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Predicting the response of populations to climate change
requires an understanding of how various factors affect
thermal performance. Genetic differentiation is well known to
affect thermal performance, but the effects of sex and
developmental phenotypic plasticity often go uncharacterized.
We used common garden experiments to test for effects of
local adaptation, developmental phenotypic plasticity and
individual sex on thermal performance of the ubiquitous
copepod, Acartin tonsa (Calanoida, Crustacea) from two
populations strongly differing in thermal regimes (Florida
and Connecticut, USA). Females had higher thermal tolerance
than males in both populations, while the Florida population
had higher thermal tolerance compared with the Connecticut
population. An effect of developmental phenotypic plasticity
on thermal tolerance was observed only in the Connecticut
population. Our results show clearly that thermal performance
is affected by complex interactions of the three tested
variables. Ignoring sex-specific differences in thermal
performance may result in a severe underestimation of
population-level impacts of warming because of population
decline due to sperm limitation. Furthermore, despite having a
higher thermal tolerance, low-latitude populations may be
more vulnerable to warming as they lack the ability to
respond to increases in temperature through phenotypic
plasticity.
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1. Introduction

Temperature has a profound effect on organismal performance [1,2]. Rapid climate warming represents a
significant challenge for organisms, increasing average environmental temperatures [3] and the
frequency of extreme climatic events such as heat waves [4]. Predicting organismal responses to these
changes depends on our understanding of the factors affecting thermal tolerance. Acute thermal
tolerance is known to be affected by phenotypic plasticity [5] and genetic differentiation [6], as well as
diet, behaviour and individual sex [7-9]. Spatial variation in the thermal environment should
generate adaptive differences in thermal performance between populations from different
environments [2].

Copepods are arguably the most abundant metazoan on the planet [10]. Thus, they are intimately
linked to all commercial fisheries and to global biogeochemical cycles [11]. Copepods occupy diverse
ecological niches and habitat types, adopting a wide range of lifestyles. Because of their ecological
importance, short-generation time and ability to being cultured in the laboratory, copepods are ideal
candidates for studying adaptation to aquatic environments. Many copepod taxa have large
geographical ranges, encompassing a large degree of variation in the thermal environment; thus,
predicting their response to warming will be population-dependent and strongly influenced by
specialist-generalist trade-offs in performance [12].

The climate variability hypothesis (CVH) [13,14] states that increased thermal tolerance should
correspond with increased mean environmental temperature, while plasticity should evolve in
response to variability in the thermal environment. These predictions are broadly supported in
terrestrial and freshwater aquatic systems [15,16], but support in marine systems is limited by a
paucity of studies [17-19], particularly in widely dispersed pelagic organisms. Moreover, these
studies have generally not explicitly addressed the role of developmental phenotypic plasticity or sex-
specific thermal performance. Both of these have been documented for a variety of taxa [8,17,20,21]
including copepods [9,19,22,23]. Developmental phenotypic plasticity is likely an important
mechanism organisms use to cope with variation in environmental conditions [24]. Sex-specific
differences in organismal performance are also likely to be important in determining the outcomes of
climate change. There is emerging evidence, for example, that sex-specific performance may play a
large role in determining organismal responses to ocean acidification [25]. Combined with possible
sperm limitation in copepod populations [26,27], this suggests that sex-specific differences in thermal
adaptation are an important factor to consider in the determination of copepod vulnerability to
warming, as well as for predictions based on the CVH.

Acartia tonsa is a widely distributed calanoid copepod, which dominates coastal and estuarine
systems around the globe [28,29]. This species is characterized by relatively short generation times of
the order of weeks [30-33]. There is distinct sexual dimorphism, with females being considerably
larger than males. Body size is generally temperature-dependent in copepods [34,35]. In A. tonsa,
mature females are typically less than 1 mm in length, with males averaging around 0.7 mm [36].
Unlike larger calanoids, A. tonsa does not maintain large lipid energy reserves [37]. With a
geographical range covering a large latitudinal thermal gradient in the North Atlantic, this is a good
model system to explore the contributions of various adaptive mechanisms to thermal adaptation [19].
Here, we examine the effects of genetic differentiation, developmental phenotypic plasticity and
individual sex on thermal tolerance and body size in the copepod A. tonsa. Our results show that
complex interactions between these variables strongly affect our ability to predict organismal
responses to climate change.

2. Methods

Plankton samples were collected with surface tows at field sites in Groton, Connecticut, and Punta
Gorda, Florida (table 1), during July and August 2017 using a 250 pm mesh plankton net and non-
filtering cod end. Sea surface temperature data for both sites (table 1) were obtained from the AQUA-
MODIS satellite database [38]. Both sampling locations were in shallow water (less than 2 m); thus,
surface temperature data are likely a good representation of temperature throughout the water
column. Connecticut represents a cool, more variable thermal environment compared with Florida,
which is characterized by warm and stable temperatures. Daily temperature variation at each site is
minor compared with the inter-site differences [39]. Initial laboratory populations of more than 1500
mature adults were established from collected animals. Cultures were maintained in 0.6 pm filtered
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Table 1. Site name, geographical coordinates, mean annual temperature, mean annual maximum and mean annual temperature n
range for all collection locations.

mean annual mean annual mean annual
coordinates temperature maximum temperature
population (latitude, longitude) (°0 temperature (°C) range (°C)
Connecticut (CT) 41.320591 N, —72.001564 W 133 2.7 22,5
Florida (FL) 26.940398 N, —82.051036 W 249 314 153

seawater under common garden conditions (salinity: 30 practical salinity units, 12 h:12 h light : dark,
18°C) for several generations. During this time, copepods were fed ad libitum a diet of the microalgae
Tetraselmis sp., Rhodomonas sp. and Thalassiosira weissflogii, which were semi-continuously cultured in
F/2 medium (F/2 - silicate for Tetraselmis sp. and Rhodomonas sp.) under the same conditions.
Cultures were maintained under these conditions for several generations before the experiments, thus
minimizing the effects of previous environmental acclimation (i.e. differences in food abundance/
quality and temperature) in the field.

Body size measurements were taken for individuals from the laboratory cultures (1 = 30 males and
30 females for both sexes from both populations). Individuals were isolated in a drop of filtered seawater
and photographed using a camera attached to an inverted microscope after the water had been removed.
Body lengths were measured as the length of the prosome using Image-J (https://imagej.nih.gov/ij/).

To test for the effect of developmental temperature, a fraction of the eggs from the 18°C culture were
moved to 22°C to develop. All other variables were held constant. Once mature, individuals from both
developmental conditions (18 and 22°C) were exposed to a 24 h acute heat stress. Individuals were
carefully transferred to a microcentrifuge tube filled with 1.5 ml of filtered seawater, then transferred
to heat blocks set to a constant temperature (18-38°C at 1°C intervals). Each individual experienced a
single temperature. Individual survivorship was recorded after 24 h as binary data (1, survival; 0,
mortality). Survivorship was determined during examination under a dissection microscope by
response to stimuli or visible gut-passage movement. A total of 1717 individuals were used
throughout the experiments (727 CT individuals and 990 FL individuals). Initial heat stresses were
performed across the entire range of temperatures (18-38°C) in order to determine where additional
heat stresses were needed for each of the populations. Therefore, different numbers of individuals
were used for the two populations as the two temperature ranges differed between the populations.

All analyses were performed using the software package R v. 3.5.1 [40]. Body size measurements were
analysed using a three-way ANOVA (body size ~ population * developmental temperature *sex). A
Levene’s test was used to test the assumption of homogeneity of variance. A Tukey post hoc test was
then used to examine pairwise differences between the various groups. To analyse the survivorship
data, an initial ANOVA was run for all data (survivorship ~ stress temperature + sex + developmental
temperature + population, and all two-way interactions). Three-way and four-way interactions were
excluded. ANOVAs were also run for each population separately (survivorship ~ stress temperature *
sex * developmental temperature). Thermal performance curves were estimated using logistic
regressions on the data from both developmental temperatures from both populations. Because of the
common garden design, differences in the performance curves between developmental conditions
within a population can be attributed to developmental phenotypic plasticity, whereas differences
between populations should reflect the effects of genetic differentiation. LDs, (the temperature with
50% mortality) was calculated for each performance curve. The change in LDs, between the two
developmental conditions (ALDsp) was used as a measure of the magnitude of the plastic response.
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3. Results
3.1. Body size

Female copepods were always significantly larger than males, regardless of population or developmental
temperature (figure 1, p < 2.2 x 107 '°). Both male and female copepods from the CT population
were significantly larger than copepods from the FL population in the 18°C developmental treatment
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Figure 1. A box-and-whisker plot showing body size data for the various groups. Measurements are grouped by sex. The Florida
(FL) population is shown in white, and the Connecticut (CT) population in grey. The two developmental temperature groups (18 and
22°() are indicated with solid and dashed lines, respectively.

(p < 2.874 x 10~ '%). However, there were no significant differences between the respective sexes from the
CT and FL populations in the 22°C developmental treatment. Both populations saw a significant
reduction in body length with an increase in developmental temperature (p < 2.2 x 10~ ).

3.2. Genetic differentiation

We observed clear differences between performance curves for the two populations, consistent with a
significant population effect in the full ANOVA (table 2). The Florida (FL) population performance
curve was shifted towards warmer temperatures compared with the Connecticut (CT) population
(figure 2). This is also reflected in the reaction norms (figure 3); FL individuals had a higher thermal
tolerance than individuals of the same sex from the CT population.

3.3. Developmental phenotypic plasticity

The observed significant developmental temperature x population interaction term in the full ANOVA
suggests that the effect of developmental temperature differed between the two populations (table 2).
The ANOVA results for the CT population showed a significant effect of developmental temperature
which was not observed for the FL population. Thermal performance curves for the 18 and 22°C
developmental temperature treatments differed in CT but not FL individuals (figure 2, dashed versus
solid lines). The slope of the reaction norms, which represents the magnitude of developmental
phenotypic plasticity (figure 3), was not significantly different from zero for FL individuals, regardless
of sex. By contrast, slopes of the reaction norms for both sexes in the CT population were significantly
greater than zero (p = 0.001202).

3.4, Sex-dependent thermal performance traits

Males showed significantly lower survival than females in both populations (figure 2, red versus blue
lines). LDsy reaction norms also showed clear sex-dependent differences in thermal tolerance
(figure 3), with females being always more tolerant than males. However, there were no sex-
dependent differences in the plastic response between males and females (no Sex* Dev. Temp.
interaction term in the full ANOVA), regardless of population.

4. Discussion

The two populations of A. tonsa used in this study were collected from strongly differing thermal
environments—Connecticut, a cool, variable environment, and Florida, a warmer, more stable
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Table 2. ANOVA results for the logistic regression relating survivorship to stress temperature, population, developmental n
temperature and individual sex. Significant terms (p << 0.05) are shown in italics.
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environment. We observed lower thermal tolerance, but stronger plasticity in the CT population relative
to the FL population, consistent with expectations of the CVH [13,14]. While the results for both male and
female performance are consistent with the CVH, we find that individual sex had the largest effect on
thermal tolerance. It is important to emphasize that our study is not a strong test of the CVH, as only
two populations were used. However, the clear evidence that genetic differentiation, phenotypic
plasticity and individual sex interact to determine thermal tolerance within the framework of the CVH
is critical for our understanding of organismal responses to warming. The demographic implications
of these results are crucial to consider in predictions of future population dynamics.

Large variation was also observed in the body size data. Females were always larger than males, as is
commonly observed in copepods [41,42]. Females and males from the northern (CT) population were
larger than their counterparts from the southern (FL) population in the 18°C developmental
temperature treatment. Bergmann’s rule posits that populations from higher latitudes should have
larger body sizes than populations from lower latitudes [43]. Other studies of copepods have also
observed body size clines in agreement with this rule [44]. Because of the common garden
experimental design, the differences in body size we observed here are likely genetically determined.
However, these differences are not observed in the 22°C developmental temperature group,
suggesting a more complex interaction between the developmental temperature and genotype.
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Figure 2. Survivorship data for adult A. tonsa individuals are indicated by the points (1, survival; 0, mortality). Thermal performance
curves are estimated by logistic regression. Colour and line type indicate individual sex and developmental temperature, respectively.
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Figure 3. Reaction norms for adult A. tonsa showing thermal tolerance (LDsp) as a function of developmental temperature for both
sexes (line type) from the two populations (colour). Points are thermal tolerance + s.e. from the logistic regression models.
Reaction norm slope is the magnitude of plasticity.

Inboth populations, females always had a higher thermal tolerance than males. Sex-specific differences
in thermal tolerance are observed across diverse systems [8,9,20,21,45]. Within copepods, the few studies
that have examined sex-specific thermal tolerance have also found females to be more thermally tolerant
than males [9,22,23,46], but ours is the first to examine these differences in more than one adaptive
mechanism (thermal tolerance and phenotypic plasticity), and in multiple populations. Interestingly,
female copepods have also been found to be more tolerant to toxic dinoflagellates [47] and to starvation
[48,49]. The observations of higher tolerance to diverse stressors in females may be underlain in part by
a ‘live fast, die young’ strategy in mate-searching males [50]. Thermal tolerance is also often observed to
correlate with smaller body size [43,51-53], although this appears to be strongly species-specific [54]. In
our study, smaller body size is observed to correlate with increased thermal tolerance between
populations, but not between the sexes; FL copepods are smaller than CT individuals and have a higher
thermal tolerance while males are smaller than females but have a lower thermal tolerance.

While there are strong differences in male and female thermal tolerance in this study, neither
population exhibits significant differences between male and female plastic capacity (ALDsp). No
previous studies have examined differences in male and female developmental phenotypic plasticity,
but higher acclimatory capacity was observed in females of a different copepod species [9]. This
difference in sex-dependence of the different adaptive mechanisms (a difference in thermal tolerance
but not in phenotypic plasticity between the sexes) suggests that their physiological basis is different.

Multiple factors affect acute thermal stress tolerance. Understanding these factors, and how they vary
among populations, has critical implications for predictions of future population dynamics. Lower male
thermal tolerance creates an asymmetrical vulnerability to climate change, which could lead to
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population declines under less intense warming due to sperm-limitation [27,55]. Our results also suggest
that despite having a higher thermal tolerance, low-latitude populations may be more vulnerable to
projected warming. That is, the small difference between LDs, values and average annual maximum
temperature indicates that copepods in these regions are near their thermal limit under present
conditions. As they are also unable to respond to increased temperatures through developmental
phenotypic plasticity, any further increase in temperature is likely to have deleterious effects on
population survival, as previously suggested for tropical copepods [12,56]. Furthermore, males have a
significantly lower thermal tolerance, further lowering the temperature threshold that would bring the
onset of temperature-driven population dynamic changes. Both sexes in the CT population, however,
have thermal tolerance values well above the current temperature maximum, and have a robust
plastic capacity to increase thermal tolerance, potentially decreasing deleterious effects of warming on
this population. Contemporary thermal tolerance and phenotypic plasticity are just two of the
determinants of vulnerability to climate change. Rapid adaptation to changing climate may also affect
population vulnerability [57,58]. In that regard, our results suggest that temperature-driven selective
pressure may be different for the two sexes. The implications of this for the evolutionary dynamics of
thermal adaptation are largely unexplored [59].

Ultimately, thermal tolerance and the mechanisms affecting it are only components of the suite of
factors that will determine vulnerability to climate change. While genetic differentiation and
phenotypic plasticity are two of the major adaptive mechanisms, behaviour may also play a large role
in response to warming [60,61]. Avoidance of adverse conditions and range shifts are also possible,
especially in planktonic organisms [62,63]. Further, there are ecological effects of warming such as
changing patterns of primary productivity [64—66] as well as changes in predator—prey interactions
[67-70]. Phenological mismatches between copepods, their prey and their predators, for example,
could also have profound effects on marine communities [71,72]. These ecological factors could
interact with warming directly; food availability has been shown to affect thermal tolerance in other
organisms [73-76]. It is clear that multiple adaptive mechanisms and factors will determine
vulnerability to climate change. We show here that among these factors, genetic differentiation,
phenotypic plasticity and individual sex have significant, population-specific influences on thermal
tolerance. Hence, they should be taken into consideration in a wider range of model systems.
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