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ABSTRACT
In this paper, we propose to employ a bank of modality-
dedicated Convolutional Neural Networks (CNNs), fuse,
train, and optimize them together for person classification
tasks. A modality-dedicated CNN is used for each modality
to extract modality-specific features. We demonstrate that,
rather than spatial fusion at the convolutional layers, the fu-
sion can be performed on the outputs of the fully-connected
layers of the modality-specific CNNs without any loss of
performance and with significant reduction in the number
of parameters. We show that, using multiple CNNs with
multimodal fusion at the feature-level, we significantly out-
perform systems that use unimodal representation. We study
weighted feature, bilinear, and compact bilinear feature-level
fusion algorithms for multimodal biometric person identi-
fication. Finally, We propose generalized compact bilinear
fusion algorithm to deploy both the weighted feature fusion
and compact bilinear schemes. We provide the results for the
proposed algorithms on three challenging databases: CMU
Multi-PIE, BioCop, and BIOMDATA.

Index Terms— Biometrics, multimodal fusion, tensor
sketch, compact bilinear pooling.

1. INTRODUCTION
The permanence and uniqueness of human physical charac-
teristics such as face, iris, fingerprint, and voice is widely
utilized in biometric systems deploying the corresponding
feature representation of these characteristics [1]. Multi-
modal biometric models have demonstrated more robustness
to noisy data, non-universality and category-based varia-
tions [2, 3]. The multimodal networks can improve recogni-
tion task in cases where one or more of the biometric traits
are distorted. A recognition algorithm using a multimodal
architecture, requires selecting the discriminative and infor-
mative features from each modality as well as exploring the
dependencies between different modalities. This architecture
should also discard the single modality features that are not
useful in joint recognition.

However, employing a fusion algorithm is the most
prominent challenge in multimodal biometric systems [4].
The fusion algorithm can be performed at signal, feature,
score, rank or decision levels [5] using different schemes
such as feature concatenation [6, 7, 8] and bilinear feature

multiplication [9, 10]. Although score-, rank- and decision-
level fusion are studied in the literature extensively, since
these levels are easier to access in the biometric systems,
feature-level fusion results in a better discriminative classi-
fier [11] due to the preservation of raw information [1]. Fea-
ture level fusion integrates different features extracted from
different modalities to a more abstract feature representation,
which can further be used for classification, verification, or
identification [12].

To integrate the features from different modalities, sev-
eral fusion methods have been considered [6]. The preva-
lent fusion method in the literature is feature concatena-
tion, which is very inefficient exploiting the dependency
between the modalities as the feature space dimensionality
increases [4, 7]. To overcome this shortcoming, bilinear mul-
tiplication of the individual modalities is proposed [9, 10].
Using bilinear multiplication, the higher-level dependencies
between the modalities are exploited and enforced through
the backpropagation algorithm. The bilinear multiplication
is effective since all of the elements of the single modalities
interact through multiplication. The main issue in bilinear
operation is the high dimensionality of its output regarding
the cardinality of the inputs. Recently, to handle this short-
coming, compact bilinear pooling is proposed [13, 14, 15].

Convolutional neural networks are recently utilized for
classification of multimodal biometric data. Although, CNNs
are mainly used as classifiers, they are also efficient tools
to extract and represent discriminative features from the raw
data. Compared to hand-crafted features, employing CNN
as domain feature extractors has demonstrated to be more
promising when facing different biometric modalities such as
face [16, 17], iris [18] and fingerprint [19].

In this paper, we make the following contributions: (i)
instead of spatial fusion at the convolutional layers, modality-
dedicated networks are designed to extract modality-specific
features for the fusion; (ii) a fully data-driven architecture
using fused CNNs and end-to-end joint optimization of the
overall network, is proposed for joint domain-specific feature
extraction and representation with the application of person
classification; finally (iii) weighted feature fusion and gener-
alized compact bilinear feature fusion are considered at the
fully-connected level.
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2. GENERALIZEDCOMPACTBILINEARFUSION

Considerafusionoperationf:(X1,X2,...,Xn)→ Ythat
fusesnmodalities; Xi∈RHi×Wi×Di,i=1,2,..,n. The

fusionoperationresultsinY ∈ RH×W ×D, whereW,H
andD correspondtowidth,heightanddepthofthefeature
maps.Fusioncanbeperformedusingthefeaturemapsofthe
CNNswhenthecorrespondingfeaturemapsfromdifferent
modalitiesarecompatible. However,inmultimodalbiomet-
ricnetworks,thefeaturemapscanvaryinthespatialdimen-
sionduetothedifferentspatialdimensionalityoftheinputs.
Tohandlethisissue,insteadofutilizingconvolutionallay-
ersfeaturemapsforfusion,fully-connectedlayersareconsid-
eredinourarchitectureforultimatemodality-dedicatedfea-
turerepresentation.Therefore,inourproposedarchitecture,

Hi = Wi = H = W =1,andthereisnoconditionon
D. Weshowthatthefully-connectedrepresentationprovides
promisingresultsinthecaseofrecognitionapplications.

Intheproposedfusionalgorithm,priortothefusion,each
modalityisrepresentedbytheoutputofafully-connected
layerwhichwecallthemodality-dedicatedembeddinglayer.
Inweightedfeaturefusion algorithm,thefusionfunc-
tionconcatenatesthe modality-dedicatedembeddinglayers

ofthe multiple modalities,in whichY ∈ R1×D, where

D = iDi.Inbilinearfusionalgorithm,Y = XT
1X2.If

Hi =1,theouterproductisappliedontwofeature maps
atthepixellevel,followedbyglobalaveragepoolingover
thespatialdimensions[9,10]. However,thebilinearfusion
overfully-connectedlayerscomputestheouterproductof

themodality-dedicatedembeddinglayers,whereY∈R1×D

andD = iDi. Theresultingfeature-levelrepresentation

Y ∈ R1×D,projectsallpossiblefeature-levelinteractions
betweenthenmodalities.Inthecasethatthenislargerthan
two,ineachsteptheouterproductisvectorizedandthen
multipliedbythenextmodality.
Generalizedcompactbilinearfeature-levelfusionalgo-
rithm:Compactbilinearfusionprojectstheouterproductof
twovectorsintoalow-dimensionalsub-spacewithverylittle
lossinperformancecomparedtobilinearfusion[13]. Ran-
dom MaclaurinprojectionandTensorSketchprojection[13]
arethemostprominentalgorithmsproposedforcompactbi-
linearpooling.Here,wedeploythetensorsketchprojection.
Thisalgorithmusesthecountsketchprojectionintroduced
in[20]toestimatetheouterproductoftwovectorswithout
computingtheouterproductexplicitly.Thecountsketchof
theouterproductoftwovectorscanbeexpressedasthecon-
volutionofcountsketchesofthevectors[15].However,this
convolutioncanbecomputedastheinverseFouriertrans-
formoftheelement-wiseproductofthecountsketchesin
thefrequencydomain.Therefore,thebilinearouterproduct
of multiple modalitiescanbecomputedthroughelement-
wise multiplicationofFourierdomaincountsketches. Let
x1 ∈Rc1 andx2 ∈Rc2 bethemodality-dedicatedembed-
dinglayers:

y=FFT 1(FFT(Ψ(x1,h1,s1))◦FFT(Ψ(x2,h2,s2))), (1)

wherehashfunctionsh1 ∈ Nc1 andh2 ∈ Nc2 areran-

dom,butfixedvectorsuniformlydrawnfrom{1,2,...,d},
s1 ∈{−1,+1}c1,ands2 ∈{−1,+1}c2.Thecountsketch
functionisdefinedas:

Ψ(x1,h1,s1))={(Qx1)1,(Qx1)2,...,(Qx1)d}, (2)

where(Qx1)j= n:h1[n]=js1[n]x1[n].Thisalgorithmcan
beexpandedtofusemultiplemodalitiesaswell.

Intheproposedgeneralizedcompactbilinearfusionalgo-
rithm,singlemodalitiesandallpossible2-,3-,...,n-compact
bilinearproductsareconcatenatedtoformvectory.Forin-
stance, whenn =3,three modality-dedicatedembedding
layer,threetwo-modalitytensorsketchprojection,andone
three-modalitytensorsketchprojectionareconcatenated.
End-to-endtrainingofthearchitecture:Generalizedcom-
pactbilinearfusionalgorithmconsistsofrandom,butfixed
functions{si}and{hi},FourierandinverseFouriertrans-
forms.Sincethesetransformsaredifferentiable,theerrorcan
beback-propagatedthroughthefusionlayer,theend-to-end
trainingoftheproposedgeneralizedcompactbilinearfusion
algorithmispossible,andthemultimodalarchitecturecanbe
jointlyoptimized.Fortwo-modalitytensorsketchfusional-
gorithm,theerrorisback-propagatedthroughthefusionlayer
usingtheequationbelow.LetLrepresentthelossfunctionat
thefusionlayer[13]:

∂L

∂x1
=

d

∂L

∂y[d]
T2

d(x2)◦s1, (3)

whereTd
2(x)∈Rc1,Td

2(x2)[j]=Ψ(x2,h2,s2)[d−h1[j]].
Similarly,∂L

∂x2
canbecalculated.

3.JOINTOPTIMIZATIONOFARCHITECTURE

The multimodal CNNarchitectureconsistsof modality-
dedicatedCNNnetworks,ajointrepresentationlayer,and
asoftmaxclassificationlayerthatarejointlytrainedand
optimized. Themodality-dedicatednetworksaretrainedto
extractthemodalityspecificfeaturesandthejointrepresen-
tationistrainedtoexploreandenforcedependencybetween
differentmodalities.Thejointoptimizationofthenetworks,
discardstheunusefulfeatures.
Modality-dedicatednetworks: Each modality-dedicated
CNN,consistsofthefirst16layersofaconventionalVGG19
network[21]andafully-connectedmodality-dedicatedem-
beddinglayer(FC6)ofsize1024.Thefully-connectedlayers
oftheconventional VGG19networkarenotpracticalfor
ourapplication,sincethejointoptimizationofthemodality-
dedicatednetworksandthejointrepresentationlayerisprac-
ticallyimpossibleduetothemassivenumberofparameters
thatneedtobetrainedandthelimitednumberoftraining
samples. Thedetailsforeach modality-dedicatednetwork
canbefoundinTable1.
Jointrepresentationlayer: Theoutputofthe modality-
dedicatednetworksarefusedusingoneofthediscussed
fusionalgorithm,thenfedtoafullyconnectedlayerofsize
1024andfinally,fedtothesoftmaxclassificationlayer.
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network CNN-Face CNN-Iris CNN-Fingerprint
input 224× 224× 3 512× 64× 3 224× 224× 3

layer kernel kernel kernel
conv1 (1-2) 3× 3× 64 3× 3× 64 3× 3× 64
maxpool1 2 ×2 2× 2 2× 2
conv2 (1-2) 3× 3× 128 3× 3× 128 3× 3× 128
maxpool2 2× 2 2× 2 2× 2
conv3 (1-4) 3× 3× 256 3× 3× 256 3× 3× 256
maxpool3 2× 2 2× 2 2× 2
conv4 (1-4) 3× 3× 512 3× 3× 512 3× 3× 512
maxpool4 2× 2 2× 2 2× 2
conv5 (1-4) 3× 3× 512 3× 3× 512 3× 3× 512
FC6 7× 7× 1024 2× 16× 1024 7× 7× 1024

Table 1: The modality-dedicated CNN architectures.

4. EXPERIMENTS AND DISCUSSIONS
CMU Multi-PIE database: This database [22] consists of
face images under different illuminations, viewpoints, and
expressions which are recorded in four sessions. Following
the setup in [23], we consider the multi-view face images
for 129 subjects that are present in all sessions. The avail-
able views are divided into three modalities of {−90◦, −75◦,
−60◦, −45◦}, {0◦, ±15◦, ±30◦} and {45◦, 60◦, 75◦, 90◦}.
Images from session 1 at views {0◦, ±30◦, ±60◦,±90◦} are
used as training samples. Test images are obtained from all
available view angles from session 2.
BioCop multimodal database: This database [24] is one of
the few databases that allows disjoint training and testing of
multimodal fusion at feature level. The BioCop database is
collected under four disjoint years; 2008, 2009, 2012, and
2013. To make the training-test splits mutually exclusive,
the 294 subject that are common in years 2012 and 2013 are
considered. The proposed algorithm is trained on 294 mu-
tual subjects in year 2013 dataset, and is tested on the same
subjects in year 2012 dataset. It is worth mentioning that
although the databases are labeled as 2012 and 2013, the date
of data acquisition for common subjects in the datasets can
vary between one to three years, which has also the advantage
of investigating the effect of age-progression. We also con-
sider the left and right irises as a single class, which results in
heterogeneous classes for the iris modality.
BIOMDATA multimodal database: This database [25] is a
challenging database, since many of the samples are damaged
with blur, occlusion, sensor noise and shadows [12]. Follow-
ing the setup in [12], six biometric modalities are considered:
left and right irises, and thumb and index fingerprints from
both hands. The experiments are conducted on 219 subjects
that have samples in all six modalities. For each modality,
four randomly chosen samples are used for the training and
the remaining samples are used for the test set. For any
modality in which the number of the samples is less than five,
one sample is used for the test set and the remaining samples

Train set Test set KNN SVM CNN

B
io

C
op Face 6833 6960 89.68 88.76 98.14

Iris 36636 39725 70.52 79.26 99.05
Fingerprint 1822 991 91.22 90.61 97.28

B
IO

M
D

A
TA

Left iris 874 584 66.61 71.92 99.35
Right iris 871 581 64.89 71.08 98.95
Left thumb 875 644 61.23 63.96 80.15
Left index 872 632 82.91 84.70 93.43
Right thumb 871 647 62.11 63.52 82.63
Right Index 870 624 82.05 84.46 93.12

M
ul

ti-
Pi

e Left view 10320 30940 45.52 47.30 87.50
Frontal view 15480 38700 40.87 41.15 90.29
Right view 10320 30960 45.13 47.30 85.49

Table 2: The number of samples in training and test sets and
rank-one recognition rate for single modalities.

are used for the training. A summary of the databases is
presented in Table 2.
Training and test phases: For each databases, the number
of samples per individual and per modality varies. Therefore,
for the training phase, for each individual 250 sets of modali-
ties are randomly chosen from the training set. Similarly 250
sets are chosen from test set for the test phase. For Multi-Pie
and BioCop databases, each triplet includes one sample from
each modality. Similarly, for BIOMDATA database each set
includes normalized left and right irises, and enhanced left
index, right index, left thumb and right thumb fingerprint
images. For Multi-Pie database the number of triplets in
training and test phases is the same and equal to 32, 250. The
number of triplets in BioCop database and sets of six images
in BIOMDATA database for training and test phase are equal
to 73, 500 and 54, 750, respectively.
Data representation: The face images are cropped, aligned
to a template [26, 27], and resized to 224 × 224 images. Iris
images are segmented, normalized using OSIRIS [28], and
transformed into 64 × 512 strips. Each fingerprint image
is enhanced using the method described in [29], The core
point is detected from the enhanced image [30], and finally a
224× 224 region centered by the core point is cropped.
Implementation: Initially, each modality-dedicated CNNs
is trained independently, and each CNN is optimized on a
single modality. For each modality, the conventional VGG19
network is pre-trained on Imagenet [31]. Pre-training helps
with additional training data when the number of domain
specific training data is limited. For the CNN-Face net-
works, the network is fine-tuned on CASIA-Webface [32]
and the corresponding database (BioCop 2013 or CMU
Multi-Pie databases). The preprocessing algorithm includes
the channel-wise mean subtraction on RGB values, where the
channel means are calculated on the whole training set. CNN-
Iris networks are fine-tuned on CASIA-Iris-Thousand [33],
Notre Dame-IRIS 04-05 [34], and finally the corresponding
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Modality {1,2} {1,3} {2,3} {1,2,3}
SVM-Major 53.18 54.47 57.61 62.95
SVM-Sum 51.15 53.84 55.43 69.30
SMDL 71.65 74.14 70.27 81.30
JSRC 68.16 66.42 64.53 73.30
CNN-Major 92.18 93.75 89.74 95.87
CNN-Sum 91.58 93.28 89.13 94.51
Weighted feature fusion 94.12 94.96 91.53 96.59
Generalized compact bilinear 94.67 95.53 92.18 97.27

Table 3: Accuracy evaluation for different fusion settings for
Multi-PIE database. 1, 2 and 3 represent frontal, right, and
left views, respectively.

database (BioCop-Iris 2013 or BIOMDATA database). For
the BioCop database, the CNN-Fingerprint network is fine-
tuned on the BioCop 2013 right index fingerprint database.
For the BIOMDATA database, the networks are fine-tuned on
the corresponding fingerprint databases.

A two-step optimization algorithm is utilized to train the
joint optimization of networks, where initially the modality-
dedicated networks’ weights are frozen and the joint repre-
sentation layer is optimized greedily upon the extracted fea-
tures by modality-dedicated networks. Then, all modality-
dedicated networks, fusion layer, and the classification layer
are jointly optimized.
Comparison of methods: To compare the results for the
proposed algorithms, with the state-of-the-art algorithms, Ga-
bor features in five scales and eight orientations are extracted
from all modalities. For each face, iris, and fingerprint image,
31, 360, 36, 630, and 31, 360 features are extracted respec-
tively. These features are used for all the algorithms except
CNN-Sum, CNN-Major, and two proposed algorithms. Ta-
ble 2 presents the results for the rank-one recognition rate
for the databases. The performance of the proposed fusion
algorithms is compared with several state-of-the-art feature,
score and decision level fusion algorithms. SVM-Sum and
CNN-Sum use the probability outputs for the test sample of
each modality, added together to give the final score vector.
SVM-Major and CNN-Major chose the maximum number of
modalities taken to be from the correct class. The feature level
fusion techniques include serial feature fusion [35], parallel
feature fusion [36], CCA-based feature fusion [37], JSRC [1],
SMDL [23], and DCA/MDCA [12] methods. Tables 3 and 4
present the results for different fusion settings. For all the
databases we have considered d = 4096. For BIOMDATA
database, due to the vast number of possible outer products,
the generalized compact bilinear method only includes sin-
gle modalities and three compact bilinear multiplications (two
irises, two index fingers and two thumbs). The reported val-
ues are the average values for five randomly generated train-
ing and test sets for the training and test phases.

Modality {1,2} {1,3} {2,3} {1,2,3}
SVM-Major 79.22 89.27 80.47 90.32
Serial + PCA + KNN 71.12 86.28 75.69 76.18
Serial + LDA + KNN 80.12 91.28 79.69 82.18
Parallel + PCA + KNN 74.69 88.12 77.58 -
Parallel + LDA + KNN 82.53 93.21 82.56 -
CCA + PCA + KNN 87.21 95.27 86.44 95.33
CCA + LDA + KNN 89.12 95.41 86.11 95.58
DCA/MDCA + KNN 83.02 96.36 83.44 86.49
CNN-Sum 99.10 98.85 98.92 99.14
CNN-Major 98.51 97.70 98.31 99.03
Weighted feature fusion 99.18 99.03 99.12 99.25
Generalized compact bilinear 99.27 99.12 99.16 99.30

(a) BioCop database: 1, 2, and 3 represent face, iris, and fingerprint,
respectively.

Modality 2 irises 4 fingerprints 6 modalities
SVM-Major 78.12 88.34 93.31
SVM-Sum 81.23 94.13 96.85
Serial + PCA+ KNN 72.31 90.71 89.11
Serial + LDA+ KNN 79.82 92.62 92.81
Parallel + PCA+ KNN 76.45 - -
Parallel + LDA+ KNN 83.17 - -
CCA + PCA + KNN 88.47 94.72 94.81
CCA + LDA + KNN 90.96 94.13 95.12
JSRC 78.20 97.60 98.60
SMDL 83.77 97.56 99.10
DCA/MDCA + KNN 83.77 98.1 99.60
CNN-Sum 99.54 99.46 99.82
CNN-Major 99.31 99.42 99.48
Weighted feature fusion 99.73 99.65 99.86
Generalized compact bilinear 99.79 99.70 99.90

(b) BIOMDATA database.

Table 4: Accuracy evaluation for different fusion settings.

5. CONCLUSION
In this paper, we proposed a joint CNN architecture with fea-
ture level fusion for multimodal recognition using multiple
modalities. We proposed to apply fusion at fully-connected
layers instead of convolutional layers to handle the possible
spatial mismatch problem. This fusion algorithm results in
no loss in performance, while the number of parameters is re-
duced significantly. We demonstrated that the multimodal fu-
sion at the feature level and joint optimization of multi-stream
CNNs significantly improve unimodal representation accu-
racy by incorporating the captured multiplicative interactions
of the low-dimensional modality-dedicated feature represen-
tations, by means of generalized compact bilinear pooling.
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