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Abstract—Ear recognition has its advantages in identifying
non-cooperative individuals in unconstrained environments. Ear
detection is a major step within the ear recognition algorithmic
process. While conventional approaches for ear detection have
been used in the past, Faster Region-based Convolutional Neural
Network (Faster R-CNN) based detection methods have recently
achieved superior detection performance in various benchmark
studies, including those on face detection. In this work, we
propose an ear detection system that uses Faster R-CNN. The
training of the system is performed on two stages: First, an
AlexNet model is trained for classifying ear vs. non-ear segments.
Second, the unified Region Proposal Network (RPN) with the
AlexNet, that shares the convolutional features, are trained for
ear detection. The proposed system operates in real-time and
accomplishes 98% detection rate on a test set, composed of data
coming from different ear datasets. In addition, the system’s
ear detection performance is high even when the test images are
coming from un-controlled settings with a wide variety of images
in terms of image quality, illumination and ear occlusion.

I. INTRODUCTION

With the recent significant advances in technology, com-
munication and digital applications, there is a need for auto-
mated, advanced and secure human authentication approaches.
Biometrics provide such a solution to multiple security, com-
mercial and digital applications. One of the most popular
biometric modalities is face [1]. Face recognition is widely
used in controlled and uncontrolled scenarios and seems to be
one of the most attractive biometric modalities. It is natural,
accurate, passive, non-intrusive, and socially accepted. Recent
advances in face recognition deep learning based approaches
show that this technology has a future. However, regardless
of the recent progress in face recognition technology, its per-
formance degrades significantly in passive recognition settings
or with non-cooperative subjects. Non-frontal face image pose
correction or off-angle face verification may result in low
recognition rates (depending on a set of factors such as the
standoff distance used, angle, facial occlusion, aging etc.).

There are many scenarios when a subject may walk or pass
in front of a surveillance camera so that only her/his wide
angle or full profile face is available. In such conditions, ear
recognition can serve as an alternative method for personal
authentication (when the ear is not occluded and it is of
reasonable quality) [2]. Ear recognition has its advantages as a
non-intrusive and passive biometric modality. One of its main
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advantages is that it does not suffer from face recognition-
related limitations (factors that can impact recognition per-
formance) such as facial expression variation or the use of
cosmetics [3].

An automatic ear recognition system consists mainly of
three modules: An ear detector that localizes ears in images or
videos. Second, a feature descriptor that encodes the identity
information from the ear image. Third, the ear representation
module that is used to identify or verify who is the subject
that the ear belongs to. An ear detector is expected to auto-
matically and accurately localize the ear region (if there is
any) in controlled and uncontrolled image settings and within
a facial pose range. The output of such a detector provides the
bounding boxes of the ears in the image, which can then be
used for human authentication.

In this work, we propose an ear detection system that uses
a Faster Region based Convolutional Neural Network (Faster
R-CNN) architecture. We experimented this architecture using
a two phase training procedure to evaluate our proposed ear
detection system. First, we train the AlexNet CNN based
model [16] for classifying ear vs. non-ear segments. Second,
for ear detection, we train the complete Faster R-CNN de-
tection system, unified Region Proposal Network (RPN) with
the AlexNet, which has five sharable convolutional layers. The
system operates in real-time and does not relay on detecting
the front or side face to localize the ear in an image. The
system accomplishes 98% detection rate on a mixed data set.
It also accomplishes improved performance for ear detection
on a set of ear images captured under uncontrolled settings.

II. RELATED WORK

For conventional ear detection, cascaded Adaboost classi-
fiers that uses Haar basis features, widely known as Viola-
Jones [4], had demonstrated good detection performance and
had been widely used for ear detection. The Adaboost clas-
sifier combines a set of weakly effective classifiers to form a
strong classifier. The advantage of a cascaded approach is that
early stages can reject most of the irrelevant segments, creating
a faster classifier. Islam et al. [5] used it for ear detection, but
the technique was reported to be relatively slow. Abaza et
al. [6] modified the Adaboost algorithm to reduce the training
time. Their system was fast and robust for partial occlusion and
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they achieved 95% detection rate. Yuan and Mu [7] enhanced
the original cascaded Adaboost classifier to achieve high ear
detection rates when the input ears are captured under complex
background.

While conventional machine learning algorithms have been
primarily used for ear detection, deep convolutional neural
networks (CNNs), seem to be an attractive alternative solution
due to their success in solving many similar computer vision
problems. CNNs have been deployed in many computer vision
applications including but not limited to image-based object
recognition, object detection, and classification. One of the tar-
gets of interest has also been human faces and thus, since 2013
we have been seeing an increasing number of publications on
face detection and recognition. CNNs demonstrate advanced
performance when compared to conventional machine learning
approaches. They receive an input (image), and transform it
through a series of convolutional, nonlinear activation, pooling
(down-sampling), and fully connected layers, and provide an
output. A CNN architecture is in the simplest case consists
of a list of layers that transform an image volume (in our
case a biometric image) into an output volume. This volume
is holding the class (biometric identities) scores, namely the
probabilities of that biometric image belonging to each of the
individuals enrolled into the human recognition system. In
terms of object detection techniques, recent publications report
that region-based CNNs detection algorithms achieve superior
detection performance on various detection benchmark studies,
including those on face detection [12], [11], [13].

There has been also recent work on ear detection using a
deep learning based framework. Emersic et al. [14] proposed
an approach for ear segmentation in face images. Their method
applies a face detection algorithm, first, to localize the ears,
prior to ear detection. Next, it uses a convolutional encoder-
decoder network (CED), based on the SegNet, to classify the
pixels of the input image into either an ear or a non-ear class.
In that study, the authors performed their experiments using
the Annotated Web (AWE) dataset [19]. The main drawback
of that method is that it can only be used on images where
only a single face is present in the field of view.

In another related work, Zhang and Mu [15] proposed
a method involving Multiple Scale Faster R-CNN for ear
detection. In that study the authors detect three regions of
interest, namely the head (human profile), the pan-ear region,
and, finally, the ear. Their approach uses the information of the
ear spatial related context to locate the ear region accurately
and eliminate false positives. Since, the main advantage for
ear recognition is when a captured face image is not usable
for recognition, due to pose variation or occlusion factors
that cannot be corrected, using frontal/profile face localization
prior to ear detection gives away the main advantage for
ear recognition. There is a need for robust ear detection that
successfully detect the ears in profile face images (where the
part or ideally the whole ear is visible), even if part of the
face is not visible or occluded.

III. PROPOSED APPROACH

In this work we used the Faster RCNN framework [8] for
ear detection. The Faster RCNN is the third generation of
region proposal detection methods preceded by RCNN [9]
and Fast RCNN [10]. The RCNN, Regions with Convolutional
Neural Network Features, introduced in [9], had boosted the
detection performance in many applications. The approach has
three main stages:

1) Run an object proposal method, commonly selective
search, to extract the regions of the image that are likely
to have the object/s of interest in them.

2) Wrap the regions generated from stage one and run
them through a convolutional network to compute their
features.

3) Classify each region with SVM/s and optimize the
bounding box/s.

The main drawback for this method is extracting the features
for each region independently without sharing computation.

Later, Ren et al. in [10] proposed the Fast RCNN approach
for object detection which extracted the convolutional features
for the complete image instead of computing them for each
individual region. The system was faster than the RCNN and
easier to train, but still the region proposal using selective
search was a bottle neck process that consumed a lot of time.
So later, Faster RCNN was introduced to overcome that prob-
lem. It replaced the selective search for region proposal with
a Region Proposal Network (RPN) that shares convolutional
layers with state-of-the-art object detection networks, which
made the system much faster than its original version.

Thus, is summary, the first step of Faster RCNN uses a
Region Proposal Network that runs an image to propose a set
of boxes/regions that are likely to have the object of interest
detected within each of these bounding boxes.

Next, the convolutional features of these boxes/regions
are processed for object classification and regression of the
bounding boxes. The main advantage of the Faster RCNN
method is that it trains CNNs end-to-end to generate region
proposals (see example in Figure 1) and classify them into
different object categories or the background in a unified object
detection system.

What follows is a step by step algorithmic process that
demonstrates how Faster RCNN is adopted to be able to
efficiently perform ear detection:

1) An input image is processed through the convolutional
neural network, and thus, a convolutional feature map
for that image is generated.

2) This feature map is processed through a separate net-
work, called the Region Proposal Network (RPN). A
sliding window moves spatially across the feature map
and maps it to a lower dimension (256-d). For each
sliding window, a set of nine anchors is generated,
which all have the same center but with three different
aspect ratios and three different scales. Each anchor
is processed through the convolutional layers of the
RPN and the network outputs the probability that this
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Fig. 1. Faster RCNN has a region proposal network (RPN) after the last convolutional layer of the CNN that shares the convolutional features and produce
region proposals for the object to be detected. The convolutional features of these regions are processed for object classification, classify the content in the

bounding box, and a regressor to adjust the bounding box coordinates.

anchor represents an object or an object-based score
and a predicted bounding-box. If an anchor box has an
object-based score that falls above a certain threshold,
that box’s coordinates get passed forward as a region
proposal.

3) In this step, region proposals pass through a Region of
Interest (ROI) pooling layer, fully-connected layers, and,
finally, a softmax classification layer and a bounding
box regressor to obtain the most accurate coordinates
to fit the object. The output of the regressor determines
a predicted bounding box (x, y, width, height). Finally,
the output of the classifier is the probability p indicating
that the predicted box contains the object of interest.

In this work, and in order to perform ear detection in the
wild, we used the AlexNet model [16] in the Faster R-CNN
detection frame work as shown in Figure 1. A discussion on
all the experiments performed using our approach is discussed
below, in Section IV.

IV. EXPERIMENTS

An ear detector should automatically locate the ear region
(if there is any) in controlled and uncontrolled image setting,
regardless of the face pose. At the last step, the detector will
provide the bounding boxes of the ears in the image.

A. Ear Data Sets

An ensemble of images from four different face and ear data
sets was formed to overcome the limited size of the available

ear data sets. Two non-overlapping sets were formed, one for
training the proposed ear detection system and the other set
was used for testing it. The images used are from the following
data sets:

1) The University of Notre Dame (UND) databases': The
UND database consists of multiple collections for face
and ear modalities.

o Collection E contains 464 left face side profile(ear)
images from 114 subjects.

o Collection F contains 907 right face side profile(ear)
images from 286 subjects.

Please note that within the ear image collection sets,
there is a number of subjects that are wearing earrings
and also some in which hair is covering the area around
the ear (minor occlusion).

2) FERET database [17]: The FERET database was part of
the Face Recognition Technology Evaluation (FERET)
program. The database was collected in 15 sessions be-
tween August 1993 and July 1996. For some individuals,
images were collected at right and left profile (labeled
pr and pl).

3) WVU database [18]: The WVU ear database consists of
460 video sequences for about 400 different subjects and
multi-sequence for 60 subjects. Each video begins at the
left profile of a subject and terminates at the right profile.

Uhttps://sites.google.com/a/nd.edu/public-cvrl/data-sets
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Fig. 2. Sample images from the Annotated Web Ears (AWE) data set. Images
demonstrate an extended variability in terms of shape, color, pose, illumination
and partial occlusion.

TABLE I
VARIOUS DATABASES USED IN OUR STUDY.

Data set Train  Test

UND, Collection E 102 102
UND, Collection F 285 285

FERET 240 240
\A%s 118 118
AWE 679 -

Mixed Test set 1424 745

This database has subjects with eyeglasses, earrings and
partially occluded ears.

4) Annotated Web Ears (AWE) database [19]: The AWE
dataset contains images of 100 subjects. For each subject
there are 10 ear images that vary in terms of quality
and size. The AWE dataset was collected from web
images for popular figures such as actors, musicians and
politicians. Figure 2 shows a sample of ear images from
the AWE dataset.

Table I) shows the components of the data set used.

B. Setup and Training

The detection system consists of two main modules:

1) The Region Proposal Network: that proposes the regions
that are likely to be ear regions.

2) The Classifier Network: that classify the candidate re-
gions to an ear Or a non-ear category.

The training of the system was accomplished in two stages:

1) AlexNet model train: We used AlexNet Convolutional
Neural Network as the core of the Faster R-CNN ear
detection system. The AlexNet was pre-trained on about
1.2 million images from the ImageNet Dataset® to clas-
sify 1000 object categories. The model has 23 layers,
(five convolutional layers, max-pooling layers, dropout
layers, and three fully connected layers) and uses ReLU
for the nonlinearity functions. The AlexNet was trained
to classify the ear vs. non-ear regions. In this stage,

Zhttp://image-net.org/index

we manually segmented the ears from the original ear
databases used as discussed above in Section IV-A. We
used the original ear pose segment as well as synthesized
angles to generate additional ear segments. Then, we
added the bilateral mirror image of each ear segment
for a total of 1700 segments. For the non-ear segments,
we used 13,500 segments that were randomly segmented
from side view face images with various background and
face parts other than ear related image regions.

2) Faster RCNN based train: the unified Region Proposal
Network (RPN) with the AlexNet, that shares the convo-
lutional features, end to end detector was trained using
the whole train set mentioned above in Table I. Ears
in the dataset images were manually annotated. The
system was trained in an alternating process similar
to [8]. First, the RPN is trained with the ear region
candidates. Second, the detection network is trained
using the region proposals from the last step. Third, re-
training RPN using weight sharing for the network to
tune the RPN. Fourth, the fully connected layers of the
detection network are fine-tuned, utilizing the proposals
of the last step.

The network training algorithm uses Stochastic Gradient
Descent with Momentum (SGDM) with an initial learning
rate of 10°. We resized the input images based on the
ratio min(600/min(w, h),1024/max(w, h)). For the RPN,
we used the top 2,000 ear-based region candidates. For each
sliding window, a set of nine anchors is generated, which all
have the same center (z,,y,) but with three different aspect
ratios and three different scales. For each of these anchors, a
value p* is computed which indicated how much these anchors
overlap with the ground-truth bounding boxes:

1 if IoU > 0.7
p*=<—1 if IToU < 0.3
0 otherwise

where IoU is intersection over union and is defined below:

ToU = Anchor () GroundTruthBox
OV = Fnchor U GroundTruthBox

The loss function is defined as in [8]:

1
Ncls

L({p’i}v{ti}) = ZLcls(pivp;)

1 * *
Nreg Zpl Lreg (tia ti )

Here, i is the index of an anchor in a mini-batch and p; is
the predicted probability of anchor i being an ear, ¢; and ¢ are
the vectors representing the 4 parameterized coordinates of the
predicted bounding box and the ground-truth box associated
with a positive anchor. L.;; denote probability prediction loss
function and L,.., bounding-box regression loss function. N4

+A
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TABLE II
DETECTION RESULTS Precision/Recall curves for loU of 0.1, 0.3, 0.5, 0.7 & 0.9
1 : : —— :
Data set TP FP FN FAR FRR R-1% sl IES
All detections 729 159 16 21.34 2.81 97.85 '
Detections with score 0.75 712 36 33 4.8 4.4 95.57 0.8
Detections with score 0.8 707 22 38 29 5.1 94.89
Detections with score 0.85 695 14 51 1.88 6.84 93.28 0.7 | '
Detections with score 0.9 674 5 71 0.67 9.53 90.47 |
Detections with score 0.99 410 0 335 0 4496  55.03 c 06
2
D 05
o
and N,.q are the normalization parameters and A = 10 is a 0.4
balancing weight. The output of the regressor determines a uam
predicted bounding box (X, y, width, height). For bounding box ' \H loU=0.1
regression, we adopt the parameterizations of the 4 coordinates 0.2 i
. ol = 0.
following [9]: o4t b loU=0.7
kS - loU=09
bty = (@ = 20) /0ar ty = (4 — o) /ha I N N I I ———
tw = log(w/wa), tn, = log(h/hy) 0 01 02 03 04 Rz.csa” 06 07 08 09
ty = (2" —a)/Wa, t; = (Y" = ¥a)/ha
* * * *
ty, = log(w” /wa), tj, = log(h* /ha) Fig. 3. Precision/Recall curve for ToU of 0.1, 0.3, 0.5, 0.7, 0.9.

where x, y denote the two coordinates of the box center;
w width of the box and & height of the box. The variables
T, T4, and =¥ are for the predicted box, proposal box, and
ground-truth box, respectively.

C. Ear Detection

In order to detect the ears of an input image with profile
face, the original image is processed using the fully convo-
Iutional RPN to produce the strongest 2,000 region ear-based
candidates. Non-maximum suppression (NMS) is performed
on the candidate regions to discard the less confident ones
using the Intersection Over Union (IoU) that reduces the
number of candidates. Next, all the ear-based region candidates
are classified to ear or non-ear related regions. The output of
the ear detection includes the coordinates of the bounding box
of the ear regions with a score that represents the level of the
detection confidence.

D. Experimental Results

Each of the candidate regions that result from the ear detec-
tion system is labeled as: True Positive (TP), True Negative
(TN), False Positive (FP) or False Negative (FN). To analyze
the detection results, the False Accept Rate (FAR) and False
Reject Rate (FRR) results are used, where:

o False Accept Rate (FAR) is the number of regions falsely
detected (FP) over the total number of ear segments
presented in the images.

« False Reject Rate (FRR) is the number of non-detected
ear segments in the images (FN) over the total number
of the ear segments presented in the images.

We tested the detection system using 745 profile images as
mentioned in Table 1.

Figure 4 shows some examples of the true positives without
any false positives, while Figure 5 shows examples of falsely Fig. 5. Examples of false accept errors.
accepted ear images.
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Fig. 6. Examples of ear detection in an uncontrolled setting (pose variation, different acquisition devices, low resolution, illumination variations, crowded

backgrounds and occlusions).

The results are summarized in Table II where we can see
that the system works well, demonstrating a 729/745 98%
detection rate. The main drawback is that the false acceptance
rate is about 21%. By varying the threshold of detection
scores, we can balance the trade off between the FAR and
the FRR according to the application in mind. When using
a threshold of 0.99 for the detection score, the output of the
detection system has zero False positives or zero FAR but
the rate of detection decreases to 55%. On the other hand, a
threshold of 0.75 increases the detection rate to about 96%
and decreases the FAR to 5%. The table shows the trade of
between the true positive and the false positives by varying
the threshold for the detection scores.

Precision and Recall are another measures of detection
accuracy where, Precision is the fraction of True Positives
among all the detections, while Recall is the fraction of True
Positives that have been retrieved over the total amount of all
positive examples ranked above a given rank.

precision — TP
recision — TP + FP
TP
Recall = ————
= TPYFN

For a given task, the Precision/Recall curve is computed
from a method’s ranked output. By varying the Intersection-
over-Union (IoU) threshold, the larger the threshold the fewer
the detections that are considered to be true positives. Figure
3 shows the Precision/Recall curves at different values of the
IoU.

Additionally, we examined our proposed ear detection sys-
tem on a few sample images from the internet that were
captured under uncontrolled settings. These images suffer

from different levels of pose variation, and occlusion or have
multiple subjects (profile faces) within each image as shown
in Figure 6.

V. CONCLUSION

In this work we examined an object detection system that
uses a Faster RCNN detection framework and the AlexNet
classifier, adapted to work well and efficiently detect ears
under controlled and challenging conditions. For training we
used a collection of images from various databases with
uncontrolled ear images, to avoid over-fitting and to make the
system robust in the presence of noise, pose variation, and par-
tial ear occlusion. Our proposed real-time ear detection system
yields a maximum of 98% correct detection when tested on
various databases. For future work, we plan to collect a dataset
of images for real world situations in uncontrolled settings
from the internet to expand the capability of our proposed ear
detection system to work in uncontrolled environments. Also,
our plan includes the addition of an additional segmentation
step to solve the problem of generating ear bounding detection
boxes that are not tightly fitted around the ear regions. This
will be a a post processing segmentation stage designed to
distinguish between image-pixels belonging to either an ear
or a non-ear region.
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