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Anomalous negative magnetoresistance of two-dimensional electrons
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Effects of temperature T (6–18 K) and variable in situ static disorder on dissipative resistance of two-

dimensional electrons are investigated in GaAs quantum wells placed in a perpendicular magnetic-field B⊥.

Quantum contributions to the magnetoresistance, leading to quantum positive magnetoresistance (QPMR), are

separated by application of an in-plane magnetic field. QPMR decreases considerably with both the temperature

and the static disorder and is in good quantitative agreement with theory. The remaining resistance R decreases with

the magnetic field exhibiting an anomalous polynomial dependence on B⊥: [R(B⊥) − R(0)] = A(T ,τq )B
η

⊥ where

the power is η ≈ 1.5 ± 0.1 in a broad range of temperatures and disorder. The disorder is characterized by electron

quantum lifetime τq . The scaling factor A(T ,τq ) ∼ [κ(τq ) + β(τq )T 2]−1 depends significantly on both τq and T

where the first term κ ∼ τ−1/2
q decreases with τq . The second term is proportional to the square of the temperature

and diverges with increasing static disorder. Above a critical disorder the anomalous magnetoresistance is absent,

and only a positive magnetoresistance, exhibiting no distinct polynomial behavior with the magnetic field, is

observed. The presented model accounts memory effects and yields η = 3/2.

DOI: 10.1103/PhysRevB.97.205440

I. INTRODUCTION

Within Boltzman-Drude kinetic theory the magnetoresis-

tance of two-dimensional (2D) electrons is absent [1]. In

practice 2D electron systems exhibit both a positive magnetore-

sistance (PMR) [2,3] and a negative magnetoresistance (NMR)

[4–16], which are attributed to non-Markovian processes in

the dynamics of classical electrons moving in a static disorder

potential [17–29]. In high mobility samples the negative

magnetoresistance is strong and depends considerably on the

temperature and sample size [11,13,14]. A recent theoretical

model relates this NMR to a reduction of the electron viscousity

in magnetic fields [30]. Despite significant efforts to under-

stand both PMR and NMR, a quantitative agreement between

the experiments and the theory remains to be quite illusive.

Mentioned above, positive and negative magnetoresistances

are observed in the high-temperature domain kT ≫ h̄ωc,

where ωc is the cyclotron frequency. At this condition quan-

tum (Shubnikov–de Haas) oscillations of the resistance are

completely suppressed by the temperature, and the classical

electron transport is often assumed to be dominating. It has

been shown, however, that Landau quantization of the electron

spectrum affects significantly the electron scattering already in

the high-temperature domain [31]. The spectrum quantization

leads to a considerable quantum positive magnetoresistance

(QPMR), which was observed recently at small magnetic fields

in high quality samples [32,33]. Thus, the magnetoresistance

may contain contributions from different classical effects
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mixed with the quantum contributions. The mix may lead

to a significant discrepancy between the experimental data

and the theoretical models in the high-temperature domain.

An extraction (separation) of the classical effects from this

mix presents a challenge especially in the high magnetic-field

sector where QPMR is strong.

Recently we have observed that application of a magnetic

field parallel to the 2D layer suppresses the quantum con-

tributions to the magnetoresistance [34,35]. The suppression

correlates with the spin splitting of Landau levels �Z and

reaches an extremal value at �Z ≈ h̄ωc/2 at which the density

of states (DOS) is nearly constant in small quantizing magnetic

fields. This observation opens a way to quantitatively study

contributions to the magnetoresistance which are not related to

the DOS quantization. Below we label these contributions as a

classical magnetoresistance. We note, however, that an absence

of the quantization of the density of states may not be sufficient

to eliminate completely quantum mechanical outcomes as has

been shown recently [36].

The paper presents an experimental investigation of effects

of temperature and a static disorder on both quantum and

classical magnetoresistances. In the experiment the static dis-

order is controlled in situ and varies continuously. We study a

gated remotely doped GaAs single quantum well of width d =
13 nm sandwiched between AlAs/GaAs superlattice barriers.

The superlattice barriers contain X electrons screening charged

dopants [37]. This screening enhances both the electron trans-

port mobility and, to a larger extent, the electron quantum

lifetime τq since the dopants are localized at a distance of Ld ≈
36 nm from the conducting 2D layer and predominantly induce

a small-angle electron-impurity scattering [38]. A negative
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gate voltage depopulates first the nearest screening electron

layer leading to a strong reduction of the electron quantum life-

time, which is sensitive to the small-angle scattering. The trans-

port time τtr, which is determined by the large-angle scattering,

shows significantly smaller absolute variations [39]. The 2D

electron density stays nearly the same in this regime [40]. A

further decrease in the gate voltage depopulates completely the

screening layer, and 2D electron density starts to follow the gate

voltage [39,40].

Our experiments indicate strong effects of the temperature

and the static disorder on both the QPMR and the remaining

classical magnetoresistance, which is found to be negative and

demonstrating an anomalous polynomial behavior at small

magnetic fields. The focus of this paper is this negative

magnetoresistance. To characterize the static disorder we use

the quantum scattering time obtained from QPMR [33,34].

II. EXPERIMENT AND RESULTS

A studied GaAs quantum well was grown by molecular

beam epitaxy on a semi-insulating (001) GaAs substrate.

Samples were etched in the shape of a Hall bar. The width

and the length of the measured part of the samples are W = 50

and L = 250 μm. AuGe eutectic was used to provide electric

contacts to the 2D electron gas. Two samples were studied in

magnetic fields up to 9 T applied in situ at different angles α

relative to the normal to 2D layers and perpendicular to the ap-

plied current. Angle α has been evaluated using Hall resistance

RH = B⊥/(en), which is proportional to the perpendicular

component B⊥ = B cos(α) of the total magnetic-field B. The

electron-density n was evaluated from the Hall measurements

taken at α = 0◦ in classically strong magnetic fields. Sample

resistance was measured using the four-point probe method.

We applied a 133-Hz ac excitation Iac = 1 μA through the

current contacts and measured the longitudinal (in the direction

of the electric current, the x direction) and Hall ac (along

the y direction) voltages (V ac
xx and V ac

H ) using two lock-in

amplifiers with 10-M	 input impedance. The measurements

were performed in the linear regime in which the voltages

are proportional to the applied current. Both samples have

demonstrated a similar magnetoresistance. Below we present

data obtained on Sample N1.

Figure 1(a) presents magnetic-field dependencies of the

dissipative resistance Rxx of 2D electrons taken at two different

angles α between the magnetic-field B and the normal to

2D electron layer at different temperatures. At angle α = 0◦

the magnetic-field B is perpendicular to the 2D layer, and in

GaAs quantum wells the Zeeman spin splitting �Z = μgB

is negligibly small in comparison with the cyclotron energy

�c = h̄ωc, where μ is the Bohr magneton and g is the electron

g factor. At B⊥ exceeding ∼0.2 T the electron spectrum is

quantized leading to the QPMR [33].

An application of the in-plane magnetic field suppresses

QPMR [34]. The suppression correlates with the increase in

the Zeeman term �Z in tilted magnetic fields. At α = 82.5◦ the

QPMR suppression is in a vicinity of the extremum related to

the condition: �Z = �c/2, corresponding to nearly constant

electron DOS in small quantizing magnetic fields [34]. In

accordance with a proposed model, QPMR is absent at this

condition [34]. The difference between curves taken at these

FIG. 1. Dependencies of the dissipative resistance Rxx of 2D

electrons on a perpendicular magnetic field taken at two different

angles between the magnetic-field B and the normal to the 2D layer:

α = 0◦ and α = 82.5◦. (a) Rxx vs B⊥ at gate voltage Vg = 0 V and

different temperatures T : 6.25, 8, 10, 12, 14, 16, and 18 K. (b) Rxx vs

B⊥ at temperature T = 6.25 K and different gate voltages Vg = 0 V

and between −0.2 and −0.7 V with step −0.1 V.

two angles is in quantitative agreement with QPMR theory

[31], yielding the quantum scattering time τq [34]. An increase

in the temperature decreases the QPMR considerably. The

QPMR reduction is related to the decrease in the quantum

scattering time τq at high temperatures due to the enhancement

of electron-electron scattering [33].

In Fig. 1(a) thick lines demonstrate the magnetoresistance

at α = 82.5◦ obtained at �Z ≈ �c/2 corresponding to a nearly

constant DOS. At Vg = 0 V the magnetoresistance is negative

in the studied temperature range. Higher temperatures make the

NMR progressively weaker. The notable feature of the curves is

the independence of the magnetoresistance on angle α at small

magnetic-fields B⊥ < 0.1 T. At these fields the quantization

of the electron spectrum is exponentially suppressed, and the

DOS does not depend on Landau and Zeeman splittings. The

progressively strong deviation between curves at higher B⊥
indicates the progressively strong modulations of the DOS due

to quantization of the electron spectrum [34].

Figure 1(b) presents magnetic-field dependencies of the

resistance Rxx taken at two different angles α and different

gate voltages Vg . This set of curves demonstrates the effect

of the static disorder on both QPMR and NMR. Qualitatively,

effects of the temperature and the static disorder on the mag-

netoresistance look similar: An increase in the temperature or

disorder reduces both QPMR and NMR. Below we investigate

these effects quantitatively.

Figure 2(a) presents the 2D electron-density n obtained

from an analysis of the Hall resistance at different gate voltages

Vg . In the range between 0 and −0.6 V the 2D electron density

changes weakly with the gate voltage. In this regime the applied

voltage depopulates the screening layer with X electrons lead-

ing to a substantial increase in the smooth electrostatic potential

of the remote dopants. It results in a strong enhancement

of the small-angle scattering and a significant increase in

the quantum scattering rate 1/τq . A comparison of the 1/τq ,
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FIG. 2. (a) Dependence of 2D electron density obtained from

Hall resistance on gate voltage Vg . (b) The open symbols present the

quantum scattering rate 1/τq , obtained from analysis of the magnitude

of the quantum positive magnetoresistance shown in Fig. 1(b) at

different electron densities. The filled squares present the transport

scattering rate 1/τtr , obtained from resistance at B = 0 T using

the Drude formula for the resistivity at different electron densities.

T = 6.25 K.

obtained from the analysis of QPMR [34], and the transport

scattering rate 1/τtr, obtained from Drude conductivity, is

shown in Fig. 2(b). The figure demonstrates that the absolute

variations of the transport scattering rate are much smaller than

the 1/τq variations, pointing toward the enhancement of the

small-angle electron scattering in the system.

Furthermore, the relative variations of the transport scat-

tering rate are also considerably smaller than the relative

variations of the quantum scattering rate. This indicates the

presence of a substantial amount of large-angle scatterers, such

as rigid impurities localized inside the quantum well with a

sharp scattering potential nearly independent of the X-electron

screening. Thus Fig. 2(b) suggests that the static disorder

contains sharp impurities embedded into a variable smooth

electrostatic background. At gate voltages less than −0.8 V the

X-electron layer is completely depopulated, and 2D electron

density follows the gate potential. In this regime the quantum

scattering time does not change significantly, indicating a weak

variation of the static disorder. Below we use Fig. 2 to evaluate

the disorder potential at different gate voltages.

Figure 3(a) presents variations of the normalized mag-

netoresistivity −�ρ/ρ0 = −[ρ(B⊥) − ρ0]/ρ0 with magnetic-

field B⊥ at different temperatures, where ρ0 is the resistivity

at zero magnetic field. The figure demonstrates that at small

magnetic fields the magnetoresistivity follows a polynomial

law: �ρ/ρ0 = A(T )B
η

⊥ where power η ≈ 1.5 ± 0.1 and the

scaling factor A(T ) depends on the temperature. The obtained

polynomial decrease in the resistance is anomalous and, to the

best of our knowledge, is beyond existing theories. The figure

shows that at a higher temperature the polynomial behavior

extends to a higher magnetic field. Thus the temperature

1×10-3

FIG. 3. (a) Variations of normalized resistivity −�ρ/ρ0 =
−[ρ(B⊥) − ρ0]/ρ0 with magnetic-field B⊥, obtained from the de-

pendencies Rxx(B⊥) presented in Fig. 1(a) at angle α = 82.5◦ and

different temperatures from T = 6.25 to T = 18 K. Plotted on a

log-log scale these variations reveal a polynomial behavior: �ρ/ρ0 =
AB

η

⊥ at small magnetic fields for all studied temperatures, where

A is a coefficient and η = 1.5 ± 0.1. The dashed line corresponds

to −�ρ/ρ0 ∼ B
3/2

⊥ . (b) The resistivity variations �ρ/ρ0 at different

temperatures scaled to the dependence at T = 6.25 K and presented

on the linear scale. The dashed line corresponds to �ρ/ρ0 ∼ −B
3/2

⊥ .

Vg = 0 V.

promotes this anomalous magnetoresistance. An anomalous

polynomial behavior of colossal negative magnetoresistance

has been seen recently in a 2D electron system with the power

of η = 1.4 at T = 0.25 K. This anomalous behavior, however,

disappears at high temperatures [14].

Figure 3(b) presents the normalized negative magnetore-

sistance �ρ/ρ0 at different temperatures scaled vertically to

the curve at T = 6.25 K using a scaling coefficient KY (T ) =
A(T = 6.25 K)/A(T ). The figure shows that at high tem-

peratures (14–18 K) the scaling exists up to B⊥ ≈ 0.5 T.

A decrease in the temperature down to 6.25 K shrinks the

range of the anomalous polynomial behavior inside the interval

(0.03–0.2 T). At T = 6.25 K and B⊥ > 0.2 T the resistance

decreases faster than B1.5
⊥ .

Figure 4(a) presents the normalized negative magne-

toresistance �ρ/ρ0 taken at T = 6.25 K and different

Vg’s from 0 V (bottom curve) to −1 V (top curve).

At Vg < −0.8 V a positive magnetoresistance grows up

propagating to a smaller B⊥ at Vg = −1 V. Figure 4(b)

presents the anomalous negative magnetoresistance scaled

to the curve at Vg = 0 V. The figure demonstrates

that the anomalous negative magnetoresistance persists

down to Vg = −1 V. In contrast to the temperature effect, the

strong disorder reduces the magnetic-field range of the scaling

behavior of NMR. At Vg = −1 V and higher temperatures

the magnitude of NMR is very small making quantitative

evaluations of the response not reliable. At Vg = −1.1 V

the negative magnetoresistance is absent, and only a positive

magnetoresistance with no distinct polynomial behavior is

observed (not shown). This is out of the scope of this paper.
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FIG. 4. (a) Dependence of the normalized resistivity �ρ/ρ0 =
[ρ(B⊥) − ρ0]/ρ0 on magnetic-field B⊥ at angle α = 82.5◦ and dif-

ferent Vg’s from 0 V (bottom curve) to −1 V (top curve) with step

−0.1 V. (b) The normalized magnetoresistivity �ρ/ρ0 at all different

gates Vg shown in (a), scaled to the dependence at Vg = 0 V, indicates

the robustness of the anomalous polynomial behavior at small B⊥ with

respect to variations of both the electron density and the static disorder.

The dashed line corresponds to �ρ/ρ0 ∼ −B
3/2

⊥ . T = 6.25 K.

Figure 5(a) presents the dependence of the scaling coeffi-

cient KY = A(T = 6.25 K,Vg = 0 V)/A(T ,Vg) on the square

of the temperature for different gate voltages. The figure shows

that the temperature variations of KY are proportional to T 2

suggesting the electron-electron interaction as the origin of

the temperature dependence of the scaling factor A(T ). We

have approximated the scaling coefficient KY by the following

relation:

KY = κ(τq) + β(τq)T 2, (1)

where κ(τq) is the intersect of the straight lines with the KY

axis whereas the coefficient β(τq) describes the strength of the

temperature-dependent term.

Figure 5(a) shows that the parameter β increases strongly

at low gate voltages indicating a tendency for a divergence.

Furthermore the experiments demonstrate no NMR at Vg =
−1.1 V indicating β = ∞. These observations suggest a crit-

ical behavior of the coefficient β at the low gate voltages.

Variations of QPMR with angle α indicate a g factor enhanced

by the e-e interaction [34], but no divergence of the g factor is

observed in the studied range of the gate voltages. This suggests

that the density-dependent electron-electron interaction by

itself does not diverge. Below we propose that the critical

behavior of the parameter β is induced by variations of

the static disorder characterized by the quantum scattering

rate 1/τq ,

β = β0

(

τ−1
0 − τ−1

q

)γ
, (2)

where parameter τ−1
0 characterizes the strength of a critical

disorder and γ is the critical exponent. Figure 5(b) presents

the coefficient β plotted vs quantum scattering rate τ−1
q in ac-

cordance with Eq. (2) on a log-log scale using β0 = 0.0095 ±
0.0015, τ−1

0 = 1.8 ± 0.15 (THz) and γ = −1.43 ± 0.3

FIG. 5. (a) A linear dependence of the scaling factor KY (T ,Vg) =
A(T = 6.25 K,Vg = 0 V)/A(T ,Vg) on the square of the temperature

at different gate voltages Vg from the bottom to the top lines:

0, −0.4, −0.5, −0.6, −0.7, −0.8, and −0.9 V. The dependence is

approximated by the following relation: KY = κ[τq (T = 0 K)] +
β[τq (T = 0 K)]T 2 where the first term κ[τq (T = 0 K)] describes

effects of the static disorder only and the second term β[τq (T =
0 K)]T 2 describes both temperature and disorder effects. (b) De-

pendence of the parameter β on the quantum scattering rate 1/τq

agrees with a critical behavior: β ≈ β0(1/τ0 − 1/τq )γ , where β0 ≈
0.0095 ± 0.0015, 1/τ0 ≈ 1.85 ± 0.15 (THz) and γ ≈ −1.43 ± 0.3.

(c) Dependence of the temperature-independent term κ on the disorder

reveals the following relation: κ ∼ τ−1/2
q [41].

as fitting parameters. The obtained agreement supports the

proposal.

Figure 5(c) presents the evolution of the coefficient κ

with the static disorder. In a broad range of the disorder

the coefficient is κ ∼ τ−1/2
q . This finding suggests that the

anomalous NMR should be significantly enhanced in systems

with a long quantum lifetime. This outcome agrees with the

observation of a large NMR in high mobility samples [10–16].

III. DISCUSSION

Below we describe a qualitative model leading to the poly-

nomial negative magnetoresistance �ρ ∼ −B
3/2
⊥ . Theoretical

investigations indicate a strong negative magnetoresistance

in 2D electron systems with a static sharp disorder only

[17,18,20–22,26–29]. The decrease in the resistance is related

to a separation of the 2D electrons in two groups: wandering

electrons performing both a diffusive motion and a Hall

drift [17,18,20,21] and electrons which do not collide with

impurities and participate only in the Hall transport [27].

An inclusion of the long-range smooth disorder leads to

substantial modifications of the negative magnetoresistance

[25,26]. Below we discuss the model presented in Ref. [25].

In this model, 2D electrons perform a diffusivelike motion

in the presence of both a sharp disorder characterized by a

transport scattering time τS and a long-range smooth disorder

characterized by a transport scattering time τL. During the

cyclotron period 2π/ωc the smooth disorder displaces the

cyclotron guiding center by a value δ, which is assumed to

205440-4



ANOMALOUS NEGATIVE MAGNETORESISTANCE OF TWO- … PHYSICAL REVIEW B 97, 205440 (2018)

be larger than the size of the sharp impurities a,

δ2 = 4πR2
c/(ωcτL) ≫ a2, (3)

where Rc is the cyclotron radius. The negative magnetore-

sistance is related to a reduction of the electron exploration

rate due to memory effects. To evaluate the exploration rate a

strip of the width 2a is associated with the particle trajectory.

The particle will hit a sharp impurity if the center of the

latter is located within the strip. Due to the stochastic motion

of the guiding center at δ ≫ a, there is a small probability

P1 ∼ a/δ that after the first revolution the strip covers again

the starting point. Taking into account the diffusive dynamics of

the guiding center, its rms shift after n revolutions is δn = δ
√

n

so that the return probability decreases with n as Pn = P1/
√

n.

The total return probability P = �N
n=1Pn ≈ (a/δ)N1/2, where

N ≈ (ωcτS)/2π , determines the fraction of the area explored

twice leading to the reduction of the exploration rate and thus

to a negative correction to the resistivity [25],

�ρxx/ρ0 ∼ −(a/δ)(ωcτS)1/2 ∼ −B2
⊥. (4)

The presented model assumes that the size of the sharp

impurities is much larger than the electron wavelength λF : a ≫
λF and, thus, the strip of the width 2a is adequate in the

counting of the area explored by an electron. In the opposite

limit a ≪ λF a strip with the width of 2λF has to be used [42].

Furthermore, in a magnetic field the width of a quasiclassical

cyclotron orbit is determined by the magnetic length lB =
(h̄/eB⊥)1/2 [43]. Thus at lB > a a strip of the width ∼ lB is

more appropriate for the counting of the electron exploration

rate. In this case the return probability is P ∼ lB/δ that leads

to the following negative magnetoresistance:

δρxx/ρ0 ∼ −(lB/δ)(ωcτS)1/2 ∼ −B
3/2
⊥ . (5)

The obtained magnetic-field dependence agrees with the

dependence shown in Fig. 3(a) at small magnetic fields. Below

we provide further justification of the applicability of the

model. At B⊥ < 0.5 T the magnetic length lB > 35 nm and

exceeds the typical size a of neutral impurities, which is a

few nanometers. These impurities, embedded in the quantum

well, provide a strong electron scattering at a large angle

enhancing significantly the dissipative transport in magnetic

fields. To evaluate the relative contributions of the smooth

and sharp disorder to the resistivity we estimate below the

correlation length of the smooth disorder ξ and the transport

scattering times τS and τL. The distance Ld ≈ 36 nm between

the Si-doping layer and the quantum well dictates that the

correlation length ξ of the smooth disorder potential is about

36 nm [24]. Another estimation of the correlation length

ξ via the ratio between quantum and transport scattering

times [31,33]: ξ ∗ = (λF /2π )(τtr/τq)1/2 yields a considerably

smaller value of ξ ∗ = 13 nm. We note that the estimation

of ξ ∗ is based on the assumption that all scattering events

produce small angular deviations of electron trajectories. In

other words, only the smooth disorder is accounted in this

estimation. The discrepancy between ξ and ξ ∗ suggests the

presence of a sharp disorder with a correlation length of

a < 36 nm. Assuming that 1/τtr = 1/τS + 1/τL and using

ξ = (λF /2π )(τL/τq)1/2, we have found τL = 200 and τS =
29 ps. Thus the sharp disorder with a correlation length a < lB

provides the dominant contribution to the electron dissipative

transport in magnetic fields less than 0.5 T, whereas the smooth

long-range disorder controls the electron quantum lifetime τq .

Similar conclusions regarding the static disorder have been

obtained from the comparison of variations of the quantum

and transport scattering rates with the gate voltage shown in

Fig. 2(b). The obtained estimates and conclusions support the

applicability of the presented model to the studied 2D electron

system.

A description of the temperature dependence of the anoma-

lous magnetoresistance requires further development. Below

we present an attempt in this direction. The obtained temper-

ature behavior of the scaling factor KY , presented by Eq. (1),

suggests the relevance of the electron-electron scattering.

The temperature dependence of the quantum scattering time,

extracted from QPMR shown in Fig. 1(a), indicates that the

electron-electron scattering rate is 1/τee ≈ 1 (GHz)T 2 (K),

which agrees with the rate in other samples [33]. Thus the

electron-electron scattering time τee is about 25 ps already

at T = 6.25 K and ≈3 ps at T = 18 K. This time is shorter

than the transport scattering time τtr indicating that electron-

electron scattering may have a considerable impact on the elec-

tron transport. Due to the conservation of the total momentum

in the electron-electron scattering, the latter does not contribute

directly to the dissipative transport of electrons. However, these

processes may change significantly both the return probability

P1 = lB/δ via a modification of the parameter δ and the total

return probability P via a modification of the number of the

returns N .

A strong electron-electron scattering 1/τee ≫ 1/τS,1/τL

produces an additional strong diffusivelike motion of electron

cyclotron guiding centers mixing the diffusion in smooth and

sharp disorder potentials. At these conditions it is reasonable

to assume that the scattering rates, controlling parameters δ, N

and, thus, the memory effects, are the same and have a form

1/τm = 1/τst + 1/τ ∗
ee, where τm is a memory-breaking time,

τst is a memory-breaking time due to the static disorder, and

τ ∗
ee is a memory-breaking time due to the electron-electron

scattering. A substitution of 1/τm instead of 1/τS and 1/τL in

Eqs. (3) and (5) yields

�ρxx/ρ0 = −
h̄1/2e3/2B

3/2
⊥

2
√

2πmpF

[

1

τst

+
1

τ ∗
ee

]−1

, (6)

where m and pF are the electron mass and momentum at Fermi

energy. Equation (6) indicates that the anomalous magnetore-

sistance is proportional to the memory-breaking time τm. The

obtained structure of the temperature- and disorder-dependent

factor τm is compatible with the scaling coefficient KY : KY =
κ + βT 2 ∼ 1/τst + 1/τ ∗

ee, providing 1/τ ∗
ee ∼ T 2.

A direct comparison of Eq. (6) with the magnetoresistance,

shown in Fig. 3(b), yields the memory-breaking time τm =
5.7 ps at T = 6.25 K and Vg = 0 V. The obtained value is

somewhat between an expected value of τ ex
m ≈ 12 ps, follow-

ing from the relation 1/τ ex
m = 1/τtr + 1/τee and the quantum

scattering time τq ≈3 ps. An analysis of the temperature

variations of the scaling coefficient KY , shown in Fig. 5(a),

yields the following relation for the memory-breaking rate in

gigahertz, 1/τm = 141 + 0.89T 2 (K) at Vg = 0 V, resulting in

1/τst = 141 (GHz) and 1/τ ∗
ee (GHz) = 0.89T 2 (K).
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Far from the critical disorder 1/τ0 at Vg = 0 V the

(e-e)-induced memory-breaking rate 1/τ ∗
ee is close to the

electron-electron scattering rate obtained from the analysis

of the temperature dependence of QPMR shown in Fig. 1(a):

1/τee (GHz) = (1 ± 0.1)T 2 (K) [33,34]. At the critical disor-

der, at Vg = −0.9 V the memory-breaking rate 1/τ ∗
ee is an or-

der of magnitude stronger than the electron-electron scattering

rate extracted from QPMR. It suggests that an effectiveness of

e-e processes, which destroy the memory effects, increases sig-

nificantly with the static disorder. Furthermore the experiment

shows no divergency of the parameter κ ∼ 1/τst indicating

again that the presence of the electron-electron scattering is

required to suppress the anomalous magnetoresistance.

Figure 5(c) shows that the memory-breaking rate due to the

static disorder 1/τst is proportional to the τ−1/2
q , suggesting

that 1/τst = (τqτ
∗
st)

−1/2 where the quantum scattering time τq

accounts a contribution of the small-angle scattering whereas

the time τ ∗
st ≈ 13 ps accounts contributions of the large-angle

scattering events to the memory-breaking rate due to the static

disorder. Obtained results suggest nontrivial mutual relations

among the small-angle scattering, the large-angle scattering,

and the electron-electron interactions leading to the reduction

of the anomalous negative magnetoresistance.

IV. CONCLUSION

To summarize an anomalous polynomial negative mag-

netoresistance of the 2D electrons �ρ ∼ A(τq,T )B
η

⊥ is ob-

served, where η ≈ 1.5 ± 0.1. The factor A(τq,T ) ∼ [κ(τq) +
β(τq)T 2]−1 depends on temperature T and static disorder

characterized by the quantum scattering time τq . The

temperature-dependent term is proportional to T 2 suggesting

a dominant contribution of the electron-electron interactions

to the temperature dependence of the magnetoresistance. The

temperature-independent termκ(τq ) is found to be proportional

to τ−1/2
q and describes the considerable reduction of the

negative magnetoresistance by the static disorder. The factor

β is found to be diverging with the static disorder: β ∼
(τ−1

0 − τ−1
q )γ where the critical exponents are γ ≈ 1.4 ± 0.3

and τ−1
0 ≈ 1.85 ± 0.15. Above the critical scattering rate 1/τ0

the anomalous negative magnetoresistance is absent, and only a

positive magnetoresistance, exhibiting no distinct polynomial

behavior with the magnetic field, is observed.

The presented model of the phenomenon is based on mem-

ory effects accounting for the return probability of the semi-

classical trajectories and leading to the polynomial magnetic-

field dependence: �ρ ∼ τmB
3/2
⊥ . The temperature dependence

of the anomalous magnetoresistance is compatible with the

model, assuming that the memory-breaking time τm has a form:

1/τm = 1/τst + 1/τ ∗
ee, where τst is the memory-breaking time

due to static disorder and τ ∗
ee is the memory-breaking time due

to electron-electron scattering.
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