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1 Introduction

The alternating direction method of multipliers (ADMM) is a simple and popular
method for solving affine equality constrained composite problems. Combined with
variable splitting, ADMM can solve these problems efficiently. Nowadays, due to the
explosion in size and complexity of datasets, it is increasingly important to be able to
efficiently solve these problems with a large number of training samples [1]. And this
motivates the current development of stochastic ADMM-type algorithms [2–5], that
use stochastic gradient to reduce the computational cost for estimating the gradient over
the entire data set at each iteration. The convergence rates in these works depend on the
estimation of variance of stochastic gradients. Recently, several works on randomized
optimization show that the estimation of the convergence rate of stochastic algorithms
can be improved by using importance sampling strategy, including randomized Kacz-
marz method [6], randomized coordinate descent [7], stochastic gradient methods [8],
stochastic average gradient method [9], stochastic mirror descent and stochastic dual
coordinate ascent [10], etc.

In this paper, we propose an accelerated stochastic ADMM with importance sam-
pling, name it as SAI, aiming at improving the estimation of the variance of stochastic
gradients, and the practical performance. We will provide the convergence analysis
for solving (1) over bounded or unbounded feasible sets. To our best knowledge, there
has not been any discussion on the rate of convergence for stochastic ADMMs in the
case of unbounded feasible set.

The outline of this paper is as follows. Section 2 introduces the problem formula-
tion and related works. Section 3, the core section of this paper, describes the idea of
importance sampling for stochastic ADMM and presents our algorithm and the con-
vergence results. Section 4 gives the convergence analysis. The numerical experiments
are presented in Sect. 5. Section 6 concludes this paper.

2 Problem Formulation and Related Works

In this paper, we consider the following class of affine equality constrained stochastic
composite optimization (AECSCO) problems:

min
x∈X,y∈Y f (x) + g(y) := Eξ [F(x, ξ)] + g(y),

s.t. Kx + By = c,
(1)

where ξ is a random variable following some distribution, f (x) is the expectation
of F(x, ξ), and for each ξ, F(x, ξ) is closed and convex, X ⊆ R

n,Y ⊆ R
m are

closed convex sets, f : X → R is a proper, convex, smooth function, and ‖∇ f (x1) −
∇ f (x2)‖ ≤ L‖x1− x2‖, for any x1, x2 ∈ X . For stochastic gradients, ‖∇x F(x, ξ)‖ ≤
J (ξ), for any x ∈ X , and σ = E[J (ξ)]. g : Y → R is a proper, convex, l.s.c. and
simple function, K : X → R

l , B : Y → R
l are bounded linear operators, c ∈ R

l . For
problem (1), it is equivalent to a saddle point problem as follows (see [11])
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min
x,y

max
λ∈W

[
f (x) + g(Kx) − 〈λ, Kx + By − c〉

]
, (2)

where λ ∈ W is the dual variable. In one special case of the problem (1), where
B = −I and c = 0, the AECSCO problem reduces to the following unconstrained
stochastic composite optimization (USCO) problem:

min
x∈X f (x) + g(Kx) := Eξ [F(x, ξ)] + g(Kx). (3)

Problems (1) and (3) have a wide range of applications in various fields, including
machine learning [12,13], image processing [14,15], quantitative finance [16,17]. In
those applications f (x) represents an empirical loss function, while g(y) enforces
certain structured regularization, such as overlapped group lasso, total variation-
based smoothing. To cope with the computational challenge in solving large-scale
data analysis problems with structured sparsity constraints, much effort has been
invested for developing stochastic or online ADMMs [2–5]. The key idea of those
algorithms is to incorporate the basic stochastic optimization techniques into ADMM
to significantly reduce each iteration cost. The work in [3] is one of the most
original works in developing stochastic ADMM to solve (1). It employs a stochas-
tic gradient in the linear approximation of f (x) and uses the linearized ADMM
scheme to update x . In [3] the accuracy of the approximation solution (xt , yt ) is
evaluated by the summation of the primal residual and feasibility violation, i.e.,
f (xt ) + g(yt ) − ( f ∗ + g∗) + ρ‖Kxt + Byt − c‖. Ouyang [3] achieves convergence
rates of O

( 1√
t

)
for general convex functions f and O

( L
t

)
+ O

( σ√
t

)
for L-smooth

convex functions f , where σ 2 is an uniform upper bound for the variance of stochastic
gradient of f (x). If f is strongly convex, the convergence rate can be improved to

O
( log t

t

)
. In [4] twoonline variants ofADMM:online proximal gradient descent-type

method (OPG-ADMM) and regularized dual averaging-type method are presented for
solving (3). The scheme of the OPG-ADMM is the same as the stochastic ADMM
in [3]. In [2] two accelerated stochastic ADMM algorithms are proposed for solving
(1). The first one uses the same update rule as that in [3], but replaces the output of
the averaging iterates in the algorithm in [3] by weighted averaging iterates, which

converge at a rate of O
(1
t

)
for strongly convex f . The second algorithm, namely opti-

mal stochastic ADMM (OS-ADMM), incorporates Nesterov’s multi-step acceleration
techniques [18,19] into the stochastic ADMM in [3]. [2] achieves the convergence rate

of O
( L
t2

)
+ O

( σ√
t

)
. The convergence analysis for OS-ADMM algorithm requires

the assumption that for each iteration t, f (xt ) ≥ f (x∗), and g(yt ) ≥ g(y∗). It is
noticeable that the O

( σ√
t

)
is a leading term in the convergence rates of stochastic

ADMMs for solving (1). Hence, an appropriate estimation of variance of stochastic
gradient will benefit the convergence.

It is also worth to mention that recently several variance-reduction methods
for stochastic ADMM are developed in [20–23]. Those variance-reduction meth-
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ods are designed specifically for a special case of (1), namely, the case when
f (x) := 1

N

∑N
i=1 fi (x) is a finite sum of functions fi (x) := F(x, ξi ). When

the random variable ξ in (1) is discrete and takes only a finite number of distinct
values ξ1, . . . , ξN with uniform distribution, then we obtain the aforementioned spe-
cial case as f (x) = Eξ [F(x, ξ)] = 1

N

∑N
i=1 F(x, ξi ). However, our main focus

in this paper is different from that in [20–23] for two reasons. First, our goal is
to consider a more general stochastic optimization problem (1) in which the ran-
dom variable ξ is not necessarily a discrete random variable. While it is possible
to approximate Eξ [F(x, ξ)] by 1

N

∑N
i=1 F(x, ξi ) (known as the sample average

approximation (see, e.g., [24,25]), the extra sample approximation error should also
be taken into consideration. Instead of using sample average approximation and
solving a finite sum optimization problem, the works in [2–4] and our proposed
method follow the core concept of the robust stochastic approximation algorithms
originated from [26] (see [26] also for a comparison between the sample average
approximation and the stochastic approximation techniques). Second, for the finite
sum special case of (1), the variance-reduction methods in [20–23] need to com-
pute the gradient of f (x) := 1

N

∑N
i=1 fi (x) := 1

N

∑N
i=1 F(x, ξi ) from time to

time. In particular, those randomized algorithms are divided into T epochs, and
each epoch has O(N ) iterations. In each epoch, a computation of the full gradient
∇ f = 1

N

∑N
i=1 ∇ fi (x) = 1

N

∑N
i=1 ∇x F(x, ξi ) is required, and consequently, it is

necessary to enumerate all the available samples ξi , i = 1, . . . , N [23]. The conver-
gence analysis is based on the number of epochs, i.e., the number of evaluations of
full gradients ∇ f . Therefore, such algorithms are not applicable for the cases when
the samples ξi could not be obtained all together, e.g., the online optimization case in
which samples are streamed in a sequential fashion.

2.1 Contributions

The contribution of this paper mainly consists of three aspects. First, an algorithm
of accelerated stochastic ADMM with importance sampling is proposed for solving
AECSCO and USCO problems. By incorporating Nesterov’s multi-step acceleration
method into the stochastic ADMM as the OS-ADMM in [2], for L-smooth f , the SAI

algorithm can achieve the rate of convergence O
( L
t2

+ σ√
t

)
and O

(√ L

t3
+
√

σ

t3/2

)
,

in terms of the primal residue and feasible violation, respectively. For smooth f , the
analysis of OS-ADMM in [2] studies the convergence rate in terms of the summation
of the primal residue f (x)+g(y)−( f ∗+g∗) and feasibility violation ‖Kx+By−c‖.
However, it shouldbenoted that the estimate of the summationof theprimal residue and
feasibility violation does not apply immediately to the primal residue and feasibility
violation separately. In particular, the relation f (x) + g(y) − ( f ∗ + g∗) + ‖Kx +
By − c‖ < ε for small ε > 0 does not necessarily imply small feasibility violation
‖Kx+By−c‖ < ε, since the approximate solution (x, y)may have smaller objective
function value than the optimal solution (i.e., f (x)+g(y)− ( f ∗ +g∗) < 0) while not
satisfying the constraint Kx + By = c. Our analysis is based on the estimation of the
duality gap. Importantly, we do not require the assumption in [2] that for each iteration
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t, f (xt ) ≥ f (x∗), and g(yt ) ≥ g(y∗), which in general, is too strong to be satisfied.
Second, by incorporating important sampling to the algorithm, instead of uniform
sampling, SAI improves the estimation of the variance of stochastic gradients. Finally,
we are able to solve (1) and (3) over an unbounded convex set X , and achieve the same
convergence rates as that for a bounded X . It is worth to mention that the convergence
analysis in the existing stochastic ADMM algorithms requires the compactness of the
feasible sets.

2.2 Notations

We assume that the optimal solution of (1) exists and is denoted as (x∗, y∗), and
the optimal solution of (3) is x∗. We will use the following notations in this paper:
DX = supx,x ′∈X ‖x − x ′‖, DW = supλ,λ′∈W ‖λ − λ′‖, Dλ∗ = ‖λ∗‖, Dx∗ = ‖x1 −
x∗‖, Dy∗ = ‖y1 − y∗‖. In addition, ‖K‖ = sup‖x‖=1,x∈X ‖Kx‖.

3 Stochastic Accelerated ADMM with Importance Sampling

In this section, we will present an accelerated stochastic ADMM with importance
sampling (SAI) for solving (1) and (3).

3.1 Importance Sampling for Stochastic ADMM

The idea of importance sampling lies on a basic equality:

E[h(ξ)] =
∫

h(s)p(s)ds =
∫

1

w(s)
h(s) · w(s)p(s)ds, (4)

where ξ is a random variable with probability density function (PDF) p(s), and
w(s) is any nonnegative function sharing the same support with p(s), called the
weight function. It can be viewed that we distribute certain weights for samples.
If
∫

w(s)p(s)ds = 1, i.e., E[w(ξ)] = 1, the function w(s)p(s) is a probabil-
ity density function for a new distribution, denoted as D(w), then (4) turns to be

E[h(ξ)] = E
(w)

[
h(ξ)

w(ξ)

]
. Thus, by multiplicative refinement, a stochastic estimation

of ∇ f (x) can be obtained through a different distribution D(w), which owns a differ-
ent but may lower variance by choosing appropriate w(s). In the following, we will
discuss how to determine w(s) for the proposed algorithm in a similar way suggested
by [10].

For the problemsof interest in (1) and (3), if ξ is sampled from theorigin distribution,
δ = ∇x F(x, ξ) − ∇ f (x), then an uniform bound for the variance is given by

E
[‖∇x F(x, ξ) − ∇ f (x)‖2] ≤ E

[
J 2(ξ)

]− ‖∇ f (x)‖2, (5)
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Alternatively, drawing the sample ξ through the weighted distribution D(w), the vari-
ance of stochastic gradient can be bounded by

E
(w)

[∥∥∥∥
∇x F(x, ξ)

w(ξ)
− ∇ f (x)

∥∥∥∥
2
]

≤ E

[
J (ξ)

w(ξ)

]2
− ‖∇ f (x)‖2. (6)

Practically, it is hard or impossible to evaluate the true variance, and the alternative
is to use an appropriate upper bound to estimate the variance. Therefore, as suggested

in (6), we should determine w(s) such that E

[
J (ξ)

w(ξ)

]2
would be minimized. Thus,

it can be easily verified that w(ξ) = J (ξ)

E[J (ξ)] minimizes E

[
J (ξ)

w(ξ)

]2
, and further we

have, for δ = ∇x F(x, ξ)

w(ξ)
− ∇ f (x),

E
(w)
[‖δ‖2] ≤ E

[
J (ξ)

]2 − ‖∇ f (x)‖2. (7)

In this paper, we take E [J (ξ)]2 as an uniform upper bound ofE(w)
[‖δ‖2], compar-

ing (6) and (7), we can see thatE[J (ξ)]2 is a better choice thanE[J 2(ξ)
]
for estimating

the variance, because of E
[
J 2(ξ)

] − E
[
J (ξ)

]2 = Var
[
J (ξ)

]
. And for problems in

which stochastic gradients own higher variance, it will benefit more.

3.2 Stochastic Accelerated ADMM with Importance Sampling

In this section, we present our algorithm in Algorithm 1. The random sampling in this
section is according to the weighted distribution D(w) with weight function w(ξ) =
J (ξ)

E[J (ξ)] , and the expectation is with respect to D(w).

In Algorithm 1, we initialize (x1, y1, λ1), s.t. Kx1 + By1 − c = 0, λ1 = 0, and
(xag1 , yag1 , λ

ag
1 ) = (x1, y1, λ1). In each iteration, a sample ξt will be extracted from

the weighted distribution D(w), and
∇x F(xmd

t , ξt )

w(ξt )
serves as a stochastic gradient for

updating xt+1 in (10).
For AECSCO problems, the compactness of feasible sets X or W is not required.

The following theorem gives the convergence result for AECSCO problems.

Theorem 3.1 Suppose that the total number of iterations N is given as a priori, and

the parameters are set to at = 2

t + 1
, bt = ct = ρN

t
, ρt = ρt

N
, ηt = t

2L + cσN 3/2 ,

where c > 0, ρ > 0 are constants, then we have
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Algorithm 1 Stochastic Accelerated ADMM with Importance Sampling

1: Choose x1 ∈ X , y1 ∈ Y , s.t. Kx1 + By1 − c = 0, λ1 = 0. Set xag1 = x1, y
ag
1 = y1, λ

ag
1 = λ1.

2: For t = 1, . . . , N − 1, do

Sample ξt ∼ D(w); (8)

xmd
t = (1 − at )x

ag
t + at xt ; (9)

xt+1 = argmin
x∈X

〈∇x F(xmd
t , ξt )

w(ξt )
− KT λt , x〉 + bt

2
‖Kx + Byt − c‖2 + 1

2ηt
‖x − xt‖2; (10)

yt+1 = argmin
y∈Y

g(y) − 〈λt , By〉 + ct
2

‖Kxt+1 + By − c‖2; (11)

λt+1 = λt − ρt (Kxt+1 + Byt+1 − c); (12)

x
ag
t+1 = (1 − at )x

ag
t + at xt+1; (13)

y
ag
t+1 = (1 − at )y

ag
t + at yt+1; (14)

λ
ag
t+1 = (1 − at )λ

ag
t + atλt+1; (15)

set t ← t + 1. (16)

3: Output (xagN , yagN ).

E
[
f (xagN ) + g(yagN ) − ( f ∗ + g∗)

]

≤ 2LD2
x∗

N (N − 1)
+ ρ‖K‖2D2

x∗
N − 1

+
(

2

3c
+ 2cD2

x∗

)
σ√
N

, (17)

E
[‖KxagN + ByagN − c‖]

≤ 4Dx∗
√
L

N − 1
√

ρN
+ 2

√
2(‖K‖Dx∗ + Dλ∗/ρ)

N − 1
+ (4 + 4

√
3cDx∗)

√
σ√

3cρ(N − 1)
√
N

. (18)

Moreover, if X is compact, then, for any β > 0,

Prob
[
f (xagN ) + g(yagN ) − ( f ∗ + g∗) ≥ V1(N )

] ≤ exp

{
−β2

9

}
+ exp{−β}, (19)

Prob
[‖KxagN + ByagN − c‖ ≥ V2(N )

] ≤ exp

{
−β2

9

}
+ exp{−β}, (20)
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where

V1(N ) = 2LD2
X

N (N − 1)
+ ρ‖K‖2D2

X

N − 1
+
(

2

3c
+ 2cD2

X

)
σ√
N

, (21)

V2(N ) =
√
2LDX

N
+

√
ρ‖K‖DX√

N
+
√(

2

3c
+ 2cD2

X

)
σ√
N

+
√

N

ρ
Dλ∗ , (22)

V0(N ) =
√
6

3
βDXσN

√
N − 1 + 4 + β

3c
σN 1/2(N − 1). (23)

For USCO problems, we assume that feasible sets X is compact, g(y) is finite-
valued and Lipschitz continuous on Y . Hence, W = dom g∗ is bounded (see, e.g.,
Corollary 13.3.3 in [27]). The convergence result for USCO problems is given in the
following theorem.

Theorem 3.2 Suppose that the parameters are set as follows

at = 2

t + 1
, ct = ρt = ρ, bt = (t − 1)ρ

t
, ηt = t

2L + cσ t3/2
, (24)

where c > 0 is a constant. Then, for any β > 0, t > 1, we have

E
[
f (xagt ) + g(Kxagt ) − ( f ∗ + g∗)

] ≤ P(t), (25)

Prob
[
f (xagt ) + g(Kxagt ) − ( f ∗ + g∗) ≥ Q(t)

] ≤ exp

{
−β2

9

}
+ exp{−β}, (26)

where

P(t) = 2LD2
X

t (t − 1)
+ ρ‖K‖2D2

X

t
+ D2

W

ρt
+
(
1

c
+ cD2

X

)
σ√
t − 1

, (27)

Q(t) = Q0(t) + 2LD2
X

t (t − 1)
+ ρ‖K‖2D2

X

t
+ D2

W

ρt
, (28)

Q0(t) = β
2
√
6DXσ

3
√
t − 1

+ (4 + β)
σ

c
√
t
. (29)

4 Convergence Analysis

In this section, we give proof for Theorems 3.1 and 3.2. The convergence analysis will
be mainly based on duality gap function. We will firstly give the definition and some
results for duality gap function.
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4.1 Duality Gap Function

Definition 4.1 Denote Z = X × Y × W , for z = (x, y, λ), z′ = (x ′, y′, λ′), the gap
function G(z; z′) is defined by the following

G(z; z′) = [ f (x)+g(y)−〈λ′, Kx+By−c〉]−[ f (x ′)+g(y′)−〈λ, Kx ′+By′−c〉],
(30)

For problems with compact feasible set Z , i.e., both of X,Y,W are compact, the
duality gap function is defined as

d(z) := sup
z′∈Z

G(z; z′) = G(x, y, λ; x ′, y′, λ′), (31)

For unbounded and closed W , the duality gap function is

dW (v, z) := sup
λ′∈W

{
G(x, y, λ; x∗, y∗, λ′) + 〈λ′, v〉} . (32)

where z = (x, y, λ) ∈ Z , v ∈ W . In particular, if W = R
l , we will omit the subscript

W , and simply use the notation d(v, z).

It is easy to verify that z∗ is a saddle point of (2), i.f.f. G(z; z∗) ≥ 0 (see [11]).
The following proposition describes the relation between duality gap functions and
the convergence criterion.

Proposition 4.1 Suppose that x, y, λ are random variables, (x, y, λ) ∈ Z, then for
any closed W, we have

dW (Kx + By − c, z) = f (x) + g(y) − ( f ∗ + g∗). (33)

Moreover, if W = R
l , and E[d(v, z)] < ∞, for some v ∈ W, then

f (x) + g(y) − ( f ∗ + g∗) = d(v, z), almost surely, (34)

Kx + By − c = v, almost surely. (35)

In addition, if E[d(v, z)] ≤ ε, and E[‖v‖] ≤ δ, we have

E[ f (x) + g(y) − ( f ∗ + g∗)] ≤ ε, (36)

E[‖Kx + By − c‖] ≤ δ. (37)

Proof Following the definition in (32) and the fact that Kx∗ + By∗ − c = 0, it is easy
to obtain (33). In addition, if W = R

l , we have

d(v, z) = f (x) + g(y) − ( f ∗ + g∗) + sup
λ′∈Rl

〈λ′, v − (Kx + By − c)〉, (38)

andwe can see that d(v, z) = ∞ if v �= Kx+By−c. Hence d(v, z) < ∞ if and only if
v = Kx+By−c. Therefore, ifE[d(v, z)] < ∞, it implies that Prob [d(v, z) < ∞] =
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1, and thus Prob [v = Kx+By−c] = 1.Also, we have that f (x)+g(y)−( f ∗+g∗) =
d(v, z), a.s.. Moreover, if E[d(v, z)] ≤ ε,E[‖v‖] ≤ δ, it leads to (34) and (35). ��

Now we are ready to give an important estimate related to gap function.

Lemma 4.1 For {zagt }t≥1 generated by Algorithm 1, z = (x, y, λ) ∈ Z, and η−1
t −

Lat > 0, ct ≥ ρt , then we have

E

[
G(z; zagt+1) − (1 − at )G(z; zagt )

]

≤ E

[
atσ 2

2
(
η−1
t − Lat

) + at

(
ct
ρt

− 1

)
〈λt − λt+1, Kx + By − c〉

+ at
2ηt

[‖x − xt‖2 − ‖x − xt+1‖2] + at
2ρt

[‖λ − λt‖2 − ‖λ − λt+1‖2]

+ at

[
bt
2

‖Kx + Byt − c‖2 − ct
2

‖Kx + Byt+1 − c‖2
]

+ at (ct − bt )

2
‖Kxt+1 − Kx‖2

]
.

(39)

Proof By the definition of G(·; ·) in (30), and in view of (13)–(15), we have

G(z; zagt+1) − (1 − at )G(z; zagt )

=
[
f (xagt+1) − (1 − at ) f (x

ag
t ) − at f (x)

]
+
[
g(yagt+1) − (1 − at )g(y

ag
t ) − at g(y)

]

+ at
[
〈λt+1, Kx + By − c〉 − 〈λ, Kxt+1 + Byt+1 − c〉

]
. (40)

Since yagt+1 = (1 − at )y
ag
t + at yt+1, we have

g(yagt+1) − (1 − at )g(y
ag
t ) − at g(y) ≤ at (g(yt+1) − g(y))

≤ −
〈(

ct
ρt

− 1

)
(λt − λt+1) − λt+1, B(yt+1 − y)

〉
,

(41)

where the first inequality is by the convexity of g(y), and the second inequality follows
the optimal condition in (11).

In view of the optimal condition in (10), we can see that for any x ∈ X ,

〈∇x F(xmd
t , ξt )

w(ξt )
+ xt+1 − xt

ηt
+ bt K

T (Kxt+1 + Byt − c) − λt , xt+1 − x
〉
≤ 0. (42)

Combining (2.16) in [11], (41) and (42)with (40), also noticing the fact that Kxt+1+
Byt − c = λt − λt+1

ρt
+ B(yt − yt+1), and δt = ∇x F(xmd

t , ξt )

w(ξt )
− ∇ f (xmd

t ), it yields
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G(z; zagt+1) − (1 − at )G(z; zagt )

≤ at
[
〈δt , x − xt+1〉 + 1

ηt
〈xt − xt+1, xt+1 − x〉+〈λt+1 − λ, Kxt+1+Byt+1 − c〉

−
〈(

bt
ρt

− 1

)
(λt − λt+1), K (xt+1 − x)

〉
−
〈(

ct
ρt

− 1

)
(λt − λt+1), B(yt+1 − y)

〉

+ bt 〈B(yt+1 − yt ), K (xt+1 − x)〉 + Lat
2

‖xt+1 − xt‖2
]
. (43)

By the fact that 〈b − c, c − a〉 = 1

2

[
‖a − b‖2 − ‖a − c‖2 − ‖b − c‖2

]
, we can

obtain
1

ηt
〈xt − xt+1, xt+1 − x〉 + 〈λt+1 − λ, Kxt+1 + Byt+1 − c〉

= 1

2ηt

[
‖x − xt‖2 − ‖x − xt+1‖2 − ‖xt − xt+1‖2

]

+ 1

2ρt

[
‖λ − λt‖2 − ‖λ − λt+1‖2 − ‖λt − λt+1‖2

]
.

(44)

Also, it is easy to see that

−
〈(bt

ρt
− 1
)
(λt − λt+1), K (xt+1 − x)

〉
−
〈( ct

ρt
− 1
)
(λt − λt+1), B(yt+1 − y)

〉

≤
( ct
ρt

− 1
)
〈λt − λt+1, Kx + By − c〉 + ct − bt

ρt
〈λt − λt+1, K (xt+1 − x)〉.

(45)

bt 〈B(yt+1 − yt ), K (xt+1 − xt )〉
≤ bt

2
[‖Kx + Byt − c‖2 − ‖Kx + Byt+1 − c‖2] + bt

2ρ2
t
‖Kxt+1 + Byt+1 − c‖2.

(46)
For the term of 〈δt , x − xt+1〉, since η−1

t > Lat and E[‖δt‖2] ≤ σ 2, we have

E

[
〈δt , x − xt+1〉

]
≤ E

[ σ 2

2
(
η−1
t − Lat

) +
(
η−1
t − Lat

)

2
‖xt − xt+1‖2

]
. (47)

where the inequality follows from Cauchy’s inequality and E[〈δt , x − xt 〉] = 0. Sum-
ming up (43)–(47), it immediately yields (39). ��

Lemma 4.2 For any z = (x, y, λ) ∈ Z , at = 2

t + 1
, At = (1 − at )At−1, A1 = 1,

then for ∀t > 1, we have the following estimate
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E

[ 1

At−1
G(zagt ; z)

]

≤ E

[ t−1∑
i=1

aiσ 2

2Ai

(
η−1
i − Lai

) +
t−1∑
i=1

ai
2Aiηi

[
‖x − xi‖2 − ‖x − xi+1‖2

]

+
t−1∑
i=1

ai
2Ai

[
bi‖Kx + Byi − c‖2 − ci‖Kx + Byi+1 − c‖2

]

+
t−1∑
i=1

ai
2Aiρi

[
‖λ − λi‖2 − ‖λ − λi+1‖2

]

+
t−1∑
i=1

ai (ci − bi )

2Ai
‖Kxi+1 − Kx‖2

+
t−1∑
i=1

ai (ci − ρi )

2Aiρi
〈λi − λi+1, Kx + By − c〉

]
.

(48)

Proof We divide (39) by Ai on both sides, and take the summation from i = 1 to
t − 1, since a1 = 1, it follows

t−1∑
i=1

[
1

Ai
G(zagi+1; z) − 1 − ai

Ai
G(zagi ; z)

]
= 1

At−1
G(zagt ; z). (49)

In view of (39) and (49), it yields (48). ��
It is easy to see that {ξt }t≥1 is an independent sampling-sequence, also {〈δt , xt −

x〉}t≥1 is a martingale difference sequence. Hence, the well-known large-deviation
theorem for martingale difference sequences can be applied to get the estimate of tail
probability [28].

Lemma 4.3 Suppose that E|t−1[ψt ] = 0 and E|t−1[exp{ψ2
t /σ 2

t }] ≤ exp{4}, then, for
any β > 0, we have

Prob

⎧⎨
⎩

N∑
t=1

ψt ≥ β

√√√√ N∑
t=1

σ 2
t

⎫⎬
⎭ ≤ exp{−β2/9}. (50)

The proof of Lemma 4.3 is similar to Lemma 2 in [28].

Lemma 4.4 If X is compact with diameter DX , and E[exp{δ2t /σ 2}] ≤ exp{4}, for
t > 0, then for β > 0,

Prob

⎧
⎨
⎩

t−1∑
i=1

ai
Ai

〈σi , xi − x∗〉 ≥ βσDX

√√√√ t−1∑
i=1

a2i
A2
i

⎫
⎬
⎭ ≤ exp

{
−β2

9

}
,

Prob

{
t−1∑
i=1

ai‖δi‖2
Ai (η

−1
i − Lai )

≥ (4 + β)

t−1∑
i=1

aiσ 2

2Ai (η
−1
i − Lai )

}
≤ exp{−β}.

(51)
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Proof Denote ψi := ai
Ai

〈σi , xi − x∗〉 and σi := ai
Ai

σDX , in view of Lemma 3.4, we

can see that for any β > 0,

Prob

⎧
⎨
⎩

t−1∑
i=1

ai
Ai

〈σi , xi − x∗〉 ≥ βσDX

√√√√ t−1∑
i=1

a2i
A2
i

⎫
⎬
⎭ ≤ exp

{
−β2

9

}
. (52)

Moreover, denote Mi = ai

Ai (η
−1
i − Lai )

, and M =∑t−1
i=1 Mi , then

Prob

{
t−1∑
i=1

Mi‖δi‖2 ≥ (4 + β)Mσ 2

}

≤ Prob

{
t−1∑
i=1

Mi

M
exp{‖δi‖2/σ 2} ≥ exp{4 + β}

}
≤ exp{−β},

where the first inequality is by the convexity of exp{x}, and the last inequality is by
E[exp{δ2t /σ 2}] ≤ exp{4} and Markov’s inequality. ��

4.2 Proof of Theorem 3.1

Proof Let (x∗, y∗) be a solution of (1), and z∗ = (x∗, y∗, λ), for any λ ∈ R
l , accord-

ing to the parameter settings in Theorem 3.1, the sequences

{
at

2Atηt

}
,

{
atbt
2At

}
are

decreasing sequences, and

{
at

2Atρt

}
is a constant sequence, then

N−1∑
t=1

at
2Atηt

[
‖x∗ − xt‖2 − ‖x∗ − xt+1‖2

]
≤ a1

2A1η1
D2
x∗ , (53)

N−1∑
t=1

at
2At

[
bt‖By∗ − Byt‖2 − ct‖By∗ − Byt+1‖2

]
≤ a1b1

2A1
‖K‖2D2

x∗ , (54)

where the equalities follow from Lemma 2.4 in [11], the optimal condition Kx∗ +
By∗ − c = 0, and the initial condition Kx1 + By1 − c = 0. Also,

N−1∑
t=1

at
2Atρt

[
‖λ − λt‖2 − ‖λ − λt+1‖2

]
= a1

2A1ρ1
[‖λ − λ1‖2 − ‖λ − λN‖2]. (55)
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Combining (53)–(55) with (48), by the fact that ci = bi and λ1 = 0,

E

[ 1

AN−1
G(zagN ; z∗)

]

≤ E

[ N−1∑
t=1

aiσ 2

2Ai (η
−1
i − Lai )

+ a1D2
x∗

2A1

( 1

η1
+ b1‖K‖2

)

+ a1
2A1ρ1

[‖λ − λ1‖2 − ‖λ − λN‖2]
]
.

(56)

In addition, we can see that ‖λ−λ1‖2−‖λ−λN‖2 ≤ 2〈λN −λ1, λ〉, since λ1 = 0.
Then, in view of (32), we have

E

[
d
(a1AN−1

A1ρ1
(λ1 − λN ), zagN

)]

≤ AN−1E

[ N−1∑
t=1

aiσ 2

2Ai (η
−1
i − Lai )

+ a1D2
x∗

2A1

( 1

η1
+ b1‖K‖2

)]
.

(57)

Thus by Proposition 4.1, we have (17), and

KxagN + ByagN − c = a1AN−1

A1ρ1
(λ1 − λN ) a.e.. (58)

Since ‖λ1 − λN‖2 ≤ 2
(‖λ∗ − λ1‖2 + ‖λ∗ − λN‖2) ,G(zagN ; x∗, y∗, λ∗) ≥ 0

(see [11]), and (56), it follows

E

[ a1
4A1ρ1

‖λ1 − λN‖2
]

≤ E

[ N−1∑
t=1

aiσ 2

2Ai (η
−1
i − Lai )

+ a1D2
x∗

2A1

( 1

η1
+ b1‖K‖2

)
+ a1‖λ∗ − λ1‖2

A1ρ1

]
.

(59)

Then, by (58) and direct computation, we obtain (18).
Moreover, if X is compact, it can be verified thatE[exp{δ2t /σ 2}] ≤ exp{4}, applying

Lemma 4.4 for (57), then, for β > 0,

Prob

[
d
(a1AN−1

A1ρ1
(λ1 − λN ), zagN

)
≥ V1(N )

]
≤ exp

{
− β2

9

}
+ exp{−β}, (60)

where V1(N ) is given in (21), then by Proposition 4.1, we get (19).
Consider the feasibility violation, we can see that for any nonnegative r1, r2, . . . ,

rsM1 =∑s
i=1 ri , M2 =∑s

i=1 r
2
i , s > 1, we have

Prob
[
‖KxagN + ByagN − c‖ ≥ M1

]
≤ Prob

[(
a1AN−1

A1ρ1

)2

‖λ1 − λN‖2 ≥ M2

]
.
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Then applying Lemma 4.4 for (59), we conclude (20). ��

4.3 Proof of Theorem 3.2

Proof Let (x∗, y∗) be a solution of (3), λ ∈ W = dom g∗, and z∗ = (x∗, y∗, λ), then
by Lemma 4.1 and the parameter settings, B = −I, Kx∗ − y∗ = 0 and ct = ρt , we
have

E
(w)
[ 1

At−1
G(zagt ; z∗)

]

≤ E
(w)

[ t−1∑
i=1

aiσ 2

2Ai

(
η−1
i − Lai

) +
t−1∑
i=1

ai
2Aiηi

[
‖x∗ − xi‖2 − ‖x∗ − xi+1‖2

]

+
t−1∑
i=1

ai
2Ai

[
bi‖y∗ − yi‖2 − ci‖y∗ − yi+1‖2

]

+
t−1∑
i=1

ai
2Aiρi

[
‖λ − λi‖2 − ‖λ − λi+1‖2

]

+
t−1∑
i=1

ai (ci − bi )

2Ai
‖Kx∗ − Kxi+1‖2

]
. (61)

According to the parameter settings in Theorem 3.2,

{
at

2Atηt

}
is an increasing

sequence, then by Lemma 2.4 in [11],

t−1∑
i=1

ai
2Aiηi

[
‖x∗ − xi‖2 − ‖x∗ − xi+1‖2

]
≤ at−1

2At−1ηt−1
D2

X . (62)

Moreover, since ct ≥ bt and b1 = 0, it is easy to see that

t−1∑
t=1

ai
2Ai

[
bi‖y∗ − yi‖2 − ci‖y∗ − yi+1‖2

]
≤ 0, (63)

t−1∑
i=1

ai (ci − bi )

2Ai
‖Kxi+1 − Kx∗‖2 ≤

t−1∑
i=1

ai (ci − bi )‖K‖2
2Ai

D2
X . (64)

Also, in view of (11)(12), Moreau decomposition (see, e.g., [29,30]), and (2.36)

in [11], we have {λt } ⊆ W . And

{
at

2Atρt

}
is an increasing sequence, then for any

λ ∈ W ,
t−1∑
i=1

ai
2Aiρi

[
‖λ − λi‖2 − ‖λ − λi+1‖2

]
≤ at−1

2At−1ρt−1
D2
W . (65)
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Combing (62)–(65) with (61), we have

E
(w)
[ 1

At−1
G(zagt ; z∗)

]

≤
t−1∑
i=1

aiσ 2

2Ai (η
−1
i − Lai )

+ at−1

2At−1ρt−1
D2
W

+
(

t−1∑
i=1

ai (ci − bi )‖K‖2
2Ai

+ at−1

2At−1ηt−1

)
D2

X .

(66)

Since g(y) is finite-valued and Lipschitz continuous, by Proposition 2.2 in [31], we
have f (xagt ) + g(Kxagt ) − ( f (x∗) + g(y∗)

) ≤ supλ∈W G(z∗; zagt ). Then, it leads to
(25). Applying Lemma 4.4 for (25), we can similarly obtain the probability estimation
in (26). ��

5 Numerical Experiments

In this paper, we conducted two experiments to examine the performance of SAI and
compared with OS-ADMM in [2], which outperforms the stochastic ADMMs in [3,4].

5.1 Total Variation Regularized Linear Inversion

This experiment is on the following TV-regularized linear inversion problem:

min
x∈X Ei

[m
2

(〈Ai , x〉 − bi
)2]+ γ ‖Dx‖2,1, (67)

where Ai is the i th row of matrix A, i serves as the random variable with uniform
distribution in {1, 2, . . . ,m}, x is the image to be reconstructed, bi represents the i th
component of the observed data, and ‖Dx‖2,1 is the discrete form of TV semi-norm.
The feasible set X = {x ∈ R

n×n : ‖x‖ ≤ DX/2}. Problem (67) is a special case of (3),

that F(x, i) = m

2

(〈Ai , x〉 − bi
)2, and g(y) = ‖y‖2,1, with the constraint y = γ Dx .

We consider four instances: (1) A is generated by the normal distribution N (0, 1)with
nonzero element density 0.2; (2) A is generated by N (0, 10) with density 0.2; (3) A is
generated by N (0, 10)with density 0.1; (4) A is generated by the uniform distribution
U (0, 1) and the norm of Ai is randomly scaled according to U (0, 10). Then, b is
obtained by b = Axtrue + ε, where xtrue ∈ R

n×n is generated from N (0, 1), and the
noise ε ∈ R

m×n is generated from N (0, 0.001). We apply SAI and OS-ADMM to
solve this problem. We set m = 5000, n = 128, and ρ = 1. The performance of
SAI and OS-ADMM in terms of relative error, primal objective value, and feasibility
violation versus iteration number is shown in Figs. 1 and 2. The relative error of an

approximate solution x is defined by
‖x − xtrue‖2

‖xtrue‖2 , and the feasibility violation is

‖y−γ Dx‖2. It can be observed from Figs. 1 and 2 that SAI outperforms OS-ADMM
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Fig. 1 Comparisons on TV-regularized linear inversion problem with A generating from: (1) N(0, 1) with
sparsity density 0.2, (2) N(0, 10) with sparsity density 0.2, (3) N(0, 10) with sparsity density 0.1. Left: the
relative errors from SAI and OS-ADMM. Middle: the objective function values from SAI and OS-ADMM.
Right: the feasibility violations from SAI and OS-ADMM
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Fig. 2 Comparisons on TV-regularized linear inversion problem with A generating from U(0, 1) and the
norm of Ai is subject to U(0, 10). Left: the relative errors from SAI and OS-ADMM. Middle: the objective
function values from SAI and OS-ADMM. Right: the feasibility violations from SAI and OS-ADMM

in solving problem (67). This is consistent with our theoretical analysis results. For the
case that A is generated fromU (0, 1) with the norm of Ai randomly scaled according
toU (0, 10), the results indicate that SAI not only accelerates the convergence, but also
reduces the oscillations. We observed from the experiments that importance sampling
can improve the performance of stochastic ADMM algorithms by increasing the step
size and weakening the oscillations.
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Fig. 3 Comparison of SAI and OS-ADMM on accuracies for multi-class classification

5.2 Graph-Guided Fused Lasso

The second experiment is on the graph-guided fused lasso (GFLasso) followed by the
work in [2,3]. As a concrete example of generalized lasso, a graph-fused regularizer
is introduced to enforce certain desired structure. Let G = {V, E} be a graph, where
V = {x1, x2, . . . , xn} is the set of the vertices and E is the set of edges among V . A
weight wi j is assigned for each edge {xi , x j } in E . The difference between xi and
x j is penalized according to the edge weight wi j , if there is such an edge. Then the
GFLasso model for classification can be formulated as

min
x

Eξ [L(x, ξ)] + γ ‖x‖1 + β
∑

{i, j}∈E
wi j |xi − x j |, (68)

where L(x, ξ) = 1

2
(l − xT s)2 for feature-label pair (s, l) in training sample ξ, s is

the feature vector and l is the label of sample ξ . We also consider the large-margin
modification for (68), as introduced in [2], and reformulate the problem (68) to the
form of (3) as follows:

min
x,y

Eξ [L(x, ξ)] + γ ‖x‖22 + β‖y‖1, s.t. Fx = y, (69)

where the matrix F satisfies that ‖Fx‖1 =∑{i, j}∈E wi j |xi − x j |.
We applied SAI and OS-ADMM algorithms to solve this problem and compared

their performances.We used a public dataset on 20 newsgroups.1 This dataset contains
binary occurrences of 100 popular words for 16,242 newsgroup postings. All the
samples are labeled into four categories: computer, recreation, science and talks. We
do multi-class classification by one-vs-rest scheme. For each category, we trained our

1 http://www.cs.nyu.edu/~roweis/data.html.
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algorithm based on 80% of the total samples, and test prediction accuracy on the
other 20%. Following the work in [2,3], in order to obtain F, we use the sparse inverse
covariance selectionmethod in [32] to get the sparsity pattern of the inverse covariance
matrix, thus determine F . Figure 3 shows that SAI owns a faster convergence rate than
OS-ADMM, also a better accuracy on test data. It is worth to mention that we can
achieve satisfied accuracy by 2000 samples, only using 16% of the whole training
dataset.

6 Conclusions

We propose a new accelerated stochastic ADMM with importance sampling that
improves the convergence rate in terms of the dependence on the variance of stochastic
gradients. The rates of convergence for the primal residual and feasibility violation are
established. This algorithm can also solve problems with unbound feasible sets. The
numerical experiments show that SAI outperforms the existing accelerated stochastic
ADMM algorithm, OS-ADMM in several cases. This is more evident, if the norms of
stochastic gradients are more oscillated.
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