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Abstract. In this article, we construct simple and convergent finite element methods for linear
and nonlinear elliptic differential equations in non-divergence form with discontinuous coeffients.
The methods are motivated by discrete Miranda-Talenti estimates, which relate the H2 semi-
norm of piecewise polynomials with the L2 norm of its Laplacian on convex domains. We develop
a stability and convergence theory of the proposed methods, and back up the theory with numerical
experiments.

1. Introduction

In this article, we consider finite element methods for linear and nonlinear second order elliptic
problems in non-divergence form. A prototypical (linear) example is given by

A(x) : D2u(x) = g(x) in Ω ⇢ R
d,(1.1)

accompanied with Dirichlet boundary conditions. Here, g 2 L2(Ω) is a given source term, and
A : Ω ! R

d⇥d is symmetric and uniformly positive definite on a bounded domain Ω. Such problems
naturally appear in stochastic optimal control in the form of the Hamilton–Jacobi–Bellman equation,
and they also arise as linearizations of fully nonlinear second-order PDEs.

This paper focuses on the case in which the coefficient matrix is not differentiable, in particular,
integration-by-parts cannot be performed on (??), and weak solutions based on variational principles
are not applicable. In this setting, there are several distinct theories and solution concepts concerning
the well-posedness of the problem, each depending on the regularity of the matrix A. For example:

• If A is Hölder continuous and if the boundary of the domain is sufficiently smooth, then
there exists a classical solution satisfying the PDE pointwise in Ω [?, Chapter 6].

• If A is uniformly continuous on Ω or if A has vanishing mean oscillation, then there exists a
unique strong solution u 2 W 2,p(Ω) to the problem, i.e., u satisfies the PDE a.e. in Ω [?,?].

• If A is essentially bounded and it satisfies the so-called Cordes condition (cf. Definition ??),
and if the domain Ω is convex, then there exists a strong solution u 2 H2(Ω) [?,?].

In this paper we consider the third case which assumes the least regularity conditions on the co-
efficient matrix, i.e., we assume that the matrix is possibly discontinuous but satisfies the Cordes
condition. The Cordes condition, a type of anisotropy condition on A, is a crucial assumption to
establish the well-posedness of the elliptic problem (??); counterexamples in d � 3 show that solu-
tions to (??) are not unique for general discontinuous A (cf. Example ??). Another key ingredient
to show the well-posedness of (??) is the Miranda-Talenti estimate, which relates the H2 semi-norm
of a function with the L2 norm of its Laplacian on convex domains.

Lemma 1 (Miranda-Talenti inequality [?,?]). Suppose that Ω ⇢ R
d is a bounded convex domain.

Then there holds

kD2vkL2(Ω)  k∆vkL2(Ω) 8v 2 H2(Ω) \H1
0 (Ω).(1.2)

The important feature of the estimate (??), and crucial to the analysis of problem (??), is that
the equivalence constant is exactly one on convex domains.
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The goal of this paper is to develop finite element methods for PDEs in non-divergence form and
a convergence theory by extending Lemma ?? to piecewise polynomial functions. In particular, we
shall prove the following discrete Miranda-Talenti inequality. A more detailed explanation of the
notation is given in subsequent sections.

Theorem 1 (Discrete Miranda-Talenti inequality). Let Ω ⇢ R
d (d = 2, 3) be a convex polytope. Let

Vh ⇢ H1
0 (Ω) denote the kth degree Lagrange finite element space with respect to a simplicial mesh

Th with 2  k  3 if d = 3, and k � 2 for d = 2. Then for any vh 2 Vh, we have

(1.3) kD2vhkL2(Th)  k∆vhkL2(Th) + C†

0

@

X

f2FI
h

h�1
f k[[@vh/@nf ]]k2L2(f)

1

A

1/2

,

where the constant C† > 0 is independent of h and vh.

We shall show that the estimate (??) naturally leads to simple and efficient finite element methods
for linear and fully nonlinear problems in non-divergence form as well as a stability and convergence
theory.

Despite its non-variational structure, a flurry of finite element methods have recently been devel-
oped for problems in non-divergence form (??). In the case that the coefficient matrix is continuous,
finite element methods have been developed in [?,?,?]; these methods and their analysis are based
on discrete Calderon-Zygmund estimates. The first Galerkin method in the case of discontinuous
coefficients was done in [?], where an intricate hp-discontinuous Galerkin (DG) method was proposed
for elliptic PDEs satisfying the Cordes condition. There, the authors bypass a discrete Miranda–
Talenti estimate by adding auxiliary terms in their formulation. This method was extended to the
fully nonlinear Hamilton–Jacobi–Bellman equation with continuous coefficients satisfying the Cordes
condition in [?,?]. Much of the present work is influenced by these results and techniques. A related
but simpler DG method for elliptic problems in non-divergence form based on a least-squares for-
mulation is proposed in [?]. However, it is unclear whether this method extends to fully nonlinear
problems. A weak Galerkin method was presented in [?], and a mixed discretization based on stable
finite element Stokes spaces is proposed in [?]. A finite element method based on the convolution of
finite differences for (??) was proposed in [?], and the stability of the method was shown via discrete
Alexandrov-Bakelman-Pucci estimates. Extensions of these results to fully nonlinear problems was
done in [?].

An advantage of the proposed methods is their relative simplicity; the methods can be readily
implemented on standard finite element method software packages. Furthermore, in contrast to
[?, ?, ?], the methods are provably convergent for linear problems with discontinuous coefficients
satisfying the Cordes condition. Finally, as far as we are aware, the methods have the fewest number
of global degrees of freedom on simplicial meshes for problems with discontinuous coefficients. On
the other hand, the cost of the simplicity of the methods includes restrictions on the finite element
spaces and the mesh. For example, in contrast to [?,?,?], we require that the mesh is simplicial and
does not contain hanging nodes, and that the polynomial degree does not vary between elements.
Furthermore, we do not track the dependence of the polynomial degree in the stability and error
estimates.

The rest of the paper is organized as follows. In Section ?? we establish the notation and
state some preliminary results. In Section ?? we build an enriching operator that connects the
Lagrange finite element space with a cubic spline space in two and three dimensions. With this
enriching operator, we prove Theorem ?? in Section ??. In Section ?? we propose a finite element
method for linear PDEs in non-divergence form, prove the well-posedness of the method, and derive
optimal order estimates. These results are extended to the fully nonlinear Hamilton–Jacobi–Bellman
equation in Section ??. Finally, numerical experiments are presented in Section ??.



2. Preliminaries

3) be a bounded, convex polytope, and let Th be a
gulation of Ω without hanging nodes. For each ele

T2Th
hT . We denote by Vh and Fh the set of vertice

Th, respectively. We write Fh = FI
h [ FB

h , wher
denotes the set of boundary faces. Likewise, we de
as VI

h and VB
h , respectively. Let VT and MT be th

points, respectively, of a simplex T 2 Th. Let Tp be t
on vertex p 2 Vh. We also denote by FI

p (resp., FB
p )

mensional faces in FI
h (resp., FB

h ) that share the com
ary edge midpoints in Th is denoted by MI

h and MB
h

Fh, let nf 2 R
d denote a fixed choice of a (constant)

that nf coincides with the outward unit normal of
operator [[·]] on f by

[[v]] := v|Tout
� v|Tin

if f = @Tout \ @Tin 2 FI
h ,

[[v]] := v|Tout
if f = @Tout \ @Ω 2 FB

h ,

y regular scalar valued or vector-valued function. He
pointing for T t and inward pointing for Tin
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both the common normal and the edge. Note that se2 is tangent to the boundary faces associated with
the edge. Furthermore, we omit the superscript e in the notation when the context is clear.

The degrees of freedom given in Proposition ?? induce a global piecewise cubic space

Ṽh := {vh 2 H2(Ω) : vh|T 2 C1(T ) \ P3(Tr), 8T 2 Th}.

A characterization of the associated space with zero Dirichlet boundary conditions with respect to
the degrees of freedom is summarized in the next lemma.

Lemma 2. A function vh 2 Ṽh satisfies vh 2 Ṽh,0 := Ṽh \ H1
0 (Ω) if and only if (i) vh(p) = 0 for

p 2 VB
h ; (ii) @vh

@t (p) = 0 for all p 2 V[
h and tangent vectors t with respect to faces/edges in FB

p ; (iii)

rvh(p) = 0 for all p 2 V#
h [M#

h ; and in three dimensions (iv) @vh

@s2
(p) = 0 for all p 2 M[

h.

Proof. It is clear that if vh 2 Ṽh,0 then (i) is satisfied.

Let p 2 V[
h be a flat vertex, and denote the common normal vector at p by n. If vh 2 Ṽh,0, then

vh = 0 on FB
p , and so the tangential derivatives of vh are zero along the boundary faces in FB

p ; thus

(ii) and (iv) hold. Note that the derivative of vh in the direction of n is not restricted on V[
h [M[

h.

We now show that if vh 2 Ṽh,0 then rvh = 0 on sharp nodes. Let p 2 V#
h [M#

h be a sharp node,
and denote by f1, f2 2 FB

p two faces with nonparallel unit normal vectors n1, n2. Then there exist

two orthogonal bases of Rd, {n1, t1,1, . . . , t1,d�1} and {n2, t2,1, . . . , t2,d�1}, where {t1i}
d�1
i=1 are the

tangential vectors of f1, {t2,j}
d�1
j=1 are the tangential vectors of f2. Therefore, for each i = 1, . . . , d�1,

there exist a unique decomposition t1,i =
Pd�1

j=1 ci,jt2,j+ci,dn2 (ci,j 2 R). We claim that there exists
1  i  d� 1 such that ci,d 6= 0.

Suppose the claim is not true, i.e., ci,d = 0 for all i, which implies that span{t1,i}
d�1
i=1 ⇢

span{t2,j}
d�1
j=1 for all j. Since the dimensions of the (linearly independent) sets are the same, we

conclude that span{t1,i}
d�1
i=1 = span{t2,j}

d�1
j=1 , and therefore n1 · t2,j = 0 for all j. Hence, since

{n2, t2,1, . . . , t2,d�1} is a orthogonal basis, we have

n1 =

d�1
X

j=1

(n1 · t2,j)t2,j + (n1 · n2)n2 = (n1 · n2)n2,

implying that n1 and n2 are parallel, a contradiction. Thus there exists 1  i  d � 1 such that
ci,d 6= 0.

Now since vh = 0 on FB
p , the tangential derivatives of vh are zero along the boundary faces f1

and f2, i.e.,
@vh

@t1,i
(p) = 0 and @vh

@t2,j
(p) = 0 for i, j = 1, . . . , d� 1. We then have

0 =
@vh
@t1,i

(p) =

d�1
X

j=1

ci,j
@vh
@t2,j

(p) + ci,d
@vh
@n2

(p) = ci,d
@vh
@n2

(p) ) @vh
@n2

(p) = 0.

Therefore, the directional derivatives of vh at p are zero along {n2, t2,1, t2,2..., t2,d�1}, the basis of
R

d, and it thus follows that (iii) is satisfied.

Finally, suppose that vh 2 Ṽh vanishes at the values (i)–(iv). Since vh, respected to an edge, is
a one-dimensional cubic polynomial, we conclude from (i)–(iii) that vh vanishes on the boundary
edges. Therefore in the case d = 2, vh = 0 on @Ω. In three dimensions, we use condition (iv) and
the two-dimensional unisolvency result in Proposition ?? to conclude that vh = 0 on @Ω when d = 3
as well. ⇤

Remark 3. Let p 2 V]
h [ M]

h, and let {t1,i}
d�1
i=1 and {t2,j}

d�1
j=1 span the tangent space of some

f1, f2 2 FB
p with nonparallel unit normal vectors. Then the proceeding proof shows that there exists

an i such that {t1,i, t2,1, . . . , t2,d�1} forms a basis of Rd.
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3.1. Construction of map Eh : Vh → Ṽh,0. In this section, we construct a linear operator
connecting the Lagrange finite element space to the Clough–Tocher finite element space by averaging.
This is done by assigning the values specified in Proposition ?? and Lemma ??.

Let N be any (global) degree of freedom of Ṽh,0. If N is an interior degree of freedom, then we
set

(3.1) N(Ehvh) =
1

|TN |

X

T2TN

N(vT ),

where vT := vh|T is the function vh restricted to the simplex T , TN is the set of simplexes in Th
that share the degree of freedom N , and |TN | is the number of elements in TN .

If N corresponds to a function evaluation at a boundary vertex p 2 VB
h , we set N(Ehvh) = 0. If

N is a boundary degree of freedom corresponding to the function gradient at a flat vertex p 2 V[
h,

let the common unit normal vector of faces in Fb
h be n, and set

(3.2) N(Ehvh) =
1

|TN |

X

T2TN

(N(vT ) · n)n.

Thus, N(Ehvh) is a vector with direction n and magnitude 1
|TN |

P

T2TN

@vT
@n (p).

If N is a boundary degree of freedom corresponding to a function directional derivative at p 2 M[
h

with direction unit vector si, let the common unit normal vector be n, and set

(3.3) N(Ehvh) =
1

|TN |

X

T2TN

(si · n)
@vT
@n

(p).

Finally, if N is a boundary degree of freedom corresponding to the function derivative or directional

derivative at some p 2 V#
h [M#

h , we set N(Ehvh) = 0. Note that this construction and Lemma ??

show that Ehvh 2 Ṽh,0.

Lemma 3. For k = 2 or 3, the map Eh satisfies the estimate

(3.4) |vh � Ehvh|
2
H2(Th)

.
X

f2FI
h

h�1
f k[[@vh/@nf ]]k2L2(f) 8vh 2 Vh.

Proof. The proof of (??) in the two dimensional setting is given in [?,?], thus it suffices to prove
the result when d = 3.

Let vh 2 Vh be arbitrary and set wh = vh � Ehvh. Fix T 2 Th and set wT = wh|T . From
Proposition ??, the inclusion P3(T ) ⇢ P3(Tr) \ C1(T ), scaling and shape regularity, and since
wh(p) = 0 for all p 2 Vh, we have

kvh � Ehvhk2L2(T ) = kwk2L2(T )

.
X

p2VT

(h3
T |w(p)|

2 + h5
T |rwT (p)|

2) +
X

m2MT

2
X

i=1

h5
T

�

�

�

�

@wT

@si
(m)

�

�

�

�

2

=
X

p2VT

h5
T |rwT (p)|

2 +
X

m2MT

2
X

i=1

h5
T

�

�

�

�

@wT

@si
(m)

�

�

�

�

2

.

(3.5)

By (??), for an interior point p (i.e., a point that is not on @Ω), we have

|rwT (p)|
2 =

⇣ 1

|Tp|

X

T 02Tp

|rvT (p)�rvT 0(p)|
⌘2

.
X

T 02Tp

|rvT (p)�rvT 0(p)|2.
(3.6)

For any T 0 2 Tp, there exist a finite sequence of simplices {Tj}
M
j=0 ⇢ Tp labeled such that

T0 = T, TM = T 0, and @Tj \@Tj+1 2 FI
h . We emphasize that M is is bounded uniformly in h by the
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shape regularity of Th (cf. Remark ??). Hence, by an inverse estimate, and since vh is continuous
across the faces,

|rvT (p)�rvT 0(p)| 
M�1
X

j=0

|rvTj
(p)�rvTj+1

(p)|


X

f2FI
p

�

�[[rvh]]
�

�

L1(f)

.
X

f2FI
p

h�1
f

�

�[[@vh/@nf ]]
�

�

L2(f)
.

(3.7)

Applying (??) to (??), we find that

(3.8) |rw(p)|2 .
X

f2FI
p

h�2
f

�

�[[@vh/@nf ]]
�

�

2

L2(f)
.

Using similar arguments, we have for any interior midpoint m and i 2 {1, 2},
�

�

�

@vT
@si

(m)� @vT 0

@si
(m)

�

�

�


X

f2FI
m

�

�[[rvh]]
�

�

L1(f)
.

X

f2FI
m

h�1
f

�

�[[@vh/@nf ]]
�

�

L2(f)
,

and therefore,

(3.9)

�

�

�

�

@wT

@si
(m)

�

�

�

�

2

=
�

�

�

1

|Tm|

X

T 02Tm

|
@vT
@si

(m)� @vT 0

@si
(m)|

�

�

�

2

.
X

f2FI
m

h�2
f k[[@v/@nf ]]k2L2(f) .

At a sharp vertex p, rEhvh vanishes, and thus

|rwT (p)|
2 = |rvT (p)|

2.

Since p is a sharp vertex, there exist two simplexes T 0, T 00 2 Tp, boundary faces f1 ⇢ @T 0 \ @Ω,
f2 ⇢ @T 00 \ @Ω, and f1, f2 do not have a common normal vector. Hence, by Remark ??, there exist
a tangential vector t1,i of f1 and two tangential vectors {t2,1, t2,2} of f2 such that together, the three
vectors form a basis of R3.

By connecting T through a sequence of simplex in Tp to T 0, we have
�

�

�

@vT
@t1,i

(p)
�

�

�

2

.
X

f2FI
p

h�2
f

�

�[[@vh/@t1,i]]
�

�

2

L2(f)
+ h�2

f1
k@vT 0/@t1,ik2L2(f1)

.
X

f2FI
p

h�2
f

�

�[[@vh/@nf ]]
�

�

2

L2(f)

(3.10)

because the tangential derivatives of v vanish on @Ω.
Similarly, by connecting T through a sequence of simplex in Tp to T 00, we have

�

�

�

@vT
@t2,j

(p)
�

�

�

2

.
X

f2FI
p

h�2
f

�

�[[@vh/@nf ]]
�

�

2

L2(f)
for j = 1, 2,

and therefore

(3.11) |rwT (p)|
2 .

�

�

�

@vT
@t1,i

(p)
�

�

�

2

+

2
X

j=1

�

�

�

@vT
@t2,j

(p)
�

�

�

2

.
X

f2FI
p

h�2
f k@vh/@nfk2L2(f) 8p 2 VT \ V]

h.

Next, for a boundary flat vertex p 2 V[
h with common unit normal vector n, we first write

(3.12) |rwT (p)|
2 .

�

�

�

@vT
@n

(p)n�rEhvh(p)
�

�

�

2

+
�

�

�rvT (p)�
@vT
@n

(p)n
�

�

�

2

.
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By (??) and by applying similar steps in (??), (??), and (??), we have

|
@vT
@n

(p)n�rEhvh|
2 .

X

T 02Tp

�

�

�

�@vT
@n

(p)�rvT 0(p) · n
�

n
�

�

�

2

=
X

T 02Tp

�

�

�

@vT
@n

(p)� @vT 0

@n
(p)

�

�

�

2

.
X

f2FI
p

h�2
f k[[@vh/@nf ]]k2L2(f) .

(3.13)

Since p is a flat vertex, there exist a simplex T 0 with a boundary face f3 2 FB
p . Let {t3,1, t3,2}

denote an orthonormal basis of f3. Then by marching to the boundary (as in (??)), we have

|rvT (p)�
@vT
@n

(p)n|2 = |
2

X

i=1

@vT
@t3,i

(p) t3i|
2

.

2
X

i=1

|
@vT
@t3,i

(p)|2 .
X

f2FI
p

h�2
f k[[@v/@nf ]]k2L2(f) .

(3.14)

Hence, by (??)–(??), we have

(3.15) |rw(p)|2 .
X

f2FI
p

h�2
f k[[@v/@nf ]]k2L2(f) 8p 2 VT \ V[

h.

For a boundary flat midpoint m, by (??) and (??), we have

�

�

�

�

@w

@s1
(m)

�

�

�

�

2

.
�

�

�(s1 · n)
@vT
@n

(m)� @Ehvh
@s1

(m)
�

�

�

2

+
�

�

�

@vT
@s1

(m)� (s1 · n)
@vT
@n

(m)
�

�

�

2

.
X

T 02Tm

�

�

�

@vT
@n

(m)� @vT 0

@n
(m)

�

�

�

2

.
X

f2FI
m

h1�d
f k[[@v/@nf ]]k2L2(f) .

(3.16)

Likewise, we have that

�

�

�

�

@w

@s2
(m)

�

�

�

�

2

.
�

�

�(s2 · n)
@vT
@n

(m)� @Ehvh
@s2

(m)
�

�

�

2

+
�

�

�

@vT
@s2

(m)� (s2 · n)
@vT
@n

(m)
�

�

�

2

=
�

�

�

@vT
@s2

(m)
�

�

�

2

.
X

f2FI
m

h�2
f k[[@v/@nf ]]k2L2(f) .

(3.17)

Combining (??), (??), (??), (??), (??), (??), and (??) yields

kvh � Ehvhk2L2(T ) . h5
T

⇣

X

p2VT

X

f2FI
p

h�2
f k[[@v/@nf ]]k2L2(f) +

X

m2MT

X

f2FI
m

h�2
f k[[@v/@nf ]]k2L2(f)

⌘

.
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Finally, by an inverse estimate and the shape regularity of Th, we obtain

|vh � Ehvh|
2
H2(Th)

.
X

T2Th

h�4
T kvh � Ehvhk2L2(T )

.
X

T2Th

hT

⇣

X

p2VT

X

f2FI
p

h�2
f k[[@v/@nf ]]k2L2(f)

+
X

m2MT

X

f2FI
m

h�2
f k[[@v/@nf ]]k2L2(f)

⌘

.
X

f2FI
h

h�1
f k[[@v/@nf ]]k2L2(f) .

⇤

Remark 4. In two dimensions, there exists a family of C1 Clough-Tocher spaces of degree greater
than or equal to three [?]. As a result, the estimate (??) can be generalized to arbitrary k � 2 [?].
However, as far as we are aware, degrees of freedom for higher-order Clough-Tocher spaces in three
dimensions are not found in the literature; see [?] for partial results. As a result, the estimate (??)
is restricted to 2  k  3 if d = 3.

Remark 5. An operator that maps piecewise polynomials to H2(Ω) \H1
0 (Ω)-conforming functions

has been recently been constructed in [?]. There, the mesh is allowed to have hanging nodes, and
the dependence of the polynomial degree is explicitly stated in the estimate. On the other hand, the
operator is constructed in a global fashion, and as such, it seems that the mesh must be quasi-uniform
in order to get an estimate analogous to (??) by directly using [?, Theorem 4].

4. Proof of Theorem 1

With the result of Lemma ??, we are able to prove Theorem ??.

Proof. For vh 2 Vh, we have Ehvh 2 H2(Ω) \ H1
0 (Ω), and therefore, by the Miranda-Talenti and

triangle inequalities,

|vh|H2(Th)  |Ehvh|H2(Th) + |vh � Ehvh|H2(Th)

 k∆EhvhkL2(Th) + |vh � Ehvh|H2(Th)

 k∆(vh � Ehvh)kL2(Th) + k∆vhkL2(Th) + |vh � Ehvh|H2(Th).

(4.1)

We then use the identity k∆vhkL2(Th) 
p
d|vh|H2(Th) and Lemma ?? to get

kD2vhkL2(Th)  k∆vhkL2(Th) + (1 +
p
d)|vh � Ehvh|H2(Th)

 k∆vhkL2(Th) + C(1 +
p
d)
�

X

f2FI
h

h�1
f k[[@vh/@nf ]]k2L2(f)

⌘1/2

.

The proof is complete with C† = C(1 +
p
d). ⇤

Corollary 1. There holds, for all ⌧ 2 (0, 1),

k∆vhk2L2(Th)
� (1� ⌧)kD2vhk2L2(Th)

�
C2

†

⌧

X

f2FI
h

h�1
f

�

�[[@vh/@nf ]]k2L2(f).

Proof. Applying the Cauchy–Schwarz inequality to Theorem ?? yields

kD2vhk2L2(Th)


�

1 + ⇢
�

k∆vhk2L2(Th)
+ C2

†

�

1 +
1

⇢

�

X

f2FI
h

h�1
f

�

�[[@vh/@nf ]]k2L2(f)
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for any ⇢ > 0. Letting ⌧ = ⇢/(1 + ⇢) 2 (0, 1) and rearranging terms, we have

k∆vhk2L2(Th)
� (1� ⌧)kD2vhk2L2(Th)

� C2
†

(1� ⌧)

⌧

X

f2FI
h

h�1
f

�

�[[@vh/@nf ]]k2L2(f)

� (1� ⌧)kD2vhk2L2(Th)
�

C2
†

⌧

X

f2FI
h

h�1
f

�

�[[@vh/@nf ]]k2L2(f).

⇤

5. Applications to linear problems in nondivergence form

In this section, motivated by the discrete Miranda-Talenti estimate, we construct simple conver-
gent finite element methods to approximate strong solutions for elliptic problems in non-divergence
form:

Lu := A : D2u+ b ·ru� cu = g in Ω,(5.1a)

u = 0 on @Ω.(5.1b)

Here, A : B :=
Pd

i,j=1 Ai,jBi,j denotes the Frobenius inner product of two matrices. We recall that

u is a strong solution to (??) if it has regularity

u 2 V := H2(Ω) \H1
0 (Ω),

and satisfies (??) almost everywhere in Ω.
To ensure the well-posedness of problem (??) we assume that g 2 L2(Ω), that the coefficients

satisfy A 2 [L1(Ω)]d⇥d, b 2 [L1(Ω)]d, c 2 L1(Ω) with c � 0, and that A is uniformly positive
definite in Ω, i.e., there exists ⌫, ⌫̄ > 0 such that

⌫|ξ|2  ξtA(x)ξ  ⌫̄|ξ|2 a.e. x 2 Ω,

for all ξ 2 R
d. Here, |ξ| denotes the Euclidean distance of ξ from the origin. More importantly, we

assume that the coefficients satisfy the Cordes Condition.

Definition 2. The coefficients satisfy the Cordes Condition if

(i) whenever c 6⌘ 0 or b 6⌘ 0, there exists � > 0 and ✏ 2 (0, 1) such that

(5.2a)
|A|2 + |b|2/2�+ (c/�)2

(trA+ c/�)2
 1

d+ ✏
a.e. x 2 Ω.

Here, |A| =
p
A : A, and trA =

Pd
i=1 Aii is the trace of A.

(ii) whenever c ⌘ 0 and b ⌘ 0, there exists ✏ 2 (0, 1) such that

(5.2b)
|A|2

(trA)2
 1

d� 1 + ✏
a.e. x 2 Ω.

Remark 6. In two dimensions, and in the case c ⌘ 0 and b ⌘ 0, uniform ellipticity of A implies
the Cordes condition with ✏ = 2⌫/(⌫ + ⌫̄) [?, Example 2].

Remark 7. Uniformly ellipticity of A 2 [L1(Ω)]d⇥d is not sufficient to ensure that there exists a
unique strong solution to problem (??), at least in three dimensions. The following classical example
illustrates this feature.

Example 1. Let d = 3, Ω = B1(0) be the unit ball, c ⌘ 0, b ⌘ 0, and

A(x) = I3 +
⇣1 + ↵

1� ↵

⌘xxt

|x|2
,

where 1/2 < ↵ < 1 and I3 denotes the 3 ⇥ 3 identity matrix. Clearly A is essentially bounded and
uniformly positive definite with ⌫ = 1 and ⌫̄ = 2/(1� ↵).
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The function u(x) = |x|↵ � 1 satisfies u 2 V ,

D2u(x) = ↵(↵� 2)|x|↵�4xxt + ↵|x|↵�2I3,

and since I3 : (xxt) = (xxt) : (xxt)/|x|2 = |x|2,

A(x) : D2u(x) = ↵(↵� 2)|x|↵�2
⇣

1 +
1 + ↵

1� ↵

⌘

+ ↵|x|↵�2
⇣

3 +
1 + ↵

1� ↵

⌘

= 0.

Therefore both u = |x|↵ � 1 and the zero function are strong solutions to (??) with g ⌘ 0.
Note that

|A|2 = 3 + 2
⇣1 + ↵

1� ↵

⌘

+
⇣1 + ↵

1� ↵

�2
=

2(↵2 � 2↵+ 3)

(1� ↵)2
,

(trA)2 =
⇣

3 +
1 + ↵

1� ↵

⌘2

=
4(↵2 � 4↵+ 4)

(1� ↵)2
,

and therefore

|A|2 � 1

2
(trA)2 =

2(2↵� 1)

(1� ↵)2
> 0.

Thus, the coefficients do not satisfy the Cordes condition.

Define the function � 2 L1(Ω) by

(5.3) � :=
trA+ c/�

|A|2 + |b|2/2�+ (c/�)2
.

Since A is positive definite and c is non-negative, we clearly see that � > 0. In particular, if the
Cordes condition (??) is satisfied, then

� � d+ ✏

trA+ c/�
� d+ ✏

d⌫̄ + kckL1(Ω)/�
=: �0.

To state the well-posedness of problem (??), we define the operators L� ,L� : V ! L2(Ω) by

(5.4) L�v := �Lv, L�v := ∆v � �v,

where in the case that b ⌘ 0 and c ⌘ 0, we set � = 0 in (??). Note that, since � is nonnegative
and Ω is convex, the mapping L� : V ! L2(Ω) is surjective. Moreover, since � � �0 > 0 a.e. in Ω,
simple arguments show that u 2 V satisfies (??) if and only if L�u = �g a.e. in Ω. Thus, these two
observations show that u 2 V is a strong solution to (??) if and only if

B(u, v) :=

Z

Ω

(L�u)(L�v) dx =

Z

Ω

�g(L�v) dx 8v 2 V.(5.5)

Lemma 4. Under the given assumptions, there holds the following inequality a.e. in Ω:

(5.6) |L�w � L�w| 
p
1� ✏

p

|D2w|2 + 2�|rw|2 + �2|w|2.

Proof. Suppose that b 6⌘ 0 or c 6⌘ 0.
Applying the definitions of the operators and the Cauchy–Schwarz inequality, we have

|L�w � L�w|  |�A� Id||D
2w|+ |�||b||rw|+ |�� c�||w|


p
M

p

|D2w|2 + 2�|rw|2 + �2|w|2,
(5.7)

with

M := |�A� Id|
2 + |�|2

|b|2

2�
+

|�� c�|2

�2
.
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Expanding this expression out and using the definition of � and the Cordes condition (??), we have

M = d+ 1� 2�(trA+
c

�
) + |�|2(|A|2 +

|b|2

2�
+

|c|2

�2
)

= d+ 1� �
�

trA+ c/�
�

= d+ 1�
�

trA+ c/�
�2

|A|2 + |b|2/(2�) + (c/�)2

 1� ✏.

Combining this inequality with (??) yields (??).
Likewise, for the special case b ⌘ 0, c ⌘ 0 and � = 0, we have by (??),

|L�w � L�w|  |�A� Id||D
2w|

=
p

d� 2�trA+ |�|2|A|2|D2w|

=
p

d� �trA|D2w|


p
1� ✏|D2w|.

⇤

Lemma 5. If Ω is convex, then there holds

kL�vk2L2(Ω) �
Z

Ω

�

|D2v|2 + 2�|rv|2 + �2|v|2
�

dx 8v 2 V.

Proof. Integration by parts gives

kL�vk2L2(Ω) =

Z

Ω

�

|∆v|2 + 2�|rv|2 + �2|v|2
�

dx.

An application of the Miranda-Talenti estimate now yields the result. ⇤

Theorem 2. There exists a unique strong solution to (??) provided the Cordes condition is satisfied.

Proof. A proof of this result is given in [?] (also see [?,?]). However, we give it here for completeness
and to motivate the numerical analysis of the method given in the next section.

Let v 2 V , and write

B(v, v) =

Z

Ω

|L�v|
2 +

Z

Ω

�

L�v � L�v
�

(L�v) dx.

Applying Lemmas ??–?? yields

B(v, v) �
�

1�
p
1� ✏

��

�L�v
�

�

2

L2(Ω)
,

and therefore B(·, ·) is coercive on V . Since v !
R

Ω
�gL�v dx is clearly a bounded linear form on

V , with
�

�

R

Ω
�gL�v dx

�

�  k�kL1(Ω)kgkL2(Ω)kL�vkL2(Ω), the Lax–Milgram theorem shows that there

exists a unique u 2 V satisfying B(u, v) =
R

Ω
�gL�v dx for all v 2 V . Equivalently, there exists a

unique solution u 2 V satisfying (??). ⇤

5.1. Finite element method. Based on the discrete Miranda–Talenti estimate and the arguments
given in Theorem ??, we propose the following finite element scheme to approximate the solution
to (??): Find uh 2 Vh such that

Bh(uh, vh) =
X

T2Th

Z

T

�gL�vh dx 8vh 2 Vh,(5.8)

where the bilinear form B(·, ·) is given by

Bh(w, v) =
X

T2Th

Z

T

(L�w)(L�vh) dx+ �
X

f2FI
h

h�1
f

Z

f

[[@w/@nf ]][[@v/@nf ]] ds,
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� > 0 is a positive penalization parameter, and we recall that Vh is the Lagrange finite element
space of degree k.

We immediately notice that the scheme (??) is consistent. Indeed, if u 2 V is a strong solution
to (??) then L�u = �g a.e. in Ω and [[@u/@nf ]] = 0 on FI

h ; thus,

Bh(u, vh) =
X

T2Th

Z

T

�gL�vh dx 8vh 2 Vh.

To analyze method (??) and to show that there exists a unique solution, we introduce the following
norm on V + Vh:

(5.9) kvk2h := kD2vk2L2(Th)
+ 2�krvk2L2(Ω) + �2kvk2L2(Ω) +

X

f2FI
h

h�1
f k[[rv]]k2L2(f) .

Note that if kvkh = 0 with v 2 V + Vh, then the Hessian of v vanishes on each element T 2 Th, and
[[@v/@nf ]] = 0 on all f 2 FI

h . This implies that v is a linear polynomial on Ω. Since v vanishes on
@Ω, then we conclude that v ⌘ 0. Thus, k · kh is indeed a norm on V + Vh for � � 0.

The next lemma, a discrete analogue of Lemma ??, relates the discrete norm k · kh with the
operator L� on Vh.

Lemma 6. There exists a constant C1 > 0, depending on k and the shape-regularity of the mesh
such that, for all ⌧ 2 (0, 1),

kL�vhk2L2(Th)
� (1� ⌧)kvhk2h � C1⌧

�1
X

f2FI
h

h�1
f

�

�[[@vh/@nf ]]
�

�

2

L2(f)
8vh 2 Vh.

Proof. Using the definition of L� and integrating by parts, we have

kL�vhk2L2(Th)
=

X

T2Th

Z

T

⇣

|∆vh|
2 + �2|vh|

2 � 2�vh∆vh

⌘

dx

= k∆vhk2L2(Th)
+ 2�krvhk2L2(Ω) + �2kvhk2L2(Ω)

� 2�
X

f2FI
h

Z

f

vh[[@vh/@nf ]] ds.

Therefore by Corollary ??,

kL�vhk2L2(Th)
� (1� ⌧)kD2vhk2L2(Th)

+ 2�krvhk2L2(Ω) + �2kvhk2L2(Ω)

�
C2

†

⌧

X

f2FI
h

�

�[[@vh/@nf ]]
�

�

2

L2(f)
� 2�

X

f2FI
h

Z

f

vh[[@vh/@nf ]] ds
(5.10)

for all ⌧ 2 (0, 1).
By the Cauchy-Schwarz inequality and scaling, we find that

2�
X

f2FI
h

Z

f

vh[[@vh/@nf ]] ds  C�kvhkL2(Ω)

⇣

X

f2FI
h

h�1
f

�

�[[@vh/@nf ]]
�

�

2

L2(f)

⌘1/2

 �2⌧kvhk2L2(Ω) +
C2

4⌧

X

f2FI
h

h�1
f

�

�[[@vh/@nf ]]
�

�

2

L2(f)
.

Applying this estimate to (??) and applying the definition of k · kh yields

kL�vhk2L2(Th)
� (1� ⌧)kD2vhk2L2(Th)

+ 2�krvhk2L2(Ω) + �2(1� ⌧)kvhk2L2(Ω)

�
⇣C2

†

⌧
+

C2

4⌧

⌘

X

f2FI
h

h�1
f

�

�[[@vh/@nf ]]
�

�

2

L2(f)
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� (1� ⌧)kvhk2h �
⇣

1� ⌧ +
C2

†

⌧
+

C2

4⌧

⌘

X

f2FI
h

h�1
f

�

�[[@vh/@nf ]]
�

�

2

L2(f)

� (1� ⌧)kvhk2h �
⇣

⌧�1 +
C2

†

⌧
+

C2

4⌧

⌘

X

f2FI
h

h�1
f

�

�[[@vh/@nf ]]
�

�

2

L2(f)
.

Setting C1 = 1 + C2
† + C2/4 yields the result. ⇤

Lemma 7. For any ↵ 2 (0, 1), there exists �↵ > 0, independent of h, such that if � � �↵, there
holds

Bh(vh, vh) � ↵
�

1�
p
1� ✏

�

kvhk2h.
Consequently, there exists a unique solution uh 2 Vh to (??) provided � is sufficiently large.

Proof. We add and subtract L�vh and apply Lemma ?? and the Cauchy–Schwarz inequality to
obtain

Bh(vh, vh) =
X

T2Th

Z

T

�

L�vh � L�vh
�

(L�vh) dx+ kL�vhk2L2(Th)
+ �

X

f2FI
h

h�1
f

�

�[[@vh/@nf ]]
�

�

2

L2(f)

� kL�vhk2L2(Th)
�
p
1� ✏kvhkhkL�vhkL2(Th) + �

X

f2FI
h

h�1
f

�

�[[@vh/@nf ]]
�

�

2

L2(f)

�
�

1� 1

2

p
1� ✏

�

kL�vhk2L2(Th)
� 1

2

p
1� ✏kvhk2h + �

X

f2FI
h

h�1
f

�

�[[@vh/@nf ]]
�

�

2

L2(f)
.

Using Lemma ?? we find that

Bh(vh, vh) �
⇣

(1� ⌧)
�

1� 1

2

p
1� ✏

�

� 1

2

p
1� ✏

⌘

kvhk2h

+
⇣

� � C1⌧
�1

�

1� 1

2

p
1� ✏

�

⌘

X

f2FI
h

h�1
f

�

�[[@vh/@nf ]]
�

�

2

L2(f)

for any ⌧ 2 (0, 1). For given ↵ 2 (0, 1), we set ⌧ = (1� ↵)(1�
p
1� ✏)/(1� 1

2

p
1� ✏). This yields

Bh(vh, vh) � ↵
�

1�
p
1� ✏

�

kvhk2h

+
⇣

� � C1

(1� 1
2

p
1� ✏)2

(1� ↵)(1�
p
1� ✏)

⌘

X

f2FI
h

h�1
f

�

�[[@vh/@nf ]]
�

�

2

L2(f)
.

This inequality provides the desired result provided that

� � �↵ : = 1 +
C1

(1� ↵)(1�
p
1� ✏)

.(5.11)

⇤

Lemma 8. There holds

|Bh(v, wh)|  Ckvkhkwhkh
for all v 2 V + Vh and wh 2 Vh.

Proof. We assume that � > 0; the other case is proved in a similar fashion.
Applying the definition of Bh(·, ·)| together with the Cauchy–Schwarz inequality yields

|Bh(v, wh)| kL�vkL2(Th)kL�whkL2(Th)

+ �
⇣

X

f2FI
h

h�1
f

�

�[[@v/@nf ]]
�

�

2

L2(f)

⌘1/2⇣ X

f2FI
h

h�1
f

�

�[[@wh/@nf ]]
�

�

2

L2(f)

⌘1/2

.
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We easily find that

kL�vk2L2(Th)
 2k�k2L1(Ω)

�

kAk2L1(Ω)kD2vk2L2(Th)
+ kbk2L1(Ω)krvk2L2(Ω) + kck2L1(Ω)kvk2L2(Ω)

�

 2k�k2L1(Ω) max{kAk2L1(Ω), kbk2L1(Ω)/(2�), kck2L1(Ω)/�
2}kvk2h,

and

kL�whk2L2(Th)
 2

�

k∆whk2L2(Th)
+ �2kwhk2L2(Ω)

�

 2dkwhk2h.
Thus, we find that

|Bh(v, wh)|  C⇤kvkhkwhkh + �
⇣

X

f2FI
h

h�1
f

�

�[[@v/@nf ]]
�

�

2

L2(f)

⌘1/2⇣ X

f2FI
h

h�1
f

�

�[[@wh/@nf ]]
�

�

2

L2(f)

⌘1/2


�

� + C⇤)kvkhkwhkh,
with

C⇤ = 2
p
dk�kL1(Ω) max{kAkL1(Ω), kbkL1(Ω)/

p
2�, kckL1(Ω)/�}.

⇤

Theorem 3. Suppose that the solution to (??) has regularity u 2 Hs(Ω) for some 2  s  k + 1,
and let uh 2 Vh satisfy (??). Then there holds

(5.12) ku� uhk2h  C inf
vh2Vh

ku� vhk2h 
X

T2Th

h2s�4
T kuk2Hs(T )

Proof. The first inequality is a result of Lemmas ??–?? and Cea’s Lemma. The second inequality
follows from standard approximation theory and scaling [?]. ⇤

6. Applications to the Hamilton–Jacobi–Bellman Equation

In this section, we extend the method and analysis of Section ??, and consider numerical approx-
imations of the Hamilton–Jacobi–Bellman equation:

F [u] := sup
↵2A

[L↵u� g↵] = 0 in Ω,(6.1a)

u = 0 on @Ω,(6.1b)

where A is a compact metric space, and {L↵}↵2A is a family of second–order operators in non–
divergence form, namely,

(6.2) L↵v = A↵ : D2v + b
↵ ·rv � c↵v.

As in the previous section, Ω ⇢ R
d is a convex domain, but we assume the coefficients satisfy the

stronger conditions b↵ 2 [C(Ω̄)]d, c↵ 2 C(Ω̄), and A↵ 2 [C(Ω̄)]d⇥d for all ↵ 2 A, and that the data
is continuous with respect to ↵, e.g., the function ↵ ! A↵(x) is continuous on A for fixed x 2 Ω̄. In
addition, we assume that c↵ is nonnegative, and that the family of operators {A↵}↵2A is uniformly
positive definite and uniformly satisfies the Cordes condition with respect to ↵, i.e.,

(6.3) ⌫|ξ|2 
d

X

i,j=1

A↵
ij(x)⇠i⇠j  ⌫̄|ξ|2 8ξ 2 R

d, 8x 2 Ω, 8↵ 2 Λ,

and if c↵ 6⌘ 0 or b↵ 6⌘ 0 for some ↵ 2 A, there exists � > 0 and ✏ 2 (0, 1) such that

(6.4a)
|A↵|2 + |b↵|2/2�+ (c↵/�)2

(trA↵ + c↵/�)2
 1

d+ ✏
8x 2 Ω.

Otherwise, if c↵ ⌘ 0 and b
↵ ⌘ 0 for all ↵ 2 A, there exists ✏ 2 (0, 1) such that

(6.4b)
|A↵|2

(trA↵)2
 1

d� 1 + ✏
8x 2 Ω.

Under these conditions, there holds the following result [?, Theorem 3].
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Theorem 4. Under the given conditions, there exists a unique strong solution u 2 V to (??).

We refer to [?, Theorem 3] for a complete proof of this result. Here, we just state the main ideas
of the proof.

Analogous to (??), for each ↵ 2 A, we define the (positive) function

(6.5) �↵ :=
trA↵ + c↵/�

|A↵|2 + |b↵|2/2�+ (c↵/�)2
in Ω,

and in the special case where b
↵ ⌘ 0 and c↵ ⌘ 0 for all ↵ 2 A, we set

�↵ :=
trA↵

|A↵|2
in Ω.

The Cordes condition and the uniform ellipticity of A shows that there exists �0 such that � � �0
for all ↵ 2 A.

Define the operator F� : H2(Ω) ! L2(Ω) by

F� [u] := sup
↵2A

�↵
�

L↵u� g↵
�

.

With L� defined by (??), one concludes that u 2 V is a strong solution to (??) if and only if

hM[u], vi :=
Z

Ω

F� [u]L�v dx = 0 8v 2 V,(6.6)

where h·, ·i is the dual pairing between V ⇤ and V . Continuity of the data and the compactness of
A implies that M is Lipschitz continuous, and, by using the Cordes condition, one can show that
M is strongly monotone. The Browder–Minty Theorem then gives the existence and uniqueness of
u 2 V satisfying (??), and thus (??). We adopt this framework in the finite element analysis below.

6.1. Finite element method. Define the operator Mh : Vh + V ! V ⇤

h such that

hMh[w], vi :=
X

T2Th

Z

T

F� [w]L�vh dx+ �
X

f2FI
h

h�1
f

Z

f

[[@w/@nf ]][[@vh/@nf ]] ds.

We consider the following finite element method for problem (??): Find uh 2 Vh such that

hMh[uh], vhi = 0 8vh 2 Vh.(6.7)

Note that since the exact (strong) solution to (??) has regularity u 2 H2(Ω), and therefore, since
u satisfies (??) almost everywhere in Ω, we conclude that hMh[u], vhi = 0 for all vh 2 Vh, i.e., the
method is consistent.

Lemma 9. Let Ω be a bounded convex polygonal domain of Rd. Suppose that (??) holds, and that
the coefficients and continuous and satisfy the Cordes condition (??). Then there holds the following
inequality:

(6.8) |F� [v]� F� [z]� L�(v � z)| 
p
1� ✏

p

|D2(v � z)|2 + 2�|r(v � z)|2 + �2|(v � z)|2.

Proof. Using Lemma ??, we have
�

��↵L↵w � L�w
�

� 
p
1� ✏

p

|D2w|2 + 2�|rw|2 + �2|w|2 8↵ 2 A,

and therefore

sup
↵2A

�

��↵L↵w � L�w
�

� 
p
1� ✏

p

|D2w|2 + 2�|rw|2 + �2|w|2.

It then follows, with w = v � z, that

|F� [v]� F� [z]� L�w| =
�

� sup
↵2A

(�↵(L↵v � g↵))� sup
↵2A

(�↵(L↵z � g↵)� L�w
�

�

 sup
↵2A

|�↵L↵w � L�w|
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
p
1� ✏

p

|D2w|2 + 2�|rw|2 + �2|w|2.

⇤

Theorem 5. Let Ω be a bounded convex polygonal domain of Rd, let Th be a simplicial, conforming,
and shape-regular mesh of Ω without hanging nodes. Suppose that the coefficients are continuous in
Ω and satisfy the Cordes condition (??). Then there exist a unique solution uh 2 Vh satisfying (??)
provided � is sufficiently large. Moreover, there holds

ku� uhkh  C inf
vh2Vh

ku� vhkh  C
X

T2Th

h2s�4
T |u|Hs(T )(6.9)

provided that u 2 Hs(Ω) for some 2  s  k + 1.

Proof. Let vh, zh 2 Vh, and set wh = vh � zh, then by the Cauchy-Schwarz inequality, we have

hM[vh], whi � hM[zh], whi =
X

T2Th

Z

T

(F� [vh]� F� [zh]� L�wh)L�wh dx

+ kL�wk2L2(Th)
+ �

X

f2FI
h

h�1
f

Z

f

[[@wh/@nf ]][[@wh/@nf ]] ds
(6.10)

Continuing as in the proof of Lemma ??, we conclude that, for any ↵ 2 (0, 1), we have

hM[vh], whi � hM[zh], whi � ↵
�

1�
p
1� ✏

�

kwhk2h,
provided that (??) is satisfied; thus, Mh is strongly monotone. Continuing as in Lemma ??, we
also conclude that Mh is Lipschitz continuous (with respect to k · kh). By the Browder-Minty
theorem there exist a unique solution uh 2 Vh to (??). Finally, the error estimate (??) follows
from the consistency of the scheme, the monotonicity and Lipschitz continuity of Mh, and standard
interpolation estimates. ⇤

Remark 8. To implement the method, we use Howard’s algorithm to solve the nonlinear system;
see Algorithm ??. By [?] (also see [?, Section 5.3]), Howard’s algorithm converges superlinearly to
uh with a good initial guess ↵0.

Algorithm 1 Howard’s algorithm

1: Initialize ↵0 2 A,
2: while i � 0 do

3: Find ui
h such that 8vh 2 Vh,

X

T2Th

Z

T

�↵i(L↵iui
h � g↵i)L�vh dx+ �

X

f2FI
h

h�1
f

Z

f

[[@ui
h/@nf ]][[@vh/@nf ]] ds = 0.

4: if i � 1 and kui
h � ui�1

h kh  tolerance then Stop.
5: end if

6: ↵i+1 = argmax↵2A(L
↵ui

h � g↵),
7: i = i+ 1.
8: end while

7. Numerical experiments

In this section we perform some numerical experiments and test the accuracy of the finite element
methods for linear and nonlinear problems in non-divergence form. The penalty parameter is taken
to be � = 10 in all experiments.
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Figure 2. Test 1: Convergence plot of the two-dimensional linear problem with
k = 2 (left) and k = 3 (right). The red reference line has slope (k � 1), the blue
reference line has slope k, and the green reference line has slope (k + 1). The
behavior of the L2 error in the case k = 3 (right) is due to round–off error.

Test 1. In the first experiment we solve the linear problem (??) in two dimensions on the domain
Ω = (�⇡,⇡)2. The coefficients are taken to be

A = 10I2 +
xxt

|x|2
, b = 0, c = 0.(7.1)

The right-hand side function g is chosen such that the exact solution to (??)

(7.2) u(x1, x2) = sin(5x1) sin(5x2)/(3x
2
1 + x4

2 + 2).

It is easy to see that 9|ξ|2  ξtA(x)ξ  11|ξ|2 for all ξ 2 R
2, and therefore the Cordes condition is

satisfied with ✏ = 0.9 (cf. Remark ??).
We compute the numerical scheme (??) for polynomial degrees k = 2 and k = 3 and report

the resulting errors in Figure ??. The figure clearly shows asymptotic (k � 1)th order convergence
in the H2-type norm; this agrees with the theoretical results given in Theorem ??. In addition,
the experiments indicate that the method converges with optimal kth order convergence in the
H1 norm. The L2 error converges with (sub-optimal) second order convergence when k = 2 and
(optimal) fourth order convergence when k = 3.

Test 2. We again solve the linear problem (??) but in three dimensions with Ω = (�⇡,⇡)3, and
with lower order terms:

A = 10I3 +
xxt

|x|2
, b = (1 0 0)t, c = 10.(7.3)

Note that trA = 31, |A|2 = 321, and therefore

|A|2 + |b|2/(2�) + (c/�)2

(trA+ c/�)2
=

321 + 1/(2�) + (10/�)2

(31 + 10/�)2
.

Taking (for example) � = 1/2 yields

|A|2 + |b|2/2�+ (c/�)2

(trA+ c/�)2
=

722

2601
,

and therefore the Cordes condition is satisfied with ✏ = 435/722 (cf. Definition ??). In the numerical
experiments, the right-hand side function g is chosen such that the exact solution to (??) is given
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Figure 3. Test 2: Convergence plot of the three-dimensional linear problem with
k = 2 (left) and k = 3 (right). The red reference line has slope (k � 1), the blue
reference line has slope k, and the green reference line has slope (k + 1).

Table 1. The errors and rates of convergence for Test 2.

h ku� uhkL2(Ω) rate |u� uh|H1(Ω) rate ku� uhkh rate

k = 2 2�2 4.3663 7.6303 13.769
2�3 2.9558 0.56 5.1724 0.56 10.104 0.45
2�4 1.4819 1.00 2.6302 0.98 5.9030 0.78
2�5 0.5539 1.42 1.0053 1.39 2.8660 1.04
2�6 0.1631 1.76 0.3004 1.74 1.2913 1.15

k = 3 2�2 9.41E-01 1.79E+00 5.20E+00
2�3 1.36E-01 2.79 2.85E-01 2.65 1.65E+00 1.65
2�4 1.40E-02 3.28 2.86E-02 3.32 4.17E-01 1.99
2�5 1.37E-03 3.36 2.59E-03 3.46 1.02E-01 2.03
2�6 1.02E-04 3.74 3.12E-04 3.05 2.53E-02 2.01

by

u(x1, x2, x3) = sin(5x1) sin(5x2) sin(5x3)/(3x
2
1 + x4

2 + 2).

The computed errors, listed in Figure ?? and Table ??, show similar behavior as the previous
two-dimensional experiments. Namely, we observe asymptotic (k � 1)th order convergence in the
H2-type norm, and Table ?? indicate that

ku� uhkH1(Ω) = O(hk), ku� uhkL2(Ω) =

⇢

O(h2) k = 2,
O(hk+1) k � 3.

Test 3. In these series of experiments, we solve the nonlinear Hamilton-Jacobi-Bellman problem
(??) with d = 2, Ω = (�⇡,⇡)2, A = {1, 2}, and

A1 =

✓

2 1/2
1/2 3/2

◆

+
x1

|x1|

x2

|x2|

✓

1 1/2
1/2 1/2

◆

, A2 =

✓

3/2 1/2
1/2 2

◆

+
x1

|x1|

x2

|x2|

✓

1/2 1/2
1/2 1

◆

,

b
1 = b

2 = (1 0)t, c1 = c2 = 1.

The source functions {g↵}↵2A are chosen so that the solution of (??) is

(7.4) u(x1, x2) = sin(x1) sin(x2).
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Figure 4. Test 3: Convergence plot of the two-dimensional nonlinear problem with
k = 2 (left) and k = 3 (right). The red reference line has slope (k � 1).

With this data, we can verify that the Cordes condition (??) holds with � = 1 and ✏ = 1/6. Note
that the matrices are discontinuous at the lines x1 = 0 and x2 = 0. Therefore the problem does
not satisfy the conditions assumed in Theorems ?? and ??. Nonetheless, the plots of the errors
given in Figure ?? show that the method converges as the mesh is refined, albeit at sub-optimal
rates. Namely, the numerical experiments indicate that the method converges with the following
convergence rates:

ku� uhkL2(Ω) = O(hk�1), ku� uhkH1(Ω) = O(hk�1), ku� uhkh = O(hk�1).
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