

***For submission to Chemical Geology***

# The effect of $fO_2$ on the diffusion of redox-sensitive elements in haplobasaltic melt at 1 GPa and 1300 °C

*Ian Szumila<sup>a,b\*</sup> Dustin Trail<sup>a,c</sup>, Lisa Danielson<sup>b</sup>*

*<sup>a</sup>Department of Earth & Environmental Sciences  
University of Rochester, Rochester, NY 14627*

<sup>b</sup>*Jacobs - JETS, JSC, 2224 Bay Area Blvd, Houston, TX, 77058*

*<sup>c</sup>Department of Earth, Planetary and Space Sciences,  
University of California, Los Angeles, CA, 90095, USA*

\*iszumila@ur.rochester.edu ; *ph 214 287 8227*

**Keywords:** diffusion, redox, oxygen fugacity, basalt, planetary, Europium

51 **ABSTRACT**

52  
53 Diffusivities for elements (P, Sc, V, Mn, Co, Zn, Cr, Nb, Mo, La, Ce, Pr, Sm, Eu, Gd, Ta, W) at  
54 1300 °C and 1 GPa in basaltic melts were characterized across a range of oxygen fugacity ( $fO_2$ ) conditions.  
55 Experiments were carried out using either a reducing (FMQ-3.1), intermediate (~FMQ-1.2) or oxidizing  
56 (FMQ+6)  $fO_2$ . For each  $fO_2$ , three experiments were conducted for durations of 20, 40, and 80 minutes. For  
57 a given time series, changes in diffusivity are typically within 3 standard error at a single  $fO_2$ . The  
58 magnitudes of the elemental diffusivities can be grouped into those of the High-field Strength Elements  
59 (HFSE), the Rare Earth Elements (REE), the transition elements, and P. Vanadium and Sc have diffusivities  
60 more similar to the REEs and HFSEs respectively, than the other transition elements. The best fits of  
61 diffusivities for P also suggest that the diffusivity of this element is more in line with the HFSE. At oxidizing  
62 conditions, a fractionation of Nb from Ta with greater magnitude than that at the other oxygen fugacities is  
63 seen. Across oxygen fugacities explored here, Eu exhibits unique changes in diffusion. At more reducing  
64 conditions, the diffusivity of Eu increases relative to the neighboring REE elements Sm and Gd, with this  
65 effect most pronounced at FMQ-3.1 and present in experiments conducted at intermediate  $fO_2$  conditions.  
66 This demonstrates that an Eu anomaly can be generated by diffusion alone. In oxidizing conditions, because  
67 Eu likely is present as mostly Eu<sup>3+</sup>, the signal vanishes as Eu diffusivity becomes similar to that of other  
68 trivalent REEs. There are small systematic changes in element diffusivities for both redox-sensitive and  
69 non-redox sensitive elements as  $fO_2$  is varied. Averages of the 20, 40, and 80 minute diffusivities for all  
70 elements done in the intermediate  $fO_2$  experiments have the slowest diffusivities of the three oxygen  
71 fugacities explored. On average, the diffusivities of the entire contingent of elements studied from the more  
72 reducing (FMQ-3.1) conditions are faster than those from the intermediate  $fO_2$  by about a factor of 1.5. The  
73 elemental diffusivities recovered from the oxidizing experiments are, on average, about ~2 times as fast of  
74 those recovered from the intermediate experiments. For elements fit in these experiments, an order of  
75 magnitude change in element diffusivities, even for redox-sensitive elements, is never seen over the range  
76 of oxygen fugacities explored at 1300 °C. These experiments demonstrate that oxygen fugacity can have  
77 an important effect on the diffusivity of certain redox-sensitive elements (e.g. Eu) and that  $fO_2$  may play a  
78 role in element transport generally.

79  
80 **1. Introduction**

81 Oxygen fugacity ( $fO_2$ ) is an important intensive magmatic variable that can influence mineral  
82 assemblages present (Carmichael and Ghiosro, 1990; Diener and Powell, 2010; Hensen, 1986) and the  
83 valence and partitioning of major and trace elements in minerals and co-existing melts (Burnham and Berry,  
84 2012; Shearer et al, 2006; Trail et al., 2011; Wilke and Behrens, 1999). Diffusion may also play major  
85 roles in crystal growth or fractionation of elements. For a crystal growing in melt, element uptake at the  
86 boundary layer can be affected by diffusivities of different elements, and probably causes fractionations  
87 between elements based on ion size and charge. (Watson and Müller, 2009). Several useful geochemical  
88 tracers depend on element ratios which may depend on a redox-sensitive element (e.g. V/Sc in Mallmann  
89 and O'Neill. 2009, Zn/Fe<sub>T</sub> in Lee et al. 2010, or Ce/Ce\* in Trail et al. 2011) Because of this, fractionation  
90 by diffusion due to  $fO_2$  may affect their use and ultimate meaning. Vanadium, for example, has several  
91 redox states, (e.g. V<sup>2+</sup>, V<sup>3+</sup>, V<sup>4+</sup>, V<sup>5+</sup>) which makes it useful for studying  $fO_2$  across a broad range of solar  
92 system conditions (Mallmann and O'Neill, 2009; Shearer et al, 2006). In addition, V/Sc and V/Ga ratios  
93 have been used to investigate the differences in oxidation between arc basalts, ocean island basalt (OIB)  
94 and mid-ocean ridge basalt (MORB), and to suggest that the mantle sources have indistinguishable redox  
95 conditions for both arc basalts and MORB (Mallmann and O'Neill, 2009) although other work involving  
96 the olivine-spinel oxybarometry by Evans et al. (2012) argues for a subarc mantle that is more oxidized  
97 than either OIB or MORB source regions. Measurements of V/Sc indicate that  $fO_2$  for MORB source is  
98 constrained to FMQ-0.3±0.5 (Li and Lee, 2004). The V/(Cr+Al) ratio has also been used to compare  $fO_2$  of  
99 planetary materials via chromite grains (Papike et al, 2004). Most rare earth elements (REEs), have only  
100 trivalent valence states in natural settings. The two exceptions to this are Ce, which has 3+ and 4+ states

101 and Eu with 2+ and 3+ states. These properties have made the REEs useful in studying the oxidation state  
102 of minerals and magmas. For example, partitioning of the redox-sensitive elements Ce and Eu between melt  
103 and zircons can be used to study the oxidation state of magmas (Trail et al, 2012).

104 **Table 1** show dominant redox states of different elements at the varying oxygen fugacity used in  
105 these experiments. Elements such as V have the dominant valence state varying nearly systematically over  
106 the three  $fO_2$ s used in these experiments. Iron is similar being present as  $Fe^{2+}$  in the two reducing conditions  
107 but oxidized to  $Fe^{3+}$  under the Ru-RuO<sub>2</sub> (RRO) buffer. The 4+ state of the Ce is known to only be present  
108 in very small amounts in basaltic melts as it will complex with  $Fe^{2+}$  to form  $Fe^{3+}$ -O-Ce<sup>3+</sup> (Schreiber et al,  
109 1980). Niobium and Ta are most likely only pentavalent over the redox range used here. Tantalum  
110 speciation is not calibrated for RRO (Burnham et al, 2012), though 5+ is reasonable since a more oxidized  
111 valence for that element is not known. Phosphorus is only ever found in the redox states of P<sup>5+</sup> and P<sup>0</sup>  
112 although Mallmann and O'Neill (2009) present some evidence for P<sup>3+</sup> at reducing conditions. Molybdenum  
113 is present as Mo<sup>6+</sup> when studied experimentally in basalts above iron-wüstite (IW-1; equivalent to FMQ-  
114 4.45 or MMO-1.4 at 1300 °C) yet is often found in nature in the tetravalent state, as molybdenite (Farges  
115 et al., 2006). Papike et al (2004), places Eu<sup>3+</sup> as the dominant redox state of Eu over the  $fO_2$  conditions  
116 used in these experiments.. Although this does not preclude there being an increasing amount of Eu<sup>2+</sup> as  
117 more reducing conditions are approached.

118 Terrestrial planetary bodies – including the Moon and some differentiated asteroids – produce  
119 basalts. Since these bodies have experienced the melting and differentiation processes over different  $fO_2$ s,  
120 understanding how diffusivities of elements change with varying  $fO_2$  will enhance our understanding of  
121 material transport by diffusion. While typical MORBs analyzed by Cottrell et al. (2011) show a restricted  
122 range in  $fO_2$  of FMQ+0.10 ±0.18, surface material on Earth has experienced melting conditions that have  
123 resulted in a much wider range of  $fO_2$ s. Basalt erupted on Disko Island yielded an  $fO_2$  of IW due to  
124 interaction with graphite during eruption (Bird and Weathers, 1977; Goodrich and Bird, 1985). The Earth  
125 can also produce highly oxidized material; arc basalts, for example, approach FMQ+4.0 (Gaillard et al,  
126 2015). Martian Fe-Ti oxides in shergottites record oxygen fugacities between FMQ-1 and FMQ-3 (Herd et  
127 al., 2002). Sato et al. (1973) analyzed lunar samples including basalts (12009, 12022, 12053, 15058,  
128 15595), a microbreccia, (14321) and a basaltic rock (14310) which has been identified (Duncan et al, 1975)  
129 as a surficial impact melt. They found the bulk rock  $fO_2$  of the lunar basalts, the Apollo 12 and 15 samples,  
130 they studied to be  $10^{-12.3}$  to  $10^{-12.8}$  at 1200 °C or IW-0.36 to IW-0.86 respectively. The Howardite,  
131 Eucrite, and Diogenite (HED) meteorites, have spectral similarities to the asteroid Vesta 4 (McCord et al.,  
132 1970) and more recent mission work from the Dawn mission (Russell et al, 2012) continues to support this  
133 hypothesis by reporting on the mineralogy of the Vestan surface and a large basin that could have sourced  
134 the HEDs. Based on models of Si isotope work in HEDs (Pringle et al, 2013), Vesta 4 differentiated around  
135 IW-4.2±0.1, while other models which incorporate partitioning of siderophile elements and HED meteorite  
136 analyses (Steenstra et al., 2016), place the  $fO_2$  at differentiation as IW-2.15±0.30.

137 In past studies, Nakamura and Kushiro (1998) characterized the diffusion of elements in jadeite  
138 and albite melt and discussed how a zoned magma chamber could lead to the formation of an Eu anomaly  
139 under reducing conditions, or depletions and enrichments of the Rare Earth Elements (REEs). Previous  
140 workers have characterized trace element diffusivities at a single  $fO_2$  with varying T (e.g. Holycross and  
141 Watson, 2016), or examined how the properties of one or two select elements are affected by a change in  
142 redox and T (e.g. Sn in Linnen et al, 1995; P in Watson et al, 2015 ) Others have done interesting  
143 geochemical research on topics like partitioning (e.g. Nb and Ta in Cartier et al, 2014).Diffusivities of  
144 several trace elements from many different works are characterized for silicate melts in Zhang et al. (2010),  
145 but not all elements have been studied using a MORB-like composition. So to add to this body of  
146 knowledge, we conducted systematic study that characterizes diffusivities of redox sensitive elements vs.  
147  $fO_2$  in basalts. Here we report changes in element diffusivities as  $fO_2$  is varied. We demonstrate that redox-  
148 sensitive elements may be fractionated by diffusion, and that the magnitude of this fractionation is  $fO_2$   
149 dependent. Moreover, significant changes in  $fO_2$  leads to small but detectable changes in the diffusivity of  
150 non-redox sensitive elements, possibly due to  $fO_2$  -induced changes in melt structure.

152 **2. Materials and Methods**

153 **2.1 Rock Mixes**

156 Our strategy for experiments was to set up diffusion couples in capsules inside the piston cylinder  
157 for each oxygen fugacity. This entailed the production of both low-trace element and a high-trace element  
158 basalts material for use in each side of the diffusion couple.

159 Thus, a major element base mix and a separate trace element mix were prepared using reagent grade  
160 materials. All Fe was added as FeO (99.5% pure), while Na, K, and Ca were added as  $\text{Na}_2\text{CO}_3$ ,  $\text{K}_2\text{CO}_3$  and  
161  $\text{CaCO}_3$  respectively. **Table 2** shows the major weight % composition targets and the compositions of actual  
162 experiments as analyzed by a JEOL 8350F electron microprobe with instrument conditions discussed in  
163 section 2.4. The trace mix was made with consideration of the chondritic abundance of each element  
164 (Anders and Grevesse, 1989; Barrat et al., 2012; Elardo et al., 2011; Pourmand et al., 2012; Ruzicka et al.,  
165 2000). This involved elements that were not enriched at all compared to chondritic abundances, such as P,  
166 Sc, V, Co, Mn, Ni, Cu, and Zn. Other Elements (i.e. Nb, La, Ce, Pr, Sm, Eu, Gd, Ta, W) whose low  
167 chondritic abundances would have made them difficult to analyze were enriched by a factor of 1000. The  
168 ratios of any two unenriched trace elements is broadly the same as chondrite while the same is also true of  
169 the ratio of any two enriched elements. Finally, because of the high abundance of Cr and tendency to form  
170 spinels, a ppm level of 100 was targeted rather than the original relative chondritic amount. The targeted  
171 wt% level of each component making up the trace is shown in **Table 3**. Elements that were enriched are  
172 marked with an asterisk in **Table 3**. In addition to material already present in the base mix, the trace mix  
173 contained additional  $\text{K}_2\text{CO}_3$  and  $\text{TiO}_2$ .

174 The base and trace mixes were ground individually by hand in a mortar and pestle for 15 minutes.  
175 Three base mixtures of ~5 g were generated for each  $f\text{O}_2$ . The base mix for a given  $f\text{O}_2$  was divided in two,  
176 and then mixed with 0.1 wt% and 0.5 wt% of the trace mix to create high-trace element and low-trace  
177 element basalt mixes. The six mixes were individually heated to 800 °C and left in a furnace for three hours  
178 for decarbonating.

179 **2.2 One Atmosphere Glass Fusions**

180 The rock mixes were then packed into a 30 ml Pt crucible, and fused in a DelTech 1 atmosphere  
181 CO-CO<sub>2</sub> gas mixing furnace at 1350 °C for 24 hours. Two fusions, with high and low trace element  
182 compositions, were conducted at each of the 3  $f\text{O}_2$ s designed to match the final  $f\text{O}_2$  of the diffusion  
183 experiments. This resulted in a total of six 1-bar fusion sessions. During the fusion, temperature was  
184 monitored with a Type B thermocouple. After 24 hours, the crucible was drop-quenched into DI water, or  
185 if drop-quenching mechanism failed to engage then by removing and immediately dunking the crucible into  
186 a bucket of DI water. The glass was broken out of the Pt crucible, and then ground back into a powder by  
187 using an automatic mortar grinder for 25 minutes with the glass under an acetone slurry. For material to be  
188 used with MMO, or 1 GPa graphite capsule experiments, the  $f\text{O}_2$  conditions of certain nearby buffers (i.e.  
189 IW and FMQ) were targeted directly by the CO-CO<sub>2</sub> gas mixture. For RRO, the  $f\text{O}_2$  was too oxidizing for  
190 a CO-CO<sub>2</sub> atmosphere to reach, so instead a full CO<sub>2</sub> atmosphere (~FMQ+3.53 or ~RRO-2.25) was used  
191 to oxidize the starting material. The  $f\text{O}_2$  inside the furnace was monitored by using an EMF sensor calibrated  
192 with a reference  $f\text{O}_2$  cell.

193 During the 1 atmosphere synthesis step, it is expected that Fe and possibly Zn were lost to the Pt  
194 crucible when conditions near IW were imposed. The effects of this on the final composition can be viewed  
195 in **Table 2** and are explored further in the discussion section 4.5.

196 **2.3 Piston Cylinder Diffusion Experiments and Buffers**

197 After fusion, material was loaded into capsules for use in diffusion experiments. Capsules were  
198 made of either Mo, graphite, or 95%Pt-5%Ru. Molybdenum and graphite capsules serve the dual purpose

203 of constraining the  $fO_2$ . Mo metal, when present with  $MoO_2$ , buffers a sample close to IW (specifically  
204 IW+0.39) at 1300 °C. (ONeill, 1986; O'Neill and Pownceby, 1993) The Mo experiments were checked  
205 afterward for the presence of an oxidized Mo (i.e.  $MoO_2$ ) phase in contact with the glass. At 1 GPa and  
206 1300 °C, graphite, is expected to buffer a sample close to FMQ-1.2. This was calculated from a calibration  
207 done by Ulmer and Luth, (1991) who studied graphite in contact with a C-O-H fluid over  $fO_2$  while keeping  
208  $fH_2$  fixed using the double capsule technique. The interior wells of all graphite and Mo capsules used were  
209 end-milled flat to limit the contributions of capsule geometry to diffusion. For the Mo and graphite capsules,  
210 the high trace elements material was always packed onto the bottom of the capsule, with a drill blank, then  
211 the low trace elements material was packed on top. This material on top was then also pushed down flat  
212 using the same drill blank. The packing was done this way based on the assumption that the higher trace  
213 element material was denser and that this method of packing might serve to minimize gravitational settling.  
214

215 The Pt-Ru capsules are used when an oxidizing  $fO_2$  is desired. The Pt-Ru capsules were made by  
216 sectioning a Pt-Ru tube to a length of 10 mm. Then one end of this tube was crimped shut and welded with  
217 an arc welder. A Ru-RuO<sub>2</sub>  $fO_2$  buffer mixture, consisting of 1:20 (by weight), was then packed into the  
218 bottom of the capsule. This mix is heavily biased towards oxidizing material (Trail et al., 2012) since we  
219 expect piston cylinders to impose an intrinsic  $fO_2$  closer to FMQ. The Ru-RuO<sub>2</sub> and the HM buffers are  
220 very similar at 1300 °C, with RRO being ~0.4 log units more oxidizing than HM. (Myers and Eugster,  
221 1983; O'Neill and Nell, 1997) After loading this buffer material, the high-trace element basalt mix is loaded  
222 followed by the low-trace element basalt mix. Finally more buffer material is added to the top. The capsule  
223 was then crimped on the top and welded with an arc welder to fully seal the capsule. Ru and RuO<sub>2</sub> have  
224 low solubilities in basaltic melts (Bockrath et al., 2004; O'Neill and Nell, 1997) so although they are in  
225 direct contact with the melt, their expected effect on the experiment besides buffering  $fO_2$  is minimal.  
226

227 End-loaded piston cylinders at the University of Rochester were used for most experiments. One  
228 experiment was conducted with a Quik-press piston cylinder model used at NASA Johnson Space Center.  
229 Cross sections of a loaded Mo capsule, a loaded graphite capsule and a loaded Pt-Ru capsule used for  
230 experiments are shown in **Figure 1**. Filler pieces consisted of crushable MgO machined to the proper  
231 dimensions and loaded into a graphite furnace. Sleeves of MgO were used to surround the Mo and graphite  
232 capsules. For RRO-buffered experiments, the Pt-Ru capsule is placed in an MgO sleeve which is then  
233 subsequently filled with powdered MgO to fully surround the capsule. After placing the graphite furnace  
234 into pyrex glass and salt cells, the full assembly was pressurized in a piston cylinder to 1 GPa. All  
235 experiments were maintained at pressure for at least one hour before heating.  
236

237 Samples were heated to 1300 °C with a ramp-time of seven minutes to the target temperature,  
238 correlating to a ramp rate of ~185 °C/minute. Both the end-loaded and Quik-press designs used a Type C,  
239 25%WRe-3%WRe thermocouple to monitor the temperature. In the end-loaded design, the thermocouple  
240 wire is threaded through thermocouple insulator directly above the sample. For the Quik-press design, the  
241 wire is still threaded through thermocouple insulator but instead inserted directly below the sample.  
242 Experiments for each  $fO_2$  condition explored were conducted as a time series, with dwell times at the target  
243 temperature of 20, 40 and 80 minutes. This helps to confirm that diffusion is the primary process responsible  
244 for mass transfer. Moreover, elements that diffused too quickly such that diffusivities are not recoverable  
245 for 80 minute experiments can still be fit for the shorter durations. In addition, 2 experiments (RRO and  
246 MMO) with dwell times of 90 seconds at ~1300 °C were conducted to understand how quickly buffering  
247 phases form or are consumed. After this dwell period ended, they were immediately quenched.  
248

249 All experiments were retrieved by cutting the power to the piston cylinder, and quenching  
250 isobarically by using the pump to stave off pressure losses. All experiments cool to less than 100 °C in less  
251 than 40 seconds. After quenching, pressure on the sample was bled slowly back to atmosphere over 5  
252 minutes. All experiments were then mounted in 1-inch epoxy rounds. For experiments prone to  
253 decompression cracking, particularly those done in graphite capsules, they were sanded with 400 grit  
254 sandpaper until the experimental glass became visible, and then vacuum impregnated with epoxy. This  
255 helped to prevent loss of sample or formation of very large decompression cracks. Then experimental  
256 products were sectioned with a low-speed diamond saw. Sectioned experiments including the capsule  
257 material are typically about 0.25 cm<sup>2</sup>. While steps were taken to avoid decompression cracking during the  
258

254 quenching of experiments, decompression cracks were common in experiments done with Pt-Ru or graphite  
255 capsules while very rare in those done with Mo capsules. After sectioning experiments, they were re-  
256 mounted in 1-inch epoxy rounds to make a new flat epoxy round centered on the face of the sample. After  
257 the epoxy set, the charges were polished by hand with 240, 400 and 600 grit sandpaper, and finished with  
258 1  $\mu\text{m}$  alumina on an automatic polisher for 30 minutes.

259

#### 260 **2.4 Scanning Electron Microscope (SEM) and Electron Microprobe (EMPA)**

261

262 The RRO- and MMO-buffered samples were analyzed for the presence of buffering phases by the  
263 JEOL 7600F at NASA JSC SEM after carbon coating. An accelerating voltage of 15 kV to collect  
264 backscatter images and Energy-dispersive X-ray Spectroscopy (EDS) was used for quick investigations of  
265 various sample phases and to determine if a phase was oxidized.

266 Select MMO, RRO and graphite capsule experiments were also analyzed using the JEOL 8530F  
267 NASA JSC electron microprobe to quantify major element composition and compare to the target  
268 compositions of the base mix by Wave-length X-Ray Dispersive Spectroscopy (WDS). Analyses were  
269 conducted with an accelerating voltage was 15 kV, a beam current of 15 nA and a defocused beam diameter  
270 of 10  $\mu\text{m}$ . The RRO experiment graphite capsule experiment were analyzed during the same session. For  
271 that session, K $\alpha$  x-rays of Si, Al, Mg and Na were collected on TAP crystal while for Ti and K, a PETL  
272 crystal was used. X-rays from P and Ca were collected on a PET and the Mn on LIFH. L $\alpha$  x-rays of Mo  
273 were collected on the same PETL crystal used for Ti and K. The MMO sample from Table 2 was analyzed  
274 during a later session which used a similar WDS crystal setup with the specific settings mentioned following  
275 for completeness. The K $\alpha$  x-rays of Si, Al, Mg and Na were collected again with a TAP crystal while K  
276 was measured on a PET crystal. Titanium, and Mn, Fe, Ni were all measured using a LIFH crystal. The L $\alpha$   
277 x-rays of Mo were also analyzed via PET and the L $\alpha$  of W collected on LIFL. Concentrations were  
278 calculated from natural and synthetic microprobe standards, including VG2 MORB from the Juan de Fuca  
279 ridge (Jarosewich et al., 1980), analyzed with the samples during the sessions. Corrections were done using  
280 the ZAF method.

281

#### 282 **2.5 Laser Ablation-Inductively Coupled Plasma- Mass Spectrometry (LA-ICP-MS)**

283

284 Trace element diffusion profiles were measured with a Laser Ablation-Inductively Coupled  
285 Plasma-Mass Spectrometry (LA-ICP-MS) at the University of Rochester consisting of an Agilent 7900  
286 quadrupole attached to a Photon Machines Analyte G2 ArF 193 nm laser. Repetition rate was set to 10 Hz.  
287 Fluence used for all analyses was 7.81 J/cm<sup>2</sup> with a spot size of 35  $\mu\text{m}$ . The laser used a two volume HelEx  
288 sample cell with He gas flows kept at 0.6 L/min (MFC1) and 0.2 L/min (MFC2) during analysis. Laser  
289 ablation spots were laid down with consistent spacing via the Chromium 2.0 software meaning that some  
290 spots occasionally ended up either entirely or partially on a decompression crack, which is dealt with during  
291 data reduction. Uncorrected distance between spots was 65-125  $\mu\text{m}$  depending on analysis. Only one profile  
292 down the center of each sample from an analytical session was fitted to generate the diffusion profiles.  
293 Some experiments were analyzed again specifically for difficult to measure elements including P, Cr, Mn,  
294 Co, Zn, and Ni. Diffusivities presented are always from one of these analysis sessions.

295 Isotopes that were analyzed are <sup>31</sup>P, <sup>45</sup>Sc, <sup>55</sup>Mn, <sup>59</sup>Co, <sup>66</sup>Zn, <sup>93</sup>Nb, <sup>95</sup>Mo, <sup>139</sup>La, <sup>140</sup>Ce, <sup>141</sup>Pr, <sup>147</sup>Sm,  
296 <sup>153</sup>Eu, <sup>157</sup>Gd, <sup>181</sup>Ta, <sup>182</sup>W. Chromium was sometimes analyzed a <sup>52</sup>Cr isotope and sometimes as <sup>53</sup>Cr. For  
297 most analyses, <sup>60</sup>Ni or <sup>63</sup>Cu were included as well, <sup>60</sup>Ni was analyzed for everything except the 20 minute  
298 graphite capsule experiment and <sup>63</sup>Cu was analyzed for everything except the 20 minute RRO experiment.  
299 The isotope <sup>29</sup>Si was monitored for use as an internal standard.

300

#### 301 **2.6 Data Reduction and Calculation of Diffusivities**

302

303 The software package Iolite® (Paton et al., 2011) was used to analyze and fit the data. The internal  
304 standard was set to be <sup>29</sup>Si, with Si present as 23.44 wt% of the mix, which was calculated from the target

305 50.15% weight percent of  $\text{SiO}_2$ . Spots visually identified on cracks were removed from the final fit. In cases  
306 where the decompression cracks were large, their size was measured with ImageJ and subtracted out from  
307 the distance array used for fitting the diffusion profiles.

308 Our strategy for extracting out diffusivities requires preservation of the initial trace element  
309 concentrations on both ends of the diffusion couple. If this is true of the analyte, diffusion profiles can be  
310 fit to the following equation:

311 
$$C(x, t) = C_{+\infty} + \frac{C_{-\infty} - C_{+\infty}}{2} * \left(1 - \text{erf}\left(\frac{x - x_0}{2\sqrt{Dt}}\right)\right) \quad (1)$$

312 Equation 1 is a 1-dimensional solution to Fick's laws (Crank, 1975) applicable to the boundary  
313 conditions used in these experiments as long as the diffusing elements have not yet diffused so far as to  
314 overwrite the original  $C_{-\infty}$  (ppm) and  $C_{+\infty}$  (ppm) in the diffusion couple. Initial concentrations on each side  
315 of the capsule are represented by  $C_{-\infty}$  and  $C_{+\infty}$ . The diffusivity for any particular element is represented by  
316  $D$  ( $\text{m}^2/\text{s}$ ), while  $t$  (s) is the duration of experiments. Accounting for position in the diffusion couple,  $x$  (m)  
317 is an array from positive to negative taking into account the distance between each of the laser spots. The  
318 variable  $x_0$  is the location of the Boltzmann-Matano interface and is limited to one location by the physical  
319 realness of mass balance. The concentration at a specific spot on a specific sample is  $C(x, t)$ , a value known  
320 from the LA-ICP-MS work. The setup of the experiment constrains  $C_{-\infty}$ ,  $C_{+\infty}$ , and  $t$ , while  $D$  is unknown  
321 and the independent variable.

322 Diffusion profiles were fit using the Global Fit module in the Igor Pro environment. With this  
323 module, the profiles for several element analyzed by LA-ICP-MS from a single experimental charge can  
324 be fit at the same time. The global fitting procedure allowed  $C_{-\infty}$ ,  $C_{+\infty}$ , and  $D$  to vary for each individual  
325 element in a fit, whereas the interface location,  $x_0$ , is kept fixed for all elements in the fit. Most elements'  
326 diffusivities were recovered from this global fitting procedure. Later, other elements, particularly those  
327 that did not often have good profiles or appeared to be close to diffusing beyond experiment boundary  
328 conditions (e.g. Zn, Co, Mn, Sc and P), would be fit individually or from a secondary LA-ICP-MS session's  
329 dataset if that was available. If the data for these individual fits was from the same analytical session, then  
330 the same  $x_0$  retrieved from the global fit for that session was used for that particular element. For all fits,  
331 global and individual, a weighting wave of one standard deviation (1 S.D.) on the concentration data was  
332 provided to the Igor Pro fitting routines.

## 333 2.7 Mapping

334 To better understand mass transport in our samples, laser ablation mapping was conducted on the  
335 80 minute MMO experiment. The scan speed used was 20  $\mu\text{m}/\text{s}$  with 35  $\mu\text{m}$  square lines that ran the width  
336 of the sample. The square lines were cloned over the whole sample to be directly adjacent with no  
337 intervening gaps. All other settings were the same as in section 2.6. The mass spectrometer data was  
338 imported into Iolite and integrations selected by using the Laser Log file. After data reduction, the Iolite  
339 CellSpace (Paul et al., 2012) module was used to overlay the compositional data onto a mosaic image from  
340 the laser and colorize by total ppm level.

## 341 3. Results

### 342 3.1 Documentation of Buffer Material and Example Element Profiles

343 **Figure 2** shows electron backscatter images of the buffering phases in each MMO and RRO  
344 experiment. Experiments done in Mo capsules or using the Ru-RuO<sub>2</sub> buffer require confirmation to make  
345 sure both phases participating in the buffering reaction are present. For Mo capsules, this means checking  
346 that both Mo and MoO<sub>2</sub> are present and chemically communicating with the melt, ensuring an  $fO_2$   
347 equivalent to MMO. When using the Ru-RuO<sub>2</sub> buffering mix, this means confirming that the buffer material  
348 of Ru-RuO<sub>2</sub> is still present and has not fully reduced to Ru by the end of the experiment. The two 90 second

354 experiments provide insight on how buffering phases are operating in the experiments from the start.  
355 Buffering phases in each experiment from the time series were analyzed by EDS to determine if they were  
356 oxidized or native metal.

357 Patinas that formed in the MMO samples can be seen on the right side of each MMO image. All  
358 MMO experiments have this patina which was identified with EDS to be an oxidized Mo phase. The  
359 presence of the patina in the 90 second MMO experiment shows that these experiments are buffered to  
360 MMO from the at least 1/10 the time of the shortest experiment (20 minutes) used to recover diffusivity.  
361 Crystals were present, near the patina and suspended in the silicate glasses of the MMO experiments. These  
362 crystals can be seen in MMO images of Figure 2 and when analyzed via EDS return a metallic Mo signature.  
363 The presence of both the patina and Mo crystal together suggests the glass is chemically communicating  
364 with both native Mo and the oxidized Mo and correctly buffered to MMO. A calcium molybdate phase  
365 was also documented by WDS with the electron microprobe connected with the patina in the 20 minute  
366 MMO experiment. While not exhaustively searched for, this phase was not observed in any other sample  
367 or found again on the 20 minute experiment in the SEM.

368 For the RRO experiments shown in **Figure 2**, the buffering RRO mixture was examined with backscatter  
369 electron microscopy and EDS. For all experiments, both Ru and RuO<sub>2</sub> phases were still present and had  
370 not been entirely converted to a single phase of Ru. While there were cases where a reduced wave of Ru  
371 was starting to surround the buffer mixture, locations where both Ru and RuO<sub>2</sub> were both in chemical  
372 contact with the melt were always found. The 90 second RRO experiment may not have had enough time  
373 to fully melt as evidence by the bright and dark phases where just the glass phase should be. There is also  
374 some evidence for this in the 20 minute RRO experiment as well. The solid regions that are extremely  
375 bright in backscatter represent the Pt-Ru capsules, and in one or two cases pieces of the capsule can be  
376 seen in the melt itself (e.g. the 20 and 80 minute RRO experiment)

377 Experiments done in graphite capsules are taken to be buffered, accepting that the relationship  
378 established by Ulmer and Luth (1991) is broadly applicable to our experiments. There is no need to establish  
379 the presence of buffering phases for the graphite capsule experiments.

380 Now that we have established *fO*<sub>2</sub>-buffered conditions, we turn our attention to the diffusion  
381 profiles. **Figure 3** shows example profiles of V, Mn, Eu, and W across the oxygen fugacities studied in the  
382 40 minute experiments, all of which have well-formed diffusion profiles. **Fig 3 (a, b)** shows V and Mn  
383 across each *fO*<sub>2</sub> representing profiles from the transition elements while **fig 3 (c,d)** shows profiles for Eu  
384 and W representing the REEs and High Field Strength Elements (HFSEs) respectively. Generally, profiles  
385 of the REE and HFSEs were not problematic to fit. The transition elements, except V, were harder to fit.  
386 In some cases, these elements presented profiles that appeared to have violated our boundary conditions.  
387 For elements such as Cu and Ni, all profiles were poor, so their diffusivity was probably faster than could  
388 be accurately measured by these experiments. Many other transition elements, were too fast by the nature  
389 of their diffusivities to be properly captured with length scale of the capsule for some (e.g. Zn, Co, and Mn  
390 in the 80 minute graphite or 80 minute RRO experiments) of the longer experiments.

391 For the purpose of further studying the experiments and checking on the contribution of convection  
392 to experiments, the 80 MMO-buffered minute experiment was mapped via LA-ICP-MS. Select  
393 compositional maps are shown in **Figure 4**. These maps show the region of high-trace elements at the  
394 bottom of the capsule, the interface between the two packed powders and the low-trace element region at  
395 the top. No overturn of material is seen in the 80 minute MMO map which is taken to mean that convective  
396 overturn is not occurring. These maps also enable an enhanced method of extracting diffusivities from the  
397 sample. By taking the average of the concentration for each line, well-formed diffusion profiles can  
398 sometimes be generated for elements that did not present a good diffusion profile when analyzed in spot  
399 mode. **Figure 4(c)** shows and analysis of P in spot mode while **Figure 4(d)** shows the average of each of  
400 these lines extending from one edge of the capsule to the other. When fit, 4(d) returned a P diffusivity of  
401  $(6.55 \pm 0.55) \times 10^{-12} \text{ m}^2/\text{s}$ . We now evaluate diffusivities for a range of elements conducted at the same *fO*<sub>2</sub>  
402 for different durations. Figures for the diffusivities recovered at *fO*<sub>2</sub> and for each duration in the time series  
403 can be found in the SOM (**Figs. S1, S2, & S3; SOM**).

405 **3.2 MMO-buffered Experiments (FMQ-3.1), Reducing  $fO_2$**

406  
407 Recovered element diffusivities of MMO-buffered experiments are generally consistent with the  
408 elemental diffusivities recovered from the other MMO experiments run for different durations, within 3  
409 S.E. This helps to establish the conditions for the experiments did not change much throughout the time  
410 series. Exceptions for certain elements would be the diffusivities of W and Ta for the 80 minute and 40  
411 minute MMO datasets, Ce when the 80 and 20 minute datasets are compared or Co when compared in the  
412 20 and 40 minute datasets as well as the 20 and 80 minute datasets. A few elements deserve extra discussion.  
413 Scandium becomes slower as the time series progresses with a diffusivity of  $(1.5 \pm 0.27) \times 10^{-11} \text{ m}^2/\text{s}$  in the  
414 20 minute MMO experiment and then a diffusivity of  $(7.2 \pm 1.9) \times 10^{-12} \text{ m}^2/\text{s}$  and  $(5.5 \pm 1.8) \times 10^{-12} \text{ m}^2/\text{s}$  in the  
415 40 and 80 minute experiments. The best formed diffusion profile for Sc is from the 20 minute run since the  
416 40 and 80 minute experiments both slope up on the left hand side making these profiles harder to interpret  
417 than a normal diffusion profile. Incidentally, the fit for Sc from the 80 minute map returns a Sc diffusivity  
418 of  $(8.3 \pm 0.95) \times 10^{-12} \text{ m}^2/\text{s}$ . Recovered Zn diffusivities from the MMO experiment varies with the 20 minute  
419 D at  $(4.4 \pm 0.61) \times 10^{-11} \text{ m}^2/\text{s}$ , the 40 minute at  $(8.1 \pm 0.92) \times 10^{-11} \text{ m}^2/\text{s}$  and the 80 minute diffusivity from the  
420 mapped sample at  $(4.0 \pm 0.44) \times 10^{-11} \text{ m}^2/\text{s}$ . The 20 minute experiment exhibits the best profile for the  
421 recovery of Zn diffusion. While the 40 minute Zn presented a better spot profile than the 80 minute, there  
422 were only a few points to fit a  $C_{+\infty}$  to on the right, which possibly interferes with the accuracy of the  
423 recovered Zn diffusivity. So the Zn diffusivities recovered from the 40 minute MMO experiments may not  
424 be accurate. For Mo in the MMO experiments, only the 40 minute experiment represented a good diffusion  
425 profile able to be fit. Analysis of Mo in the 20 minute experiment which presented an otherwise well-formed  
426 profile appears to have struck a crystal or bleb in the middle of the diffusion profile. The 80 minute  
427 experiment did not present a well-formed profile which is unsurprising since in-diffusion of Mo from the  
428 capsule into the melt is likely playing a role here. The best fits in MMO for P, Cr and Zn come from the 80  
429 minute experimental MMO map.

430  
431 **3.3 Graphite Experiments (FMQ-1.2), Intermediate  $fO_2$**

432  
433 Graphite capsule experiments show diffusivities that are fully consistent with each other for the 20  
434 and 40 minute experiments. However the 80 minute experiments show diffusivities slower for every  
435 element but are all within 3 S.E. Only Sc when the 80 and 20 minute experiments are compared is outside  
436 a 3 S.E. range. While Zn, Co and Mn, diffusion profiles were fit for 20 and 40 minutes experiments, the 80  
437 minute experiment did not yield recoverable  $C_{+\infty}$  and  $C_{-\infty}$ , and thus violated our boundary condition. We  
438 did not recover a P profile for the 20 minute or 80 minute graphite experiment so the best fit for P comes  
439 from the 40 minute graphite experiment.

440  
441 **3.4 RRO Experiments (FMQ+6), Oxidizing  $fO_2$**

442  
443 Experiments buffered at the RRO equilibrium generally overlap between the 3 S.E. of the fit  
444 diffusivity at the 20, 40 and 80 minute experiments. The most notable thing for this time series is that the  
445 20 minute REE diffusivities are generally faster than the 40 and 80 minute diffusivity, but excepting Ce  
446 and the transition elements, Co and Mn, there is overlap within 3 S.E. between the diffusivities from the  
447 the 20, 40 and 80 minute experiments.

448  
449 **3.5 Complications during Element Fitting Routines across  $fO_2$ s**

450  
451 The hardest to fit elements were Cu, Ni, Cr, Sc, and P. In most cases these elements were not  
452 included in global fit and were instead fit individually later. Some profiles of Cu and Ni were generated but  
453 no diffusivities were recovered for these elements. Copper was not analyzed for every experiment but for  
454 every analytical session it was included in, the element never produced a good diffusion profile. The same  
455 is also true for Ni. Therefore we report no diffusivity data for Cu or Ni from any of the experiments.

456 Chromium did not present well-formed diffusion profiles when compared to many of the other elements in  
457 the MMO spot analyses but did present a good profile when mapped giving a diffusivity of  $(3.3\pm0.56)\times10^{-11}$  m<sup>2</sup>/s.  
458 The 20 minute graphite experiment did form a Cr profile but did not have many points far from the  
459 interface on the right or left side. The 40 minute profile of Cr was marginally better with a few more data  
460 points far from the diffusion interface. In the 80 minute graphite experiment Cr appears to have diffused  
461 out the left hand side. The recovered diffusivities for Cr in graphite capsule experiments were  $(4.2\pm2.2)\times10^{-11}$  m<sup>2</sup>/s  
462 and  $(1.7\pm0.6)\times10^{-11}$  m<sup>2</sup>/s in the 20 and 40 minute experiment respectively. The Cr profile in the 20  
463 minute RRO experiment suffers from a large slope up away from the diffusion profile on the left side  
464 and slope going down and away on the right of the interface. It is uncertain what causes this pattern for Cr  
465 but it does mean that this profile does not satisfy our boundary conditions. The 40 minute RRO Cr fit was  
466 better but still required masking of datapoints on the  $C_{+\infty}$  side to generate a proper diffusion couple. For  
467 the 80 minute RRO experiment, as a test, <sup>52</sup>Cr was analyzed instead of <sup>53</sup>Cr, however a well-formed  
468 diffusion profile was still not produced. In several experiments, Sc presented fairly good diffusion profiles.  
469 However this is complicated by the recovered Sc diffusivities having a wide range throughout the 20, 40  
470 and 80 minute time series at all oxygen fugacities. The best fits for P were at RRO, where it was possible  
471 to average the 20, 40 and 80 minute RRO experiments to get  $(4.8\pm2.1)\times10^{-12}$  m<sup>2</sup>/s. For the graphite  
472 experiments, only the P from the 40 minute experiment was able to be fit, returning  $(7.0\pm7.7)\times10^{-12}$  m<sup>2</sup>/s  
473 and even so this profile still required masking.  
474

### 475 **3.6 Summary of Average Diffusivities for All $fO_2$ s**

476 For each  $fO_2$ , the changes across all elements for diffusivity are summarized by the recovered  
477 preferred diffusivities in **Table 4**. Errors in **Table 4** are the one sigma errors on the original 20, 40 and 80  
478 minute diffusivities propagated through the averaging process. Elements that could not be fit for the entire  
479 time series use diffusivities only from the time series experiments that could be fit, or may use alternate  
480 diffusivities retrieved from the mapped MMO experiment.  
481

482 **Figure 5** presents diffusivities from Table 4 graphically. General groupings are apparent for  
483 different categories of elements. Elements like W, Ta, Nb, Mo, referred to as the HFSEs, have diffusivities  
484 that can be grouped together and are lower in magnitude than those of REEs. The REE elements are faster,  
485 sometimes more than twice as much compared to HFSEs for each  $fO_2$ . Transition elements like Zn, Co,  
486 Mn, and Cr diffuse much faster than the REEs or elements like Mo and W. So much so, that diffusivities  
487 for some of the transition elements in **Figure 5** are only averaged from the 20 and 40 minute experiments  
488 in their time series. The transition elements are significantly faster than the other elements studied here.  
489 Even so, the diffusivities are still in a similar order of magnitude as those of the other elements.  
490

491 Notably, the diffusivity of V is more in-line with those of the REEs than with transition elements.  
492 The diffusivity of Sc is more similar to that of HFSEs than it is to the diffusivity of other transition elements.  
493 Although, this is complicated by the diffusivity recovered from Sc profiles having large variations across  
494 the time series experiments. Elements diffused the slowest in graphite capsule experiments. The  
495 diffusivities of all studied elements – both redox-sensitive and univalent – are changing as  $fO_2$  is varied.  
496 The HFSEs are faster at either the reducing (MMO; FMQ-3.1) or oxidizing (RRO; FMQ+6). ends of the  
497 spectrum. This is true for REEs (excluding Eu which is fastest in MMO as well), transition elements and  
498 the rest. Experiments conducted in the graphite capsules yielded the slowest diffusivities than other  $fO_2$ s  
499 while in the oxidizing case of RRO they diffused fastest. Note that these overall slower diffusivities do not  
500 change the magnitude of element-element fractionations, reviewed in section 3.7.  
501

### 502 **3.7 Element-Element Fractionations with Changes in $fO_2$ .**

#### 503 **3.7.1 Rare Earth Fractionation and the Eu Anomaly**

504 The non redox-sensitive REEs show little fractionation from each other, a point further made by  
505 **Figure S4** in the supplemental. Overall this lack of fractionation indicates that the REEs in our experiments  
506

507 did not experience any significant starting fractionation which is useful for cases made herein regarding  
508 diffusion and the redox sensitivity of Eu. An interesting feature in the REE patterns, among the three oxygen  
509 fugacities, is presented by Eu. In the MMO case, Eu can be seen in **Figure 5** to have a much higher  
510 diffusivity than the other rare earth elements at MMO. In fact, the diffusivity of Eu in the MMO case is  
511 ~80% faster than the averaged diffusivity of Sm and Gd. Previous work (e.g. Koepke and Behrens, 2001)  
512 has used Sr diffusivity as a stand-in for the diffusivity of Eu<sup>2+</sup> and the average diffusivity of Sm and Gd as  
513 a proxy for Eu<sup>3+</sup>. This Eu signature is also present in the case of the graphite capsule experiments. There  
514 the diffusivity is 44% faster than the averaged diffusivity of Sm and Gd. Finally at an *fO<sub>2</sub>* RRO, the  
515 diffusivity of Eu becomes similar to those of on the other REEs. This indicates that Eu<sup>2+</sup> was present in the  
516 experiments with reducing conditions whereas the element was converted to mostly Eu<sup>3+</sup> when experiments  
517 were done at oxidizing conditions. These results are similar the conclusions of other workers. For example,  
518 LaTourrette and Wasserburg (1997) show via absorption spectroscopy that the valence of Eu shifts from  
519 Eu<sup>3+</sup> to Eu<sup>2.5+</sup> as *fO<sub>2</sub>* was changed from that of air to Fe-FeO (IW). In their experiments, they also state that  
520 the diffusivity of Eu was similar to that of Nd in air, while 42% faster at Fe-FeO which is similar to the  
521 graphite-buffered result found here but not as extensive as our MMO (~IW) result. Their experiments were  
522 conducted at 1 atm and used a higher temperature range, 1400 °C to 1500 °C.

523 As Eu<sup>2+</sup> atoms migrate through the melt, the increased diffusivity of Eu<sup>2+</sup>, allows them to diffuse  
524 farther than Eu<sup>3+</sup> atoms in the same timeframe. We refer to the signature this appears as when the ratio  
525 Eu/√(Sm\*Gd), as a proxy for Eu<sup>2+</sup>/Eu<sup>3+</sup> is graphed as the Eu anomaly. The magnitude of this anomaly  
526 depends on the redox state of the melt and the shift in diffusivities occurring with both the redox sensitive  
527 and non-redox sensitive elements. these factors are discussed further in discussion section 4.2 **Figure 6a**  
528 shows Sm, Eu, and Gd on the same plot for the 40 minute experiments MMO-buffered experiment while  
529 Figure 6b shows the Eu/√(Sm\*Gd) ratio for the 40 minute experiments from each oxygen fugacity used in  
530 this work. **Figure 6** shows the concentration of Sm, Eu, Gd across a profile taken of the 40 minute MMO  
531 experiment as well as a simulated and actual Eu/√(Sm\*Gd) for that experiment. These simulation were  
532 generated from profiles using the D, C<sub>-∞</sub>, C<sub>∞</sub>, and t of Sm, Eu, and Gd recovered from the fitting procedures  
533 outlined in section 2.7. The dotted and solid line simulations are made from 40 minute MMO experiments  
534 and 40 minute graphite experiments respectively. Careful examination of **Figure 6** shows that the right  
535 hand side of the simulated Eu anomaly levels out at a position just slightly lower than the left-hand side.  
536 This is because the simulated Eu anomaly shows Eu, Sm and Gd but with the concentrations on each side  
537 recovered by LA-ICP-MS diffusivities As such this subtle distinction in the level of the two sides is a result  
538 of a small starting fractionation of the Sm/Eu or Sm/Gd ratio between the high and low trace element ends  
539 of the diffusion couples. The curved hill and trough shape in **Figures 6** on the red and blue datasets is  
540 caused by the enrichment on one side and depletion on the other vs. the monovalent REEs as Eu<sup>2+</sup> diffuses.  
541 For the dataset from RRO, graphed as connected crosses, from the 40 minute experiment done at the  
542 oxidizing case of RRO, the Eu anomaly signature vanishes. This suggests that most to nearly all of Eu  
543 present has been oxidized into Eu<sup>3+</sup> and is diffusing at a rate similar to that of the other rare earth elements.  
544 Also because of this, there is no simulated Eu anomaly for the RRO case graphed in **Figure 6**. For the  
545 graphite case, a Eu anomaly is still present and the magnitude appears to be more subdued than that of  
546 MMO in **Figure 6** although it is hard to determine if the magnitude is actually the smaller due to the  
547 similarity of the profiles and the size of the error bars. It is still probably indicative of there being some  
548 Eu<sup>2+</sup> present but less than at the more reducing conditions as is further discussed in section 4.1.  
549

### 550 3.7.2 Nb/Ta

552 Other elements ratios present some interesting patterns; Nb/Ta show a small anomaly right at the  
553 interface of the diffusion couple (**Fig. 7**). The magnitude of this Nb/Ta anomaly is largest for the most  
554 oxidized experiments. **Figure 7** shows the Nb/Ta ratio for the three *fO<sub>2</sub>*-buffered experiments at 40 minutes.  
555 A simulated profile in **Figure 7** for the RRO-buffered experiment is shown, which is fit using a Nb/Ta  
556 diffusivity ratio of 1.6. This diffusivity ratio was calculated from the actual Nb and Ta diffusivities  
557 recovered from the 40 minute RRO buffered experiment.

558

559 **3.7.3 Other Elemental Patterns and Fractionation between Elements**

560

561 The transition elements show an interesting pattern across the redox conditions studied and with  
 562 increasing atomic Z. Examining Mn, Co, Zn in **Fig. 5**, a similar trend can be see for diffusivities of these  
 563 elements at MMO and RRO, where the diffusivities of these elements decrease with increasing mass. This  
 564 is not the case for the experiments done in graphite capsules where diffusivities increase with mass for these  
 565 three elements.

566 Other elements were explored for redox related fractionations but meaningful statements require  
 567 certain initial conditions. To ascertain if elements can be fractionated from each other, it is better to have  
 568 the absence of initial fractionations of the elements between the high and low trace element sides if the  
 569 diffusion couples. More discussion of certain element ratios can be found in the SOM. Like Sm, Eu, and  
 570 Gd many of these geochemically interesting element ratios rely on elements that are chemically similar but  
 571 differ in redox sensitivity. Often they use a non-redox-sensitive element as a proxy (e.g. La and Pr for Ce,  
 572 Sc for V, etc.). Since we show that there is base change in diffusivities for all elements (including non-  
 573 redox-sensitive element) between  $fO_2$  conditions, this may need to be considered for those element ratios.

574

575 **3.8 Heterogeneities in the starting material**

576

577 There are also deviations in Fe (e.g. **Table 2**) and some of the trace elements (e.g. Zn) between the  
 578 three oxygen fugacities. These variations in compositions still leave the eventual recovered diffusion  
 579 profiles intact in many cases. Volatilization or alloying with the Pt crucible, an effect that could also be  
 580 related to redox during the one-bar synthesis could be the cause of the discrepancy. There is also the  
 581 possibility that certain element groups may be fractionated in the starting material against the other groups  
 582 of trace elements. While these observations could be the result of the volatilization or interactions with Pt  
 583 crucible, they might simply be caused by the base mix being contaminated in certain elements.

584 Since elements were added in basaltic ratios or chondritic abundance relative to each other, our  
 585 relative element concentrations in our samples will be tolerant to these effects. Also with only intact  
 586 diffusion profiles being fit, diffusivities recovered are still valid. For element ratios with large starting  
 587 fractionations, diffusive fractionation would become harder to analyze for but the process does not stop  
 588 occurring.

589

590 **4. Discussion:**

591

592 **4.1 Diffusivity of Eu and the Eu anomaly with Oxygen Fugacity**

593

594 Redox states  $Eu^{2+}$  and  $Eu^{3+}$  are different in both their charge and their atomic radii, which will  
 595 influence how these elements interact and complex with the melt. In the case of diffusion, how these  
 596 elements migrate throughout the melt could be affected. Measuring the result of redox change on Eu is  
 597 straightforward since the diffusivities of chemically similar but non-redox sensitive elements Sm and Gd  
 598 can be used to bracket the effect. Our experiments demonstrate that it is possible to generate an Eu anomaly  
 599 from diffusion alone implying that the diffusivities of  $Eu^{2+}$  and  $Eu^{3+}$  are different. More reducing conditions  
 600 should result in increasing the proportion of Eu that is in the  $Eu^{2+}$  state. Due to having a lower charge  $Eu^{2+}$   
 601 should diffuse faster than  $Eu^{3+}$ . Overall this will lead to a higher average diffusivity for Eu and thus the  
 602 magnitude of this Eu anomaly depends on the oxygen fugacity. Notably, in any coordination state,  $Eu^{2+}$   
 603 will always have a larger ionic radii than  $Eu^{3+}$  (Shannon, 1976), although the exact difference between the  
 604 ionic radii would depend on the coordinations of  $Eu^{2+}$  and  $Eu^{3+}$  being considered. However the presence of  
 605 the Eu anomaly in our reducing experiments shows that  $Eu^{2+}$ , when present, is diffusing faster than  $Eu^{3+}$   
 606 despite having a larger ionic radii. Therefore it is probable that the valence change for Eu significantly  
 607 outweighs the contribution of ionic radii for the diffusive properties of this element. Since mineral growth  
 608 can be influenced by diffusive supply, there could be consequences for the final chemical composition of

609 minerals crystallizing from silicate melts, or consequences for the distribution of redox-sensitive elements  
 610 during magma mingling. In the case of the former, for example, a faster diffusivity for  $\text{Eu}^{2+}$  compared to  
 611  $\text{Eu}^{3+}$ , could affect the Eu anomaly recorded in plagioclase. Since plagioclase is a major rock-forming  
 612 mineral that can incorporate  $\text{Eu}^{2+}$  in the place of Ca in its structure, the resulting Eu anomaly of the melt  
 613 will be affected. The same mechanism that allows an Eu anomaly to be generated in these experiments will  
 614 also exist in any case where there is a diffusive boundary (e.g. crystal growth, interface between two  
 615 magmas mixing in a magma chamber) under reducing conditions. This Eu anomaly leads to a relative  
 616 enrichment of Eu, compared to Sm and Gd in the low trace element side of the diffusion couple. A relative  
 617 depletion will form on the other side. In a natural setting, e.g. crystal growth, this will lead to a relative Eu  
 618 depletion in the melt and relative enrichment of Eu in the up-taking crystal. These physical scenarios are  
 619 discussed in the section 4.4.

620 Drake (1975) explored the partitioning of Eu between plagioclase and basaltic melt as a function  
 621  $fO_2$  under one atmosphere conditions. The range of oxygen fugacity used corresponded to a ~0.6 more  
 622 oxidizing than RRO at 1300 °C and to about 1.6 log units more reducing than the IW buffer at 1290 °C.  
 623 The relative proportions of  $\text{Eu}^{2+}$  and  $\text{Eu}^{3+}$  in the melt deduced from that study can be expressed as:

$$624 \quad \log fO_2 = -4.55(\pm 0.17) \log \frac{Eu^{2+}}{Eu^{3+}} - 10.89(\pm 0.19) \quad (2)$$

625 Solving equation 2 for the  $fO_2$  conditions used in the experiments here gives in MMO, an  $\text{Eu}^{2+}/\text{Eu}^{3+}$   
 626 ratio equal to 0.76 and graphite capsule experiments, an  $\text{Eu}^{2+}/\text{Eu}^{3+}$  ratio equal to 0.3 showing the decreasing  
 627 proportion of  $\text{Eu}^{2+}$  in the melt as conditions become more oxidizing. At RRO, the calculated  $\text{Eu}^{2+}/\text{Eu}^{3+}$  is  
 628 very low and equal to ~0.01.

629 If these proportions are taken to be true for the basaltic melts in our experiments, they would allow  
 630 for direct calculation of the diffusivity of  $\text{Eu}^{2+}$ . The other basic assumption needed would be that the  
 631 diffusivity of  $\text{Eu}^{3+}$  in each experiment can be approximated by taking the average of the diffusivities of Sm  
 632 and Gd from that experiment. Then the diffusivity of  $\text{Eu}^{2+}$  could be calculated from equation 3:

$$633 \quad \bar{D}_{Eu} = \frac{(D_{Eu^{2+}} * A_{Eu^{2+}}) + (D_{Eu^{3+}} * A_{Eu^{3+}})}{(A_{Eu^{2+}} + A_{Eu^{3+}})} \quad (3)$$

634 Using the ratios calculated for each  $fO_2$  calculated from eqn. 2, we then find that the diffusivity in  
 635 the 40 minute experiment of  $\text{Eu}^{2+}$  at MMO-buffered conditions is  $(4.1 \pm 0.4) \times 10^{-11} \text{ m}^2/\text{s}$ , and in graphite  
 636 capsule experiment,  $(3.7 \pm 1) \times 10^{-11} \text{ m}^2/\text{s}$ . Given the decreased abundance of  $\text{Eu}^{2+}$  under RRO conditions, no  
 637  $\text{Eu}^{2+}$  diffusivities at RRO are presented. Doing the same for the 20 minute experiments, the diffusivity of  
 638  $\text{Eu}^{2+}$  at MMO is  $(4.3 \pm 0.4) \times 10^{-11} \text{ m}^2/\text{s}$ , and in the graphite experiment  $(3.2 \pm 0.9) \times 10^{-11} \text{ m}^2/\text{s}$ . In the 80 minute  
 639 MMO case,  $(4.6 \pm 0.4) \times 10^{-11} \text{ m}^2/\text{s}$ . Due to large Sm/Gd fractionations in the profile of 80 minute graphite  
 640 case, that calculation for  $\text{Eu}^{2+}$  diffusivity is also not presented.

641 The magnitude of the Eu anomaly observed in our experiments is function of the concentration  
 642 difference (i.e.  $C_\infty$  and  $C_{+\infty}$ , of the trace elements on one side of the diffusion couple vs. the other side) of  
 643 the diffusion couples, the initial Eu anomaly on each side, and the oxygen fugacity. The experiments were  
 644 designed such that the initial Eu anomaly is the same for each side so that an Eu anomaly diffusive  
 645 fractionation can be studied. Using our calculated diffusivities for Sm, Eu, and Gd, **Figure 8** shows how  
 646 the magnitude of the anomaly would change with different initial concentration ratios. Both the expected  
 647 Eu anomaly signature if concentration are no different and if  $C_{+\infty}$  is enriched for each trace element 10  
 648 times more than in our experiments is shown. Our experimental case has  $C_{+\infty}$  enriched about 3.7 to 5 times  
 649  $C_\infty$  depending on  $fO_2$ . Due to the high diffusivity of Eu at MMO, the magnitude of this anomaly grows  
 650 fastest as the concentration gradient is increased. This is true even though the experiment at this  $fO_2$  only  
 651 has a  $C_{+\infty}$  that is 3.7 times  $C_\infty$  for Sm, Eu and Gd.

## 652 4.2 Nb/Ta

653 As can be seen in **Figure 7**, the Nb/Ta ratio also shows evidence for Nb fractionation from Ta  
 654 across the plotted diffusion profiles. Some fractionation is expected due to the large difference in the mass

of these elements causing different diffusivities, but the magnitude of this fractionation is larger in RRO-buffered experiments when compared with other  $fO_2$ s. These elements may be redox-sensitive and might be reduced to  $Nb^{2+}$  and  $Ta^{3+}$  at very reducing  $fO_2$  conditions (Cartier et al., 2014) beyond those used in these experiments. However, neither of these elements is thought to have a valence state more oxidized than  $Nb^{5+}$  and  $Ta^{5+}$ , so a valency change is likely not responsible for the increased fractionation at FMQ+6.

### 4.3 Other Elements

Some other known redox-sensitive and non-redox sensitive element pairs (e.g. V/Sc) may exhibit trace element fractionation. However due to poor fits on one or the other of their elements in their ratios, not all experiments or element sets are idealized for this. This makes it difficult to determine if there is an effect related specifically to the change in valence on these redox-sensitive elements. Some element ratios (Mn/La) show starting fractionations between the high-trace element and low-trace element side complicating analysis for diffusive trace element fractionation.

### 4.4 Implications in Natural Systems

Diffusion as a process has implications for mineral growth in planetary magmatic melts. Mineral growth in a magma can be diffusion-limited or depend on a diffusive regime. For example, solutions for the concentration of an element in the boundary layers of growing crystal has been characterized before (Baker, 2008; Smith et al., 1955). In these solutions, there is a dependency on the diffusivity D of the element of interest. This is important for deciding if melt inclusions in crystals are indicative of the parent melt or if they are capturing the signature of diffusive fractionation in the boundary layers of a rapidly growing crystal (Baker, 2008; Watson, 1982).

### 4.5 Melt Structure Changes and Possibly Redox-Sensitive Elements

On average, between all  $fO_2$ s, the diffusivities of the non-redox sensitive elements are the same within a factor of ~2 with some variation depending on the element being compared. Even so, the recovered diffusivities from these different  $fO_2$ s are statistically different. In this section, we explore the possibility that melt structure changes occurring with  $fO_2$  could be responsible for this difference. Since diffusivities of both redox sensitive and non-redox-sensitive studied elements are shifting with  $fO_2$ , a mechanism affecting all transport process in the melt as  $fO_2$  is varied might exist.

Cations comprising the melt structure are often referred to as network-forming or network-modifying. Network-forming cations are those cations in the melt in tetrahedral coordination (Mysen, 1983) such as Si ions bonded with oxygen in a silicate melt. Network modifiers connect the tetrahedral polymers and units together (Mysen, 1983). A major redox-sensitive element in these experiments is Fe which has redox states of  $Fe^0$ ,  $Fe^{2+}$ , and  $Fe^{3+}$ . In terrestrial melts as well as the  $fO_2$ s explored here, most Fe encountered is in either the 2+ or 3+ state. In a melt,  $Fe^{3+}$  occurs in tetrahedral coordination (Mysen et al., 1982)  $Fe^{3+}$  but can be both a network former and network modifier. For the other redox state,  $Fe^{2+}$  is generally a network modifier although Borisov et al. (2015) mentions that both  $Fe^{2+}$  and  $Fe^{3+}$  occur in tetrahedral coordination and referring to Shannon (1976) have ionic radii of 0.63 and 0.49 Å respectively. The relative proportion  $Fe^{2+}$  and  $Fe^{3+}$  will change as  $fO_2$  is varied, possibly altering melt structure. Reducing conditions will probably result in less  $Fe^{3+}$  available for tetrahedral coordination in the melt. This would lead to decreased melt polymerization and we suspect would result in faster diffusivities. This matches with the observation that diffusivities in the MMO-buffered experiments are faster than those conducted at an intermediate  $fO_2$ . Yet it does not explain why experiments conducted at an intermediate  $fO_2$  have the slowest diffusivities or why the presumably highly polymerized RRO-buffered experiments have the fastest diffusivities. Viscosity is another property of melt and has fundamental relations with diffusivity and whether the cations being studied are network modifying or network forming (Mungall, 2002). If the change

in viscosity is caused by a change in  $fO_2$ , there could be systematic changes in diffusivity of the elements in the melt. The Eyring equation (e.g., see Appendices of Mungall, 2002) suggests that the viscosity of the melt and the tracer diffusion of elements through the melt are inversely related. The addition of volatiles can have a multitude of effects on the properties of a magma including viscosity. Tracer diffusivities and the chemical diffusivity of an element not affected by multicomponent effects are very similar and analogous to the diffusivities of trace elements in our experiments. (See Mungall, 2002 for further discussion) Behrens and Hahn (2009) looked at the relationship between viscosity and diffusion experimentally and were able to correlate them for two different melt compositions (phonolitic and trachytic) using the diffusivity of Zr. The effect of the volatile  $CO_2$  on the viscosity of a magma is ambiguous with some reporting little to no change (Morizet et al, 2014) and others reporting that the addition of  $CO_2$  will make a magma more viscous (Papale and Polacci, 1999). The effect is related to polymerization in melt caused by  $CO_2$  and is most likely variable for different compositions of melt. Depending on the change in viscosity for our silicate melts, this could provide a possible explanation for why experiments done in the graphite capsules, which should have more dissolved  $CO_2$ , have the diffusivities that are moderately slower when compared the diffusivities recovered from experiments conducted at more oxidizing RRO or more reducing MMO buffers. While a possibility for graphite, this does not provide an explanation for the faster diffusion coefficients encountered in the RRO experiments relative to the other two buffers.

Some elements might have valence changes that are not encountered or significant over the redox range explored here. As mentioned before  $P^{3+}$  has been proposed as possible state for P (Mallmann and O'Neil, 2009) yet the Mo-MoO<sub>2</sub> (MMO) buffer is probably not reducing enough to make this a dominant species of P for these experiments. Another would be W whose dominant redox is not expected to change over any of the fugacities explored here.

#### 4.6 Comparisons with Other Work

Holycross and Watson, (2016) conducted diffusion experiments in graphite capsules varying temperatures from 1250 to 1500 °C and recovered diffusivities for 25 trace elements, 10 of which overlap with trace elements measured in this study. Both of our experiments use very similar major weight percent element compositions. Diffusivities recovered in this work compare favorably with theirs. Diffusivities from our MMO-buffered experiments are nearly identical with the diffusivities from Holycross and Watson (2016) while our preferred diffusivities from our graphite experiments in **Figure 9** average (excluding Sc) about 55% slower.

Magaritz and Hoffman, (1978) studied the diffusion of Eu and Gd in basalts and obsidian using the radioactive tracer method. In basalt they found the diffusivities for the Eu and Gd tracers to be within their own experimental error of each other at 1150 and 1440 °C. Their diffusivity for Eu (and thus Gd for that work as well) is  $(1.4 \pm 0.4) \times 10^{-11} \text{ m}^2/\text{s}$  which is very similar to the range of diffusivities encountered in this work, especially for experiments done in graphite capsules. The experiments of Magaritz and Hoffman, (1978) were done in air which would oxidize Eu. This may be why no difference between the diffusivities of Gd and Eu were observed. **Figure 9** graphs the comparison between the diffusivities recovered in this paper and those of these workers.

Watson et al. (2015) investigated P diffusion in molten basalt over 1250 to 1500 °C and 1 GPa, Calculating with the  $\log D_0$  and activation energy from that work, the diffusivity of P at 1300 °C is  $(6.6 \pm 0.5) \times 10^{-12} \text{ m}^2/\text{s}$  which is similar to our preferred diffusivities reported in Table 4 for P, which range from  $(4.8 \pm 2.1) \times 10^{-12} \text{ m}^2/\text{s}$  in RRO to  $(7.0 \pm 7.7) \times 10^{-12} \text{ m}^2/\text{s}$  in experiments done in graphite capsules. A number of other studies which focus on the diffusion of trace elements in silicate melts are reported in Zhang et al. (2010), however a range of melt compositions is covered not all of which are basaltic. Some like Lowry et al. (1982) are similar in composition but not identical. A comparison with their recovered Sc, Co and Mn diffusivities in Alkali basalt and the diffusivities recovered in this work shows only moderate difference. At 1300 °C, they report  $\log D_0$  and activation energies that can be calculated to give diffusivities of  $(3.4 \pm 1.6) \times 10^{-11} \text{ m}^2/\text{s}$  and  $(3.2 \pm 1.2) \times 10^{-11} \text{ m}^2/\text{s}$  for  $Mn^{2+}$  and  $Co^{2+}$  respectively and

758 (8.3±1.3)×10<sup>-12</sup> for Sc<sup>3+</sup>. These are slower than our recovered diffusivities for Mn and Co at any  $fO_2$  but  
759 similar in order of magnitude to our experiments. Our diffusivities that are nearest to those of Lowry et al.  
760 (1982) come from the graphite capsule and are Mn (4.3±0.4)×10<sup>-11</sup> m<sup>2</sup>/s for Mn and (4.7±0.4)×10<sup>-11</sup> m<sup>2</sup>/s  
761 for Co. Their Sc diffusivity is also comparable to what we report in table 4 for Sc diffusivity at any  $fO_2$ .  
762

763 **5. Summary and Outlook**

764  
765 Oxygen fugacity conditions can have an effect on the diffusivity of elements. Most elements were  
766 found to have the slowest diffusivities when the experiments were done in graphite (FMQ-1.2) capsules.  
767 Diffusivities were faster at MMO (FMQ-3.1) and fastest at RRO (FMQ+6). Figure 8 shows that increased  
768 differences between the starting concentrations can increase the fractionation in the experiment. Over the  
769 ranges of  $fO_2$  studied here, Eu is specially affected. At 1300 °C, differences can be seen in the diffusivities  
770 of Eu, recorded across the MMO, graphite, RRO  $fO_2$  buffers. Evidence of diffusive fractionation can be  
771 seen by plotting Eu/ $\sqrt{(\text{Sm}^*\text{Gd})}$  for the experiment done in graphite capsule or the MMO. Increased  
772 fractionation of the Nb/Ta ratio is seen at RRO. Finally, diffusivities of even the non-redox sensitive  
773 elements seem broadly affected by  $fO_2$ . Higher temperatures could also change the speciation of Eu. If this  
774 causes the proportion of Eu<sup>2+</sup>/Eu<sup>3+</sup> to increase, then the magnitude of the Eu anomaly will increase along  
775 with average diffusivity of total Eu.

776 There are also small systematic changes in the diffusivities of all elements, even non-redox-  
777 sensitive, as  $fO_2$  changes. These may caused be structural changes in the melt that co-occur with the  $fO_2$   
778 changes. Stuructual changes in the melt could help to explain the variation of the diffusivities of the non-  
779 redox-sensitive elements at different  $fO_2$  conditions. Diffusion will control the supply of elements to a  
780 mineral growing in a magma. If  $fO_2$  affects the diffusivities of both redox sensitive and non-redox sensitive  
781 elements, then there are ramifications for the processes that depend on these elements. As such  $fO_2$  may be  
782 important beyond just determining valence and mineral phase because it may affect magmatic mineral  
783 growth.

784 Overall, changes in diffusivities with  $fO_2$  for both elements sensitive to redox and those non-  
785 sensitive may have important implications for mineral growth and any process that depends on uptake of  
786 these elements.

787  
788 **ACKNOWLEDGMENTS**

789  
790 We would like to extend thanks to Jacobs, NASA Johnson Space Center, NASA ARES and the  
791 JETS contract. This work partially supported by EAR-1751903. We are grateful to Loan Le for assistance  
792 with  $fO_2$  pre-synthesis steps and SEM. We are also grateful for Brian McIntyre's help on SEM at the  
793 University of Rochester as well as Zhan Peng, Eve Berger, and Kent Ross for their help with LA-ICP-MS,  
794 SEM, and electron microprobe respectively at JSC. Also thanks are due to Jenny Rapp, Kevin Righter,  
795 Kellye Pando, Kathleen Vander Kaaden, Rick Rowland, Yanling Wang, Jacob Buettner, and Wriju  
796 Chowdhury. The LA-ICP-MS instrument at the University of Rochester is partially supported by a grant  
797 from the Instrumentation and Facilities Program, Division of Earth Sciences, NSF (EAR-1545637).

798  
799 **REFERENCES CITED:**

800  
801 Anders, E., & Grevesse, N. (1989). Abundances of the elements: Meteoritic and solar. *Geochimica et  
802 Cosmochimica Acta*, 53(1), 197-214.

803  
804 Baker, D. R. (2008). The fidelity of melt inclusions as records of melt composition. *Contributions to  
805 Mineralogy and Petrology*, 156(3), 377-395.

807 Barrat, J., Zanda, B., Moynier, F., Bollinger, C., Liorzou, C., & Bayon, G. (2012). Geochemistry of CI  
808 chondrites: Major and trace elements, and Cu and Zn Isotopes. *Geochimica et Cosmochimica Acta*, 83,  
809 79-92.

810

811 Behrens, H., & Hahn, M. (2009). Trace element diffusion and viscous flow in potassium-rich trachytic  
812 and phonolitic melts. *Chemical Geology*, 259(1-2), 63-77.

813

814 Bird, J. M., & Weathers, M. S. (1977). Native Iron Occurrences of Disko Island, Greenland. *The Journal  
815 of Geology*, 85(3), 359-371.

816

817 Bockrath, C. (2004). Fractionation of the Platinum-Group Elements During Mantle Melting. *Science*,  
818 305(5692), 1951-1953.

819

820 Borisov, A., Behrens, H., & Holtz, F. (2015). Effects of melt composition on Fe<sub>3</sub> /Fe<sub>2</sub> in silicate melts: a  
821 step to model ferric/ferrous ratio in multicomponent systems. *Contributions to Mineralogy and Petrology*,  
822 169(2).

823

824 Burnham, A. D., & Berry, A. J. (2012). An experimental study of trace element partitioning between  
825 zircon and melt as a function of oxygen fugacity. *Geochimica et Cosmochimica Acta*, 95, 196-212.

826

827 Burnham, A. D., Berry, A. J., Wood, B. J., & Cibin, G. (2012). The oxidation states of niobium and  
828 tantalum in mantle melts. *Chemical Geology*, 330-331, 228-232.

829

830 Burnham, A., & Berry, A. (2014). The effect of oxygen fugacity, melt composition, temperature and  
831 pressure on the oxidation state of cerium in silicate melts. *Chemical Geology*, 366, 52-60.

832

833 Carmichael, I.S.E. And Ghiorso, M.S. (1990) The Effect of Oxygen Fugacity on the Redox  
834 State of Natural Liquids And Their Crystallizing Phases Reviews in Mineralogy and Geochemistry,  
835 Volume 24, Issue 1.Chapter 7, Pg. 191-212.

836

837 Cartier, C., Hammouda, T., Boyet, M., Bouhifd, M. A., & Devidal, J. (2014). Redox control of the  
838 fractionation of niobium and tantalum during planetary accretion and core formation. *Nature Geoscience*,  
839 7(8), 573-576.

840

841 Coons, W. E., & Holloway, J. R. (1979) Cobaltous oxide as a chemical analogue for ferrous iron in  
842 experimental petrology: An alternative solution to the iron-loss problem. *American Mineralogist*, 64(9-  
843 10), 1097-1106.

844

845 Cottrell, E., & Kelley, K. A. (2011). The oxidation state of Fe in MORB glasses and the oxygen fugacity  
846 of the upper mantle. *Earth and Planetary Science Letters*, 305(3-4), 270-282.

847

848 Crank, J. (2011). *The mathematics of diffusion*. Oxford University Press: Oxford.

849

850 Diener, J. F., & Powell, R. (2010). Influence of ferric iron on the stability of mineral assemblages.  
851 *Journal of Metamorphic Geology*, 28(6), 599-613.

852

853 Drake, M. J. (1975). The oxidation state of europium as an indicator of oxygen fugacity. *Geochimica et  
854 Cosmochimica Acta*, 39(1), 55-64.

855

856 Duncan A. R., McKay S. M., Stoeser J. W., Lindstrom M. M., Lindstrom D. J., Fruchter J. S. & Goles G.  
857 G. (1975) Lunar Polymict Breccia 14321: a compositional study of its principal components, *Geochimica*  
858 *et Cosmochimica Acta*, 39, 247-260.

859

860 Elardo, S. M., Draper, D. S., & Shearer, C. K. (2011). Lunar Magma Ocean crystallization revisited: Bulk  
861 composition, early cumulate mineralogy, and the source regions of the highlands Mg-suite. *Geochimica et*  
862 *Cosmochimica Acta*, 75(11), 3024-3045.

863

864 Evans, K. A., Elburg, M. A., & Kamenetsky, V. S. (2012). Oxidation state of subarc mantle. *Geology*,  
865 40(9), 783-786.

866

867 Farges, F., Siewert, R., Ponader, C. W., Brown, G. E., Pichavant, M., & Behrens, H. (2006). Structural  
868 Environments Around Molybdenum In Silicate Glasses And Melts. II. Effect Of Temperature, Pressure,  
869  $H_2O$ , Halogens And Sulfur. *The Canadian Mineralogist*, 44(3), 755-773.

870

871 Gaillard, F., Scaillet, B., Pichavant, M., & Iacono-Marziano, G. (2015). The redox geodynamics linking  
872 basalts and their mantle sources through space and time. *Chemical Geology*, 418, 217-233.

873

874 Goodrich, C. A., & Bird, J. M. (1985). Formation of Iron-Carbon Alloys in Basaltic Magma at Uivfaq,  
875 Disko Island: The Role of Carbon in Mafic Magmas. *The Journal of Geology*, 93(4), 475-492.

876

877 Hensen, B. J. (1986). Theoretical phase relations involving cordierite and garnet revisited: the influence  
878 of oxygen fugacity on the stability of sapphirine and spinel in the system Mg-Fe-Al-Si-O. *Contributions*  
879 *to Mineralogy and Petrology*, 92(3), 362-367.

880

881 Herd, C. D., Borg, L. E., Jones, J. H., & Papike, J. J. (2002). Oxygen fugacity and geochemical variations  
882 in the martian basalts: implications for martian basalt petrogenesis and the oxidation state of the upper  
883 mantle of Mars. *Geochimica et Cosmochimica Acta*, 66(11), 2025-2036.

884

885 Huebner, J., & Sato, M. (1970). The Oxygen Fugacity-Temperature Relationships of Manganese Oxide  
886 And Nickel Oxide Buffers. *American Mineralogist*, 55(5-6), 934-952.

887

888 Holycross, M. E., & Watson, E. B. (2016). Diffusive fractionation of trace elements in basaltic melt.  
889 *Contributions to Mineralogy and Petrology*, 171(10).

890

891 Igor Pro (Wavemetrics, Lake Oswego, OR, USA)

892

893 Jarosewich, E., Nelen, J., & Norberg, J. A. (1980). Reference Samples for Electron Microprobe  
894 Analysis\*. *Geostandards and Geoanalytical Research*, 4(1), 43-47.

895

896 Koepke, J., & Behrens, H. (2001). Trace element diffusion in andesitic melts: An application of  
897 synchrotron X-ray fluorescence analysis. *Geochimica Et Cosmochimica Acta*, 65(9), 1481-1498.

898

899 LaTourrette, T. & Wasserburg, G.J. (1997). Self diffusion of europium, neodymium, thorium, and  
900 uranium in haplobasaltic melt: The effect of oxygen fugacity and the relationship to melt structure.  
901 *Geochimica Et Cosmochimica Acta*, 61(15), 3277.

902

903 Lee, C. A., Luffi, P., Roux, V. L., Dasgupta, R., Albaréde, F., & Leeman, W. P. (2010). The redox state  
904 of arc mantle using Zn/Fe systematics. *Nature*, 468(7324), 681-685.

905

906 Leitzke, F., Fonseca, R., Sprung, P., Mallmann, G., Lagos, M., Michely, L., & Münker, C.  
907 (2017). Redox dependent behaviour of molybdenum during magmatic processes in the terrestrial  
908 and lunar mantle: Implications for the Mo/W of the bulk silicate Moon. *Earth and Planetary  
909 Science Letters*, 474, 503-515.

910

911 Li, Z. A., & Lee, C. A. (2004). The constancy of upper mantle  $fO_2$  through time inferred from V/Sc ratios  
912 in basalts. *Earth and Planetary Science Letters*, 228(3-4), 483-493.

913

914 Linnen, R. L., Pichavant, M., Holtz, F., & Burgess, S. (1995). The effect of on the solubility, diffusion,  
915 and speciation of tin in haplogranitic melt at 850 °C and 2 kbar. *Geochimica et Cosmochimica Acta*,  
916 59(8), 1579-1588.

917

918 Lowry, R. K., Henderson, P., & Nolan, J. (1982). Tracer diffusion of some alkali, alkaline-earth and  
919 transition element ions in a basaltic and an andesitic melt, and the implications concerning melt structure.  
920 *Contributions to Mineralogy and Petrology*, 80(3), 254-261.

921

922 Magaritz, M., & Hofmann, A. W. (1978). Diffusion of Eu and Gd in basalt and obsidian. *Geochimica et  
923 Cosmochimica Acta*, 42(6), 847-858. doi:10.1016/0016-7037(78)90097-2

924 Mallmann, G., & O'Neill, H. S. (2009). The Crystal/Melt Partitioning of V during Mantle Melting as a  
925 Function of Oxygen Fugacity Compared with some other Elements (Al, P, Ca, Sc, Ti, Cr, Fe, Ga, Y, Zr  
926 and Nb). *Journal of Petrology*, 50(9), 1765-1794.

927

928 Mccord, T. B., Adams, J. B., & Johnson, T. V. (1970). Asteroid Vesta: Spectral Reflectivity and  
929 Compositional Implications. *Science*, 168(3938), 1445-1447.

930

931 Morizet, Y., Paris, M., Gaillard, F., & Scaillet, B. (2014). Carbon dioxide in silica-undersaturated melt  
932 Part II: Effect of CO<sub>2</sub> on quenched glass structure. *Geochimica Et Cosmochimica Acta*, 144, 202-216.

933

934 Mungall, J. E. (2002). Empirical models relating viscosity and tracer diffusion in magmatic silicate melts.  
935 *Geochimica et Cosmochimica Acta*, 66(1), 125-143.

936

937 Myers, J., & Eugster, H. P. (1983). The system Fe-Si-O: Oxygen buffer calibrations to 1,500K.  
938 *Contributions to Mineralogy and Petrology*, 82(1), 75-90.

939

940 Mysen, B. O., (1983). The structure of silicate melts. *Ann. Rev. Earth Planet Sci.* 11, 75-97

941

942 Mysen, B. O., Virgo, D., & Seifert, F. A. (1982). The structure of silicate melts: Implications for chemical  
943 and physical properties of natural magma. *Reviews of Geophysics*, 20(3), 353.

944

945 Nakamura, E., & Kushiro, I. (1998). Trace element diffusion in jadeite and diopside melts at high  
946 pressures and its geochemical implication. *Geochimica et Cosmochimica Acta*, 62(18), 3151-3160.

947

948 O'Neill, H. S., & Nell, J. (1997). Gibbs free energies of formation of RuO<sub>2</sub>, IrO<sub>2</sub>, and OsO<sub>2</sub>: A high-  
949 temperature electrochemical and calorimetric study. *Geochimica Et Cosmochimica Acta*, 61(24), 5279-  
950 5293.

951

952 O'Neill, H. S., & Pownceby, M. I. (1993). Thermodynamic data from redox reactions at high temperatures.  
953 I. An experimental and theoretical assessment of the electrochemical method using stabilized zirconia

954 electrolytes, with revised values for the Fe-“FeO”, Co-CoO, Ni-NiO and Cu-Cu<sub>2</sub>O oxygen buffers, and  
955 new data for the W-WO<sub>2</sub> buffer. *Contributions to Mineralogy and Petrology*, 114(3), 296-314.

956

957 O’Neill, H. S., (1986) Mo-MoO<sub>2</sub> (MOM) oxygen buffer and the free energy of formation of MoO<sub>2</sub>  
958 *American Mineralogist*, 71, 1007-1010.

959 Papike, J., Karner, J., & Shearer, C. (2004). Comparative planetary mineralogy: V/(Cr Al) systematics in  
960 chromite as an indicator of relative oxygen fugacity. *American Mineralogist*, 89(10), 1557-1560.

961

962 Paul, B., Paton, C., Norris, A., Woodhead, J., Hellstrom, J., Hergt, J., and Greig, A., 2012, CellSpace: A  
963 module for creating spatially registered laser ablation images within the Iolite freeware environment:  
964 *Journal of Analytical Atomic Spectrometry*, v. 27, no. 4, p. 700,

965

966 Papale, P., & Polacci, M. (1999). Role of carbon dioxide in the dynamics of magma ascent in explosive  
967 eruptions. *Bulletin of Volcanology*, 60(8), 583-594.

968

969 Paton, C., Hellstrom, J., Paul, B., Woodhead, J. and Hergt, J. 2011. “Iolite: Freeware for the visualisation  
970 and processing of mass spectrometric data.” *Journal of Analytical Atomic Spectrometry*.

971

972 Pourmand, A., Dauphas, N., & Ireland, T. J. (2012). A novel extraction chromatography and MC-ICP-MS  
973 technique for rapid analysis of REE, Sc and Y: Revising CI-chondrite and Post-Archean Australian Shale  
974 (PAAS) abundances. *Chemical Geology*, 291, 38-54.

975

976 Pringle, E. A., Savage, P. S., Badro, J., Barrat, J., & Moynier, F. (2013). Redox state during core  
977 formation on asteroid 4-Vesta. *Earth and Planetary Science Letters*, 373, 75-82.

978

979 Roux, V. L., Lee, C., & Turner, S. (2010). Zn/Fe systematics in mafic and ultramafic systems:  
980 Implications for detecting major element heterogeneities in the Earth’s mantle. *Geochimica Et  
981 Cosmochimica Acta*, 74(9), 2779-2796.

982

983 Russell, C. T., Raymond, C. A., Coradini, A., McSween, H. Y., Zuber, M. T., Nathues, A., . . . Titus, T. N.  
984 (2012). Dawn at Vesta: Testing the Protoplanetary Paradigm. *Science*, 336(6082), 684-686.

985

986 Ruzicka, A., Snyder, G. A., & Taylor, L. A. (2001). Comparative geochemistry of basalts from the moon,  
987 earth, HED asteroid, and Mars: implications for the origin of the moon. *Geochimica et Cosmochimica  
988 Acta*, 65(6), 979-997.

989

990 Sato M., Hickling N., & McLane J. (1973) Oxygen fugacity values of Apollo 12, 14, and 15 lunar  
991 samples and reduced state of lunar magmas, Proceedings of the 4<sup>th</sup> Lunar Science Conference,  
992 *Geochimica et Cosmochimica Acta*, 1, 1061-1079.

993

994 Schreiber, H. D., Lauer, H. V., & Thanyasiri, T. (1980). The redox state of cerium in basaltic magmas:  
995 An experimental study of iron-cerium interactions in silicate melts. *Geochimica Et Cosmochimica Acta*,  
996 44(10), 1599-1612.

997

998 Siebert, J., Corgne, A., & Ryerson, F. J. (2011). Systematics of metal-silicate partitioning for many  
999 siderophile elements applied to Earth’s core formation. *Geochimica Et Cosmochimica Acta*, 75(6), 1451-  
1000 1489.

1001

1002 Shannon, R. D. (1976). Revised effective ionic radii and systematic studies of interatomic distances in  
1003 halides and chalcogenides. *Acta Crystallographica Section A*, 32(5), 751-767.

1004

1005 Shearer, C., Papike, J., & Karner, J. (2006). Pyroxene europium valence oxybarometer: Effects of  
1006 pyroxene composition, melt composition, and crystallization kinetics. *American Mineralogist*, 91(10),  
1007 1565-1573.

1008

1009 Steenstra, E., Knibbe, J., Rai, N., & Westrenen, W. V. (2016). Constraints on core formation in Vesta  
1010 from metal-silicate partitioning of siderophile elements. *Geochimica et Cosmochimica Acta*, 177, 48-61.

1011

1012 Smith, V.G., Tiller, W. A., & Rutter, J. W. (1955). A mathematical analysis of solute redistribution  
1013 during solidification, *Canadian Journal of Physics*, 33, 723-744.

1014

1015 Thibault, Y. & Walter M. J. (1995). The influence of pressure and temperature on the metal-silicate  
1016 partition coefficients of nickel and cobalt in a model C1 chondrite and implications for metal segregation  
1017 in a deep magma ocean. *Geochimica Et Cosmochimica Acta*, 59(5), 991-1002.

1018

1019 Trail, D., Watson, E.B., and Tailby, N.D. (2011) The oxidation state of Hadean magmas and implications  
1020 for early Earth's atmosphere. *Nature*, 480, 79-82.

1021

1022 Trail, D., Watson, E. B., & Tailby, N. D. (2012). Ce and Eu anomalies in zircon as proxies for the  
1023 oxidation state of magmas. *Geochimica et Cosmochimica Acta*, 97, 70-87.

1024

1025 Ulmer, P., and Luth, R.W., (1991) "The Graphite-COH Fluid Equilibrium in P, T, fO<sub>2</sub> Space." *Contr  
1026 Mineral Petrol Contributions to Mineralogy and Petrology* 106(3) 265-72.

1027

1028 Wade, J., Wood, B. J., & Norris, C. A. (2013). The oxidation state of tungsten in silicate melt at high  
1029 pressures and temperatures. *Chemical Geology*, 335, 189-193.

1030

1031 Watson, E. B., Sneeringer, M. A., & Ross, A. (1982). Diffusion of dissolved carbonate in magmas:  
1032 Experimental results and applications. *Earth and Planetary Science Letters*, 61(2), 346-358.

1033

1034 Watson, E. B., & Müller, T. (2009). Non-equilibrium isotopic and elemental fractionation during  
1035 diffusion-controlled crystal growth under static and dynamic conditions. *Chemical Geology*, 267(3-4),  
1036 111-124.

1037

1038 Watson, E. B., Cherniak, D., & Holycross, M. (2015). Diffusion of phosphorus in olivine and  
1039 molten basalt. *American Mineralogist*, 100(10), 2053-2065.

1040

1041 Wilke, M., & Behrens, H. (1999). The dependence of the partitioning of iron and europium between  
1042 plagioclase and hydrous tonalitic melt on oxygen fugacity. *Contributions to Mineralogy and Petrology*,  
1043 137(1-2), 102-114.

1044

1045 Zhang, Y., Ni, H., & Chen, Y. (2010). Diffusion Data in Silicate Melts. *Reviews in Mineralogy and  
1046 Geochemistry*, 72(1), 311-408.

1047

1048

1049

1050

1051

1052  
1053  
1054  
1055  
1056  
1057  
1058  
1059  
1060  
1061  
1062  
1063  
1064  
1065  
1066  
1067  
1068  
1069

**Table 1:**

|                    |                             | oxygen fugacity                     |                         |                                                           |
|--------------------|-----------------------------|-------------------------------------|-------------------------|-----------------------------------------------------------|
| Element            | RRO (FMQ+6.0 or IW+9.45)    | Graphite Buffer (FMQ-1.2 or IW+2.3) | MMO (FMQ-3.1 or IW+0.4) | Source                                                    |
| P                  | $P^{5+}$                    | $P^{5+}$                            | $P^{5+}$                | <a href="#">Mallmann and O'Neill, 2009</a>                |
| V                  | $V^{5+}$                    | $V^{4+}$                            | $V^{3+}$                | <a href="#">Papike et al., 2004</a>                       |
| Mn                 | Mixed $Mn^{3+}$ , $Mn^{2+}$ | $Mn^{2+}$                           | $Mn^{2+}$               | Huebner and Sato, 1970                                    |
| Fe                 | $Fe^{3+}$                   | $Fe^{2+}$                           | $Fe^{2+}$               | <a href="#">Papike et al., 2004</a>                       |
| Co                 | $Co^{2+}$                   | $Co^{2+}$                           | $Co^{2+}$               | Thibault et al., 1995, Coons and Holloway, 1979           |
| Zn                 | $Zn^{2+}$                   | $Zn^{2+}$                           | $Zn^{2+}$               | Roux et al., 2010, Siebert et al., 2011                   |
| Cr                 | $Cr^{3+}$                   | $Cr^{3+}$                           | $Cr^{3+}$               | <a href="#">Papike et al., 2004</a>                       |
| <a href="#">Nb</a> | $Nb^{5+}$                   | $Nb^{5+}$                           | $Nb^{5+}$               | <a href="#">Mallmann and O'Neill, 2009</a>                |
| Mo                 | $Mo^{6+}$                   | $Mo^{6+}$                           | $Mo^{6+}$               | <a href="#">Leitzke et al., 2017; Farges et al., 2006</a> |
| Ce                 | $Ce^{3+}$                   | $Ce^{3+}$                           | $Ce^{3+}$               | Schreiber et al., 1980; Burnham and Berry, 2014           |
| Eu                 | $Eu^{3+}$                   | $Eu^{3+}$                           | $Eu^{3+}$               | <a href="#">Papike et al., 2004</a>                       |
| Ta                 | $Ta^{5+*}$                  | $Ta^{5+}$                           | $Ta^{5+}$               | Burnham et al., 2012                                      |
| W                  | $W^{6+}$                    | $W^{6+}$                            | $W^{6+}$                | Wade et al., 2013                                         |

1070

1071 \* likely dominant species, not fully calibrated over  $fO_2$  range

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083 **Table 2:**

1084 Target and Actual Major Weight Percent Elements

| 1 atm synthesis $fO_2$ target  | FMQ-3.1         | FMQ-1.2              | 100% CO <sub>2</sub> |
|--------------------------------|-----------------|----------------------|----------------------|
| Used for:                      | MMO Experiments | Graphite Experiments | RRO Experiments      |
| Elements:                      | Target (wt %)   |                      |                      |
| SiO <sub>2</sub>               | 50.15           | 54.14                | 51.32                |
| MgO                            | 6.86            | 7.25                 | 6.98                 |
| Al <sub>2</sub> O <sub>3</sub> | 16.04           | 15.14                | 14.95                |
| FeO                            | 10.74           | 7.79                 | 11.15                |
| CaO                            | 9.65            | 10.3                 | 9.94                 |
| Na <sub>2</sub> O              | 2.97            | 2.97                 | 2.95                 |
| K <sub>2</sub> O               | 1.12            | 0.6                  | 0.589                |
| TiO <sub>2</sub>               | 1.88            | 1.95                 | 1.99                 |
| MnO                            | Trace           | 0.049                | 0.083                |
|                                |                 |                      | 0.026                |

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095  
1096  
1097  
1098  
1099  
1100  
1101  
1102  
1103  
1104  
1105

1106 **Table 3:**  
1107 Target Trace Elements Concentrations and Enrichments

| Element or Oxide               | Target (wt%) of components in trace mix | Added As                              |
|--------------------------------|-----------------------------------------|---------------------------------------|
| K <sub>2</sub> O               | 1.48                                    | K <sub>2</sub> CO <sub>3</sub>        |
| P <sub>2</sub> O <sub>5</sub>  | 1.48                                    | CaHPO <sub>4</sub> •2H <sub>2</sub> O |
| Sc                             | 0.09                                    | Sc <sub>2</sub> O <sub>3</sub>        |
| TiO <sub>2</sub>               | 22.2                                    | TiO <sub>2</sub>                      |
| V                              | 0.776                                   | V <sub>2</sub> O <sub>5</sub>         |
| Cr <sub>2</sub> O <sub>3</sub> | 1.48                                    | Cr <sub>2</sub> O <sub>3</sub>        |
| MnO                            | 17.8                                    | MnO <sub>2</sub>                      |
| Co                             | 7.69                                    | CoO                                   |
| Ni                             | 0.766                                   | NiO                                   |
| Cu                             | 1.88                                    | Cu <sub>2</sub> O                     |
| Zn                             | 4.49                                    | ZnO                                   |
| Nb*                            | 4.28                                    | Nb <sub>2</sub> O <sub>5</sub>        |
| Mo*                            | 13.7                                    | MoO <sub>2</sub>                      |
| La*                            | 3.48                                    | La <sub>2</sub> O <sub>3</sub>        |
| Ce*                            | 8.89                                    | CeO <sub>2</sub>                      |
| Pr*                            | 1.35                                    | Pr <sub>6</sub> O <sub>11</sub>       |
| Sm*                            | 2.30                                    | Sm <sub>2</sub> O <sub>3</sub>        |
| Eu*                            | 0.887                                   | Eu <sub>2</sub> O <sub>3</sub>        |
| Gd*                            | 3.10                                    | Gd <sub>2</sub> O <sub>3</sub>        |
| Ta*                            | 0.219                                   | Ta <sub>2</sub> O <sub>5</sub>        |
| W*                             | 1.63                                    | WO <sub>2</sub>                       |

1108

1109 **Table 3:**1110 \* indicates an element enriched 1000 times chondritic abundance. The target wt % column already takes  
1111 this enrichment into account.1112 Sources: Elardo et al. (2011): Lunar Primitive Upper Mantle, ppm, Barrat et al (2012): Orgueil, Ruzicka  
1113 et al. (2000) Low Ti-Mare Basalt, Anders and Grevasse (1989), Pourmand et al. (2012)

1114

1115

1116

1117

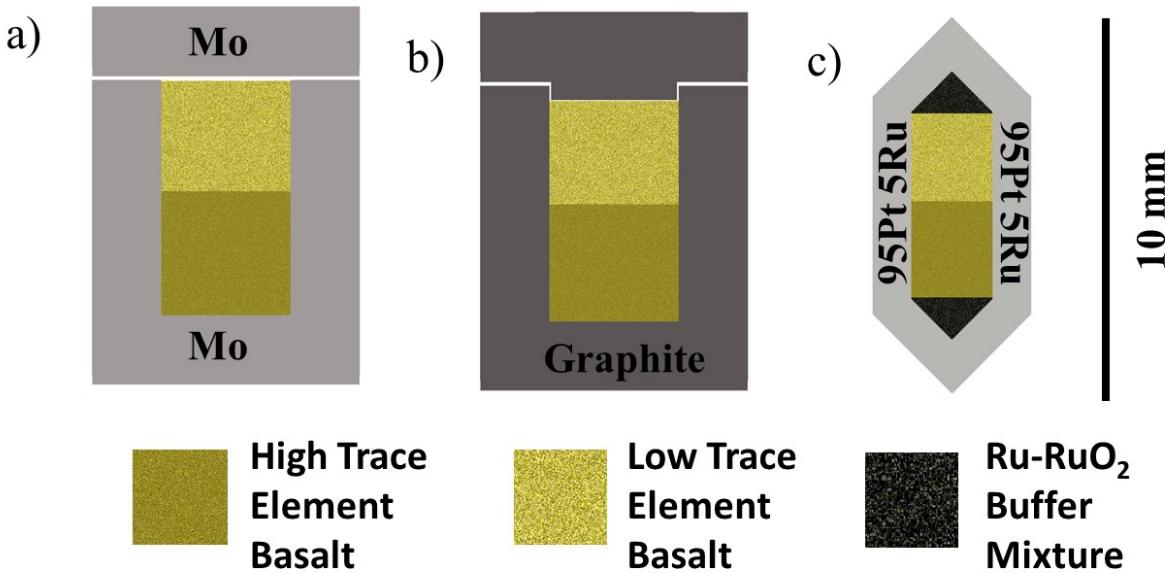
1118

1119

1120

1121

1122


1123 **Table 4:**1124 Average Diffusivities of Elements with Well-formed Profiles from Time Series Experiments (in m<sup>2</sup>/s)

|                  | RRO                  | 1 S.E.               | Graphite             | 1 S.E.               | MMO                  | 1 S.E.               |
|------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|
| P                | 4.8E-12              | $\pm 2.1\text{E-}12$ | 7.0E-12 <sup>A</sup> | $\pm 7.7\text{E-}12$ | 4.3E-12 <sup>A</sup> | $\pm 3.3\text{E-}12$ |
| Sc               | 1.1E-11              | $\pm 2.4\text{E-}12$ | 5.9E-12              | $\pm 2.6\text{E-}12$ | 9.3E-12              | $\pm 1.3\text{E-}12$ |
| V                | 1.6E-11              | $\pm 7.1\text{E-}13$ | 1.0E-11              | $\pm 8.8\text{E-}13$ | 1.5E-11              | $\pm 5.2\text{E-}13$ |
| Cr               | N/A                  | N/A                  | 2.9E-11*             | 1.2E-11              | 3.3E-11 <sup>C</sup> | $\pm 5.6\text{E-}12$ |
| Mn               | 1.1E-10*             | $\pm 3.8\text{E-}12$ | 4.3E-11*             | $\pm 4.4\text{E-}12$ | 7.2E-11              | $\pm 2.3\text{E-}12$ |
| Co               | 9.1E-11*             | $\pm 1.8\text{E-}12$ | 4.7E-11*             | $\pm 3.5\text{E-}12$ | 6.6E-11              | $\pm 1.7\text{E-}12$ |
| Zn               | 8.0E-11 <sup>B</sup> | $\pm 3.3\text{E-}12$ | 5.5E-11*             | $\pm 4.7\text{E-}12$ | 5.1E-11 <sup>B</sup> | $\pm 4.5\text{E-}12$ |
| <u>Nb</u>        | 1.3E-11              | $\pm 3.4\text{E-}13$ | 5.8E-12              | $\pm 3.3\text{E-}13$ | 9.1E-12              | $\pm 2.4\text{E-}13$ |
| Mo               | 1.2E-11              | $\pm 3.3\text{E-}13$ | 6.3E-12              | $\pm 3.3\text{E-}13$ | 7.6E-12 <sup>A</sup> | $\pm 5.8\text{E-}13$ |
| La               | 2.3E-11              | $\pm 5.0\text{E-}13$ | 9.7E-12              | $\pm 4.8\text{E-}13$ | 1.6E-11              | $\pm 4.0\text{E-}13$ |
| Ce               | 2.5E-11              | $\pm 4.8\text{E-}13$ | 1.0E-11              | $\pm 4.8\text{E-}13$ | 1.7E-11              | $\pm 4.2\text{E-}13$ |
| <u>Pr</u>        | 2.5E-11              | $\pm 5.1\text{E-}13$ | 1.0E-11              | $\pm 5.4\text{E-}13$ | 1.6E-11              | $\pm 4.0\text{E-}13$ |
| Sm               | 2.4E-11              | $\pm 6.4\text{E-}13$ | 1.0E-11              | $\pm 6.5\text{E-}13$ | 1.6E-11              | $\pm 5.2\text{E-}13$ |
| Eu               | 2.4E-11              | $\pm 6.0\text{E-}13$ | 1.4E-11              | $\pm 8.4\text{E-}13$ | 2.8E-11              | $\pm 7.6\text{E-}13$ |
| Eu <sup>2+</sup> | 4.3E-11              | $\pm 0.2\text{E-}12$ | 3.5E-11*             | $\pm 0.7\text{E-}12$ | N/A                  | N/A                  |
| <u>Gd</u>        | 2.2E-11              | $\pm 5.7\text{E-}13$ | 9.6E-12              | $\pm 5.8\text{E-}13$ | 1.5E-11              | $\pm 4.3\text{E-}13$ |
| Ta               | 9.0E-12              | $\pm 3.2\text{E-}13$ | 4.4E-12              | $\pm 3.8\text{E-}13$ | 7.1E-12              | $\pm 3.1\text{E-}13$ |
| W                | 1.1E-11              | $\pm 3.2\text{E-}13$ | 5.2E-12              | $\pm 3.5\text{E-}13$ | 8E-12                | $\pm 2.8\text{E-}13$ |

1125  
1126  
1127 **Table 4:** Excepting diffusivities tagged with \*, <sup>A</sup>, <sup>B</sup> or <sup>C</sup>, all diffusivities here are full averages of the time  
1128 series experiments.  
1129

1130 \* Average of only 20 and 40 minute experiments.  
1131  
1132 <sup>A</sup>Diffusivity from only the 40 minute experiment.  
1133  
1134 <sup>B</sup>Indicates possible inaccuracy due to inconsistency in diffusivities from time series.  
1135  
1136 <sup>C</sup>Diffusivity shown from 80 minute MMO-buffered mapped experiment rather than time series.  
1137  
1138

1139  
1140  
1141  
1142  
1143  
1144  
1145  
1146  
1147 Figures:  
1148  
1149  
1150 **Figure 1:**



1151  
1152 **Fig. 1:** Experimental capsule designs used at the three oxygen fugacities with showing the a) MMO  
1153 design b) graphite design and c) the RRO design.  
1154  
1155  
1156  
1157

1158

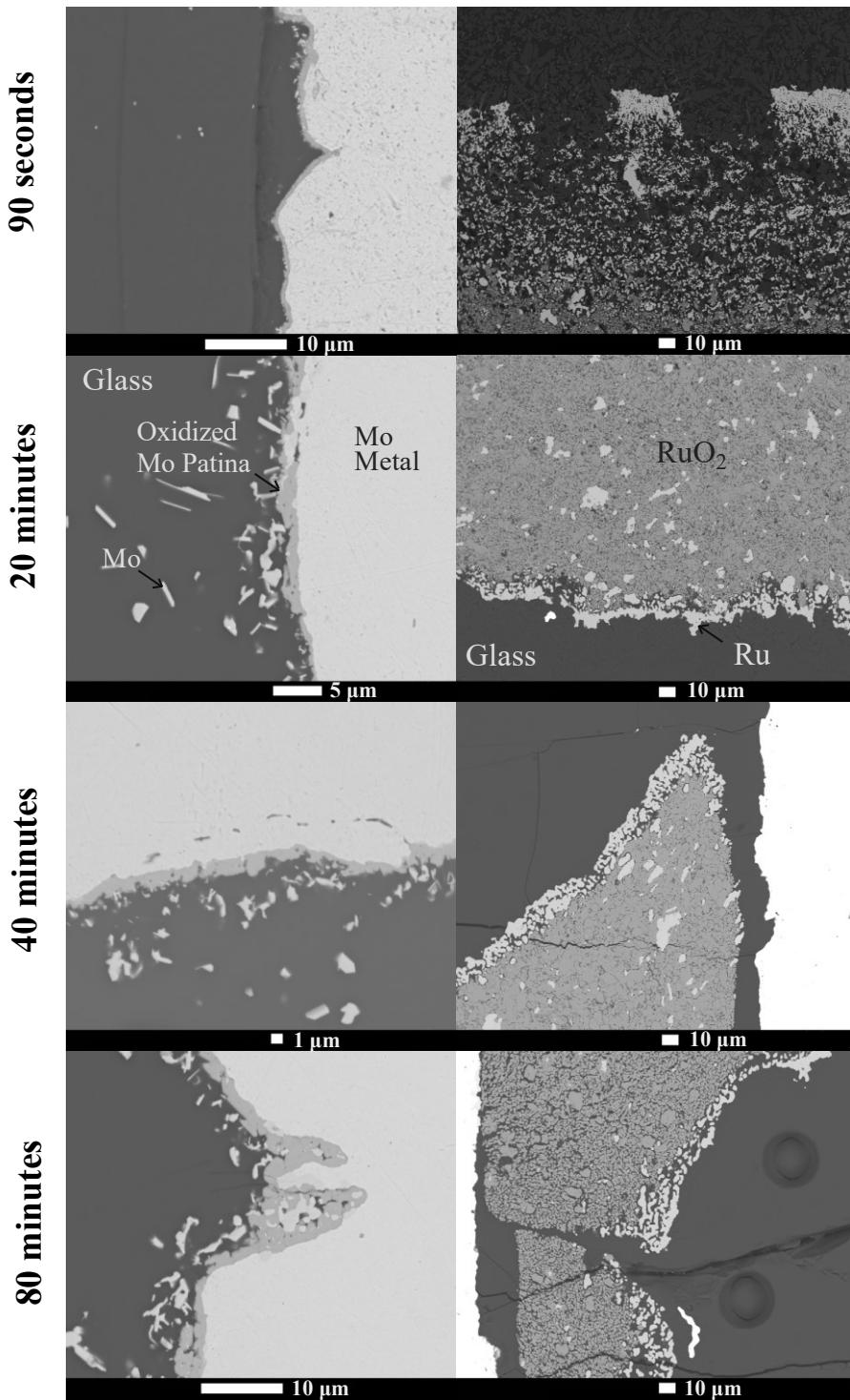
1159

1160

1161

1162

1163


1164

1165

1166

1167

1168 **Figure 2:**



1169

1170

1171 **Fig. 2:** Electron backscatter images of the buffering phases in MMO- (left) and RRO-buffered (right)  
 1172 samples. The dark region in each of the images corresponds to the quenched melt and is labeled glass in  
 1173 the 20 minute MMO and RRO images. Each of the images in the MMO column show an oxidized patina  
 1174 in between the glass and Mo crystals suspended in the melt can also be seen. A Mo-oxide patina can be

1175 seen on the edge of the capsule walls in contact with the quenched glass, which is observed even after 90  
1176 seconds. The RRO-buffered samples show the buffering mixture in contact with the glass. In all  
1177 experiments both phases participating the fO<sub>2</sub> buffering reaction were documented at experiment  
1178 completion.

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

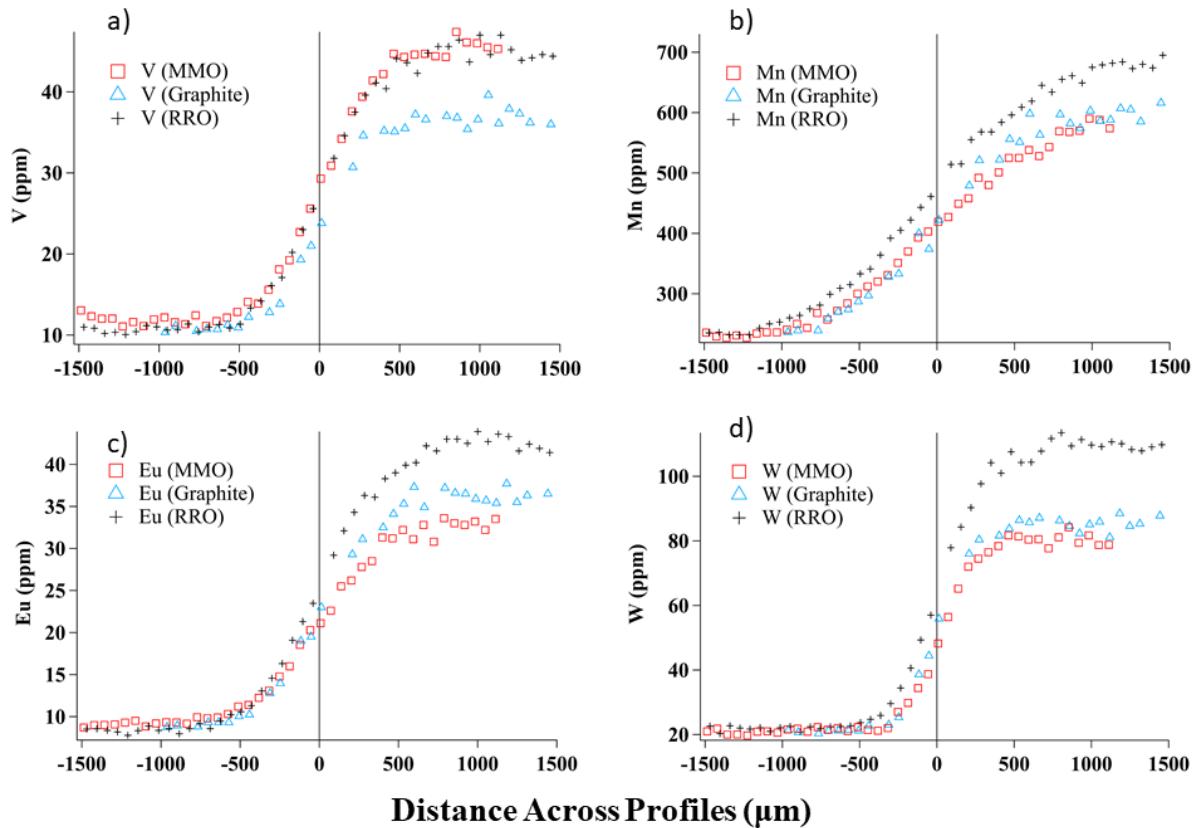
1197

1198

1199

1200

1201


1202

1203

1204

1205

1206 **Figure 3:**



1207

1208

1209 **Fig. 3:** Diffusion profiles for V, Mn, Eu, and W across all three oxygen fugacities used in this study for  
1210 the 40 minute experiments. Each graph contains three lines, one for each  $fO_2$  buffer. Profiles are example  
1211 profiles taken from the different categories of elements in the experiments with transition elements V and  
1212 Mn, REE Eu, and HFSEs W.

1213

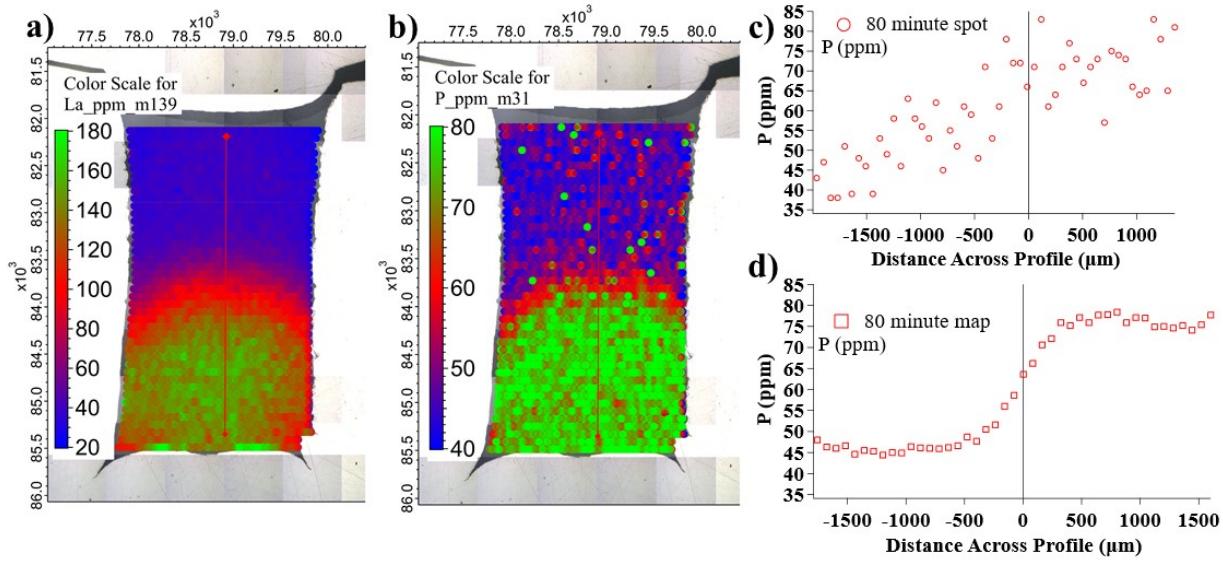
1214

1215

1216

1217

1218


1219

1220

1221

1222

1223 **Figure 4:**



1224

1225 **Figure 4: (a,b)** An Iolite ® CellSpace LA-ICP-MS map of La and P concentrations from a mapped  
1226 sample (80 minutes, 1300 °C, 1 GPa, MMO-buffered). The low trace element and high-trace element  
1227 interface can be identified. (c) A spot mode analysis of P from the same experiment (d) A P diffusion  
1228 profile generated by averaging each line from 4b into an individual point.

1229

1230

1231

1232

1233

1234

1235

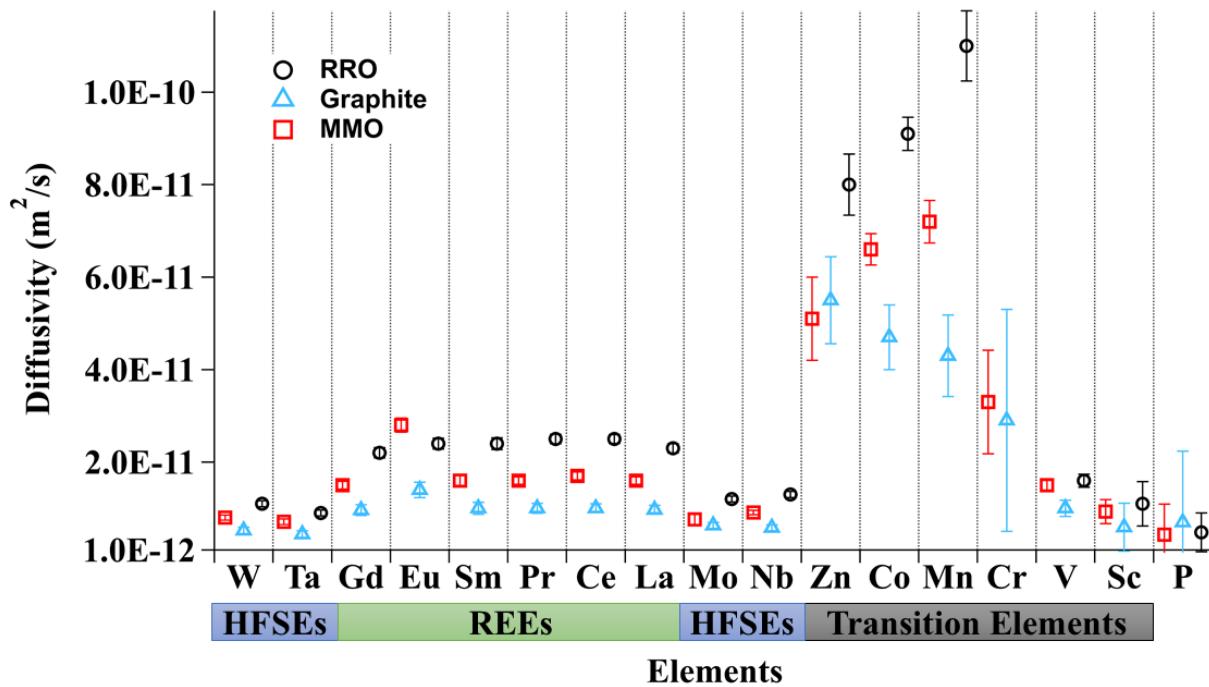
1236

1237

1238

1239

1240


1241

1242

1243

1244

1245 **Figure 5:**



1246

1247 **Fig. 5:** Our preferred diffusivities (from Table 4) of elements from the MMO- buffered, graphite -  
1248 buffered and RRO-buffered experiments. The diffusivities calculated for RRO-buffered experiments are  
1249 the fastest. Error bars are 2 S.E.. If error bars are not visible, then they are smaller than the symbol size.

1250

1251

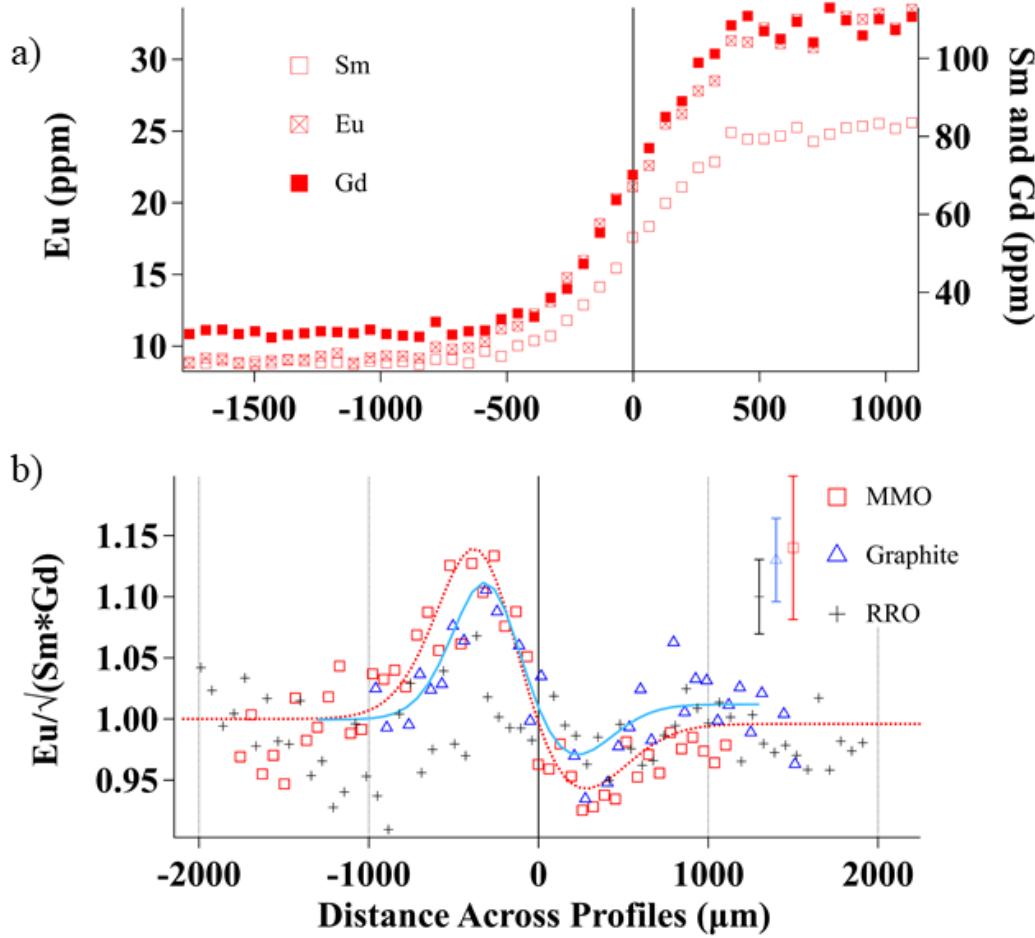
1252

1253

1254

1255

1256


1257

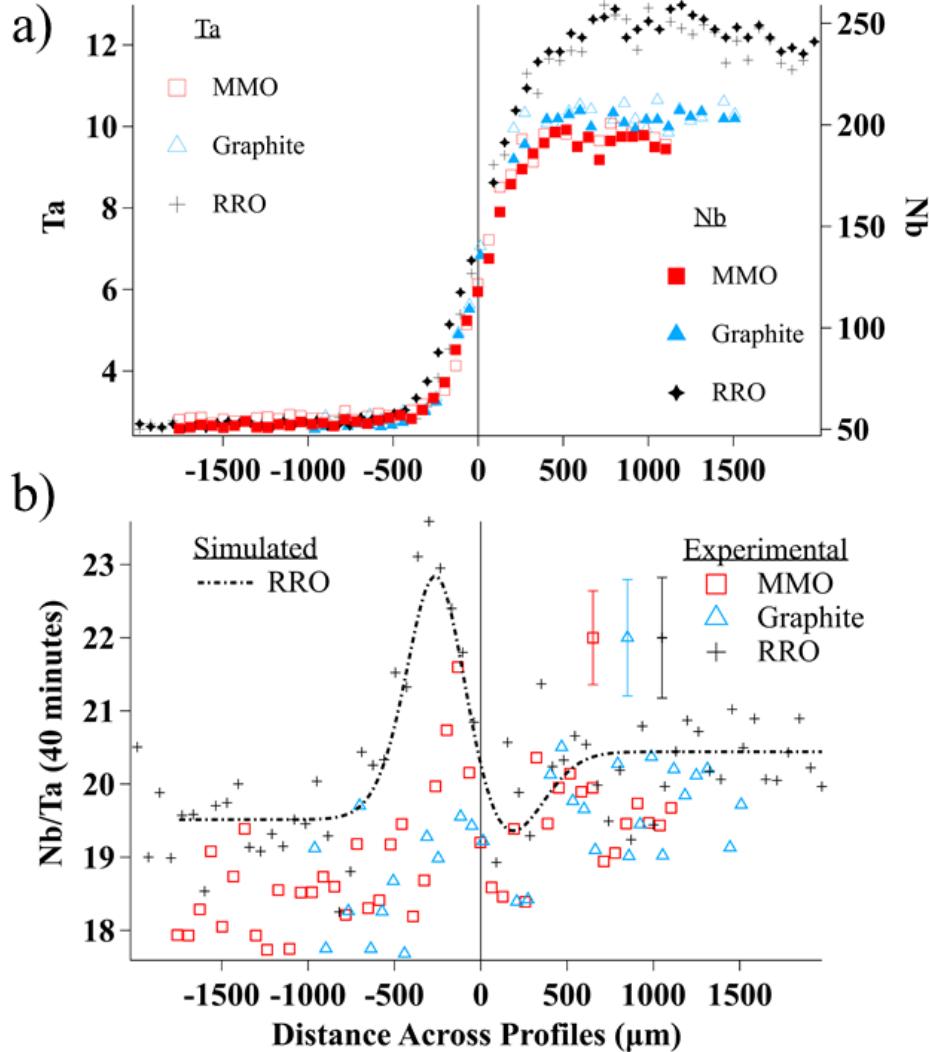
1258

1259

1260  
1261  
1262  
1263  
1264  
1265

**Figure 6:**



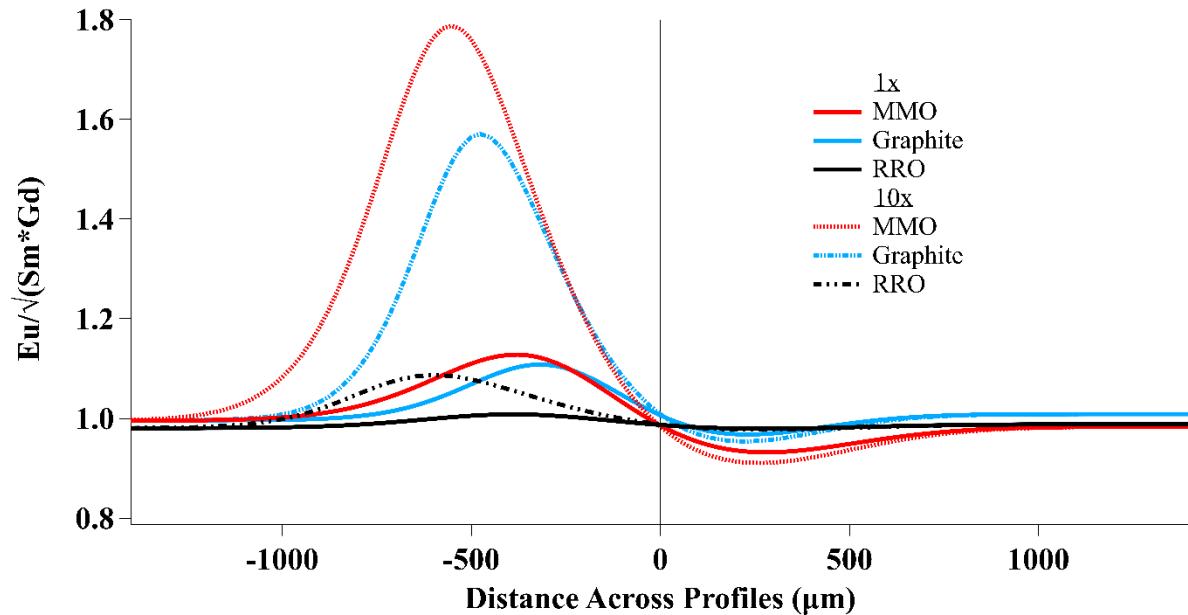

1266  
1267

1268 **Fig. 6 (a, b):** (a) Profiles of Sm, Eu and Gd for the 40 minute MMO buffered experiment. (b) A graph of  
1269 the Eu Anomaly signal,  $Eu/\sqrt{Sm \cdot Gd}$  for the 40 minute experiments from each oxygen fugacity. The  
1270 square (MMO) and triangle (graphite) markers are the experimental Eu anomaly signals. The dotted and  
1271 solid lines are simulated ideal anomaly using the actual time and recovered experimental diffusivities as  
1272 well  $C_{\infty}$ ,  $C_{+\infty}$ , from those experiments. The notched markers show the experimental data from the RRO  
1273 experiment where no simulation is graphed as it does not have an identifiable Eu Anomaly. The average  
1274 one S.E. on the experimental data points is shown in the right-hand corner. Both the simulation and  
1275 experimental data have had their left-hand side normalized to one. For each dataset, the  $Eu/\sqrt{Sm \cdot Gd}$

1276 value has been scaled by dividing by 0.356 which is an average of the first three datapoints on the left for  
 1277 each graph. This was done so that the signal can be graphed with Eu anomaly or  $\text{Eu}/\sqrt{(\text{Sm}^*\text{Gd})}$  relative to  
 1278 1 on the y-axis.

1279  
 1280  
 1281  
 1282  
 1283  
 1284

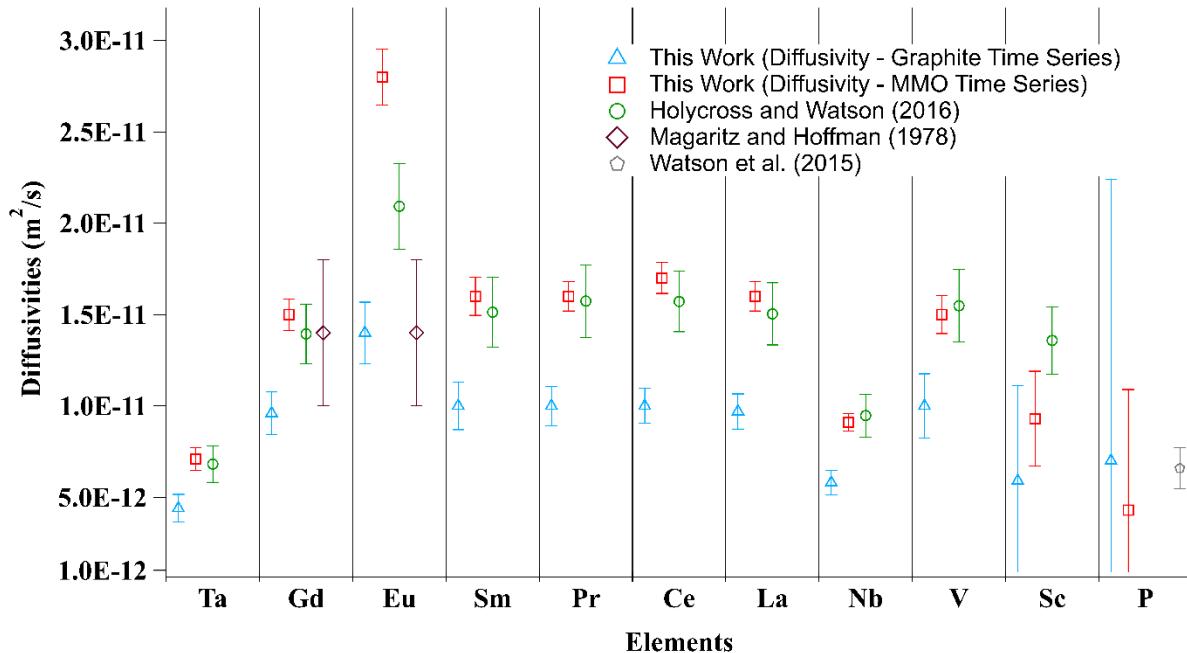
1285 **Figure 7:**




1286

1287 **Fig. 7 (a, b):** a) Profiles of Nb, Ta and b) the Nb/Ta ratio for the 40 minute experiments at RRO, MMO,  
 1288 and graphite. To aid in readability, error bars are presented as only an average of the 1 S.E. and are  
 1289 plotted on three fictitious points in the upper right corner of each plot. Similar to the “hill and trough”  
 1290 pattern in  $\text{Eu}/\sqrt{(\text{Sm}^*\text{Gd})}$ , a subtle pattern of the same general shape can be seen in a graph of Nb/Ta. This  
 1291 pattern is observed in the 20 minute and 80 minute experiments as well so the 40 minute experiment is  
 1292 shown as representative. The simulation shown is based on the recovered diffusivities and concentrations  
 1293 of Nb and Ta in the 40 minute RRO experiment. There is also some starting fraction in Nb/Ta between

1294 the different  $fO_2$ s in the low-trace element (left-hand) side that has some variation depending on  $fO_2$ .  
1295 Examining the low-trace element side of b), this starting fraction is most noticeable when comparing the  
1296 RRO Nb/Ta ratio to the MMO or graphite Nb/Ta ratio.


1297  
1298  
1299  
1300  
1301  
1302  
1303 **Figure 8:**



1304  
1305 **Fig. 8:** Shows simulations of Eu fractionation when the concentration difference between the low-trace  
1306 element and high-trace element is increased. Each profile is made with the diffusivities,  $C_{\infty}$  and  $C_{+\infty}$   
1307 recovered from analysis of Sm, Eu, and Gd in the 40 minute experiments at each  $fO_2$ . The smallest curves  
1308 represent no enrichment to  $C_{\infty}$  while the larger profiles represent a profile with  $10^*C_{\infty}$ .  
1309  
1310  
1311  
1312  
1313  
1314  
1315  
1316  
1317  
1318  
1319  
1320  
1321  
1322  
1323  
1324  
1325  
1326

1327  
1328  
1329  
1330  
1331  
1332  
1333  
1334  
1335

**Figure 9:**



1336  
1337  
1338  
1339  
1340  
1341  
1342  
1343

**Fig. 9:** Figure 8 is compares the preferred diffusivities in basalt from graphite capsule experiments and MMO-buffered experiments in this project with the diffusivities recovered by other workers. The preferred diffusivities from Table 4 are shown as well as their  $2\sigma$  standard errors. Holycross and Watson (2016) and Watson et al. (2015) present both the activation energy ( $E_a$ ) and  $\log D_0$  of trace elements in basalt and present  $2\sigma$  standard errors on each of these values. Diffusivity for the elements from was calculated using the presented  $E_a$  and  $\log D_0$  in the Arrhenius equation with 1300 C as the temperature.

1344  
1345  
1346  
1347  
1348  
1349  
1350  
1351  
1352  
1353  
1354  
1355  
1356