions of this paper include: (1) Error-corrected attribute
guided deep cross modal hashing (hereon known as CMH-
ECC) : We have designed a novel architecture using deep
cross modal hashing for face image retrieval in response to
an attribute query. (2) Error correcting codes: We have in-
tegrated the deep cross modal hashing with error correcting
codes to further reduce the Hamming distance between differ-
ent modalities of same subject and improve the retrieval effi-
ciency obtained from performing only deep cross modal hash-
ing. (3) Scalable cross-modal hash: Our architecture CMH-
ECC performs facial image retrieval using point wise data
without requiring pairs or triplets of training inputs, which
makes CMH-ECC scalable to large scale datasets.
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Fig. 1: Block Diagram of the CMH-ECC.

2. THE PROPOSED CMH-ECC FRAMEWORK

2.1. Problem Definition

DefineO = {oi}ni=1 to be the training set where n is the num-
ber of training samples. All the samples have two modalities
X = {xi}ni=1 and Y = {yi}ni=1, which corresponds to image
and attribute modalities, respectively. xi is the raw image i in
a training set of size n and yi is the annotated facial attributes
vector related to image i. S is a cross-modal similarity matrix
in which Sij = 1 if image xi contains a yj facial attribute, and
Sij = 0 otherwise.

Based on the given training information (i.e., X, Y and
S), the proposed method learns two modality-specific hash-
ing functions: h(x)(x) ∈ {−1,+1}d for image modality and
h(y)(y) ∈ {−1,+1}d for attribute modality where d is the
number of the bits used in the intermediate hash codes. The
two hashing functions have to preserve the cross-modal sim-
ilarity in S. Specifically, if Sij = 1, the Hamming distance
between the binary codes c(x)i = h(x)(xi) and c(y)j = h(y)(yj)
should be small and if Sij = 0, the corresponding Hamming
distance should be large. The learned hash functions can be
employed to generate d-bit intermediate hash codes for query
and database instances in both modalities. The intermediate
hash codes for query and database points are passed through
a forward error correcting (FEC) decoder f (d)(.) to generate
the final c-bit codewords (final hash codes) which are used in
the retrieval process.

The block diagram of the proposed framework is given
in Fig. 1. The proposed CMH-ECC framework has two mod-
ules. The first module is the deep cross modal hashing module
(CMH module) and the second module in the CMH-ECC is
the error correcting code module (ECC module).

2.2. Deep cross-modal hashing module (CMH)

CMH module trains a coupled deep neural network (DNN) to
generate intermediate hash codes using a distance-based lo-

gistic loss to preserve the cross-modal similarity. The CMH
module has three main functions: 1) Learn a coupled DNN
using distance-based logistic loss to preserve the cross-modal
similarity. 2) In order to preserve a high retrieval perfor-
mance, control the quantization error for each modality due
to the binarization of continuous output activations of the net-
work to hash codes. 3) Maximize the entropy corresponding
to each bit to obtain the maximum information provided by
the hash codes.

The CMH module is composed of two networks : A Con-
volutional Neural Network (CNN) to extract features for im-
age modality and a Multi-Layer Perceptron (MLP) to extract
features for facial attribute modality. For CNN network, we
have used VGG-19 [11] network pre-trained on the ImageNet
[12] dataset as a starting point and fine-tuned it as a classifier
by using the CASIA-Web Face dataset. The original VGG-
19 consists of five convolutional layers (conv1− conv5) and
three fully-connected layers (fc6− fc8). We discard the fc8
layer and replace the fc7 layer with a new fch layer with d
hidden nodes, where d is the required intermediate hash code
length (the intermediate code length in all the experiments
is set to 256 bits). The MLP network comprises three fully
connected layers to represent features for the facial attribute
modality. To learn attribute features from this network, we
annotate each training sample image with a binary bit map
that indicates the presence or absence of corresponding facial
attribute. This bitmap serves as a facial attribute vector and is
used as input to the MLP network. The first and second layers
in the MLP network contain 4,096 nodes with ReLU activa-
tion and the number of nodes in the last fully connected layer
is equal to the intermediate hash code length d with identity
activation. We use the Adam optimizer [13] with the default
hyper-parameter values (ε = 10−3, β1 = 0.9, β2 = 0.999)
to train all the parameters using alternative minimization ap-
proach. The batch size in all the experiments is fixed to 128.

For efficient retrieval results, assuming that two samples
oi and oj are semantically similar, their corresponding hash
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Fig. 2: Qualitative results: Retrieved images using CMH-ECC for
given facial attributes.

codes should also be similar in the low dimensional Hamming
space. We design the objective function for generating effi-
cient hash codes. Our objective function for CMH comprises
of three parts: (1) distance-based logistic loss; (2) quantiza-
tion loss; and (3) entropy maximization loss.

Let f(wx, xi) ∈ Rd and g(wy, yj) represent the learned
CNN features for image modality xi and MLP features for
attribute modality yj, respectively. wx and wy are the CNN
network weights and the MLP network weights, respectively.
We define the total objective function for CMH as follows:

min
Cx,y,wx,wy

J =

n∑
i=1

n∑
j=1

`c(p(F∗i,G∗j), Sij)︸ ︷︷ ︸
distance- based logistic loss

+

α (||F− Cx||2F + ||G− Cy||2F )︸ ︷︷ ︸
quantization loss

+

β (||F1||2F + ||G1||2F )︸ ︷︷ ︸
entropy maximization

s.t. Cx,y ∈ {+1,−1}d×n,

(1)
where F ∈ Rd×n is the image feature matrix and G ∈ Rd×n

is the facial attribute feature matrix constructed by placing
column-wise CNN and MLP features of training samples re-
spectively. F∗i = f(wx, xi) is the CNN feature corresponding
to sample xi and G∗j = f(wy, yj) is the MLP feature corre-
sponding to sample yj. Cx and Cy are the binary hash code
matrices for image and attribute modalities, respectively. No-
tation 1 represents a vector with all its elements set to 1.

The first term in the objective function is distance-based
logistic loss. This loss causes modalities referring to the same
sample to attract one another and modalities to repel if they
refer to two different samples. The distance based logistic-
loss is derived from distance-based logistic probability, which
is given by p(F∗i,G∗j) = 1+exp(−m)

1+exp(||F∗i−G∗j ||−m) and repre-
sents the probability of the match between the image modality
feature vector F∗i and attribute modality feature vector G∗j ,
given their squared distance. The margin parameter m de-

termines the extent to which matched or non-matched sam-
ples are attracted or repelled, respectively. Then we apply
the cross entropy loss similar to the classification case for
deriving the final distance-based logistic loss : `c(p, s) =
−slog(p) + (s − 1)log(1 − p). The second term in the ob-
jective function helps us to preserve the cross-modal similar-
ity in the binary domain using hash codes Cx and Cy , where
Cx = sign(F) and Cy = sign(G). The third term in the ob-
jective function attempts to maximize the entropy on the bits
of the hash code by making each bit of the hash code be bal-
anced on all the training points. Precisely, the number of +1
and 1 for each bit on all the training samples should be almost
the same. α and β are tuning parameters that we set to 1.

2.3. Error correcting code module (ECC)

The intermediate hash codes generated by the CMH module
can be used for a retrieval process. However, after gaining
experience with CMH, we have concluded that there is an op-
portunity for improvement and further reducing the Hamming
distance for different modalities of the same subject. On fur-
ther research and inspired by [14], we identified error correct-
ing codes to be a promising solution for reducing the Ham-
ming distance for different modalities of the same subject.

We assume that the intermediate hash code generated by
the CMH module is a binary vector that is within a certain dis-
tance from a codeword of an error-correcting code. By pass-
ing the intermediate hash code through an appropriate FEC
decoder, the closest codeword is found and this closest code-
word is used as a final hash code for the retrieval process. The
main component of the ECC module is the forward error cor-
recting (FEC) decoder. Due to their minimum-distance sepa-
rable (MDS) property and widely available hardware, we have
adopted Reed Solomon (RS) codes as our form of coding for
FEC decoder.

The RS codes use symbols of lengthm bits. Using a sym-
bol size of m bits, the length of the RS codeword is given by
N = 2m−1 in symbols, which corresponds to n = mN in
bits. However, we have utilized shortened RS codes for de-
signing the FEC decoder of the ECC module. A shortened
RS code is one in which the input to the decoder given as
N1 is less than the actual codeword length N = 2m−1. For
our decoder, we have used shortened RS code with m = 8
and N = 255 symbols and the input to the decoder N1 equal
to 32 symbols which is equal to 256 bits. The intermediate
hash code, which is used as the input to the FEC decoder N1

is taken as 256 bits for all the experiments. The codewords
generated after decoding correspond to the final hash codes
which are used for retrieval process using Hamming distance.

3. EXPERIMENTAL RESULTS

Datasets: FaceTracer [7] and LFW [15] datasets have been
used to evaluate our proposed framework. LFW is a popular
dataset of more than 13,000 images of faces collected from
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Fig. 3: Ranking performance on the LFW dataset.
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Fig. 4: Ranking performance on the FaceTracer dataset.

the internet for face recognition as well as attribute classifica-
tion. The FaceTracer dataset is a large collection of 15, 000
real-world face images, collected from the internet.

Evaluation Results: We follow the experimental proto-
col used in Multi Attribute Retrieval and Ranking (MARR)
[9]. We use normalized discounted cumulative gain (NDCG)
as our evaluation metric to compare CMH-ECC performance
with other methods. NDCG is a standard single-number mea-
sure of ranking quality that allows non-binary relevance judg-
ments, while most traditional ranking measures only allow bi-
nary relevance (relevant or not relevant). NDCG is defined as
NDCG@k = 1

Z

∑k
i=1

2rel(i)−1
log(i+1) , where rel(i) is the relevance

of the ith ranked image and Z is a normalization constant to
ensure that the correct ranking results in an NDCG score of 1.

Fig. 2 indicates the qualitative result of CMH-ECC ap-
proach for the given facial attributes. We compare the rank-
ing quality using NDCG scores of the proposed CMH-ECC
with four state of the art retrieval methods including MARR
[9], rankBoost [16], Direct Optimization of Ranking Mea-
sures (DORM) [17], TagProp [18]. In addition, we have also
compared our results of CMH-ECC framework with the re-
sults of using only CMH module without FEC, which implies
using intermediate hash codes as our final hash codes. Fig.

3 and Fig. 4 plots the NDCG scores, as a function of the
ranking truncation level k, using different number of attribute
queries for the LFW and FaceTracer dataset, respectively. We
can observe that CMH-ECC generally outperforms the com-
parison methods for both datasets using all the three types of
queries. In particular, compared to the state of the art method
MARR, we achieve approximately an increase of 4.0%, 3.5%
and 3.0% in NDCG values for single, double and triple at-
tribute queries, respectively. The retrieval efficiency using in-
termediate hash codes generated by our CMH module also
outperforms MARR. Notice that NDCG values for the Face-
Tracer dataset for all the methods are relatively lower when
compared to the LFW dataset. This is due to the difference in
the distributions of the two datasets.

4. CONCLUSION
In this paper, we proposed a facial retrieval algorithm using
deep hashing network and forward error correcting decoder to
retrieve relevant facial images from the database using a given
attribute query. This is the first time where error correcting
codes have been combined with deep cross modal hashing
for image retrieval. The experimental results on two popular
public datasets show that our method outperforms the current
face image retrieval approaches in the literature.
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