
Facial Attributes Guided Deep Sketch-to-Photo Synthesis

Hadi Kazemi Mehdi Iranmanesh Ali Dabouei Sobhan Soleymani Nasser M. Nasrabadi
West Virginia University

{hakazemi, seiranmanesh, ad0046, ssoleyma}@mix.wvu.edu, nasser.nasrabadi@mail.wvu.edu

Abstract

Face sketch-photo synthesis is a critical application in
law enforcement and digital entertainment industry. De-
spite the significant improvements in sketch-to-photo syn-
thesis techniques, existing methods have still serious limi-
tations in practice, such as the need for paired data in the
training phase or having no control on enforcing facial at-
tributes over the synthesized image. In this work, we present
a new framework, which is a conditional version of Cycle-
GAN, conditioned on facial attributes. The proposed net-
work forces facial attributes, such as skin and hair color,
on the synthesized photo and does not need a set of aligned
face-sketch pairs during its training. We evaluate the pro-
posed network by training on two real and synthetic sketch
datasets. The hand-sketch images of the FERET dataset and
the color face images from the WVU Multi-modal dataset
are used as an unpaired input to the proposed conditional
CycleGAN with the skin color as the controlled face at-
tribute. For more attribute guided evaluation, a synthetic
sketch dataset is created from the CelebA dataset and used
to evaluate the performance of the network by forcing sev-
eral desired facial attributes on the synthesized faces.

1. Introduction
Automatic face sketch-photo or photo-sketch synthesis

and identification have always been important topics in

computer vision and machine learning due to their vital

applications in law enforcement and digital entertainment

industry [31, 16, 20, 27]. In law enforcement, in most

cases, the photo of a suspect is not available in the police

database and therefore, the forensic sketch, which is drawn

by a police artist based on an eyewitness testimony, is the

only clue to identify the suspect. However, recognition of

the suspect using a face sketch is much harder than a face

photo because of the significant differences between the two

modalities, such as the texture and geometric mismatching,

which reduces the chance of identifying the suspect by per-

son or from a mugshot database. In these cases, automatic

face sketch-photo synthesis comes handy by generating sus-

pects’ photos from their forensic sketches.

Most of the previous research works on the sketch-based

photo synthesis have addressed the problem of sketch-photo

synthesis by using pairs of sketches and photos which are

captured under highly controlled conditions, i.e., neutral ex-

pression and frontal pose. Different techniques have been

studied including sparse representations [3], transductive

learning of a probabilistic sketch-photo generation model

[17], support vector regression [37], Bayesian tensor infer-

ence [32], embedded hidden Markov model [30], multiscale

Markov random field model [34]. However, slight changes

in the conditions can drastically degrade the performance

of these photo synthesizing methods which are based on the

existence of such controlled training pairs.

Recently, several studies proposed new methods which

are more robust to the variation in different conditions

[15, 40]. In [7], a deep convolutional neural network

(DCNN) is utilized to tackle the problem of face sketch-

photo synthesis in uncontrolled conditions. They developed

three different models for multiple sketch styles. Peng et
al. [22] derived a high dimensional multi-view feature vec-

tor using multiple filters and multiple local features to re-

duce the influence of different lighting conditions. The Lo-

cality Preserving Projections (LPP) is then adopted to re-

duce the feature dimensionality. Finally, traditional sketch

synthesis methods such as Markov Random Fields (MRF)

and Markov Weight Fields (MWF) are utilized to generate

a photo from the multi-view feature representation. Simi-

larly, [21] used multiple representations in an MRF model

to gain robustness to lighting and pose variations.

DCNNs have been successfully applied in many cross-

modality tasks [26, 10], specially in image transformation

tasks such as sketch-photo and photo-sketch synthesis. The

key to their success is in their ability of modeling nonlinear

spacial transform between their input and output domains

[2]. Zhang et al. [38] used a six-layer convolutional neu-

ral network (CNN) to generate sketches from photos. In

[38], a new optimization objective function is utilized in the

form of joint generative discriminative minimization to pre-

serve the person’s identity. A CNN-based framework was

presented in [4] to transfer image style between arbitrary
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images by learning generic feature representations. Further-

more, a combination of a deep neural network with classical

MRFs based texture synthesis was used in [14] to transfer

the image style between arbitrary images or sketches.

For many years, the main objective function of CNNs

in image generation applications has been defined as min-

imization of the Euclidean distance between the predicted

and ground truth pixels. However, a network that is trained

based on this objective function tends to generate blurry im-

ages [39]. More recently, deep convolutional generative ad-

versarial networks (GANs) [5] have led to a significant im-

provement in image generation tasks by selecting a new loss

function to generate more sharp and realistic images. This

is done by attempting to fool a discriminator network that

distinguishes between synthetic images and the real ones.

GANs initially were developed in an unconditional setting

to learn the distribution of the training data [5]. Fortunately,

conditional GANs (cGAN) [11] are also introduced in the

literature that learn conditional generative models and gen-

erate images conditioned on an input. This makes cGANs a

good fit for many image transformation applications such as

sketch-photo synthesis [25], image inpainting [36], general-

purpose image-to-image translation [11], image manipula-

tion [43], and style transfer [29]. Among them, Sangkloy

et al. [25] specifically studied the application of cGANs on

face sketch-photo synthesis.

Despite the success of the aforementioned techniques on

image synthesis applications, they mostly suffer from a ma-

jor drawback: They need the corresponding pair of images

from both the source and the target modalities to train the

network. Unfortunately, this is difficult to meet in practice

since each artist has its own painting style, and the trained

networks usually need to be fine tuned using scarcity-based

domain adaptation techniques [19] for a new unseen sketch

style. Besides, there are usually many suspects’ sketches

without their ground truth photos as they have not been

caught yet. In order to solve the problem of paired train-

ing data unavailability, an unpaired image-to-image transla-

tion framework was proposed in [44], so called CycleGAN.

They proposed an approach to learn image translation from

a source domain to a target domain without any paired ex-

amples. For the same reason, in this paper, we follow the

same approach as CycleGAN to train a network for sketch-

photo synthesis in absence of paired samples.

Given the impressive results of recent face sketch-photo

synthesis works, there is still a missing key part in this

process which is conditioning the face synthesis task on

the soft biometric traits. Especially in the application of

sketch-photo synthesis, based on the quality of sketches,

there are usually some face attributes which are missing in

the painted sketches, such as skin, hair, eye colors, gender,

and ethnicity. Furthermore, conditioning the image synthe-

sis process to other adhered facial characteristics, such as

having eyeglasses or a hat, provide extra information about

the individual of interest and can result in a more precise

and higher quality synthesized output. Consequently, de-

scribing and manipulating attributes from face images have

been active research topics for years [41, 12, 28]. The

application of soft biometric traits in person identification

has also been studied in the literature [42]. Face attributes

help to construct face representations and train domain clas-

sifiers for identity prediction. However, few researchers

have addressed this problem in sketch-photo synthesis [8],

attribute-image synthesis [35], and face editing [23, 13].

Despite this interest, no one to the best of our knowledge

has proposed an unpaired sketch-photo synthesis scheme

disentangled with respect to relevant facial attributes.

Although the CycleGAN solved the problem of learning

a GAN network in the absence of paired training data, the

original version does not force any conditions, e.g., facial

attributes, on the image synthesis process. In this paper, we

propose a new framework built on the CycleGAN to gener-

ate face photos from sketches conditioned on relevant facial

attributes. To this end, we developed a conditional version

of the CycleGAN which we refer to as the cCycleGAN and

trained it by an extra discriminator to force the desired fa-

cial attributes on the synthesized images. The main contri-

butions of this paper include the following:

• We propose a novel framework for facial attribute

guided Sketch-Photo synthesis.

• We introduce a new version of CycleGAN with con-

ditional setting. Adding conditions to the CycleGAN

improves the stability of the network suring its training

phase as the missing information in any of the source

or target domains could make the training process un-

stable.

• The proposed attribute learning framework does not

need a paired training data which allow us to train the

network even on sketch datasets without their corre-

sponding ground truth photos.

2. Conditional Generative Adversarial Net-
works (cGANs)

GANs [5] are a group of generative models which learn

to map a random noise z to output image y: G(z) : z −→ y.

They can be extended to a conditional GAN (cGAN) if the

generator model, G, (and usually the discriminator) is con-

ditioned on some extra information, x, such as an image

or class labels. In other words, cGAN learns a mapping

from an input x and a random noise z to the output im-

age y: G(x, z) : {x, z} −→ y. The generator model is

trained to generate an image which is not distinguishable

from ”real” samples by a discriminator network, D. The
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discriminator is trained adversarially to discriminate be-

tween the ”fake” generated images by the generator and the

real samples from the training dataset. Both the generator

and the discriminator are trained simultaneously following

a two-player min-max game.

The objective function of cGAN is defined as:

lGAN (G,D) =Ex,y∼pdata
[logD(x, y)]+ (1)

Ex,z∼pz
[log(1−D(x,G(x, z)))],

where G attempts to minimize it and D tries to maximize it.

Previous works in the literature have found it beneficial to

add an extra L2 or L1 distance term to the objective func-

tion which forces the network to generate images which are

near the ground truth. Isola et al. [11] found L1 to be a

better candidate as it encourages less blurring in the gener-

ated output. In summary, the generator model is trained as

follows:

G∗ = argmin
G

max
D

lGAN (G,D) + λlL1(G), (2)

where λ is a weighting factor and lL1(G) is

lL1(G) =‖ y −G(x, z) ‖1 . (3)

2.1. Training Procedure

In each training step, an input, x is passed to the gen-

erator to produce the corresponding output, G(x, z). The

generated output and the input are concatenated and fed to

the discriminator. First, the discriminator’s weight is up-

dated in a way to distinguish between the generated output

and a real sample from the target domain. Then, the gener-

ator is trained to fool the discriminator by generating more

realistic images.

3. CycleGAN
The main goal of CycleGAN [44] is to train two genera-

tive models, Gx and Gy . These two models learn the map-

ping functions between two domains x and y. The model,

as illustrated in Figure 1, includes two generators; the first

one maps x to y: Gy(x) : x −→ y and the other does the

inverse mapping y to x: Gx(y) : y −→ x. There are two

adversarial discriminators Dx and Dy , one for each genera-

tor. More precisely, Dx distinguishes between ”real” x sam-

ples and its generated ”fake” samples Gx(y), and similarly,

Dy discriminates between ”real” y and the ”fake” Gy(x).
Therefore, there is a distinct adversarial loss in CycleGAN

for each of the two (Gx, Dx) and (Gy, Dy) pairs. Notice

that the adversarial losses are defined as in Eq. 1.

For a high capacity network to be trained using only the

adversarial loss, there is a possibility of mapping the same

set of inputs to a random permutation of images in the target

domain. In other words, the adversarial loss is not enough

Figure 1. CycleGAN

to guarantee that the trained network generates the desired

output. This is the reason behind having an extra L1 dis-

tance term in the objective function of cGAN as shown in

Eq. 2. As shown in Figure 1, in the case of CycleGAN,

there are no paired images between the source and target do-

mains, which is the main feature of CycleGAN over cGAN.

Consequently, the L1 distance loss cannot be applied to this

problem. To tackle this issue, a cycle consistency loss was

proposed in [44] which forced the learned mapping func-

tions to be cycle-consistent. Particularly, the following con-

ditions should be satisfied

x −→ Gy(x) −→ Gx(Gy(x)) ≈ x

y −→ Gx(y) −→ Gy(Gx(y)) ≈ y. (4)

To this end, a cycle consistency loss is defined as

lcyc(Gx, Gy) = Ex∼pdata[‖x−Gx(Gy(x))‖1]

+Ey∼pdata[‖y−Gy(Gx(y))‖1]. (5)

Taken together, the full objective function is

l(Gx, Gy, Dx, Dy) = lGAN (Gx, Dx) + lGAN (Gy, Dy)

+ λlcyc(Gx, Gy), (6)

where λ is a weighting factor to control the importance of

the objectives and the whole model is trained as follows

G∗
x, G

∗
y = arg min

Gx,Gy

max
Dx,Dy

l(Gx, Gy, Dx, Dy). (7)

From now on, we use x for our source domain which is

the sketch domain and y for the target domain or the photo

domain.
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Layer # Type Kernel Input Size Output Size

1 Conv 7x7 128 x 128 128 x 128

2 Conv 3x3 128 x 128 64 x 64

3 Conv 3x3 64 x 64 32 x 32

4-12 Res 5x5 32 x 32 32 x 32

13 Conv 3x3 32 x 32 64 x 64

14 Conv 3x3 64 x 64 128 x 128

15 Conv 7x7 128 x 128 128 x 128

Table 1. Generator architecture with an input of size 128x128

Layer # Type Kernel Input Size Output Size

1 Conv 4x4 128 x 128 64 x 64

2 Conv 4x4 64 x 64 32 x 32

3 Conv 4x4 32 x 32 16 x 16

4 Conv 4x4 16 x 16 15 x 15

5 Conv 4x4 15 x 15 14 x 14

Table 2. Discriminator architecture with an input of size 128x128

3.1. Architecture

The two generators, Gx and Gy , adopt the same archi-

tecture [44] consisting of six convolutional layers and nine

residual blocks [9]. Table 1 details the generators’ architec-

ture. The discriminators also share their architecture which

is summarized in Table 2. The output of the discriminator

is of size 30x30. Each output pixel corresponds to a patch

of the input image and tries to classify if the patch is real or

fake. More details are reported in [44].

4. Conditional CycleGAN (cCycleGAN)

The CycleGAN architecture has solved the problem of

having unpaired training data, but still, has a major draw-

back: Extra conditions, such as soft biometric traits, can-

not be forced on the target domain. To tackle this problem,

we proposed a CycleGAN architecture with a soft biomet-

rics conditional setting which we refer it as Conditional Cy-

cleGAN (cCycleGAN). Since in the sketch-photo synthe-

sis problem, attributes (e.g., skin color) are missing on the

sketch side and not on the photo side, the photo-sketch gen-

erator, Gx(y), is left unchanged in the new setting. How-

ever, the sketch-photo generator, Gy(x), needs to be mod-

ified by conditioning it on the facial attributes. The new

sketch-photo generator maps (x, a) to y, i.e., Gy(x, a) :
(x, a) −→ y, where a stands for the desired facial attributes

to be present in the synthesized photo. The correspond-

ing discriminator, Dy(x, a), is also conditioned on both the

sketch, x, and the desired facial attributes, a. The definition

of the loss function remains the same as in CycleGAN given

by Eq. 6.

Despite the previous work in face editing [23], our pre-

Figure 2. cCycleGAN architecture, including Sketch-Photo cycle

(top) and Photo-Sketch cycle (bottom).

liminary results showed that having only a single discrim-

inator conditioned on the desired facial attributes was not

enough to force the attributes on the generator’s output

of the CycleGAN. Consequently, instead of increasing the

complexity of the discriminator, we trained an additional

auxiliary discriminator, Da(y, a), to detect if the desired at-

tributes are present in the synthesized photo or not. In other

words, the sketch-photo generator, Gy(x, a), tries to fool

an extra attribute discriminator, Da(y, a), which checks the

presence of the desired facial attributes. The objective func-

tion of the attribute discriminator is defined as follows:

lAtt(Gy, Da) =Ea,y∼pdata
[logDa(a, y)]+ (8)

Ey∼pdata,ā �=a[log(1−Da(ā, y))]+

Ea,y∼pdata
[log(1−Da(a,Gy(x, a)))],

where a is the corresponding attributes of the real image, y,

and ā �= a is a set of random arbitrary attributes. Therefore,

the total loss of the cCycleGAN is

l(Gx, Gy, Dx, Dy) = lGAN (Gx, Dx) + lGAN (Gy, Dy)

+ λ1lcyc(Gx, Gy) + λ2lAtt(Gy, Da), (9)

where λ1 and λ2 are weighting factors to control the impor-

tance of the objectives.

4.1. Architecture

Our proposed cCycleGAN adopts the same architecture

as in CycleGAN. However, to condition the generator and
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Figure 3. Sketch-Photo generator network, Gy(x, a), in cCycle-

GAN.

the discriminator to the facial attributes, we slightly modi-

fied the architecture. The generator which transforms pho-

tos into sketches, Gx(y), and its corresponding discrimina-

tor, Dx, are left unchanged as there is no attribute to force

in sketch generation phase. However, in the sketch-photo

generator, Gy(x), we insert the desired attributes before the

fifth residual block of the bottleneck (Figure 2). To this end,

each attribute is repeated 4096 (64*64) times and then re-

sized to a matrix of size 64×64. Then all of these attribute

feature maps and the output feature maps of the fourth resid-

ual block are concatenated in depth and passed to the next

block, as shown in Figure 3. The same modification is ap-

plied to the corresponding attribute discriminator, Da. All

the attributes are repeated, resized, and concatenated with

the generated photo in depth and are passed to the discrim-

inator.

4.2. Training Procedure

We follow the same training procedure as in Section 2.1

for the photo-sketch generator. However, for the sketch-

photo generator, we need a different training mechanism

to force the desired facial attributes to be present in the

generated photo. Therefore, we define a new type of neg-

ative sample for the attribute discriminator, Da, which is

defined as a real photo from the target domain but with a

wrong set of attributes, ā. The training mechanism forces

the sketch-photo generator to produce faces with the desired

attributes. At each training step, this generator synthesizes a

photo with the same attributes, a, as the real photo. Both the

corresponding sketch-photo discriminator, Dy , and attribute

discriminator, Da, are supposed to detect the synthesized

photo as a fake sample. The attribute discriminator, Da, is

also trained with two other pairs: a real photo with correct

attributes as a real sample, and a real photo with wrong set

of attributes as a fake sample. Simultaneously, the sketch-

photo generator attempts to fool both of the discriminators.

5. Experimental Results
5.1. Datasets

FERET Sketch: The FERET database [24] includes

1,194 sketch-photo pairs. Sketches are hand-drawn by an

artist while looking at the face photos. Both the face pho-

tos and sketches are grayscale images of size 250 × 200

pixels. However, to produce color photos we did not use

Figure 4. Samples from FERET, WVU Multi-modal, CelebA, and

X-DOG generated synthetic sketches datasets.

the grayscale face photos of this dataset to train the cCy-

cleGAN. We randomly selected 1000 sketches to train the

network and the remaining 194 are used for testing.

WVU Multi-modal: To synthesis color images from the

FERET sketches, we use the frontal view face images from

WVU Multi-modal [1]. The Dataset contains 3453 high-

resolution color frontal images of 1200 subjects. The im-

ages are aligned, cropped and resized to the same size as

FERET Sketch, i.e., 250 × 200 pixels. The dataset does not

contain any facial attributes. However, for each image, the

average color of a 25 × 25 pixels rectangular patch (placed

in forehead or cheek) is considered as the skin color. Then,

they are clustered into three classes, namely white, brown

and black, based on their intensities.

CelebFaces Attributes (CelebA): We use the aligned

and cropped version of the CelebA dataset [18] and scale

the images down to 128 × 128 pixels. We also randomly

split it into two partitions, 182K for training and 20K for

testing. Of the original 40 attributes, we selected only those

attributes that have a clear visual impact on the synthesized

faces and are missing in the sketch modality, which leaves a

total of six attributes, namely black hair, brown hair, blond

hair, gray hair, pale skin, and gender. Due to the huge

differences in face views and the background in FERET

and celebA databases, the preliminary results did not show

an acceptable performance on FERET-celebA pair training.

Consequently, we generated a synthetic sketch dataset by

applying xDOG [33] filter to the celebA dataset. However,

to train the cCycleGAN, the synthetic sketch and photo im-

ages are used in an unpaired fashion. Figure 4 illustrates a

sample from each of the datasets.

5.2. Results on FERET and WVU Multi-modal

Sketches from the FERET dataset are trained in couple

with frontal face images from the WVU Multi-modal to

train the proposed cCycleGAN. Since there is no facial at-

tributes associated with the color images of the WVU Multi-

modal dataset, we have classified them based on their skin

colors. Consequently, the skin color is the only attribute

which we can control during the sketch-photo synthesis.

Therefore, the input to the sketch-photo generator has two

channels including a gray-scale sketch image, x, and a sin-
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gle attribute channel, a, for the skin color. The sketch im-

ages are normalized to stand in [−1, 1] range. Similarly, the

skin color attribute gets -1, 0, and 1 for the black, brown

and white skin colors, respectively. Figure 5 shows the re-

sults of the cCycleGAN after 200 epochs on the test data.

The three skin color classes are not represented equally in

the dataset which obviously balanced the results towards the

lighter skins.

5.3. Results on CelebA and synthesized sketches

Preliminary results reveal that the CycleGAN training

can get unstable when there is a significant difference, such

as differences in scale and face poses, in the source and tar-

get datasets. The easy task of the discriminator in differ-

entiating between the synthesized and real photos in these

cases could account for this instability. Consequently, we

generated a synthetic sketch dataset as a replacement to the

FERET dataset. Among the 40 attributes provided in the

CelebA dataset, we have selected the six most relevant ones

in terms of the visual impacts on the sketch-photo synthe-

sis, including black hair, blond hair, brown hair, gray hair,

male, and pale skin. Therefore, the input to the sketch-photo

generator has seven channels including a gray-scale sketch

image, x, and six attribute channels, a. The attributes in

CelebA dataset are binary, we have chosen -1 for a miss-

ing attribute and 1 for an attribute which is supposed to be

present in the synthesized photo. Figure 6 shows the results

of the cCycleGAN after 50 epochs on the test data. The

trained network can follow the desired attributes and force

them on the synthesized photo.

5.4. Evaluation of synthesized photos with a face
verifier

For the sake of evaluation, we utilized a VGG16-based

face verifier pre-trained on the CMU Multi-PIE dataset [6].

To evaluate the proposed algorithm, we first selected the

identities which had more than one photos in the testing set.

Then, for each identity, one photo is randomly added to the

test gallery, and a synthetic sketch corresponding to another

photo of the same identity is added to the test prob. Fi-

nally, every prob synthetic sketch is given to our attribute-

guided sketch-photo synthesizer and the resulting synthe-

sized photos are used for face verification against the en-

tire test gallery. This evaluation process was repeated 10

times. Table 3 depicts the face verification accuracies of

the proposed attribute-guided approach and the results of

the original cycle-GAN on celebA dataset. The results of

our proposed network significantly improved on the origi-

nal cycle-GAN with no attribute information.

6. Conclusion
In this paper, we presented a conditional CycleGAN

(cCycleGAN) for soft biometrics (facial attributes) guided

Table 3. Verification performance of the proposed ccycle-GAN

network vs. the original cycle-GAN

Method Accuracy (%)

cycle-GAN %61.34 ± 1.05

ccycle-GAN %65.53 ± 0.93

unpaired face sketch-photo synthesis problem. To this end,

an additional auxiliary attribute discriminator was utilized

with an appropriate loss to force the desired facial attributes

on the output of the generator. The pair of real face photo

from the training data with a set of false attributes defined

a new fake input to the attribute discriminator in addition to

the pair of generator’s output and a set of random attributes.

The proposed network was trained on two pairs of hand-

drawn and synthetic sketch datasets in an unpaired fash-

ion. Our experiments reveal how the network can generate

multiple photos with quite different facial attributes per sin-

gle sketch. However, similar to previous proposed solution

for image editing, editing an attribute can cause unwanted

structural edition of the image in some areas. Going for-

ward, we would like to force the network to keep the exact

face style in the output while editing the desired attributes

on the synthesized photo.
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[7] Y. Güçlütürk, U. Güçlü, R. van Lier, and M. A. van Gerven.

Convolutional sketch inversion. In European Conference on
Computer Vision, pages 810–824. Springer, 2016.

[8] Q. Guo, C. Zhu, Z. Xia, Z. Wang, and Y. Liu. Attribute-

controlled face photo synthesis from simple line drawing.

arXiv preprint arXiv:1702.02805, 2017.

[9] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learn-

ing for image recognition. In Proceedings of the IEEE con-

6



Figure 5. Sketch-based photo synthesis of hand-drawn test sketches from FERET dataset. Our network can adapt the synthesis results to

satisfy different skin colors (white, brown, black).

Figure 6. Attribute guided Sketch-based photo synthesis of synthetic test sketches from CelebA dataset. Our network can adapt the synthesis

results to satisfy the desired attributes.

ference on computer vision and pattern recognition, pages

770–778, 2016.

[10] M. Iranmanesh, A. Dabouei, H. Kazemi, and N. M.

Nasrabadi. Deep cross polarimetric thermal-to-visible face

recognition. In Biometrics (ICB), 2018 International Con-
ference on. IEEE, 2018.

[11] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros. Image-

to-image translation with conditional adversarial networks.

arXiv preprint arXiv:1611.07004, 2016.

[12] A. Jourabloo, X. Yin, and X. Liu. Attribute preserved face

de-identification. In Biometrics (ICB), 2015 International
Conference on, pages 278–285. IEEE, 2015.

[13] G. Lample, N. Zeghidour, N. Usunier, A. Bordes, L. De-

noyer, and M. Ranzato. Fader networks: Manipulating im-

ages by sliding attributes. arXiv preprint arXiv:1706.00409,

2017.

[14] C. Li and M. Wand. Combining markov random fields and

convolutional neural networks for image synthesis. In Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 2479–2486, 2016.

7



[15] Y.-h. Li, M. Savvides, and V. Bhagavatula. Illumination tol-

erant face recognition using a novel face from sketch syn-

thesis approach and advanced correlation filters. In Acous-
tics, Speech and Signal Processing, 2006. ICASSP 2006 Pro-
ceedings. 2006 IEEE International Conference on, volume 2,

pages II–II. IEEE, 2006.

[16] Q. Liu, X. Tang, H. Jin, H. Lu, and S. Ma. A nonlinear ap-

proach for face sketch synthesis and recognition. In Com-
puter Vision and Pattern Recognition, 2005. CVPR 2005.
IEEE Computer Society Conference on, volume 1, pages

1005–1010. IEEE, 2005.

[17] W. Liu, X. Tang, and J. Liu. Bayesian tensor inference for

sketch-based facial photo hallucination. pages 2141–2146,

2007.

[18] Z. Liu, P. Luo, X. Wang, and X. Tang. Deep learning face at-

tributes in the wild. In Proceedings of the IEEE International
Conference on Computer Vision, pages 3730–3738, 2015.

[19] S. Motiian, Q. Jones, S. Iranmanesh, and G. Doretto. Few-

shot adversarial domain adaptation. In Advances in Neural
Information Processing Systems, pages 6673–6683, 2017.

[20] C. Peng, X. Gao, N. Wang, and J. Li. Superpixel-based face

sketch–photo synthesis. IEEE Transactions on Circuits and
Systems for Video Technology, 27(2):288–299, 2017.

[21] C. Peng, X. Gao, N. Wang, D. Tao, X. Li, and J. Li.

Multiple representations-based face sketch–photo synthesis.

IEEE transactions on neural networks and learning systems,

27(11):2201–2215, 2016.

[22] C. Peng, J. Li, N. Wang, and X. Gao. Multi-view represen-

tation based face sketch synthesis. In Proceedings of Inter-
national Conference on Internet Multimedia Computing and
Service, page 307. ACM, 2014.

[23] G. Perarnau, J. van de Weijer, B. Raducanu, and J. M.
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