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Abstract—Electrocardiography (ECG) is the process of
recording the electrical activity of the human heart over time
using electrodes that are placed over the skin. While the
primary usage of electrocardiograms, the recorded signals, has
been focused on the check of signs of heart-related diseases,
recent studies have moved also toward their usage for human
authentication. Thus, an ECG signal can be unique enough
to be used independently as a biometric modality. In addition
to its inherent liveness detection, it is easy to collect and can
be easily captured either via sensors attached to the human
body (fingertips, chest, wrist) or even passively using wireless
sensors. In this paper, we propose a novel approach that
exploits the spectro-temporal dynamic characteristics of the
ECG signal to establish personal recognition system using
both short-time Fourier transform (STFT) and generalized
Morse wavelets (CWT). This process results in enriching the
information extracted from the original ECG signal that is
inserted in a 2D convolutional neural network (CNN) which
extracts higher level and subject-specific ECG-based features
for each individual. To validate our proposed CNN model, we
performed nested cross-validation using eight different ECG
databases. These databases are considered challenging since
they include both normal and abnormal heartbeats as well
as a dynamic number of subjects. Our proposed algorithms
yield superior performance when compared to other state-of-
art approaches discussed in the literature, i.e. the STFT-based
one achieves an average identification rate, equal error rate
(EER), and area under curve (AUC) of 97.86%, 0.0268, and
0.9933 respectively, whereas the CWT achieves comparable to
STFT results in 97.5%, 0.0386, and 0.9882 respectively.

Keywords-Electrocardiogram (ECG); Biometrics; Human
Identification; Spectro-temporal Features; Convolutional neu-
ral networks.

I. INTRODUCTION

Automatic, well founded and accurate human recognition
is required in various fields such as civilian applications,
surveillance, healthcare and financial information protection
in order to allow the confidentiality, integrity and access
to only legitimate users. Traditional procedures involved
ID cards, tokens, or passwords. However, these procedures
are vulnerable to identification theft and circumvention.
Biometric-based systems on the other hand utilize the in-
trinsic properties of the individual, which is not easy to
falsify depending on the biometric modality we use. Thus,
biometric-based approaches have gained popularity in the

last decades utilizing different traits such as fingerprints,
face, iris, hand geometry, ear patterns, or speech.

Electrocardiography (ECG) is a unique biometric trait and
has been studied for human identity recognition before [1],
[2]. The advantage of this trait is that the ECG signals
are more difficult to counterfeit when compared to other
modalities. For instance, an iris recognition system can be
compromised by using different types of attacks including
the usage of fake iris images or lenses [3]. Although the
intrinsic physiology of the heart, and accordingly the ECG
signal is difficult to be mimicked, some work in ECG system
attacks has been emerged such as Eberz et al. work [4].
The ECG signal also provides additional information about
an individual health status (e.g. normal or arrhythmic beats
as well as mental and emotional status), and hence, it can
be used also for automated or semi-automated diagnosis of
heart condition using machine learning algorithms [5].

Nevertheless, there are some factors that can affect the
intra-variability of the ECG biometric system which can be
considered as a challenge. These factors are either long-
term or short-term. The long-term factors include the age
and health condition, whereas the short-term factors include
the emotional and mental conditions.

A. Related Work

Several researches have been proposed in the ECG bio-
metrics. These researches can be categorized into three
types depending on the features extracted from the ECG
signal: fiducial-based approaches, non-fiducial approaches,
and hybrid approaches.

The fiducial-based approaches employ the characteristics
of the fiducial points of the ECG signal as features in the
recognition system. This can be done by extracting either
all or part of the characteristic points, which might be prone
to noise. The features involved may include the amplitude,
angle, or the duration of the wave points. For instance,
Irvine et al. [2] studied the effect of the emotional and
mental state variation on the ECG identification system
performance. The involved fiducial features included the
L’P’, S’T’, and QT intervals yielding a total of fifteen
feature. Their results showed that ECG can be used in the
biometric process. Using the same database, Israel et al.
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Table I. The proposed approach compared to the literature work.

Authors Features Feature
Selection Classifier Leads

Count Abnormality Databases
Count

Bassiouni et al. [6] Temporal &Spectral Yes NN 1 No 1
Shen et al. [7] Temporal No DBNN 1 No 1
Dar et al. [8] Spectral Yes RF 1 No 3
Agrafioti et al. [9] Temporal Yes KNN 1 No 3
Venkatesh et al. [10] Temporal No KNN+FLDA 1 No 1
Camara et al. [11] Spectral& Temporal Yes KNN 2 No 1
Fatemian et al. [12] Temporal Yes Template matching 1 No 1
Palaniappan et al. [13] Temporal No NN+SFA 2 No 1
Tantawi et al. [14] Spectral Yes RBF NN 1 No 3
Sidek et al. [15] Temporal No BN,MLP,RBF,KNN 1 Yes 3
Poree et al. [16] Temporal No Template matching 12 No 1
Zhang et al. [17] Spectral No 1D-CNN 1 Yes 8
Our Approach Spectro-Temporal No 2D-CNN 1 Yes 8

[18] used fifteen fiducial features that were extracted with
respect to the R peaks. Their algorithm achieved 82% and
79% heartbeat identification rates using different ECG lead
location ( i.e. base of the neck and fifth intercostal spacing),
and average accuracies of 80.1% and 64.5% using different
anxiety states. Zhang and Wei [19] on the other hand, used
fiducial features that included the ECG characteristic points’
amplitude and duration as well as fiducial intervals such as
QRS and PR intervals achieving accuracies of 79%, and
85.3% using different lead configurations.

In the non-fiducial-based approaches, the features ex-
tracted can be either from the time domain or the frequency
domain. For instance, Hejazi et al. [20] proposed an ECG-
based biometric system that utilizes the autocorrelation along
with linear dimension reduction. The cohort of the study
involved 52 subjects. The signals are first denoised using the
discrete wavelet transform (DWT). Several feature reduction
methods including linear discriminant analysis and principle
component analysis (PCA), as well as kernel principle com-
ponent analysis (KPCA) were tested. The reduced features
are then used to feed an support vector machine (SVM)
classifier to identify the subjects. The results showed that
using the Gaussian KPCA as a feature reduction method for
the autocorrelation coefficients achieved a lowest false non-
matching rate of 4.83% in case of one session recording and
2.297% in case of two sessions. Camara et al. [11] used a
dataset of 18 subjects’ ECG signals for identification. The
Hadamard transform [21], [22] was applied to the two leads’
ECG signals, where only 24 coefficients were used per lead.
A K-nearest neighborhood classifier (KNN) was used in the
classification process for simplicity, where the average accu-
racy obtained for the 48 coefficient features was 94.2% and
96.6% by incorporating the two entropies proposed in their
work. Moreover, Zhang et al. [17] used deep learning in their
HeartID ECG identification system. The wavelet transform is

done on two-second ECG segments and the autocorrelation
coefficients were obtained for the transformed segments. A
one-dimensional convolution neural network was then used
to identify the individuals. Different wavelet components
combinations were tested on the identification rate, and an
average rate of 93.5% was reported. There have been also
other approaches that utilize the discrete cosine transform
or autocorrelation coefficients [6], [23], [24].

On the other hand, the hybrid approaches involve the
usage of both fiducial and non-fiducial features. For instance,
Wang et al. [25] utilized the P, Q, R, S and T positions
and amplitudes as fiducial features. Whereas the non-fiducial
features involved the autocorrelation coefficients and discrete
cosine transform.

We believe that prior work in the literature work does
not address the utilization of deep learning and the spectro-
temporal features of the ECG signal as illustrated in Table
I. Although Camara et al. [11] and Bassiouni et al. [6]
utilized the frequency and time domain features, they only
used separate features from each domain. In other words,
they studied the variations in the frequency and the time
domains, but not the variations of frequency with time. On
the other hand, Zhang et al. [17] used both deep learning
and wavelets-based approach, but different combination of
scales had to be selected before the classification takes place
base on the value of the final identification rate. Moreover,
Pouryayevali et al. [26] utilized the wavelet of the ECG
signal, however, linear discriminant analysis procedure was
used for feature selection [26].

To the best of our knowledge, there is no approach
that utilizes the high-level features of the spectro-temporal
information of the ECG signal. In this paper, we propose
a biometric-based approach that utilizes the ECG signal for
human identification. We enrich the extracted features by
investigating the short-time Fourier transform (STFT) and
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Figure 1. Workflow of the proposed approach.

continuous wavelet transform, namely generalized Morse
wavelet, (CWT) of the extracted ECG segments. Then, the
high-level features are extracted from the spectro-temporal
domain by utilizing a 2D deep convolution neural network
(CNN). At the end of the study we determine which ap-
proach is the most efficient in terms of a set of performance
metrics including rank-1 identification rate, equal error rate
(EER), and area (AUC) under the receiver operating curve
(ROC).

B. Contributions

Based on our previous work that utilized the spectro-
temporal texture in arrhythmia detection [5], we propose
an ECG-based biometric approach for human identification.
The contributions of this work are as follows:

• We utilize the spectro-temporal domain features using
short-time Fourier transform and generalized Morse
wavelets to gain more information about the ECG
signal patterns by investigating the changes in the
frequency components along the time.

• Unlike the literature work that uses deep networks
to classify subjects, we employ a deep learning-based
approach by using a 2D convolutional neural network
model to extract the intermediate layers’ high-level
features of the spectro-temporal images of the ECG
signals. This results in a more discriminative features
that can be further used in an open-set biometric
system.

• The size of the high-level feature template vector for
each subject is a main concern in terms of the memory
that is needed in the database or the matching time. We
provide a feature compression by employing a distinc-
tive feature vector of size 100 to represent a heartbeat
of size 200 sample point. Therefore, instead of storing
the whole template ECG signal for each subject, we
only store the feature vectors. This will consume less
memory and matching time and complexity.

• For model’s robustness and generalization assessment,
we test our approach on eight ECG databases. These
databases encompass both normal and abnormal ECG
beats, where the abnormality includes different heart
conditions such as atrial or ventricular fibrillation,

ventricular flutter, myocardial infarction, etc. Moreover,
one of the databases have large number of subjects (i.e.
290 subjects) compared to other databases (i.e. average
of 25 subject). To the best of our knowledge no other
papers provided the same size of test databases, where
the closest paper is [17] as they use the same number
of databases. However, we propose larger number of
subjects specially in PTB database which can mimic
the real-world scenario of having a large-scale system.

The rest of the paper is organized as follows: Section 2
discusses the details of our proposed approach. Then, we
analyze the experimental results in Section 3, and conclude
in Section 4.

II. METHODOLOGY

The workflow of the ECG biometric system entails five
main steps: 1) data acquisition, 2) data preprocessing, 3)
feature extraction, 4) human identification, 5) model valida-
tion and testing. Our workflow of the proposed approach is
illustrated in figure 1. What follows is a discussion on each
step of the proposed approach starting from data acquisition.

A. Data Acquisition

In the diagnostic electrocardiogram, the ECG signals are
usually obtained from 12-lead configuration system includ-
ing the bipolar limb leads (Leads I, II, and III) that are
measured by placing the electrodes on the patients’ limbs,
the augmented unipolar limb leads (aVF, aVL, and aVR)
using the voltage difference between two of the previously
mentioned limb leads and the third one, and the precordial
leads (V1,V2,.. to V6) that are placed on the front and left
side of the chest. Although employing more ECG leads
will increase the accuracy of identification as proved in
[27], this configuration needs time to setup and a prior
knowledge of the appropriate leads’ positions. Therefore,
in biometric ECG systems, it is better to use a smaller
number of leads (i.e. one or two leads) such that the
biometric system is practical. Thus, less time and complexity
in the enrollment and authentication processes. This can be
achieved by utilizing the modified limb leads (i.e. lead I or
lead II). Another lead configuration can be found in [28]
where the subject holds two electrodes using his/her thumb.
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Figure 2. The intra- and inter-subject variability of both STFT images on the left and CWT images on the right of two subjects from
the MITDB. The low intra-subject is shown in the green images, while inter-subject has high variability. (Better seen in the electronic
version)

In this paper, since we utilize different databases that were
obtained using different lead configurations, we employ the
modified limb lead (Lead II) for obtaining the ECG signal
used in the identification. It is also worth mentioning that in
the databases we used, subjects have given a consent, and all
the records were anonymized which comply with the general
data protection regulations (GDPR). Another property of
the ECG biometric system is that the data acquisition time
should be long enough to obtain a good identification rate,
and short enough not to become an inconvenient and time-
consuming experience for the users. Therefore, we adapted
in our approach an identification model that is designed
based on a short-time duration ECG signal (i.e. order of
minutes to have sufficient data for training purposes, and
order of seconds to use during identification or verification
purposes).

B. Data Preprocessing

The acquisition of the ECG signal is susceptible to many
factors of noise such as the muscle movement and respiration
as well as electric powerline interference.

In this work, since we use multiple databases, the ECG

signal is resampled at 360 Hz. Then, we apply a bandpass
filter to remove any frequencies other than 0.05-40 Hz. A
notch filter is then used to remove the 60 Hz power line
noise. Afterwards, the R peaks are identified using the Pan
and Tompkins detector [29]. The ECG beat is then extracted
using 200 sample points (99 before and 100 points after the
R peak). This accounts for around 0.56 seconds, which is
adequate to capture most of the heart cycle [30]. Finally, a
signal mean normalization is done.

C. Feature Extraction

In the biometric system, the extracted features that rep-
resent the individual should exhibit both uniqueness and
circumvention to discriminate the individual effectively and
prohibit spoofing. The challenge with the ECG is that it
is a 1D signal. Therefore, the features can be extracted
from the temporal domain. However, by investigating the
features in the spectro-temporal domain, we can enrich the
information extracted from the ECG signal. This can be
supported by the fact that the ECG signal is a non-stationary
signal. Thus, the signal’s parameters can change over time.
Therefore, applying either Fourier or wavelet transform over

4987



the whole signal will not reveal the transitions and changes
in the spectral contents over time. These characteristics of
the signal support the idea of studying the time variation of
the frequency components (i.e. Fourier coefficients).

We employ two different spectro-temporal domain rep-
resentation of the ECG segments: the short-time Fourier
transform, and wavelet transform.

1) Short-time Fourier Transform (STFT): The main idea
of the standard Fourier transform (FT) is to decompose the
ECG signal into the frequencies that compose it. This can
be done by performing an inner product of a family of basis
functions with the signal. These family basis are the complex
oscillations exp(iωt), where ω is the frequency parameter.
Therefore, the Fourier transform of a signal x(t) can be
given as follow:

F{x(t)}(ω) =

∫ ∞
−∞

e−iωτ x(τ)dτ (1)

This transform can be interpreted as the frequency domain
representation of the original signal. However, due to the
fact that the ECG signal is a non-stationary signal, we
can study the behavior, namely the spectral behavior, of
the signal in short enough time window such that we can
assume stationarity. This can be achieved by utilizing the
STFT. The STFT follows the same idea of the standard
Fourier and adds the time dimension to the base function
by integrating a window of the complex exponential for
the sake of localization to be ω(t− t0)exp(iωt). Therefore,
STFT of the ECG signal represents the Fourier coefficients
of a fixed-size window contained within the signal. This
can be achieved by sliding a window through the ECG time
signal with a control amount of overlapping between the
consecutive windows. This overlap that is performed during
the windowing is provided to avoid any discontinuities
or artifacts in the windowing process. The mathematical
formula of the STFT is as follow:

STFT{x(t)}(τ, ω) =

∫ ∞
−∞

ω(t− τ)e−iωτ x(τ)dτ (2)

where ω(t) is the window function. Different types of win-
dows can be used such as rectangular, Hann, or Hamming
window. However, in this work we utilize the Hamming
window as it has better attenuation lobes.

The result of this transform is a time varying spectrum
image, where one axis is the time and the other is the
frequency. This image can be interpreted as the changes of
relative energy content in the frequency over time.

2) Continuous Wavelet Transform (CWT): Although the
STFT gives a good representation of the time-frequency
characteristics of the signal, it provides a fixed resolution in
the frequency domain, which is not ideal in some situations.
For instance, the uncertainty of 10 Hz component would be
tolerable around 1000 Hz but not around 50 Hz. Contrarily,

the wavelet transform provides a variable window size that
adapts to the frequency on the expense of the time resolution.

The main idea of the wavelets is to have a base function
that has both localization and oscillation properties while
having a zero mean such that the integral over the space is
zero. So, if the wavelet was scaled in the time, the oscillation
frequency changes too. Therefore, the wavelet transform can
be given as follow:

Wψ

(
t, s
)

=

∫ ∞
−∞

1

sn
ψ

(
τ − t
s

)
x
(
t
)
dτ (3)

where x
(
t
)

is the time signal, s is the scale, and n is the
scale normalization.

In this work, we utilize the generalized Morse wavelet
[31], [32]. This wavelet can be considered as a superfamily
for all commonly used analytic wavelets. Therefore, to
overcome the burden of spending time and effort of choosing
with wavelet is better for which specific application, this
wavelet family has two main parameters that controls the
time and the frequency domains. The generalized Morse
wavelet is represented as follow:

Ψβ,γ

(
w
)

=

∞∫
−∞

ψβ,γ
(
t
)
e−iωtdt = U

(
w
)
aβ,γω

βe−βγ (4)

where ω is the frequency, β and γ are controlling parameters,
U
(
w
)

is the unit step function, and aβ,γ is a normalization
constant.

By changing the controlling parameters, β and γ, the
shape of the wavelet family is changed. The γ controls the
symmetry or skewness of the wavelet in time, or the high
frequency decay in the frequency domain, while β controls
the behavior near zero in the time domain. Note that we
have also the scale parameter that controls the compression
or dilation of the wavelet.

The application of this transform on the 1D ECG signal
yields a 2D image where one of the axes is the frequency
and the other is the time.

Figure 2 shows the intra- and inter-subject variability
of the spectro-temporal images. We randomly picked two
subjects (i.e. subject 1 and subject 2) from the MITDB
database, then the spectro-temporal images using STFT and
CWT are created for an average of 10 heartbeats. This is
done two times for each subject. Thus, a total of eight
images are created, four for each subject, where two are
the STFT of two different heartbeats, and the other two are
for the CWT of the same heartbeats. As shown in figure 2,
the intra-subject variability can be interpreted by subtracting
the STFT or CWT images of the same subject, while the
inter-subject variability can be interpreted by subtracting the
STFT or CWT of the two different subjects.

Inspired by the small intra-subject variability and high
inter-subject variability as illustrated in figure, we can utilize
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Figure 3. The architecture of the proposed CNN using the spectral image as input and the feature vector from the fully connected layer
to be compared with other subjects for identification.

these images as input to the convolutional neural network in
our ECG biometric system.

D. Individual Identification and Verification

Deep learning allows the extraction of high-level features
that discriminate the individual with high accuracy. In this
work, we utilize a 2D deep convolutional neural network
to extract those features from the spectro-temporal domain
images. The network is first trained using the STFT or CWT
images as input and the subjects’ IDs as labels.

The architecture of the proposed network is illustrated in
figure 3. The input of the network is the STFT or the CWT
image of the heartbeat. The convolution layers then allow
the extraction of the high-level features, whereas the batch
normalization layer will serve in scaling the activations in
the convolution layer to make sure that there is no activation
becomes too high or too low. A dropout layer is then added
to avoid the over-fitting of the model followed by a fully
connected layer of size equal to the number of classes to
support a final softmax layer. The sizes of each layer of the
CNN are set empirically and are shown in Table II.

Table II. The proposed CNN layers information.

Layer ID Layer Size
Input Layer 128x128

Conv 1 5x5@16
Conv 2 5x5@32

MaxPool 2x2
FC 100

Softmax Variable

The size of the ID-vectors in this architecture is 100.
This compression in representation, as we represent 200 data
points with 100 features, allows database constriction and
usage of less memory.

E. Model Validation

Model validation is an essential step to assess the ro-
bustness, generalizability, and validity of the system. In this
work, we validate the model on eight public ECG databases.
In each database, we divide the images into training and
testing sets. The training set is used to train the CNN using
both the images and the labels. Whereas in the testing set, we
subdivide it into gallery and probe sets. The gallery serves
as a reference template of the individual that is stored in the
database, while the probe is the data that is obtained from
the subject and being tested against the gallery. In this work,
the gallery and probe vectors are high-level features that
are extracted from the full connected layer of the network.
Thus, the size of each vector is 100. A distance metric is
then used to assess the similarity between the vectors (i.e.
gallery and probe vectors). Nevertheless, In order to account
for heartbeat variability, we average M heartbeats’ feature
vector and use it as gallery. To avoid any bias or over-fitting
in the validation step, the training and testing of the system
is done on the base of 5-fold cross-validation to account
for any outliers in the database. In addition, the selection of
the gallery and probe is repeated 10 times, each time the
instances in each category is picked randomly.This yields a
total of 5x10=50 result records. Therefore, the results that
we will show later is the average of those 50 iterations.

In this paper, we test the proposed approach on both
identification and verification scenarios. We use different
performance measures to assess the proposed system’s per-
formance. These measures include:

1) Identification Rate (Accuracy): the portion of correctly
identified subjects.

2) The Cumulative Match Curve (CMC): the plot of the
rank-k accuracy of the system.

3) The Receiver Operating Characteristics Curve (ROC):

4989



the plot of the false acceptance rate (FAR) in the x-
axis versus the genuine acceptance rate in the y-axis.

4) Area Under Curve (AUC): this is the area under the
ROC curve. It measures the discrimination ability of
the system and it is equal to the probability that the
system will rank a randomly chosen matching instance
higher than a randomly chosen non-matching one.

III. EXPERIMENTAL RESULTS

In this work, we tested the system on eight ECG databases
that have both normal and abnormal ECG beats (i.e. ventric-
ular flatter, left or right bundle block, atrial fibrillation, etc.)
as illustrated in table III. We utilized only 15 minutes of each
recording for both training and testing. The challenges in
these particular databases ensembles some cardiac diseases
that are hard to extract the QRS complex from and that the
normal ECG beats are distorted. Moreover, the challenge in
the PTBDB is the number of subjects. So, unlike the other
databases that have at most 50 subjects, PTBDB has 290
individuals, which is a more realistic scenario in real-world
applications.

Table III. ECG databases used to validate the proposed algorithm

Type Database Subj. # Freq. (Hz)

N
CEBSDB [33], [34] 20 5000

NSRDB [35] 18 128
Fantasia [36] 40 250

N/AbN

MITDB [37] 47 360
STDB [38] 28 360
AFDB [39] 23 250
VFDB [40] 22 250

PTBDB [41] 290 1000
N= Normal, AbN=Abnormal, Sub. #= Subjects Number,
Freq.= Sampling frequency.

The ECG signal for each subject is first resampled to 360
Hz. The R peaks were then extracted, and the heartbeats
were defined using the 200 number of sample points. After-
wards, each signal is filtered then normalized.

Each database is then divided into 80% and 20%, where
the former is used to train the model using a learning rate
of 0.002, while the latter is used to test and includes the
gallery and probe sets.

The gallery of each subject is created by averaging a
randomly selected 10 vectors from the testing set, whereas
the probe set represent another 100 randomly records (non-
overlapped). The Euclidean distance was then utilized in
measuring the distance between any two vectors, having the
closest vector as the identified subject.

In the identification scenario, the CMC curves of both
approaches are illustrated in figure 4. In both algorithms, the
VFDB scored the least average identification rate at rank-1
with a value of approximately 90%. However, it exceeded
97% in rank-2. On the other hands, all other databases’
identification rates are above 97%. While the performance

of the two approach are close, the CWT achieved higher
identification rate in the CEBSDB database with a differ-
ence of 0.8%. Therefore, both approaches provide a good
performance in the identification procedure, while having
the STFT outperformed the CWT overall the databases.
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Figure 4. The CMC curve of the proposed approach on the
validation databases using CWT and STFT images as input, where
the y axis starts at 0.88.

In the verification scenario, the average EER of the STFT
is lower than the CWT in five databases, namely MITDB,
STDB, NSRDB, AFDB, and CEBSDB, while it is equal in
the VFDB, and greater in PTBDB as shown in figure 5 (a).
While the average of the STFT and CWT EERs are 0.0267,
and 0.03859 respectively, the maximum EER achieved by
both approaches is 0.0629 at the VFDB. Therefore, the
performance of the STFT is slightly better than the CWT
in terms of EER.

The ROC curves of both approaches are illustrated in
figure 6. The performance of the databases is high in both
approaches. The VFDB showed the least performance as
mentioned before.

To gain more insight into the ROC curves, we studied
the AUC as shown in figure 5 (b). The STFT has a better
performance than the CWT in the normal databases, while
this performance varies in the abnormal databases. The
STFT achieved an average AUC of 0.993, while the CWT
achieved 0.988. This means that the STFT has a better
performance on average when compared to CWT. This can
be explained based on our previous research [5], in which
we proved that CWT sustain the discriminative ability of
the system to detect arrhythmia heartbeats. This in turn
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(a)EER

(b)AUC

Figure5.Theequalerrorrate(EER)andareaundercurve(AUC)
ofbothproposedapproachesontheeightECGdatabases.

leadstohigherintra-subjectvariability,andthereforelower
discriminativepowerinthebiometricsystem.

TableIVshowstheperformanceoftheproposedapproach
ontheeightdatabasesintermsoftheidentificationrate,
EER,andAUC.Thenormaldatabasesachievedanaverage
identificationrateof99.23%withandEERof0.041using
theSTFTwhichiscomparablewithCWTintermsofthe
accuracybutislowerintermsofERR,andhigherinterms
ofAUC.

Incontrast,theabnormaldatabasesshowedequalvalues
ofAUC,whilekeepingthehighperformanceoftheSTFT
overtheCWT.Forinstance,VFDBachievedanaverage
accuracyof90.65%inbothapproaches.Thiscomesfrom
thefactthatthesubjectsintheVFDBdatabaseencompass
sustainedventriculartachycardia,ventricularflutter,and
ventricularfibrillation,wheretheECGsignalappearsas
asinewavepatternandsuffersfromunclearQRSandT
waves.Incaseofabnormality,thedifferenceintheaverage
identificationratebetweentheSTFTandCWTishigher,
around0.5%comparedto0.2%innormalcase.Overallthe
databases,theEERfortheSTFTislowercomparedtoCWT.
TheSTFTapproachachievedatotalof97.85%overallthe
eightdatabases,whichisalsoclosetotheCWT.However,

(a)STFT

(b)CWT

Figure6.ThereceiveroperatingcurvesofbothSTFTandCWT
usingtheproposedapproachincludingthelog10scalecroppedat
107formoreillustration.

TableIV.TheperformanceoftheECGdatabasesusingthe
proposedsystem.

Database
STFT CWT

IDR EER AUC IDR EER AUC

CEBSDB 99.9420.022 0.998 98.4790.034 0.989
NSRDB 99.7780.039 0.998 99.5540.059 0.973
Fantasia 97.9920.063 0.985 99.2360.06300.980
Avg.N 99.2370.041 0.994 99.0900.060 0.981
MITDB 98.8340.004 0.986 98.0120.023 0.997
STDB 98.9780.012 0.998 98.9180.01180.995
AFDB 99.4050.012 0.999 98.2840.056 0.984
VFDB 90.5150.034 0.990 89.98640.029 0.992
PTBDB 97.4230.029 0.993 97.5290.03220.995
Avg.N/AbN 97.0310.018 0.993 96.5460.03060.993

Avg.All 97.8590.02680.993 97.5000.03860.988
N=Normal,AbN=Abnormal,Avg.=Average,IDR=Identifi-
cationRate.

itachievedloweraverageEER,andhigherAUC.
TableVshowstheperformancecomparisonwithother

approachesintheliterature.Bothoftheproposedapproaches
achievedthehighestperformancewhencomparedtothe
literaturework.Althoughvalidatingusinglessdatasetmay
increasetheperformance,theproposedapproachusing
spectro-temporalfeaturesachieved97.9%averageaccuracy
ondifferenteightdatabasesusingtheSTFTimagesas
inputtotheconvolutionalneuralnetwork.Theutilization
ofabnormalheartbeatsisanadvantagesinceitimpersonate
thereal-worldscenarioasthesubject mightsufferfrom
anycardiaccondition.Moreover,forafaircomparisonwith
Zhangetal.[17],theproposedapproachesweretrained
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Table V. Comparison of the average performance of proposed
approach with the literature work.

Authors Databases
(count) Type

Average IDR

Yue et al. [42] (3) N/AbN 85.1
Dar et al. [8] (3) N 93.2
Agrafioti et al. [9] (3) N 96.2
Tantawi et al. [14] (3) N 95.9
Zhang et al. [17] (8) N/AbN 93.5
Proposed Approach (STFT) (8) N/AbN 97.85
Proposed Approach (CWT) (8) N/AbN 97.5
N=Normal, AbN=Abnormal, IDR= Identification Rate.

using randomly selected 250 heartbeats and tested on another
250 heartbeats. The average identification rates achieved in
that scenarios are 96% and 94.72% for STFT and CWT
respectively.

IV. CONCLUSION

Electrocardiogram signals has gained the attention of the
researchers in the fields of biometrics since it offers em-
bedded liveness detection and additional information about
the subject’s health conditions. In this work, we studied
the utilization of the deep convolutional neural network and
the spectro-temporal changes of the ECG signal. The short-
time Fourier transform (STFT) as well as generalized Morse
wavelets (CWT) were studied in our proposed approach.
The models’ validation was done using different eight ECG
databases that include both normal and abnormal heartbeats.
The spectro-temporal features showed an enhancement over
other methods as we incorporate more information about
the signal. Moreover, the deep network allowed the ex-
traction of more discriminative features as the weights are
learned during the training. The two approaches showed
a close performance. However, the overall performance of
the STFT was better than the CWT since the latter has
high abnormality discriminative ability. In addition, among
the databases used in validation, the abnormal databases
that have ventricular anomalies such as VFDB have low
identification rate. This might be due to the fact that the
shape of the QRS complex is strongly affected by the
disease. The SFTF system achieved an average accuracy of
97.85% over the eight studied databases, having EER and
AUC of 0.0268 and 0.993 respectively.
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