Submitted to the Annals of Applied Statistics

MULTIVARIATE INTEGER-VALUED TIME SERIES WITH
FLEXIBLE AUTOCOVARIANCES AND THEIR
APPLICATION TO MAJOR HURRICANE COUNTS

By JAMES LivsSEY, ROBERT LUND, STEFANOS KECHAGIAS AND VLADAS
PIPIRAS

United States Census Bureau, Clemson University, SAS Institute and
University of North Carolina Chapel Hill

This paper examines a bivariate count time series with some cu-
rious statistical features: Saffir-Simpson Category 3 and stronger an-
nual hurricane counts in the North Atlantic and eastern Pacific Ocean
Basins. As land and ocean temperatures on our planet warm, an in-
tense climatological debate has arisen over whether hurricanes are
becoming more numerous, or whether the strengths of the individ-
ual storms are increasing. Recent literature concludes that an in-
crease in hurricane counts occurred in the Atlantic Basin circa 1994.
This increase persisted through 2012; moreover, the 1994-2012 pe-
riod was one of relative inactivity in the eastern Pacific Basin. When
Atlantic activity eased in 2013, heavy activity in the eastern Pa-
cific Basin commenced. When examined statistically, a Poisson white
noise model for the annual severe hurricane counts is difficult to re-
soundingly reject. Yet, decadal cycles (longer term dependence) in
the hurricane counts is plausible. This paper takes a statistical look
at the issue, developing a stationary multivariate count time series
model with Poisson marginal distributions and a flexible autocovari-
ance structure. Our auto- and cross-correlations can be negative and
have long-range dependence, features that most previous count mod-
els cannot achieve in tandem. Our model is new in the literature and
is based on categorizing and super-positioning multivariate Gaussian
time series. We derive the autocovariance function of the model and
propose a method to estimate model parameters. In the end, we con-
clude that severe hurricane counts are indeed negatively correlated
across the two ocean basins. Some evidence for long-range depen-
dence is also presented; however, with only a 49 year record, this
issue cannot be definitively judged without additional data.

1. Introduction. Hurricanes participate in equalizing global heat im-
balances. In the Northern Hemisphere, hurricanes form in the tropics and
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move northward to the Arctic, carrying equatorial heat to the pole in an
attempt to equalize global surface temperatures. Geophysicists often view
hurricanes, which require warm waters to form and thrive, as an Earth sweat-
ing mechanism. As surface and ocean temperatures of the Earth warm, more
equatorial heat will seemingly need to be dissipated. Accordingly, many sci-
entists believe that a warming Earth should experience increased hurricane
activity, expressed by a higher frequency of hurricanes and/or stronger indi-
vidual storms. Note that stronger individual storms do not necessarily mean
a larger number of strong storms.

Scientific debate over increasing hurricane activity has been intense. The
popular science book by Mooney (2007) narrates the scientific mudslinging
and the stances taken by different “camps” on various issues, including link-
ing hurricane changes to global warming. The debate was exacerbated by an
increase in North Atlantic Basin hurricane activity circa the mid 1990s. At
this time, Atlantic activity was concluded to have increased by many authors
[Elsner, Jagger and Niu (2000); Goldenberg, Landsea and Mestas-Nunez
(2001); Elsner, Kossin and Jagger (2008); Robbins et al. (2011)]. Some
physicists [Goldenberg, Landsea and Mestas-Nunez (2001)] explained this
increase as part of a natural multi-decadal cycle, whereby hurricane counts
oscillate on decadal cycles. Their claim that Atlantic activity would return
to normal levels was based largely on physical models; past data were not
considered. Another camp, the empiricists, claimed that an era of increased
hurricane activity is here to stay, is largely attributed to climate change,
and is supported by the data record.

Around 2012, North Atlantic hurricane activity markedly decreased. How-
ever, at this time, activity in the eastern Pacific Basin dramatically in-
creased. This was reflected, in particular, in the frequency of hurricanes. In
2015, the eastern Pacific Basin experienced ten severe hurricanes while the
Atlantic Basin had just two. Henceforth the term Pacific or Pacific Basin
will be referencing the eastern Pacific Basin. This on/off negative correla-
tion pattern has been persistent since the mid 1960s, when reliable Atlantic
and Pacific hurricane records commenced (this is the time at which satel-
lite surveillance began). One objective of this paper is to investigate this
negative dependence between the two annual basin counts. A long-range
dependence cycle in the basin counts is also statistically investigated.

Forecasting annual hurricane counts is difficult. Most forecasts of the
North Atlantic Basin’s activity a year in advance have little predictive power.
In fact, Atlantic Basin storm counts often pass Poisson white noise statisti-
cal tests, especially when only the strong storms are considered. This said,
some forecasting power can be achieved with covariates such as El-Nifo,
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North Atlantic oscillation (NAO), Northwest African rainfall, etc. at a few
months lead time [Gray (1984); Elsner and Jagger (2006)]. Previous work
has also used these covariates to show the different behavior of storms in
basins across the globe. For example, Elsner and Kocher (2000) note a neg-
ative correlation between tropical cyclones over the North Atlantic and four
other basins (western North Pacific, eastern North Pacific, northern Indian
Ocean and Southern Hemisphere). The authors then link this phenomenon
to NAO, showing that there is a significant positive correlation between
NAO and the global tropical cyclone activity index used in their analysis.
Confirmation of negative correlation between basins or longer memory cycles
in the individual basins should aid annual storm count forecasting.

Poisson distributions are natural models for the annual severe hur-
ricane counts due to their event-based interpretation. Indeed, many
authors have used Poisson or Poisson-based models [Mooley (1981);
Thompson and Guttorp (1986); Solow (1989); Parisi and Lund (2000);
McDonnell and Holbrook (2004); Xiao, Kottas and Sansé (2015)] to de-
scribe hurricane counts. This said, Poisson dynamics are not perfect: some
slight over-dispersion in the Pacific counts will be encountered. While
Chu and Zhao (2004) and Villarini, Vecchi and Smith (2010) and others
propose negative binomial marginals, which are over-dispersed, the amount
of over-dispersion in our data is minimal, as Section 3 shows. As such,
our work entails developing a bivariate stationary time series model with
marginal Poisson distributions for the annual storm counts. Extensions to
over-dispersed marginal count distributions will be addressed in our con-
cluding discussion.

Count time series modeling is an active current area of statistical re-
search [Davis et al. (2016)]. To describe the severe hurricane counts in both
basins simultaneously, a bivariate count time series model with Poisson
marginal distributions is needed — one that permits possible negative cross-
correlations at lag zero between the series and non-zero correlations at
decadal lags in each marginal series. Stationarity, the natural status quo
model, should be posited until it can be reliably discounted — essentially,
our null hypothesis is a non-changing hurricane climate. However, such a
count time series model has proven difficult to devise so far. Section 4 reme-
dies this issue.

The rest of the paper proceeds as follows. Section 2 presents a brief back-
ground on count time series models. Section 3 explores properties of the
bivariate hurricane count series. The construction of the bivariate Poisson
count model that allows for negative cross-correlations and long-range de-
pendence is undertaken in Section 4. Section 5 introduces a quasi-maximum
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likelihood parameter estimation method for this model; its performance is
investigated in a short simulation study in Section 6. Section 7 fits the
proposed model to the hurricane data. Conclusions and future work are
summarized in Section 8.

2. Time Series Background.

2.1. Count time series. Count time series arise in the investigation of
natural phenomena such as rare disease occurrences, animal sightings, and
severe weather events. This subsection reviews several stationary discrete-
time models for multivariate count series.

In contrast to continuous multivariate observations, where vector autore-
gressive moving-average (VARMA) processes take a dominant role, no single
class of count time series models has emerged as the most flexible, parsimo-
nious, and widely used [Fokianos and Kedem (2003); Davis et al. (2016)].
Many existing models cannot produce an arbitrary count marginal distri-
bution with negative auto- and cross-correlations, a feature present in our
hurricane counts. To handle this, a novel count time series model with posi-
tive or negative auto- and cross-correlations will be constructed in the next
section. Our model also allows for long-range dependence (LRD): the slow
autocorrelation decay in time exhibited in many real data sets.!

The most popular stationary count time series models are arguably the
integer autoregressive moving-average (INARMA) models introduced in
Steutel and Van Harn (1979) [see also Alzaid and Al-Osh (1990); McKenzie
(2003); Neal and Subba Rao (2006); Enciso-Mora, Neal and Subba Rao
(2009)]. INARMA models replace the scalar multiplication in continuous
ARMA models with thinning to keep the series integer-valued. The L-
dimensional first-order integer autoregressive (INAR(1)) series {Y:}, for
example, obeys the recursion

(21) Y, =aoY,_1+7Z.

Here, o is an L x L dimensional matrix whose entries o ; all lie in [0, 1],
a o Y, 1 is an L-dimensional vector whose ith component is defined as
(oY) = Zﬁzl a;j oY1 and {Z;} is L-dimensional independent
and identically distributed (IID) count-valued noise. The symbol o denotes
thinning and operates on a non-negative univariate integer-valued random
variable Y via poY := ZZY:O B;, where B; are IID Bernoulli(p) variables.
INAR series of general order and INARMA series are defined in some of the
above references.

"Many authors use the term “long memory” when referring to LRD.
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Many properties of ordinary ARMA models hold for INARMA models.
For example, a unique (in mean square) causal stationary solution to (2.1)
exists if and only if det(I — axz) has no roots inside the complex unit circle
|z| <1 (equivalently, the largest eigenvalue of a has an absolute magnitude
less than unity), where Ij is the k X k identity matrix. This said, since all
thinning probabilities «; ; must lie in [0,1], one can show that an INARMA
model cannot have any negative correlations [Lund and Livsey (2016)]. In
this way, INARMA models are not as flexible as ARMA models.

Recently, negatively correlated count series have been investigated in
the literature. Kachour and Yao (2009) achieve negative autocorrelation by
rounding solutions to continuous Gaussian ARMA equations. For example,
the univariate (multivariate extensions are straightforward) rounded integer
autoregressive model of order p obeys

p

j=1

where () rounds z to its nearest integer (round down should there be two
nearest integers), p is a location parameter, ¢1,...,¢, are autoregressive
coefficients, and {e;} is count-valued IID noise. While such series can have
negative autocorrelations, this method, due to the rounding, makes it diffi-
cult to produce a pre-specified marginal distribution. The ability for a user
to select the marginal distribution can be important; for example, Poisson
marginal distributions for the hurricane counts will be sought.

Cui and Lund (2009) use a renewal/point process based approach to de-
vise univariate count time series models with negative autocorrelations.
There, a renewal sequence is used to generate a correlated but stationary se-
quence of zeros and ones. IID copies of these correlated binary processes are
then superpositioned akin to Blight (1989) to produce the marginal distri-
bution sought. While renewal methods produce very flexible autocovariance
structures in one dimension, they fail in two or more dimensions: in bivariate
renewal processes, the item number in use at a large time t is unlikely to
be the same for each component. Since different components are typically
assumed independent in renewal processes, such methods will produce inde-
pendent components. While Lund and Livsey (2016) discuss this issue and
show how to bypass it, the fixes are unwieldy.

Other count time series methods have been devised; e.g., GLARMA
series [Dunsmuir (2016)], state-space approaches [Davis and Dunsmuir
(2016)], finite mixtures of multivariate Poisson  distributions
[Karlis and Meligkotsidou  (2007)] and hidden Markov techniques
[MacDonald and Zucchini (2016)]. See also Barndorff-Nielsen et al. (2014)



6

and Kerss, Leonenko and Sikorskii (2014). A recent and more detailed
review of multivariate count time series models can be found in Karlis
(2016). These models all have a drawback that precludes them for our use
— either a fixed marginal distribution is difficult to achieve or the model
cannot produce negative correlations or LRD.

2.2. Long-range dependent models. Univariate LRD models have at-
tracted attention across a broad spectrum of scientific disciplines such as
finance, economics, computer networks, physics, etc. In the climate sciences,
the existence of long-range dependence and scaling phenomena has been in-
tensely debated. In a celebrated work, Hasselmann (1976) advocates that
climatic dynamics can often be adequately described by AR(1) processes.
This view was challenged in a series of articles reviewed in Mudelsee (2013)
that claim that temperatures follow a universal power law, and hence should
have LRD features. Varotsos and Efstathiou (2013) examine long memory
in tropical cyclone counts (not severe hurricanes); Yuan, Fu and Liu (2014)
assert satisfactory performance of a fractionally integrated LRD model in
describing Northern Hemisphere temperature anomalies and Pacific decadal
oscillations.

Although multivariate LRD has been studied less than its scalar counter-
part, it has attracted considerable attention recently. An intuitive definition
of multivariate LRD extends the univariate non-summability characteriza-
tion: a multivariate stationary series {Y;} is said to be LRD if

o0

(2.2) Y lICov(Ye, Yiup)| = oo,

h=—00

where ||A|| denotes the Frobenius norm of a matrix A. Other definitions of
multivariate LRD are possible (see Kechagias and Pipiras (2015) for a de-
tailed treatment on the subject). The series is short-range dependent (SRD)
if the autocovariances are absolutely summable in (2.2). Little has been done
on LRD count series; Quoreshi (2014) and Lund, Holan and Livsey (2016)
are two recent exceptions, although these are univariate works.

Vector autoregressive fractionally integrated moving average (VARFIMA)
series will be used to construct our count time series model; these are bi-
variate extensions of the celebrated ARFIMA model class, which have been
extensively studied and used in applications [Park and Willinger (2000);
Robinson (2003); Doukhan, Oppenheim and Taqqu (2003); Palma (2007);
Giraitis, Koul and Surgailis (2012); Beran et al. (2013); Pipiras and Taqqu
(2017)]. VARFIMA models can capture both LRD and SRD. Moreover, their
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autocovariance function can often be expressed in a closed form that facili-
tates computations and statistical inference.

3. The Severe Hurricane Data. Figure 1 depicts the annual num-
ber of major hurricanes (Saffir-Simpson Category 3 and above) recorded
in the North Atlantic and North Pacific Basins since 1967. Our data com-
mences in 1967 as problems exist in the Pacific record before this time (in
pre-satellite years, storms could form over open ocean waters and not be
detected). We omit 1966, the first year of satellite era, from our analysis
due to the decommission of satellite ESSA-1 amidst the Pacific hurricane
season. Saffir-Simpson Category 3+ storms have wind speeds of 111 mph or
more at some time during the storm’s lifetime. Our focus here is on counts
of storms reaching this threshold but do not investigate individual storm
intensity. The peak wind speed for each storm is used as a measure of the
storm’s severity.
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Fig 1: Annual number of Saffir-Simpson category 3 and stronger hurricanes
in the North Pacific and North Atlantic Oceans.

Marginally, the two component series are roughly Poisson distributed
(there is a slight amount of over-dispersion). Elaborating, from 1967-2015,
the sample means and standard deviations of the annual counts are

gAtlantic - 231 gPaciﬁc = 310
82Atlantic = 297 Sgaciﬁc - 576

The Atlantic major hurricane counts handily pass all Poisson diagnostic
checks: a chi-squared goodness-of-fit test with separate bins for the counts
0,1,2,...,7 and a bin for counts > 8 produced a critical value of 13.00 with
7 degrees of freedom — a p-value of 0.232. For the Pacific series, the same
test gives a p-value between 0.05 and 0.1, regardless of the binning choices.
Most of the Pacific’s Poisson departures is attributed to large counts. While
other distributions allowing for over-dispersion and heavier tails are worth
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consideration (e.g., negative binomial, generalized Poisson), we proceed with
a Poisson marginal distribution as roughly reasonable and illustrative.

Figure 2 shows the sample auto- and cross-correlation functions of the
Atlantic and Pacific series (blue dashed lines). Pointwise 95% confidence
bands for white noise are included. The Atlantic counts are close to white
noise; the Pacific counts less so, but still are not heavily correlated. The
sample correlation between components (this is a lag zero cross-correlation)
is —0.295, hinting that active North Atlantic seasons are typically accom-
panied by inactive North Pacific seasons (and vice versa). This value is very
close to the boundary of +1.96/ VT, the asymptotic 95% confidence inter-
val for an IID series. Hence, final judgement of the issue is unclear without
additional analysis. In what follows, we determine this correlation to be de-
cisively negative. In short, our model will help establish negative correlation
inference by utilizing the correlated count structure of the data.
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Fig 2: Sample (dashed lines) and theoretical (solid lines) auto-correlation
functions (top plots) and cross-correlation function (bottom plot) of major
hurricane counts in the Atlantic and Pacific Basins. The theoretical auto-
and cross-correlation functions are computed using (4.8)—(4.9) with param-
eter values from Table 2. See Section 7 for more details.
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4. A Multivariate Poisson Count Time Series Model. This sec-
tion constructs a multivariate count time series model with Poisson marginal
distributions that allows for negative correlations and LRD. For presenta-
tion ease, we focus on the bivariate case and construct the model in four
steps. We begin with a stationary bivariate Gaussian series.

Step 1: Start with a bivariate Gaussian series.
Let {X;}iez = {(X14, X2,1) hez be a bivariate, second-order stationary
time series with E[X¢] = 0 and lag-h autocovariance matrix

(4.1) Ix(h) = E[X:X} ] = ( 2183 %zgzg ) '

We suppose that X; follows a bivariate Gaussian distribution for each fixed
t, i.e.,

(4.2) Xt“N2(<8)’<;T>)’

where p = 712(0) = 72,1(0). The unit marginal variances imply that the
autocorrelation function of {X;} satisfies

(43) COI‘I‘(XZ'7t,Xj7t+h) = pi,j(h) = 'Yi,j(h)y ,7=1,2, heZ.

At this point, no further assumptions are placed on I'x (h) as h — oo; how-
ever, later in this section, a bivariate parametric model for {X;} is posited
that can capture both short- and long-range dependent dynamics.

Step 2: Place the components of the Gaussian series into categories.
Let {S;}iez be a bivariate series, whose individual components bookkeep
the positive/negative signs of the components in {X,}:

(4.4) Si = < p ) = < (0 > :

Sa,t Lix,, >0}
where 14 is the indicator of the event A. Lemma 4.1 below shows that
{Si}iez is stationary and identifies its mean and autocovariance function

Ls(h) = E[S;S}, ;] — E[S{E[S¢1n])".

LEMMA 4.1. The series {Si}iez is stationary with mean E[S;] =
(1/2,1/2)" and lag-h autocovariance matriz

_ 1 [ arcsin(p11(h)) arcsin(p12(h))
(4.5) Ts(h) =5 ( arcsin(pz 1 (h))  arcsin(ps.a(h)) > :

where p; j(h), 1,5 =1,2,h € Z, are as in (4.3).
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Lemma 4.1 is an immediate consequence of the univariate result given
in Section IIT of Van Vleck and Middleton (1966). Note that arcsin(z) < 0
if and only if —1 < x < 0. Hence, the sign of the auto/cross-correlations
of the component series {S1,;} and {S2;} is determined by the sign of the
auto/cross-correlation functions of {X; .} and {Xs,}, respectively. There-
fore, {S;} can have negative auto- and cross-correlations. Also, long memory
features of {X;} are passed on to {S;}:

COROLLARY 4.1. If'x(-) satisfies (2.2), then so will I's(+).

Corollary 4.1 follows directly from the fact |arcsin(z)| > |z| for =z €
[—1,1], implying that |arcsin(p; ;(h))| > |ps;(h)].

Step 3: Superimpose 11D copies of {S;}iez.

Let {Sg’“}ggl = {(Sﬁ),Séi))’}zil be a sequence of IID replicates of
the bivariate binary process {S;}icz. To obtain Poisson marginal distribu-
tions, we will superimpose these binary processes as in Blight (1989) and
Cui and Lund (2009). More specifically, consider the bivariate count series

ZNltS
(4.6) Y, = ( Ve ) = . , tez,
Z QtS

where for each 1 = 1,2 and t € Z,
(4.7) N+ ~ Poisson(\;),

for some \; > 0. We also assume that the processes {Nj:} and {Ny;}
consist of independent variables, are mutually independent, and are also
independent of the series {Sgk)}, kE =0,1,2,.... The components Y7 ; and
Y5 are Poisson random sums of Bernoulli(1/2) variables; hence, they have
Poisson distributions with means A1 /2 and \y/2, respectively.

In Proposition 4.1 below, {Y;} is shown to be stationary and its mean and
autocovariance function are derived. The autocovariance function involves
the cumulative distribution function (CDF) of the random variable W =
My — M>, where M and M> are independent Poisson random variables with
means A1 and Ag, respectively. The random variable W follows the so-called
Skellam (A1, Ag) distribution [Skellam (1946)], whose CDF Fyy (-; A1, A2) can
be computed accurately and efficiently.
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PROPOSITION 4.1.  The series {Y}iez is stationary with mean E[Y] =
(M/2,22/2) and lag-h autocovariance matrix

1 c11arcsin(pr1(h)) ¢ 2arcsin(py 2(h))
48 Ty (h) = — ( curaresinip, 2 arcsinipy, ,
(4.8) v (h) o ( coq arcsin(pa1(h)) o2 arcsin(pa2(h))

where p; j(h), h € Z,i,5 = 1,2, are as in (4.3) and

(49) C_{2)\Z’ i=73,h=0,
) by )\Z'Fw(—l; )\1, )\2) + )\j[l — Fw(l; )\1, )\2)]7 Otherwise,

where Fyy (3 A1, \2) is the CDF of the Skellam(\1, \2) distribution.

Corollary 4.1 applies here and shows that LRD in {X;}4cz will be inher-
ited in {Y;}iez. Relation (4.8) will aid statistical inference, our Section 5
objective.

Step 4: Select a parametric model for {X;}iez.

Given di,ds € (—1/2,1/2), set D = diag(d;,dz2) and let ®(z) and O(z)
be the usual autoregressive and moving-average polynomials of orders p and
q; viz.,

‘I’(Z):I2—‘I’1Z—“‘—‘I'p2’p, @(Z):IQ+@1Z+~~~+®qzq,

where ®;,i = 1,...,p, ©;,7 = 1,...,q, are 2 x 2 matrices. Let {n,}cz
= {(m.t,m2.4) }1ez be a bivariate Gaussian white noise series with mean
E[n,] = 0 and covariance matrix E[n,n;] = ¥ = (0 )i j=1,2. Recall that
the univariate fractional differencing/integration operator (I — B)?, where
I = BY and B denote the identity and backshift operator respectively, is
defined through the Taylor series

T(k+1)

) k=0,1,...
T((k +d)’ e

(I-B)" =) bB* with b=
k=0

for any d € (—=1/2,1/2) (see, for example, Beran et al., 2013;
Pipiras and Taqqu, 2017).
Now suppose that {X;} of Step 1is a VARFIMA (p, D, q) series satisfying

(4.10) (- BP®(B)X, = ©(B)n,
where the operator (I — B)P is understood to be
[ (I=B)*" 0
(I B) - < 0 (I o B)dz :

The parameters di and ds govern the decay rate of the autocovariances of
{X}} to zero.
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REMARK 4.1. When p = ¢ = 0, the components of the lag-h autocovari-
ance matrix I'x (h) of a VARFIMA(0, D, 0) series are
(4.11)

. o (—1)hr(1 —di — dj) pdi+d;—1
%0ith) = v T g e —d, —hy

for i,j = 1,2 and for some constants x; ;.> Equation (4.11) illuminates the
role of the parameters di,ds: if di,ds € (0,1/2), the power-law decay in
(4.11) implies that {X;} has LRD. When d;,d2 € (—1/2,0), the left-hand
side of (2.2) is finite and the series exhibits a special type of SRD called
anti-persistence. When d; =0 for i =1 or 2, ; ;(h) = 0 for h > 0, implying
that the corresponding component series {X;;} is white noise. Finally, the
asymptotic relation in (4.11) holds for any p, ¢ for suitable constants r; ;.

REMARK 4.2. When p =0 and ¢ > 1, I'x(h) can still be efficiently cal-
culated (see Proposition 3.1 in Kechagias and Pipiras (2017) with ¢ = 0).
When p = 1, explicit expressions for I'x (h) are not known, but autocovari-
ances can be numerically computed up to any desired accuracy; however,
an additional assumption on the AR polynomial ®(B) is needed (all of its
eigenvalues need to be positive; Sela, 2010). Finally, computing I'x (h) when
p > 2 is not straightforward. As such, we focus on models with p = 0, 1.

REMARK 4.3. The white noise series {7, } must meet certain criteria for
{X;} in (4.10) to satisfy (4.2). The zero mean and Gaussian distribution of
{X;} follow directly from the zero mean and Gaussian distribution of {n,}.
However, the structure of the variance matrix in (4.2) implies that only the
nondiagonal entries of 3 are free parameters. When p = ¢ = 0, the variance
structure is achieved by setting 71,1(0) = 722(0) = 1, and v;2(0) = p in
the first equality of (4.11), and then solving for oy 1,022 and o} 2. The same
technique can be used when p = 1 or ¢ = 1; unfortunately, in these cases, the
solution of the linear system is not necessarily unique, and in fact may not
even be a positive definite matrix. This issue is revisited at the end of Section
5. In particular, the cross-correlation p will be used as a free parameter in
the estimation procedure below.

5. Inference. This section puts forth a quasi-maximum likelihood es-
timation (QMLE) method for the model in Section 4. We consider the
underlying VARFIMA (p, D, q) series {X;} satisfying (4.2) and the orders
(p,q) = (0,0), (p,q) = (0,1) and (p,q) = (1,0). Let & contain all model pa-
rameters; these include the long memory parameters d; and do, the Poisson

2For two sequences {an}nen and {bn }nen, an ~ by stands for an /b, — 1 as n — co.
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means A and Ag, the cross-correlation p (instead of the parameters in 3 —
see Remark 4.3) and all parameters in ® and ©.

The exact likelihood structure of the count series data {Yt}t:17___7T, where
T is the sample size, has proven to be intractable [Fokianos and Kedem
(2003); Davis et al. (2016)]. Nonetheless, analogous to ordinary time se-
ries theory, a quasi log-likelihood can be devised from the model’s autoco-
variance function. Using the multivariate Durbin-Levinson (DL) algorithm
[Brockwell and Davis (2009)], this quasi log-likelihood has the form

T

T
1 1 AN _ A~
(5.1) L(g) o< —5 > log V| - 3 > (Y=Y V(Y- Yo,
=1 =1

where ?t = E[Y¢1,Y1,..., Y] is the best linear one-step-ahead pre-
dictor of Y; from a constant and a process history (Y, = E[Y}]) and
Vi1 = E[(Y, — Y)(Y, — Y,)] is the corresponding mean squared er-
ror. These quantities can be recursively obtained from the multivariate DL
algorithm that has computational complexity O(7T?); however, the form in
(5.1) conveniently bypasses inversion of a 27" x 27" covariance matrix. Such
an inversion is needed in a brute force evaluation of the Gaussian likelihood,
an approach that should only be chosen over (5.1) for small sample sizes.
The QMLE parameter estimates are

(5.2) E = argmax L(§),
£es

where the k—dimensional (k = 5+ 4p + 4¢q) parameter space S is defined as
S={6cRF: —1/2<di,dy <1/2, \,\a >0, -1 <p<1}

The estimates E do not have a closed form, but can be computed numerically
from a quasi-Newton algorithm. This algorithm is available in the NLPQN
function of SAS/IML, which is the software used in Sections 6 and 7. More-
over, using the NLPFDD function, we computed the inverse Hessian of the
likelihood function which we used to obtain confidence intervals.

We conclude this section with some observations about S. First, in view
of Remark 4.1, it is important to allow the parameters d, ds to take negative
values; optimization with dy,dy € (0,1/2) may yield artificial LRD in the
sense that positive d; or do are obtained due to parameter constraints and
not because of the underlying LRD. Second, no constraints are imposed on
the entries of ®; or ®; except the following: in numerical implementation
of (5.2), we set L(§) = —oo if @1 or ©; have any eigenvalues whose abso-
lute modulus exceeds unity. This condition is equivalent to requiring that
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all roots of ®(z) and O(z) lie outside of the complex unit circle and is a
standard assumption guaranteeing that a causal and invertible solution to
the VARMA difference equation exists [Liitkepohl (2005)]. Candidate max-
imizers of &€ that violate this constraint are assigned an infinitesimally small
likelihood to ensure that estimators are causal and invertible. Finally, the re-
strictions on X discussed in Remark 4.3 cause issues for VARFIMA(0, D, 1)
and VARFIMA(1,D,0) models, where autocovariance functions are more
complex than those in the simpler VARFIMA (0, D, 0) model. In these cases,
one can still compute the parameters o1 1,012, and 09 2 that ensure marginal
unit variances and a prescribed correlation p for {Y:} by solving a linear
system whose coefficients are nonlinear functions of dy, do, p, ® and ©. After
experimenting with several parameter schemes for di, ds, p, ® and O, these
systems were found to always have unique solutions. However, these solu-
tions did not always lead to a positive definite estimate of 3. We dealt with
such candidate maximizers of L(£) by again assigning them a log-likelihood
of —oo.

6. Simulation Study. This section fits the model of Section 4 to the
simulated bivariate count data via the QMLE method of the last section. The
VARFIMA orders (0,D,0), (0,D,1), and (1,D,0) are considered. For each
model, 100 series were simulated with 7" = 200,400 and several VARFIMA
parameter values. To generate the underlying Gaussian series, the fast and
exact synthesis algorithm of Helgason, Pipiras and Abry (2011) is used. The
steps in Section 4 are followed to generate the count series.

Table 1 shows the median bias (MB) and median absolute deviation
(MAD) for the obtained estimates. The true parameter values were d; = 0.3,
do = 0.2, A\ = 3, Ao = 2 for all columns and p = 0.45, —0.9, 0.5, —0.9 for
columns (0,0)1, (0,0)2, (1,0) and (0,1) respectively. Finally, for columns
(1,0) and (0,1) the AR and MA coefficient matrices were

0.4 0.1 0.1 —-0.6
®= ( 0.3 0.6) and - © = ( 02 08 )

respectively. Overall, the QMLE method performs very well in terms of
MBs in most cases, even though the sample sizes used here are considered
small/medium in the LRD literature.

Most MBs and MADs decrease with increasing sample size. An exception
is the MBs for some parameters in models with SRD components, especially
those in the (1,0) column. This is attributed to the negative definiteness

issue discussed at the end of Section 5. Nevertheless, all MBs and MADs did
decrease when the sample size T' = 1000 was considered. Other parameter



FLEXIBLE COUNT TIME SERIES

15

schemes were experimented with and produced similarly good results, but
are not shown here for brevity’s sake.

(p,9) (0,0): (0,0)2 (1,0) (0,1)

T 200 400 200 400 200 400 200 400

4 —0.011 | —0.010 | —0.013 | —0.024 | —0.029 | —0.039 | 0.059 | 0.069
0.082 | 0.059 | 0.075 0.061 0.138 | 0.107 | 0.057 | 0.038

i —0.026 | 0.009 | —0.003 | 0.010 | —0.019 | —0.190 | 0.071 0.085
0.093 | 0.065 0.093 | 0.074 | 0.183 | 0.179 | 0.070 | 0.047

N —0.046 | —0.021 | 0.018 | —0.028 | —0.049 | —0.065 | —0.024 | —0.013
0273 | 0229 | 0.320 | 0.214 | 0.309 | 0.338 | 0.231 0.199

s 0.029 | 0.023 | —0.019 | 0.017 | —0.077 | —0.035 | —0.023 | 0.010
0.157 | 0.125 0210 | 0.171 0228 | 0.165 | 0.156 | 0.149
0.072 | 0.045 0.001 | —0.024 | —0.002 | 0.042 | 0.060 | —0.011
P 0.218 | 0.155 0.077 | 0.050 | 0.196 | 0.163 | 0.110 | 0.050
By, /0 0.069 | 0.248 | —0.004 | —0.017
L1511 0.243 0.267 | 0.021 0.023
B12/001 s 0.017 | —0.090 | 0.165 | 0.145
: : 0.241 0.178 | 0.085 | 0.086
Bos /O —0.023 | —0.071 | 0.130 | 0.133
: ' 0.158 | 0.168 | 0.069 | 0.047
Brs/Ons 0.052 | 0.088 | 0.020 | 0.032
* : 0.148 | 0.140 | 0.020 | 0.022
TABLE 1

Median bias (top entries of each cell) and median absolute deviation (bottom entries of
each cell) of estimated parameters for the three models. The true parameter values are
d1 =0.3,d2 = 0.2, \1 = 3,2 = 2 for all columns, p = 0.45,—0.9 for columns (0,0)1 and
(0,0)2 respectively, ®1,1 = 0.4,P12 = 0.1, P21 = 0.3, P22 = 0.6 for column (1,0) and

01,1 =0.1,012 = —0.6, ©21 = 0.2,022 = 0.8 for column (0,1).

-

-

we b--{JTH
- -

i

:

R
++

e fily

-

3
|
|
|
|
|
1
1
1
I
I
|
|
T s

=2

S

e O

T B O S

dy dy N

dy dy

Aep P Pip Py P

dy dy M

P 911 e12 921 @22

Fig 3: Boxplots of the estimates from columns (0,0)1 (left box), (1,0) (middle box)
and (0,1) (right box) of Table 1 for T = 400. The dashed blue lines correspond to
the true parameter values, while the solid red lines are the medians.

The boxplots in Figure 3 provide a distributional view of the parameter
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estimates from columns (0,0)y, (0,1), and (1,0) of Table 1 for 7' = 400. The
dashed blue lines demarcate the true parameter values, while red lines show
medians. The boxplots for estimates of Ay and Ao are centered at zero by
subtracting the true parameter value, providing a uniform presentation scale.
Finally, when experimenting with larger sample sizes, the symmetry/outliers
in these boxplots increased/decreased significantly.

7. Hurricane Data. Table 2 displays parameter estimates and the cor-
responding AIC and BIC scores obtained by fitting the bivariate count model
of Section 4 to the hurricane count series. We considered here three under-
lying Gaussian processes: a VARFIMA(0,D,0), a VARFIMA(1,D,0) and
an IID series. Subscripts of unity refer to the Atlantic Basin, subscripts of
two refer to the Pacific Basin, and ®; ;, ¢,j = 1,2 are the entries of the 2 x 2
AR matrix ®;. The IID model produced the smallest information criteria,
however, for the univariate Atlantic series, where a longer reliable record is
available, LRD models are decisively preferred over the IID one by AIC. We
investigate this phenomena further in Section 7.1.

Model d1 dz )\1 )\2 p ‘I'l,l (1)112 (I)le (1)212 AIC BIC
(0,D,0) | 0.24 | 0.23 | 5.7 | 11.5 | —0.96 239 249
(1,D,0) | =04 | 0.12 | 5.6 | 10.3 | —0.70 | 0.88 | 0.26 | —0.01 | 0.01 | 242 | 259
(0,0,0) 0 0 5.8 | 11.3 | —0.97 237 | 242

TABLE 2

Parameter estimates and corresponding AIC and BIC' scores for the hurricane series for
VARFIMA (0,D,0), (1,D,0) and (0,0,0) models.

The quasi-Newton algorithm converged for all models, but termination
criteria differed. In the VARFIMA(1,D,0) case, the maxima occurred at
the boundary of the feasible region (]3| < 0 for p < —0.7), while for the
IID and VARFIMA (0, D,0) models, all gradient values were < 1075 at the
maxima indicating that the maxima occurred at an interior point of S. The
VARFIMA(0,D, 1) and VARFIMA(0, D, 0) models produced almost identi-
cal estimates, but the VARFIMA (0, D, 1) model had a negligible increase in
log-likelihood; hence, we omit listing VARFIMA (0, D, 1) results in the table.
For all models investigated, multiple starting points of the parameters were
investigated to ensure globally optimal estimators were found in the step and
search optimization algorithm. All estimated LRD parameters are between 0
and 1/2, except for the Atlantic series under the VARFIMA(1, D, 0) model,
which is —0.4. In this case, the dependence in the series is captured by the
AR coefficients @1,1 and 5172 (this is a common phenomenon in estimation
of Gaussian VARFIMA(1,D,0) series with a small sample size, especially
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when one of the AR parameters is significantly greater than zero).

As the AIC and BIC scores are smaller for the IID and VARFIMA (0, D, 0)
fit compared to the VARFIMA(1,D,0) case, confidence intervals (CIs) for
the parameters of these models will be reported. Standard errors were ob-
tained from the usual second derivative of the quasi log-likelihood function.
First, the 90% ClIs for p are [—1.00,—0.75] and [—1.00, —0.59] for the IID
and VARIFMA (0, D, 0) models respectively. Hence, p is decisively negative
and the negative correlation between basin counts appears real. Substitut-
ing the VARFIMA (0, D, 0) estimates into (4.8)—(4.9) yields a lag zero cross-
correlation of —0.28, which closely matches the sample cross-correlation of
—0.295. Second, 90% CIs for the LRD parameters are [—0.095,0.50] for the
Atlantic Basin and [—0.235,0.50] for the Pacific Basin. As both intervals
contain zero, long memory cannot be definitively declared in either basin,
despite the positive estimates of the LRD parameters. Of course, wide inter-
vals are expected with only 49 years of data; a few years of additional data
may change this conclusion, especially for the Atlantic Basin, which was a
close call. Finally, the 90% Poisson parameter confidence intervals from the
IID and VARFIMA(0, D, 0) models are [3.90,7.72] and [3.81, 7.60] (Atlantic
Basin) and [7.78,14.78] and [7.21, 15.82] (Pacific Basin) respectively.

Recall that the mean of the ith component series is \;/2 for i = 1,2. For
feel, the auto- and cross-correlations of the fitted VARFIMA (0, D, 0) (green
solid lines) and VARFIMA(1,D,0) models (red dotted lines) are plotted
together with the sample auto- and cross-correlations (blue dashed lines) in
Figure 2 — no radical disagreements are seen.

7.1. Further investigation into LRD. While long memory cannot be de-
clared to any reasonable degree of statistical confidence, it cannot be dis-
counted with only 49 years of observations. In this vein, we investigate here
how long the observation record must be to conclude long memory with our
model and we look further into long-memory dynamics of the Atlantic Basin
where a longer reliable sample is available.

First, we generated bivariate LRD count series for various parameter val-
ues and checked whether confidence intervals for LRD parameters contain
zero (corresponding to the SRD case and, more specifically, IID counts). The
empirical proportions of confidence intervals containing zero are presented
in Figure 4, for parameter values indicated in the figure titles. Note that
the smallest sample sizes needed to distinguish between the IID and LRD
counts are relatively small. In fact, at level 50% and for larger values of d,
they are around the sample size of the data considered in this paper. But
for higher certainty, larger sample sizes (than that in this paper) are re-
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quired. We note that we also investigated the sample size issue through the
portmanteau tests as in Percival, Overland and Mofjeld (2001), but found
the needed sizes for concluding long memory to be considerably larger than
those deduced from confidence intervals.

Poisson-Arfima(0,D,0), p=-0.5, Ay = 5, Ao = 10

- - d1=02] |
——dy=0.4

Poisson-Arfima(0,D,0), p=0, Ay = 5, A2 = 10

£ .1 - - d1=0.2] |
. ——dy=0.4

3
8

©
8

®
8

\
N
E] A VAR

70 -

% of c.i. containing zero over 100 replications
% of c.i. containing zero over 100 replications

50 100 150 200 250 300 350 400 450 500 550 600 50 100 150 200 250 300 350 400 450 500 550 600
Sample size Sample size

Fig 4: Empirical proportions of confidence intervals containing zero as func-
tions of log, T'.

To further investigate the Atlantic Basin major hurricane counts, we fitted
univariate IID and Poisson(A)-ARFIMA(0,d,0) models to data starting in
1900. The Poisson(\)-ARFIMA(0, d, 0) had smaller information criteria and
produced 95% confidence intervals [0.224, 0.497] and [4.851, 6.989] for d
and A, respectively. Note that although aircraft surveillance in the Atlantic
Basin commenced in 1944, data with good reliability on tropical cyclones
striking the east coast extends back to 1900 (according to the web archive of
the Atlantic Oceanographic and Meteorological Laboratory of the National
Oceanic and Atmospheric Administration). For more closure on this issue,
we ran a simulation study to see how often LRD is rejected by AIC/BIC
when the true data generating process is in fact LRD. More specifically,
we generated synthetic data using the Poisson(A1, A2)-VARFIMA(0, D, 0)
model and then fitted two models, a misspecified IID model and the true
one. Figure 5 shows empirical proportions (over 100 replications) where AIC
and BIC selected the misspecified IID model over the true one for several
sample sizes and parameter schemes. AIC performed well in most cases we
considered, selecting the true model more than 50% of the time for sample
sizes as small as 60 (red solid lines).

7.2. Model diagnostics. We comment here on some procedures for model
diagnostics for count time series as they relate to our model and its



FLEXIBLE COUNT TIME SERIES 19

dy = 0.2, dy = 0.4, p=-0.5, A\ =5, Ay = 10

——BIC
“or ——AIc||

dy = 0.2,dy = 04, p=0, \y =5, Ay = 10

——BIC
[ ——AIc||

% of ICp < ICop( over 100 replications

% of ICp < ICop( over 100 replications
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Sample size Sample size

Fig 5: Empirical proportions over 100 replications where information criteria
pick the ITD model over the LRD model, where the latter is used in the data
generating process.

fit to the hurricane data. More specifically, we focus on the probability
integral transform (PIT) and related diagnostics plots as introduced in
Czado, Gneiting and Held (2009) and further analyzed in Kolassa (2016).

These diagnostics tools are based on the one-step-ahead predictive distri-
butions, and have been considered in the case of univariate data. Applying
them here raises at least two difficulties. One is transitioning from the uni-
variate to the bivariate case, which should be examined apart from our
model. For this reason, we consider here only the univariate analogue of
our model and the univariate component series, say the counts of the At-
lantic hurricanes. Another issue is that our count time series model does
not lend itself to analytic calculations of predictive distributions. But we
have an efficient numerical algorithm to compute these predictive distribu-
tions through Monte-Carlo simulations. Describing the method here would
go beyond the scope and the main theme of the paper — the details will
appear elsewhere. We hence limit our discussion to several illustrative plots
and some observations.

Figure 6 presents non-randomized PIT histograms for the Atlantic hur-
ricane counts. The left plot corresponds to the Poisson IID model and the
right plot corresponds to the Poisson(A)-ARFIMA(0,d,0) model, with the
parameter values taken as those estimated from the data. A uniform PIT
histogram suggests an adequate fit. The U-shapes of the histograms point
to an overdispersed fitted model, though the PIT histogram for the Poisson-
ARFIMA(0,d,0) model seems to suggest a slightly improved fit (especially
focusing on the last few bins). In fact, in the IID case, we examined the
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PIT histograms for several other common overdispersed distributions (e.g.
negative binomial), but the disagreement over the last few bins in the PIT
histograms remained present.

Fig 6: PIT histograms for IID (left) and Poisson-ARFIMA(0,d,0) (right)
models fit to the Atlantic hurricane counts.

8. Conclusions. This paper introduced a novel stationary bivariate
count time series model with Poisson marginal distributions and possible
negative correlations and long-range dependence. Most count models devel-
oped to date do not allow combination of these three features. The model
was used to analyze annual severe hurricane counts in the North Atlantic
and Pacific Basins, series with important climatic ramifications that have
been intensely scrutinized by climatologists [Mooney (2007)]. We find a def-
inite negative correlation between the two basins. Although we are not able
to decisively prove existence of long-memory dynamics, a convincing argu-
ment is presented for the Atlantic Basin and a foundation for discussion in
the Pacific.

Modifications to our model are worth exploring. For example, negative
binomial marginal distributions on the support set {0,1,...} can be pro-
duced with our tactics — one need only take {N;;} and {N2:} in (4.6)
to be independent processes, each themselves composed of IID negative bi-
nomial draws. Negative binomial marginal distributions are over-dispersed
and have been suggested as marginal distributions for hurricane counts
in Chu and Zhao (2004) and Villarini, Vecchi and Smith (2010). However,
complexities arise. Even eschewing time-correlation aspects, there is no guar-
antee that a bivariate random pair whose marginals are negative binomial
and have a negative correlation as high as —0.3 exists. We have yet to be
able to construct a case, using the above paradigm, where the correlation
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between the pair is anything lower than —1/4 (for any negative binomial
parameters and background Gaussian correlation parameter, much less for
parameters that give us roughly the means of our counts). Some methods of
Joe (1996) will produce series with higher positive correlations than 1/4, but
negatively correlated series cannot be achieved with those methods. When
we fitted this negative binomial version of the model to the count data, the
estimated parameters migrated toward a degenerate bivariate Gaussian with
correlation between components of —1: the fit pushed up against “model
class boundaries” and was numerically unstable. Other marginal distribu-
tions are possible; these are currently being probabilistically formalized in
Jia and Lund (2016).

It may be desirable to include covariates in the analysis. One simple way
to do this is to allow the parameters \; to depend on the covariates via a
log link. While the resulting series will not be technically stationary, they
are natural variants of stationary series.

APPENDIX

The results stated in Section 4 are proven here.

PROOF OF PROPOSITION 4.1: For the mean claim, E[Zév;’f i(ﬁ)|Ni,t =k| =
k/2 implies that

Nit Nit
_ 0| _ Ol || = Ly, 1= A
(A1) E[Y]=E ;Sm —E |E ;Sm Niv || = 5ENi] = 5

Next, let p; j(h) = P(Nsy = ni, Njn = nj) and condition on N;; and
Njt4n to get

it ]t+h
m k)
(A2) ElYiYjenl = E ZS( ' Sien
L —
= E Z Z ]H_h‘NztaN]t-i-h
m=1 k=1
m) «(k
_ Z [Z ft)SJtLh] pij(h).
n;,m;=0 m

Using Lemma 4.1 and the independence of {Slt }and {S t+h} when m # k,
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we get

1
m otk 1_ [ T m# k,
(A3) M&¢3NML_{§+E§%?@% m=Fk.

Let II; j = nynj, M, j; = min(n;,n;), and observe that the last row of (A.2)
has M; ; different cross products of the form Si(j?) Sj(‘]z)th’ where m = k and
II; ; = M; ; cross products of the same form when m # k. Using (A.3) in

(A.2) provides

(A4)
B s 1 arcsin(p; ;(h)) (IL; j — M, ;)
ElY;:Yj+n] = nv;:O |:M1] (Z + o + 1 pii(h)
L arcsin(p;(h)) 1
= Z ) [Mi,jT + 4 pi,j(h)
ng,n;j=

= % arcsin(p; j(h))E[min(N; ¢, Nj )] + %E[Niyth,tJrh]‘

The expectation in the second term in the last row of (A.4) is readily cal-
culated using the independence assumption under (4.7):

Aidj, i 7 J,

(A.5) BNt Njon] = { N+ h=0,i=]

On the other hand, as shown in Lemma A.l below, the expectation of the
first term in the last row of (A.4) is

(A.6) E[min(N; 1, Njin)] = MFw (—1) + A1 — F (1)),

where Fyy is the CDF of a Skellam random variable with parameters Ay and
Ag.

The autocovariance in (4.8) now follows from (A.1), (A.5), (A.6), and the
last row in (A.3). O

LEMMA A.1.  Suppose that My and Ms are independent Poisson vari-
ables with mean E[M;] = X\; for i = 1,2. Define W = M; — My and
Y = Hlin(Ml,Mg). Then
(A.7) ElY] = MFw(—1) + A2[l — Fw(1)],

where Fyy is the CDF of W.
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PRrROOF: Let P; = P(m;;\;),m; = 0,1,2..., \; > 0, be the probability
mass functions of M; for ¢ = 1,2. Independence of M7 and My gives

[e. 9]

E[Y] = Z min(my, ma)P(my; A1) P(ma; A2)
(A.8) m1,mz=0

0o ma o0 o)
= Z Z mi1 PPy + Z Z mo Py Ps.

mo=0m1=0 mo=0mi=mo+1

Denote the first and second sums in the last row of (A.8) by k; and ko,
respectively, and note that

00 mo
K1 = Z PQ Z m1P1

mo=0 m1=0
0o mo
o2 Al
- > e S e
a0 mo! 0 ma!
2 1
o] \ A2 mo—1 \ A\
= A —A2 72 -1 71
lmzoe mg! Zoe m1!
2= mi=
SN N — A
A = A - 2—(1 - X )
( 9) 1 Zoe mQ! Z ¢ ml!
mo= mi=ma2
S A
= A 1- 2 M
D D A NP DI
mo=0 mi1=ms2
e’}
= M |1= D lpsmy PP
mi,m2=0
Al — P(My > M)
A Fy (—1).

Similar arguments give ko = Aa[1 — Fyy(1)], thus proving (A.7). O
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