INF-SUP STABLE FINITE ELEMENTS ON BARYCENTRIC REFINEMENTS
PRODUCING DIVERGENCE-FREE APPROXIMATIONS IN ARBITRARY
DIMENSIONS

JOHNNY GUZMAN * AND MICHAEL NEILAN ¥

Abstract. We construct several stable finite element pairs for the Stokes problem on barycentric refinements in
arbitrary dimensions. A key feature of the spaces is that the divergence maps the discrete velocity space onto the
discrete pressure space; thus, when applied to models of incompressible flows, the pairs yield divergence-free velocity
approximations. The key result is a local inf-sup stability that holds for any dimension and for any polynomial degree.
With this result, we construct global divergence-free and stable pairs in arbitrary dimension and for any polynomial
degree.

1. Introduction. In the papers [2, 25| it was shown that Py — Py_; is an inf-sup stable and
divergence-free pair on barycentric refined meshes in two and three dimensions if the polynomial size
k is sufficiently large. Here, P_1 denotes the space of piecewise polynomials of degree < (k— 1), and
P; denotes the space of globally continuous, vector-valued polynomials of degree < k. The strategy
in the analysis, as shown by Zhang [25], is Stenberg’s macro-element technique [24], where the crucial
step is a local inf-sup stability estimate on each macro tetrahedra/triangle for any k > 1. Then,
Bernardi-Raugel [4] finite elements are implicitly used to control piecewise constants to prove global
inf-sup stability. The use of the Bernardi-Raugel finite elements is the reason one needs a restriction
on k to ensure global inf-sup stability: For dimension d = 2, k¥ > 2 and for dimension d = 3, k > 3.

One of our contributions in this paper is to extend the results in [2, 25] to arbitrary space dimension
d > 2. The key step, as in [25], is to prove a local inf-sup stability result. Here, adopting the convention
in e.g., [20, 6, 16], a barycentric refinement takes a given mesh (which we call the macro mesh) and
adds the barycenter of each d-dimensional simplex of the macro mesh to the set of vertices. This is
also known as an Alfeld split [17]. We slightly generalize this construction by showing that one can use
any arbitrary point in the interior of each simplex (not just the barycenter), as long as the resulting
mesh is shape regular.

We then derive several applications of the local inf-sup stability result. First, with the help of
the Bernardi-Raugel element, we show that P}, — P;_; is inf-sup stable on the refined mesh for k& > d
(as was shown in [2, 25] for d = 2,3). For lower order approximations 1 < k < d, we use an idea
introduced in [13] and supplement the velocity space to obtain an inf-sup stable pair. To this end, we
construct vector-valued, piecewise polynomial functions with respect to the refined mesh that have
the same trace as the Bernardi-Raugel face bubbles on the skeleton of the macro mesh. The key
difference, compared to the Bernardi-Raugel face bubbles, is that the divergence of these functions
are piecewise constant. The existence of such finite element functions, which we call modified face
bubbles, is guaranteed by the local inf-sup stability result. Thus, we supplement P} (for 1 < k < d)
locally with these modified face bubbles to get an inf-sup stable pair on the refined mesh.

We also consider finite elements on the (unrefined) macro mesh. We show that P{—P can be made
stable by supplementing the velocity space P{ with the modified face bubbles. Since the divergence
of the modified face bubbles are piecewise constant, and thus contained in the pressure space, these
finite element will produce divergence-free approximations for the Stokes and NSE problems. These
finite elements are developed in arbitrary dimension. The two-dimensional case seems to coincide with
a pair of finite elements considered in [7].

A final application is inspired by a finite element introduced in [1]. There, an inf-sup stable and
divergence-free macro element pair is constructed in two dimensions with a piecewise linear, continuous
pressure space. Again, with the help of the modified face bubbles, we extend these results to arbitrary
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dimension d > 3.

Advantages of divergence-free pairs for the Stokes/NSE problems include, e.g., better stability
and error estimates, and the enforcement of several conservation laws and invariant properties. We
refer the reader to the survey article [15] which highlights the benefits of divergence-free pairs. In
addition to the above references, several other inf-sup stable pair of spaces that produce divergence-
free approximations have been constructed. These include high-order finite elements (k > 2d) in two
and three dimensions [22, 10, 18, 26], as well as lower order pairs supplemented with rational functions
[12, 13]. Advantages of the proposed elements given here are its relative simplicity and flexibility with
respect to dimension and polynomial degree. The shape functions are piecewise polynomials and
therefore quadrature rules are immediately available. We mention that the degrees of freedom of our
lowest-order element agree with those given in [7], where divergence-free Stokes elements with respect
to Powell-Sabin partitions are considered (e.g., in three dimensions, every tetrahedron is split into
12 sub-elements). However, our elements are defined on a less stringent barycenter partition, which
makes the implementation simpler.

The paper is organized as follows. In the next section we introduce some notation used throughout
the paper. Then, in Section 3 a local inf-sup stability result is proved. In Section 4 the Bernardi-
Raguel face bubble functions and its modification are introduced. Then in Section 5 a low-order,
divergence-free, and inf-sup stable pair on the macro mesh is constructed. In Section 6, inf-sup
stable and divergence-free finite elements are given on the refined mesh. In Section 7, we discuss
implementation aspects of the methods and provide some numerical experiments. Finally, in Section
8 we summarize our results and discuss future directions.

2. Notation and Preliminaries. We consider a family {7} of shape regular conforming sim-
plicial triangulations of a polytope domain Q C R%. For each K € T, let xx € K be an interior point,
and consider the refined triangulation to T}, that subdivides each simplex K into (d + 1) simplices by
adjoining the vertices of K with the new vertex xx. The resulting refined triangulation is denoted by

. We assume that the points {xx } ke, are chosen so that the family {J7}} is also shape regular. If
Tk is the barycenter of K, which is the most practical choice, then 77, is the barycentric refinement
of Tp. For any simplex K we let Px(K) be the space of polynomials of degree at most k defined on
K. In the case that k is negative, Py (K) is taken to be the trivial set. The vector-valued polynomials
on a simplex are given by Py (K) = [Pr(K)]?. We define

P(8): = {v e HLQ) : v|gx € Pi(K), VK € S},
Pe(8): ={qge LE(Q): ¢k € Pu(K), VK € 8},

with either § = T3 or 8§ = TJ7.
We denote by K" the triangulation of K:

Kr={Te7,:TCK},
and will use the notation

PUKT) 1 ={ve HYK): vlr € Py(T), VT € K"}, (2.1)
Po(K"):={qe L3(K): q|lr € P(T), VT € K"}. (2.2)

3. Local inf-sup stability. In this section we will prove that ?;(KT) — Pp_1(K") is inf-sup
stable for each K € T,. The result can be stated as follows. .

THEOREM 3.1. Let k> 1. For any K € T;, and for any p € Py_1(K"), there exists v € P (K")
such that

divv=p onkK, (3.1)
2



Fic. 3.1. Figure of macro triangle

with the bound

vl (xy < Cllpll L2 (x0) (3.2)

where the constant C' > 0 only depends on k and the shape reqularity of K", but is independent of K
and p.

The proof of Theorem 3.1 requires some notation and a few preliminary results. For K € Ty,
denote by S = {z1,...,z4y1} the set of vertices of K, and let 9 = k. Then the refinement of K is
given by K" = {K;}1<i<d+1, where K; is the simplex with vertices {zo} U S\{z;}.

We let F; be the (d — 1) dimensional face of K opposite to z;, and let n; be the unit normal to
F; pointing out of K; see Figure 3.1. We let Ao € P{(K") be the continuous, piecewise linear function
satisfying Ao(x;) = doj for 0 < j < d+1. We note that A vanishes on K. We let hx be the diameter
of K, and let px be the diameter of the largest ball inscribed in K. The shape regularity constant of
K is defined by

PK.

Ck

Analogously we let Ck, be the shape regularity constant of K; (for i = 1,2,...,d + 1), and let
Cx = maxi<i<a+1 Ck,; denote the shape regularity constant of K. We see that Cx is comparable to
Ck provided zg is sufficiently far from 0K. A simple calculation shows that

1
Volk, = T (3.3)

where h; is the distance of xg to the (d — 1) dimensional hyperplane that contains F;. We note that
hi<hg, hxg <Ch; forl<i<d+1, (3.4)

where C' > 0 depends only on Cg.
We introduce the local Nédélec space of index £ > 0 (see [19, 3]):

Ny(K) =P 1(K)+{w e Py(K): w-x =0}
3



Note that N_;(K) = No(K) = {0}. We then define for £ > 0

Pr(K) = {UET[(K):/ v-kdr =0, forall Kk € Ny_1(K)}.
K

Note that Py (K) = Po(K) and Py (K) = P1(K).

Using the degrees of freedom due to Nédélec we have the following lemma; see [19, 3] for £ > 1
and (8] for the case £ = 0.

LEMMA 3.2. v € P (K) is uniquely determined by

/(U"ni)li VKZECP@(FL'), 1<i<d+1, ¢>1,
F;
/ (’U"ni)li VKZECP@(FL'), 1<i<d, {=0.
F;

In addition, the following bounds hold

d+1

1 1
vl + V0l <C[7= Y o millfa, | €21, (3.5)
K K3
d
lol2 a0y <C Ak Y 0 millfagey ). €=0, (3.6)
i=1
where the constant C' > 0 depends on Ck and £.
We consider the space
oc k .
Mi(K") :={v € Py(K") :v =Y Mwi_j, with wy_; € Pi;(K)}.
j=1

We can now prove Theorem 3.1. In fact, we prove a slightly stronger result.
THEOREM 3.3. Let k > 1. For any K € T}, and for any p € Prp_1(K"), there exists a unique
v € My(K") such that

divv=p onk, (3.7)
with the bound
vl gy < CllpllLzxys (3.8)

where the constant C' > 0 only depends on k and the shape reqularity of K", but is independent of K
and p.

Proof. Let p € Pr_1(K"). For simplicity of notation we let A\ = X\g. We take v € My (K") of the
form v = Z?Zl Nwy,_; with wy_; € fPé;j(K).

Step 1: We first show that there exists unique wy_1,...,w; and unique py € Po(K") such that

k—1
Z div (Mwy_;) = p—\"pg, (3.9)
j=1

1
h_2||'wk*j||2L2(K) + ”v'wk*j”2L2(K) + ||P0||%2(K) < CHPH%Q(K)'
K

Note that the case k = 1 follows by setting pg = —p; thus, we assume that k£ > 2 in this step. We
show (3.9) by induction.



We let pr—1 = p and we suppose that there exists unique wg_1,..., Wr—¢+1 and pg—1,...,Px—¢
with pi_; € Pr_;(K") satisfying

div (N wy,—j) = N " pr— =N pe_ 1), (3.10)

for 1 < j < /-1, and with the bounds

1
Ellwk—ﬂlw(x) + IVwi—jllmx) S Cllpllezxy  and  Ipe—girnllezxy < Clipllezx)- (3.11)

Using Lemma 3.2 we define wy,_, € P_,(K) satisfying

4
7 (Wi—¢-my)kds = / pi—e ke forall k € Pr_o(F;), 1<i<d+1, (3.12)

and the bound

1 h2 d+1
hTH’“’kJH%?(K) + [ Vwg e[| 72(5) < Ch;@ Z kel 2y < C llor—ell72 () < ClplZ250)- (3:13)
K i=1
Here we used an inverse estimate and (3.11).
From (3.12) and (3.3) we get
) _
bwi—¢- VA, = ——wk—¢ Ni|F, =pr—elr, 1<i<d+1,

h;

and therefore
lwg_g - VN =pr_g¢ + Arp_(o41)

for a unique r_(p41) € Pr—(e41)(K"). Moreover, by (3.3), (3.4), and (3.13), there holds

I7k—erllzz )y < ClAR—(e11)llL2(x) < %”wk—ZHLQ(K) + lpk—ellzy < Cllpllzzx).  (3.14)
Finally, by setting py—(s41) := —(Tk—(e41) + divwg_¢), we have
div (N wg—¢) = AT wg_p - VA+ Ndivwe—e = X pr_e—Npr_(e41)-
From (3.13) and (3.14) we get

lPk—(e+ )l 22 () < Cllpllz2(x)-

The same arguments show that (3.10) holds for the base case £ = 2. Thus, by induction we have
(3.10) and (3.11) for 1 < j < k — 1. Hence, statement (3.9) holds by summing (3.10) over j. Also, as
a consequence of fK pdx = 0 we have fK Me=lpe = 0.

Step 2: Applying Lemma 3.2 we choose wgy € Po(K) satisfying

k
—h—/ wy - n; = / po forall kK € Pr_o(F;), 1<i<d, (3.15)
i JFy i
with
1 h &
@HU’O”QLQ(K) < Cm > pollza(my < Clipoll7ecxy < CllpllZe(x)- (3.16)
i=1
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Hence, £V - wy

r, = pol|r, for 1 <i <d, and so we have
div (MNw) = kAN - wg = Nlpy  on K\Kgp1.

Moreover,

/ Ne=L(RV - wp — po)d = / (div (\ag) — Ao—Lpg)da = / (div (Maw) — AF~Lpo)de = 0.
Kgi1 Kai1 K

Hence, since A > 0 in the interior of K we have kV\-wo = po on K441 and thus div (A wg) = A~ 1pg
on Kgi1. Therefore, div (\*wg) = A*~1pg on K. We conclude that (3.7) holds. For the bound (3.8),
we use (3.3) and get

k k
) 1

||V”||i2(1<) =C E HV(/\ka—j)H%%K) <C E (_hz ||wk—j||2L?(K) + ||Vwk—j||2L2(K))
j=1 "K

j=1
The bound (3.8) now follows if we use (3.11) and (3.16). O

4. The Bernardi-Raugel bubble and its modification. In this section we recall the
Bernardi-Raugel face bubbles (cf. [4]) and summarize their stability properties. Then, using Theorem
3.1, we propose a modification of these bubble functions such that the resulting vector fields have
constant divergence.

Recall, that for a simplex K € T, the vertices are denoted by {z1,zo,...,z41}, and that F;
is the (d — 1)-dimensional face of K opposite to z; with outward unit normal n;. We denote by
{141, p2s - - -, ptat1} C P1(K) the barycentric coordinates of K, i.e., p;(z;) = d;;. We define scalar face
bubbles as

d+1
Bi:= [ u, fori<i<d+1.
j=1

ji
The Bernardi-Raugel face bubbles are given as

We note that b; € Py(K).
We define the local Bernardi-Raugel bubble space as follows:

VBR(K) .= span{by,...,bgi1} + P1(K).
The corresponding global space is given by
ViBR .= {v € H}(Q) : v|x € VBR(K), for all K € T},}.

The following result is well known; see [4].
PROPOSITION 4.1. For any p € Po(Ty), there exists a v € V,BR so that

/divv:/p for all K € Ty,
K K

with the bound

[0l @) < ClipllLzo)-



In the next result, we modify the function b; so that the resulting vector-valued function has
constant divergence.
PROPOSITION 4.2. There exists 3; € Py(K") such that

Bilox = bilar, divB; € Po(K), (4.2)

with the bound

1Bill 1 (rey < Cllbillm(x¢)-
Proof. Set

1 o o
g; = divb; — —/ divb; € ‘.Pdfl(K) (@ ‘.Pdfl(KT).
K|

By Theorem 3.3, there exists a unique w; € My(K") such that
divw; =¢9; on K, H’lUi”Hl(K) < C”giHLz(K)' (4.3)

The function B; := b; — w; then satisfies (4.2) since B;|sx = bi|lax and div3; = divd; — divw; =
|K|~* [, divb;. The stability estimate follows from (4.3) and the bound [|g;||L2(x) < C|bi || m1 (k). O

We let {B1,82,...,84+1} C Pg(K") be functions from Proposition 4.2. We call these functions
the modified face bubbles. We define the local finite element space of these functions as follows:

VMB(K) :=span{Bi,...,Bas1} + P1(K).

LEMMA 4.3. A function v € VMB(K) is uniquely determined by

/'u-ni for1<i<d+1, (4.4)
F;

v(x;) for all vertices x; of K. (4.5)

Proof. Let v € VMB(K), and write v = w—&—zgill a;3; for some a; € R and w € P1(K). Suppose
that v vanishes on the degrees of freedom (4.4) and (4.5). Then, since B; vanish on the vertices, w
vanishes on the vertices of K and hence w = 0. Moreover, Bi|ox\r, = bilox\r, = 0, we have

O:/'v-m:ai/ bznlzaz/ Bi.

i 7 i

Since B; > 0 on F;, we conclude that a; = 0 and v = 0. The dimension of VMB(K) is clearly 2(d+1),
and therefore we conclude that (4.4) and (4.5) uniquely determines a function in VMB. [0

5. A low order inf-sup stable pair on J,. With the modified face bubble spaces, we now
provide several inf-sup stable and divergence-free pairs applicable to incompressible flows. First, let
us recall the definitions of an inf-sup stable pair and a divergence-free pair.

DEFINITION 5.1. A pair of spaces Vi, — My, with Vi, C H}(Q) and My, C L3(Q) is inf-sup stable
if there exists a constant v > 0, independent of h, such that

) Joadivo
0<~v< inf S .
0#£4€Mn 0£vev;, [V m @ 1Pl 22(0)

The pair is said to be a divergence-free pair if div V}, C Mjy,.
7



In this section, we give an example of a pair defined on the macro mesh T} satisfying the two
conditions in Definition 5.1. To this end, we define the global space:

VMB .— (v € H}(Q) : v|x € VMB(K), forall K € T}

Lemma 4.3 shows that the degrees of freedom for v € VhMB are

/ v-n for all interior (d — 1)-dimensional faces F' of T}, (5.1)
F
v(x) for all interior vertices = of Tp,. (5.2)

THEOREM 5.2. It holds, divV,MB C 5’0(‘J'h). Moreover, for any p € j’g(ﬂ“h) there exists a
v € VMB 50 that

divo =p in €, (5.3)
with the bound
vl < ClipllLz(@)-
Proof. First, by 0(4.2) we see that div V;MB C Po (Th)-
For a fixed p € Py(T), there exists w € H}(Q) such that (see for example [9]).
divw=p inQ,
with the bound
|wllzr ) < Cllpllzz)-

Let I:%w be the Scott-Zhang interpolant into fPi(‘Th) C V;MB [23]. We then define w; € V;MB by

/ wy N = / (w—I7%w)-n for all interior (d — 1)-dimensional faces F of T.
F F
wi(z) =0 for all interior vertices = of Tp,.

We set v =w; + I,:?Zw € VhMB. A simple scaling argument gives
1
IVw: || g1 xy < C(Eﬂw — I7%w|| 250y + | V(w — I} w)|| p2(x)) for all K € Ty

Hence,
vl o) < lwillm ) + 152w @) < Cllwllm @) < Cllpllrze).-

Moreover, an application of the divergence theorem shows

/divv:/divw:/pforallKe‘J'h,.
K K K

Since divv,p € Po(Ty), this proves (5.3). O

REMARK 5.3. The two-dimensional case of Theorem 5.2 although not written in this exact form,
has appeared in [7].

REMARK 5.4. The degrees of freedom of VhMB are the same as the Bernardi-Raugel finite element
space [4]; see Figure 5.1.



Fic. 5.1. Degrees of freedom for the velocity space in Lemma 4.3 in two dimensions (left) and three dimensions

(right). Solid circles indicate function evaluation and arrows indicate normal component evaluation.

6. Inf-sup stable pair of spaces on 7. In this section, we apply Theorem 5.2 to construct
divergence-free and inf-sup stable pairs on the refined mesh 7;. To do so, we will use the following

result repeatedly.

PROPOSITION 6.1. Let k > 1, and suppose that Vi, C H}(Q) satisfies (PZ(‘J'Z) CV, and Vi, —

iﬁo(ﬂ'h) is inf-sup stable. Then Vj, — 303;9,1(9'};) 18 inf-sup stable.
Proof. Let g € Px_1(T7), and define g to be its L2-projection onto Po(T4), i.e.,

1
(ﬂK:—/ qdzx VK € Tp.
(Kl Jx

By Theorem 3.1 there exists w € fPZ (Th) C Vi, so that

divw=¢g—¢q on{,

[wll @) < Clla =l @)-

Hence,

la - 20 :/Q(q_g)(q_q):/gq(q_@:/quivw.

Applying (6.1), we find
Jo adivw oadivo

~(12
q—q = |l WllgrQ
g = dllz2 () = lwlla el

< Cllg— a2 | Sup

and therefore,

divw
lg —dllz2) < C sup qu—
o#vevi |11 (Q)

By the hypothesis, there is a constant v9 > 0 such that

- Jo, gdivo Jo gdivo -
Yoll@llzz) < sup S < S 4 lg— qllz2(0)-
ozvevi, 1Vllm @) ~ ogvevs, IVl (o)
Hence, using the last two inequalities we get
1 1 Joadivo

lallz2) < (g — dllzz@) + a2 @) < (C(% +1)+ —) sup

Y0 0#£vEV;, m

This proves the result. O

©

zovev, |[v|lH1 Q)]



6.1. Higher-order Elements with discontinuous pressures. Using Proposition 6.1, we now
show that the pair (P;(‘J'}TL) - fi)k,l(ﬂ'g) for k > d is inf-sup stable.

COROLLARY 6.2. The pair ?Z(T}L) — j’k,l(ﬂ'g) with k > d is a divergence-free, inf-sup stable
pair.

Proof. Since V;BR C Tz (T7) for k > d and V;BR — Po(Ty) is inf-sup stable (cf. Proposition 4.1),
the corollary follows by applying Proposition 6.1. O

In order to establish that (P;(‘J',TL) - j’Jk,l(‘TZ) is inf-sup stable we used that V;BR — Po(Tp) is
inf-sup stable; in other words, the inclusion V;BR C fPZ(‘J’h) implies that ?Z(‘J’h) — Po(Tp) is inf-sup
stable. An interesting fact is that the converse is true.

THEOREM 6.3. The pair ?;(‘T};) - ﬁ’k_l(‘T}”L) is inf-sup stable if and only if T;(Th) — Po(Tp) is
inf-sup stable.

Proof. Assume ?Z(‘Th) — Po(Tp) is inf-sup stable. Then by the inclusion ?Z(‘J’h) C ?;(‘T};), the
pair IP;(‘J'};) — Po(Tp) is inf-sup stable. Thus, IPZ (Th) — Pr_1(T7) is inf-sup stable by Proposition 6.1.

Now suppose that ?;(TZ) - fj’k_l(‘T};) is inf-sup stable. Let ¢ € Po(T5). Due to the inclusion
Po(Th) C fi)k_l(‘f{b), there exist v > 0 such that

divv
ey < sup 12280
0£vePL(TT) [0l (@)

Let Ip, : [C(Q))? — fPZ (Tr) be the canonical (nodal) interpolant. We then have
(Inv —v)lpxg =0 forall K € T, forall v € ?;(T}Tl) (6.2)
Moreover,
Lol gy < Clollm) for all v € Py (Th). (6.3)

By (6.2) and the divergence theorem we get that
/ gdive = / gdivIv forallve T;(T}I)
Q Q

Hence, by (6.3),

Jo adiv Iyv Jo adiv Iv Jo adivw

Mallzy < sup =< C™'  sup [ 7T <Cc™t  sup  E——.
0£vEPL (TT) H”||H1(SZ) 0£veP; (TT) [ h'UHHl(Q) 0£wePS (Th) Hw”Hl(Q)

Therefore, (i’;;(‘fh) - fi)o(‘J'h) is inf-sup stable. O

6.2. Low-order elements with discontinuous pressures. For k < d, we can always augment
sz(‘J'Z) with V;F’R and it will lead to an inf-sup stable pair. However, the resulting pair will not be a
divergence-free pair. Therefore, we instead supplement fPZ(‘.T;L) with VhMB.

COROLLARY 6.4. Let 1 < k < d. The pair fpz (Tr)+V,MB —jsk,l(‘f};) is a divergence-free, inf-sup
stable pair.

Proof. The result follows from Proposition 6.1 and Lemma 5.2. O

REMARK 6.5. [t follows from Proposition 4.2 and Lemma 4.3 that the degrees of freedom for
?;(‘J’;) + VMB (k< d) are the canonical degrees of freedom of 3’2(‘3’};) plus the degrees of freedom
(5.1); see Figure 6.1.
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Fic. 6.1.  Degrees of freedom for the lowest order velocity space in Corollary 6.4 in two dimensions (left) and
three dimensions (right). Solid circles indicate function evaluation and arrows indicate normal component evaluation.

6.3. Low-order Stokes pairs with continuous pressure. In this section we, in some sense,
generalize the inf-sup stable pair of spaces found in [1] to higher dimensions. In the paper [1], the
pressure space is the space of continuous, piecewise linear polynomials with respect to the refined
triangulation:

W = P(T5) N HY(Q).
Their velocity space is given by fP; (T7) N H(div;Q), where
H(div;8) := {v e H*(S) : divv € H'(S)}.

It is shown in [1] that this pair of spaces is inf-sup stable in two dimensions. It is clearly a divergence-
free pair.

To generalize these results to higher dimensions it seems necessary to supplement the velocity
space with the modified face bubbles given in Proposition 4.2. The following result defines the local
space and a unisolvent set of degrees of freedom.

THEOREM 6.6. Define, for d > 3,

Vr(K) := Po(K") N H'(div; K) @ span{3; } {1}

Then a function v € Vg(K) is uniquely determined by the values

v(x;), divo(x;) for all vertices x; of K, (6.4a)

/ v, for all one-dimensional edges e;, (6.4b)

/ v - Ny, for all (d — 1)-dimensional faces F;. (6.4c)
F;

Before we prove this result, we note that in the case d = 2 (which is not considered in this Theorem),
the degrees of freedom (6.4b) would contain the degrees of freedom (6.4c). Therefore, in the case
d = 2, one simply has to eliminate the functions that give rise to (6.4c), which are 31, 32, B3; see [1]

for details.
Proof of Theorem 6.6., The constraint v € H*(div; K) for v € P5(K") represents (d+1)? —(d+2)
equations. Therefore

dim V(K) > dimP(K") — ((d+1)*> — (d+2)) + (d+ 1)
= %(d+ 1)(d? 4 2d + 4).

On the other hand, the number of degrees of freedom given is

d(d+1)+(d+1)+d—;(d+1)+(d+1): %(d+1)(d2+2d+4).
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Now suppose that v € Vr(K) vanishes on the degrees of freedom (6.4), and write v = vg+s, where
vy € PS(K") and s = Zfill ¢iB; for some ¢; € R. Then, since s|F, = b; on each (d — 1)-dimensional
face, we conclude that

Uo(ﬁi) = 0, / Vo = 0
e

21

for all vertices x; and edges e; of K. These conditions imply that vg = 0 on 0K. Therefore we have

O:/’U'TLZ':/S"I’?,Z‘:CZ'/ bln7

Since b; -m; > 0 on F};, we obtain that ¢; = 0, and so s =0 and v = vy € P5(K"). Moreover, because
div v restricted to a (d — 1)-dimensional face is a linear polynomial, we conclude from the condition
divwv(z;) = 0 that div v vanishes on 0K as well.

Since v vanishes on 0K we can write v = A\gp (see Section 3 for definition of \g) for some
p € P{(K"). We then find that

O0=divv=VXg-p+Adivp=V)Ay-p on IK.

The gradient of \g restricted to K; is parallel to the outward unit normal of the face 0K; NOK, and so
we conclude that p-n = 0 on K. This implies, since p is continuous, that p vanishes at the vertices
of K. But since p is piecewise linear, we obtain that p|sx = 0, and so v = e)\2 for some ¢ € R%
However, it is easy to see that divv = 2\gc- Vg is only continuous if ¢ = 0. Thus, v = 0, and so the
degrees of freedom are unisolvent on Vg(K). O

REMARK 6.7. Note that div 3; € Po(K) C P1(K") N HY(K). Therefore Vr(K) C H'(div; K).

REMARK 6.8. If v € VR(K") vanishes at the degrees of freedom restricted to one face, then we
can argue as in the proof of Theorem 6.6 that v =0 and divv = 0 on that face. Thus, the degrees of
freedom induce an H*'(div ; Q)-conforming finite element space.

The local spaces and degrees of freedom lead to the global finite element space:

ViE={ve H}(Q)NHY(div;Q): v|x € Vr(K) VK € Tp,}.
THEOREM 6.9. The pair VhR — W,ﬁ is inf-sup stable.

Proof. Let ¢ € WF and let w € H}(Q) satisfy divaw = ¢ and |w| 1) < Cllgllz2(0)- We then
define v € VhR such that

v(z) = ID?w(z), divo(z) = q(z), for all vertices x,

/ v = / I}%w for all one-dimensional edges e,

/ v-n= / w-n for all (d — 1)-dimensional faces F,
F F

where I;)?w is the Scott-Zhang interpolant of w [23]. We then have divv(z) = g(z) at all vertices

and
/divv:/divw:/q.
K K K

Since ¢, divv|g € P{(K"), we conclude that dive = ¢. Uniform inf-sup stability then comes from a
standard scaling argument. O

12



6.3.1. Reduced velocity space of VhR. In this section, we give a basis for the local space
Po(K™)N H(div; K), and as a byproduct, construct reduced spaces of V;f*. To this end, recall that,
for a simplex K € Tp, \; € P{(K") satisfy \;j(z;) = d;;. For each i € {1,...,d + 1} we set

’lpi = Cz')\,?,
where the constant ¢; € R? is chosen so that
2Ci'V)\i‘Kj =lforalll1<j<d+1,j#i.

This is possible since V|, for 1 < j < d+ 1,5 # i are linearly independent. We then see that
divap; = )i, and so 9; € Po(K") N H!(div; K). We note from the proof of Theorem 6.6 that

dim Py (K") N H(div; K) = dim Py (K) +d + 1.
From this dimension count, we conclude that
Po(K™) N H(div; K) = Po(K) + span{tp1, 2, ..., Pa1}-

Next, using this construction, we reduce the dimension of VhR while still getting an inf-sup stable
pair. Recall from Section 4 that {u; ;iill are the barycentric coordinates of K. By the labeling
convention, we then see that p; = A\; on 0K for all 1 <i < d+ 1. We then define

0; = %Ci()\? — 17,
and choose ¢; so that
ci-V(Ni—p)lg;, =1forall 1 <j<d+1,5#i.
We then have
divl; = (\; — wi)e; - Vi + A

In particular, there holds div 8;|sx = X;, and since (¢; - V;) is constant on K, div €; is continuous.
Thus, these functions have the following properties:

0; cH'(div; K) N H}(K),
div Bz(x]) :52]

We then define the space V°(K) = span{0y,60,...,04,1}. We see that this space is a space of
bubbles (i.e. vanish on JK), and that the degrees of freedom of V¥(K) + VMB(K) are given by

/F v-n for all (d — 1)-dimensional faces F; of K,
v(x7i), dive(z;) for all vertices x; of K.
We can then define
Vi, = {v € H'(div;Q) N HY(Q) : v|x € VI(K) + VMB(K), for all K € T},
and the degrees of freedom of this space are
/F v-n for all interior (d — 1)-dimensional faces F of T},

divo(xz) for all vertices x of Ty,

v(x) for all interior vertices = of Tp,.

13



These degrees of freedom give us the following result. Its proof is identical to the proof of Theorem
6.9 and is therefore omitted.
LEMMA 6.10. It holds, divV};, C W,f. Moreover, for any p € W,f2 there exists a v €V}, so that

divv =p on €, (6.5)
with the bound

vl 21 @) < CllpllLz)-

Finally, it is clear that the above space is indeed a subspace VhR. However, the velocity approxi-
mation will converge with one order less.

7. Implementation Aspects and Numerical Experiments. In this section we discuss some
implementation aspects of the proposed methods, in particular, how to compute the modified face
bubbles {8;}94] stated in Proposition 4.2 (see (4.2)). In the construction we have 3; = b; —w; where

w; € fi’Z(KT) satisfies (4.3), and b; € P4(K) is the Bernardi-Raugel face bubble defined by (4.1).
Therefore the computation of 3; reduces to the computation of w;.

Let K C R? be the reference element, and for K € T, let G : K — K be an affine mapping with
G(&) = At +b, A € R%9 and b € R Note that G(K;) = K;. For an index i € {1,2,...,d + 1}, we
set 8; = A71n;, where we recall that m; is the outward unit normal of the face F; = 0K NOK;. Let
B; € Td(K) denote the scalar face bubble associated with F; C 9K .

We specify w; € fPZ(K'T) such that

—— R 1 R
diVIiJi = 8; - VBZ - T/ S; - VBl (71)
K| /&
Theorem 3.1 guarantees the existence of such a w;. We then set w; € fP;(KT) such that

An application of the chain rule shows that divw;(z) = a;u%(fc) The same calculation also shows
that

divb;(z) = div (A 'n; B;) (&) = div (s;B;)(&) = s; - VB4 ().
Thus, we have

div wz(x) = div 12}1(.%) = 8; - @Bz — —= . S; - VBl

and therefore w; satisfies (4.3). To summarize, the computation of 3; consists of (i) constructing w;
satisfying (7.1) (with s; = A~'n;); (ii) setting B;(z) = B;(Z)n; — Aw;(#). Closed-form formulas for
the function w; in terms of a vector s; can easily be obtained by symbolic mathematical software and
hard-coded into a finite element subroutine. We provide the explicit formulas for w; in two dimension
in Figure 7.1.

We perform some numerical experiments for the Stokes problem in three dimensions:

—vAu+Vp=f in Q,
divu =0 in Q,
u=0 on 092,
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. 1: . A . A . . A .
w1|k1 = —E)\o (81(31‘1 + 622 — 2) + 82(6.T1 + 1225 — 6), 81(6121 — 622 — 2) =+ 82(151‘1 — 622 — 6)),
. 1z . . . . . .
Wik, = _E)\O (31 (621 + 3%2 — 2) + s2(6%1 + 1282 — 6), —281 + $2(6&1 + 332 — 6)),
N 1 . . . . . . . .
wilg, = —1gho (31(9x1 4 9%y — 5) + 52681 + 1285 — 6), —51 (631 + 1282 — 4) — s2(381 + 1582 — 3)).
. 1 . . N . . .
walg, = —1—8/\0 ((3x1 + 632 — 6)s1 — 282, (3%1 + 6Z2 — 2)s2 + (1281 + 622 — 6)31),
. 1. . N N N . . . .
w2|f(2 = —1—8)\0( — (6$1 — 622 + 2)82 — (6$1 — 1522 + 6)817 (6:121 + 322 — 2)82 4+ (121’1 + 622 — 6)51),

. 1< R N R R . R N N
w2|f(3 = —1—8)\0( — (12$1 + 622 — 4)82 — (15$1 + 3%2 — 3)81, (9&21 + 920 — 5)82 + (12:1,‘1 + 622 — 6)81).

N 1< R R N . N N

'w3|f<1 = —1—8)\0( — (3$1 + 622 — 2)81 + 2s9, —(3.T1 + 6o — 2)82 — (6:31 — 622 — 2)81),

. 1< . R . . . .

'w3|f<2 = —1—8)\0( — (—6$1 + 6Zo — 2)82 — (693’1 + 322 — 2)81, —(6.T1 + 3Z2 — 2)82 + 281),

N 1s . . . N . . N .
w3k, = —1—8)\0( — (—12%1 — 622 +4)s2 — (921 + 922 — 5)s1, (—9%1 — 9%2 + 5)s2 + (621 + 1232 — 4)31).

Fic. 7.1. The unique w; € ?g(i{r) in two dimensions satisfying (7.1). Here, the labeling is chosen such that
B = (1— &1 — &2)@2, By = (1= &1 — &2)&1, and Bs = #122. The modified bubble functions in Proposition 4.2 are
given by Bi(x) = Bi(2)n,; — Aw; (&) with s; = A~ n,.

where f € L?(Q) is a given source function, and v > 0 is the viscosity. The finite element method
seeks (up,pn) € Vi, X My, such that

/VVuh:V'vf/(divv)ph:/f-v Yv € Vp,
Q Q Q
/(divuh) =0 Vg € Mp,.
Q

We perform two sets of numerical experiments. In the first set, we take V;, x M) to be the
Bernardi-Raugel pair, i.e., Vj, = V;BR and M), = Py(T}). In the second set, the pair is taken to be
the modified Bernardi-Raugel pair defined in Section 5, i.e., V;, = VhMB and M, = j’?o (Th). We note
that the degrees of freedom of these two pairs are the same, and thus their global dimensions coincide
as well.

In the first case, with V}, = VPR, the velocity error satisfies [4, 5]

[ = wnll ) < Ch(lulmz) + v plm o), (72)

where the constant C' > 0 depends on €2, the shape-regularity of T, and the inf-sup constant v > 0
stated in Definition 5.1. On the other hand, the second case V}, = VhMB satisfies divV;, C My, and
therefore the velocity error has the upper bound [15]
||’U17'U/h||]II(Q) < C inf ||'U/7'U||][1(Q) <C iI}f H'Uz*'UH]]I(Q) < Ch|u|112(9). (7.3)
vEVh veP(Th
We emphasize that the velocity error of the divergence-free pair is decoupled from the pressure and
is robust respect to the viscosity. In both cases, the pressure error satisfies

P = prllL2) < C(hlpluro) + vilu — sl g (@)
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In the numerical experiments, the domain is taken to be the unit cube Q = (0,1)3, the viscosity
is v = 107°, and the source function f is taken such that the exact solution is given by

u = curl (¢, ¥, ), p=x—y, =221 —x1)%23(1 — z2)%z3(1 — 23)%

We plot the resulting errors against the number of degrees of freedom (DOFs) of the two sets
of experiments in Figures 7.2 and 7.3 (note h =~ DOFs~1/3). The plots show the expected rates
of convergence ||u — up|| 1) = O(DOFs™/3) and ||p — ppl|r20) = O(DOFs~Y/3) in both cases.
However, the velocity error of the divergence-free pair is roughly 10° times smaller than the Bernardi-
Raugel pair; the error estimates (7.2)—(7.3) predict this behavior. In addition, the plots also show
that the L? velocity error converges with rate O(DOF5*2/ 3). Finally, the divergence-free pair yields
divergence errors comparable to machine epsilon, while the Bernardi-Raugel method satisfies ||V -
'u,h||L2(Q) = O(DOFSil/g).

H' Error vs. DOFs L? Error vs. DOFs
104 I T 103 T T
102 ."__-.“-§§~\.\\‘\E\.‘\\\\" 10t |
—o— BR —— BR
-=— MB -=— MB
100 | |[=—m=-1/3 1071 [{=—m = -2/3

-2 e T -----"“--
.*.\.\'\.H\-\'\-

107°
1074 i 1l ! ! ! ! Ll 1l
102 10° 104 10° 109 102 10° 10* 10° 106

FiG. 7.2. The H' (left) and L? (right) velocity errors for the Bernardi-Raugel method (blue) and the modified
Bernardi-Raugel divergence-free method (red). The H' error converges with rate O(DOFS_1/3), and the L? error
converges with rate O(DOFs—2/3).

8. Concluding Remarks. In this paper we have constructed several divergence-free and inf-sup
stable Stokes elements in arbitrary dimension and for any polynomial degree. This is achieved by first
establishing the result locally on each macro element and then constructing modified Bernardi-Raugel
bubble functions with constant divergence. With these two ingredients we have constructed finite
element pairs on macro and refined meshes, and pairs with continuous pressure spaces.

As is the case with other divergence-free Stokes pairs, it is expected that the finite element pairs
developed here fit within a smooth, discrete de Rham complex (Stokes complex). For example, 2D
complexes based on a barycenter refinements have been constructed in [7]. We are currently developing
discrete complexes in higher dimensions that incorporate the Stokes pairs proposed in this paper.
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