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A B S T R A C T

Oxygen isotopologues are useful tools for understanding biogeochemical processes and chemical budgets in the ocean. For example, the triple‑oxygen isotope
composition of dissolved oxygen in the ocean mixed layer (i.e., its δ17O and δ18O values) is widely used to estimate gross oxygen productivity (GOP), a quantity
closely related to gross primary productivity. While recent work has demonstrated the importance of upwelling and horizontal transport to these estimates, the
isotopic effects of gas exchange when the mixed layer is out of solubility equilibrium have only been measured for 18O/16O. Oxygen is rarely at 100% saturation in
the surface ocean, so most regions experience net ingassing or outgassing; kinetic fractionation across the air-water boundary is therefore expected to be important.
Here, we present the results of air-water gas transfer experiments designed to obtain the kinetic and equilibrium fractionation factors for the four rare O2 iso-
topologues 16O17O, 16O18O, 17O18O, and 18O18O relative to 16O16O. Furthermore, we examine their potential effects on isotopologue-based GOP estimates and
connect the observed air-water kinetic fractionation factors to dissolved-phase diffusive isotopic fractionation. These kinetic fractionation effects may provide
additional constraints on O2 cycling at the surface and in the deep ocean.

1. Introduction

One of the fundamental challenges in oceanography is under-
standing the distribution and cycling of O2. The concentration of O2 in
the ocean is influenced by oceanic food webs (Stramma et al., 2012),
biogeochemical cycles (Froelich et al., 1979; Gruber and Sarmiento,
1997), and it provides constraints on the efficiency of the biological
“pump” mediating the sequestration of carbon in the deep ocean (Devol
and Hartnett, 2001; Honjo et al., 2008; Buesseler and Boyd, 2009).
Physical, biochemical, and abiotic chemical processes are all important
components of the oceanic oxygen budget, but determining the relative
importance of each mechanism in different environments can be chal-
lenging. Indirect tracers such as the concentrations of nutrients (e.g.,
nitrate and phosphate) are closely related to O2 when biologically cy-
cled, so they may offer some information on oxygen cycling (Bianchi
et al., 2018). Radiometric tracers such as 14C, which are used to cal-
culated apparent oxygen utilization rates, cannot distinguish large-scale
mixing and transport from diffusion. Oxygen isotopologues occupy a
unique niche for these studies because they are direct tracers of bio-
geochemical cycling, mixing, and diffusion (Bender, 1990; Luz and
Barkan, 2000; Levine et al., 2009). However, isotopic fractionation
during these processes has not been fully characterized. In this paper,
we will focus on the isotopic systematics of molecular diffusion.

At the air-water boundary, molecular diffusion is the rate-limiting

step for the dissolution of sparingly soluble gases (e.g. O2, Ar, N2, etc.)
(Jähne and Haußecker, 1998). In the ocean interior, molecular diffu-
sion can limit oxygen transport to sediments, particles, and micro- and
macrofauna. Kinetic isotope fractionation occurs during these pro-
cesses, but experimental and theoretical studies suggest that the mass,
size and shape of the diffusing species are all important determinants of
their fractionation factors (Knox et al., 1992; Richter et al., 2006; Bourg
and Sposito, 2008; Tempest and Emerson, 2013). Few studies have
focused on the isotope effects of O2 diffusion. The only study to date, by
Knox et al. (1992), determined a small 18O/16O fractionation factor of
0.9972 for O2 transfer across the air-water boundary. It was used to
support δ18O-based estimates of primary productivity (Quay et al.,
1993) and to illustrate how diffusion did not follow a simple gas-kinetic
mass dependence (i.e., scaling with the inverse-square-root of the mo-
lecular mass).

Understanding multi-isotope systematics has since become im-
portant for oceanography, renewing interest in the mass dependence of
diffusion for O2. In situ estimates of primary productivity—or, more
precisely, gross oxygen productivity (GOP)—have relied on the si-
multaneous mass balance of multiple O2 isotopologues in the mixed
layer. Using a multiple O2-isotopologue mass balance mitigates some of
the key uncertainties of bottle incubations and in situ 18O/16O-isotope
based approaches to primary productivity (Juranek and Quay, 2005,
2013; Quay et al., 2010); thus it has been adopted widely in studies of
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the carbon budget of the surface ocean. In particular, the multi-iso-
topologue approach has proven useful for determining the carbon ex-
port efficiency in the surface ocean (i.e., the net-to-gross oxygen pro-
duction ratio) when paired with O2/Ar ratio measurements (Luz and
Barkan, 2000, 2005; Bender, 2000; Juranek and Quay, 2013). While
methodological improvements have refined the fluxes used in surface
O2 budgets (Kaiser, 2011; Prokopenko et al., 2011; Luz and Barkan,
2011; Nicholson et al., 2012; Manning et al., 2017), uncertainties in the
approach related to physical fractionation have persisted. For example,
the kinetic isotopic effects due to gas exchange are only known for
18O/16O. Yet, large regions of the global ocean are out of solubility
equilibrium with respect to O2 (Fig. 1), resulting in net outgassing or
ingassing at steady state that could bias estimates of GOP due to kinetic
isotope fractionation of O2 isotopologues (Kaiser, 2011). Moreover,
much of the surface ocean is characterized by low productivity. In
oligotrophic regions in particular, factors that might otherwise be
minor such as gas exchange and bubble injection could become im-
portant, leading to biases in the interpretation of small O2 signals if
such processes are not considered explicitly.

In this paper, we evaluate the importance of non-equilibrium gas
exchange on the isotopologue budgets of dissolved O2. We conducted
new measurements of the kinetic and equilibrium isotope fractionation
for O2 transfer through the air-water interface, for both the singly-
substituted (16O17O and 16O18O) and multiply-substituted rare iso-
topologues (17O18O and 18O18O) of O2. An earlier experiment had
suggested that air-water gas exchange may exhibit an unusual mass
dependence, one that concentrates 18O18O in the gas phase much more
than expected (Yeung et al., 2015). Our experiments test this hypothesis
directly, free from the biological cycling that complicated the previous
experiment. In addition, simultaneous measurements of five O2 iso-
topologues (16O16O, 16O17O, 16O18O, 17O18O, and 18O18O) provide an
opportunity to examine the mass dependence of gas exchange and
diffusion in the aqueous phase.

2. Methods

Kinetic fractionation factors were measured for O2 diffusion into
water following the methodology of Knox et al. (1992) and Tempest
and Emerson (2013). The experiment progressed as follows: We in-
troduced O2 into the headspace of a closed system that contained de-
gassed, deionized water. As the O2 dissolved into the water, changes in
the volume and isotopic composition of O2 in the headspace were
monitored. Equilibrium air-water isotopologue fractionations were also
measured in a separate set of experiments. By fitting a forward model of
the headspace evolution to the isotopic data—from solubility dis-
equilibrium to solubility equilibrium—we obtained kinetic fractiona-
tion factors for four rare O2 isotopologues (16O17O, 16O18O, 17O18O, and
18O18O) simultaneously during O2 dissolution.

2.1. Experiments

2.1.1. Air-water equilibration
Bottles for dissolved-gas sampling (1 L) were prepared according to

established methods (Reuer et al., 2007): First, they were washed with
phosphate-free detergent (Liquinox) and then triple-rinsed with dis-
tilled water. After the flasks were dried, they were poisoned with 200 μL
saturated HgCl2 solution, and dried at 40–45 °C. Calculated con-
centrations of HgCl2 after introducing a water sample into the flasks are
30–50 μgmL−1, more than the 20 μgmL−1 recommended by Kirkwood
(1992) to halt biological activity. Finally, all flasks were evacuated on a
turbo-pumped high-vacuum line to ≤1×10−3mbar through a
Louwers-Hapert high-vacuum valve. The side arm of the valve on each
bottle was filled with distilled water to reduce atmospheric con-
taminants during storage and sampling.

Laboratory air was equilibrated with distilled water at 25.0 °C by
shaking a covered 5 L beaker containing 3 L of water on an orbital
shaker (110 rpm) for 48–96 h. To facilitate air-water gas exchange, the
shaking direction was reversed every minute during this time period.

Fig. 1. Annual-mean dissolved oxygen saturation (%) in the surface oceans in 2013. Data from (Garcia et al., 2014).
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Water samples (300–500mL) were then extracted into evacuated
sample flasks, which were pre-poisoned with HgCl2. After shaking
for> 48 h, the residual gas in the drained bottles was collected onto
silica gel fingers at −196 °C for 45min. The sample flasks were kept at
−30 °C to −40 °C during the gas transfer to limit the transfer of re-
sidual water and HgCl2 into the vacuum system. The gases were further
dried and CO2 removed by passing them through two U-shaped traps at
−196 °C upstream of the silica gel sample finger.

2.1.2. Kinetic gas transfer
Three kinetic gas-transfer experiments were conducted using a

closed, modified 5.53 ± 0.04 L Kimax flask system (Fig. 2). Gas ex-
change and headspace sampling took place in the Kimax flask, which is
filled with degassed, deionized water. All the water in the system was
first deionized on a Millipore system (18.2MΩ∙cm) and then passed
through an additional sterilizing filter (0.22 μm). The water was then
degassed by boiling for 2 h. The boiled water was immediately trans-
ferred to the Kimax flask and isolated using a high-vacuum Louwers-
Hapert valve while minimizing headspace volume. It was then cooled to
room temperature. A buret was connected to the flask through an Ultra-
Torr connection with the valve that was attached to the side of the flask.
Degassed water was later added to the buret; an unavoidable, but small,
amount of air contamination was associated with this step (< 5% of the
total dissolved O2 in the Kimax flask at the end of the experiment; see
Section 3.4 for further discussion). The top of the buret was connected
to a 14.0 ± 0.3 L gas bulb filled with air, which acts as a ballast vo-
lume to sustain a stable atmospheric pressure during the experiment. It
isolates the system from barometric fluctuations that may affect the
headspace pressure during the experiment. The headspace gas was
sampled at various times during the experiment by expanding the
headspace gas into the volume between the two valves at the top of the
flask. The aliquot volume was 2.47 ± 0.27mL (102.0 ± 11.5 μmol O2

at 1 atm pure O2).
The experiment was conducted at room temperature (22 ± 1 °C)

without active temperature stabilization. No significant temperature
dependence for the 18O/16O kinetic fractionation factor for O2 has been
observed between 10 °C and 20 °C (Knox et al., 1992). Before each ex-
periment, the headspace pressure was pumped until it reached a

pressure equal to the vapor pressure of water (24.9 ± 1.6mbar at
room temperature). Next, we opened the valve on the side of the flask
to allow water to flow between the buret and the Kimax flask, which
balanced the pressure in the headspace. The experiment was initiated
upon introducing pure O2 (ultra-high purity; 99.9999%) into the
headspace of the water flask. As O2 dissolves into the water, the
headspace pressure in the main volume decreases, drawing in water
from the buret. The volume change observed at the buret is thus used to
determine the volume of O2 dissolved in the water (after accounting for
the change in hydrostatic pressure). The headspace was sampled at
intervals corresponding to a 5% to 15% change in O2 saturation. Two
types of glass stir bars (lengths 4.5 ± 0.1 cm, 2.3 ± 0.1 cm) were used
to mix the water in the flask at different rates while limiting visible
perturbations to the air-water interface.

Prior to isotopic analysis, each headspace O2 aliquot was transferred
to a silica gel finger held at −196 °C for 15min. Water and other
condensable gases were removed cryogenically through two U-traps
held at −196 °C by liquid nitrogen. The sampled O2 was purified ac-
cording to methods described previously using an Agilent 7890B Gas
Chromatograph (GC) held at −80 °C (Yeung et al., 2018). Samples were
then analyzed on a modified, high-resolution Nu Instruments Perspective
IS isotope ratio mass spectrometer (IRMS) in dual-inlet mode according
to established techniques (Yeung et al., 2016). Long-term external
precision for δ18O, 17Δ, Δ35, and Δ36 values is± 0.025‰,±3 ppm,±
0.12‰, and ± 0.04‰, respectively (1σ), based on replicate analyses
of atmospheric O2.

2.2. Isotopic terminology

The 33O2/32O2, 34O2/32O2, 35O2/32O2, and 36O2/32O2 ratios mea-
sured on the mass spectrometer are reported as δ18O values for 18O/16O
ratios (Eq. (1)), 17Δ values for triple‑oxygen composition (Eq. (2)), and
Δ35 and Δ36 values for clumped-isotope composition (Eqs. (3)–(6)).
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here, R refers to the ratio of relative concentration of a specific isotope
or isotopologue to the most abundant isotope or isotopologue. For ex-
ample, 18R refers to the 18O mole concentration divided by the mole
concentration of most abundant isotope 16O, while for 36R refers to the
18O18O mole concentration divided by the mole concentration of most
abundant isotopologue 16O16O. In Eq. (6), a factor of two is included for
35Rstochastic because both 18O17O and 17O18O molecules have cardinal
mass 35. The subscript WG refers to working gas, which is the starting
gas of the experiment. The 17Δ value describes the “excess” 17O relative
to an expected abundance of 17O, based on the δ18O value (Young et al.,
2002). We choose a reference slope of 0.518, which is most relevant to
oceanographic applications (Luz and Barkan, 2005). The clumped-iso-
tope distribution in O2 is reported as Δ36 and Δ35 values, which quantify
the excess in 18O18O and 17O18O, respectively, relative to the stochastic
distribution of isotopes in O2. The δ18O and 17Δ values in this study
quantify the changes in bulk isotopic composition of the O2, expressed
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Fig. 2. Schematic diagram of the gas-exchange experiment. During an experi-
ment, the water level in the buret drops, and the water level in the Kimax flask
rises, as O2 gas dissolves from the flask headspace into the water.
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in parts per thousand (‰) and parts-per-million (ppm), respectively.
The Δ35 and Δ36 values are absolute clumped-isotope excesses or defi-
cits reported in parts per thousand (‰).

The gas exchange experiment involves both kinetic and equilibrium
fractionation processes, which will be defined and related to δ/Δ ter-
minology below. Kinetic fractionation of O2 isotopologues occurs when
they diffuse into or out of water; the magnitude of the fractionation
reflects the relative diffusion rates across the air-water boundary for
different isotopologues. Equilibrium fractionation occurs when ingas-
sing and outgassing of O2 is equal. Differences in free energy for dif-
ferent O2 isotopologues dissolved in water lead to small fractionations
typically< 1‰ at 25 °C at equilibrium (Benson and Krause, 1984). The
equilibrium isotopic fractionation factor, αeq, is defined as:

= = =(H/L)
(H/L)

H /H
L /Leq

d

g

d g

d g

H

L (7)

here, H represents the concentration of heavy isotopologues (16O17O,
16O18O, 17O18O, or 18O18O) and L represents the concentration of
16O16O. The subscripts d and g represent the dissolved and gas phase,
respectively. Note that αeq can also be represented as the ratio of the
Henry's law constants, γH/γL.

Benson and Krause (1984) determined the equilibrium fractionation
for 16O18O (18αeq) to be 1.00072 at 22 °C, which is not sensitive to
temperature changes around room temperature. For example, the
equilibrium fractionation for 16O18O (18αeq) changes from 1.00073 to
1.00071 between 20 °C and 24 °C. Over this range, the change in δ18O
at equilibrium would not be detectable. The equilibrium fractionation
factor for 16O17O is inferred to be 1.00038 between 20 °C and 24 °C,
constrained by mass-dependent fractionation, based on previous tri-
ple‑oxygen measurements (Reuer et al., 2007; Stanley et al., 2010;
Nicholson et al., 2012; Palevsky et al., 2016).

Previous work suggests that the gas transfer coefficient has a power-
law dependence on the Schmidt number (Sc) of the gas in the fluid
(Jähne and Haußecker, 1998). The Schmidt number is the kinematic
viscosity of the fluid (ν, in this case for water) divided by the molecular
diffusivity of the gas in the dissolved phase (D); thus, the gas transfer
coefficient can be rewritten as:

= × =k B Sc B( /D)n n (8)

where the coefficient B depends on physical parameters such as the
boundary-layer thickness and mixing rate, and -n is power-law ex-
ponent. Different isotopologues share the same B value during gas
transfer because of the same physical conditions.

The kinetic fractionation factor for gas transfer αk is defined as kH/
kL, the ratio of gas transfer flux between different species under the
same concentration gradient:

= k
kk

H

L (9)

Because different isotopic species share the same B value and ki-
nematic viscosity, αk can be simply related to the ratio of aqueous
diffusion coefficients of different isotopologues (DH/DL):

= =D
Dk

H

L

n
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The value of n varies between 1/2 and 2/3 depending on the
roughness of the air-water interface, with n=1/2 describing rough
surfaces and n=2/3 describing the limit of a perfectly smooth surface
(Jähne and Haußecker, 1998). Kinetic isotopologue fractionation across
the air-water interface can therefore be used to constrain isotopologue
fractionation during aqueous-phase diffusion as well. We will discuss
this application in detail in the section 4.4.

One can also define terms that characterize mass-dependent frac-
tionation for this process. The triple‑oxygen term θ17/18 is defined here
as (Angert et al., 2003):

= ln
ln17/18 33/34

k
33

34
k (11)

Values of θ17/18 are close to 0.5 for most processes because the mass
difference between 16O17O and 16O16O is roughly half that between
16O18O and 16O16O (Young et al., 2002; Angert et al., 2003; Helman,
2005). Similarly, θ values for isotopically “clumped” species (18O18O
and 17O18O) can be defined:

= ln
ln36/34

k
36
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k
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Here, a value for θ36/34 of 2 and θ35/34 of 1+ θ17/18 would preserve
Δ36 and Δ35 values upon fractionation (Yeung et al., 2012). Higher
values of θ36/34 and θ35/34 relative to those specified above would yield
increases in Δ36 and Δ35 values, while lower values of θ36/34 and θ35/34
relative to those specified above would yield decreases in Δ36 and Δ35
values.

2.3. Model of the gas-exchange experiment

To model the kinetic component of the gas-transfer process, one
must derive an expression for the fluxes of O2 isotopologues across the
air-water interface. Net O2 fluxes F depend on a transfer coefficient (k)
and the concentration gradient (∆C) across the interface:

= ×F k C (14)

Following Knox et al. (1992) and Tempest and Emerson (2013), we
express Eq. (14) in terms of the O2 partial pressure P, its Henry's law
constant γ, and the concentration of O2 in the dissolved phase cd:

=dC
dt

k(P c )d
d (15)

The Henry's law constant of O2 can be calculated from its solubility
at air partial pressure (Garcia and Gordon, 1992). The term (Pγ-cd)
represents the “concentration gradient” across the air-water boundary
when out of solubility equilibrium.

Because 16O16O occupies> 99.5% of the total oxygen budget, we
assume that the volumetric change in O2 measured at the buret is equal
to the change in 16O16O. This assumption results in a< 0.5% error,
which is negligible. Using this assumption, the net flux of 16O16O across
the air-water interface is expressed as a change in its concentration in
the dissolved phase (Ld):

=dL
dt

k (P L )d
L L d (16)

Ld equals to the mole number of 16O16O divided by the volume of
water (V) in the flask. A similar expression can be derived for the heavy
isotopologues (16O17O, 16O18O, 17O18O, and 18O18O) in the dissolved
phase (Hd):

=dH
dt

k P H
L

Hd
H

g
H d

(17)

where each isotopologue has its own Henry's law constant and a partial
pressure corresponding to its abundance in the gas phase.

Mass balance connects the dissolved phase and the gas phase be-
cause the headspace-water system can be treated as a closed system.
The isotopic composition of the headspace gas [i.e., (H/L)g] at any
point in time is therefore related to the isotopic composition of the
initial headspace gas and the concurrent dissolved gas via Eq. (18):

=H
L

V H VH
V L VLg

gi i d

gi i d (18)

In Eq. (18), Vgi, Hi, and Li represent the initial head space volume, gas-
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phase heavy-isotopologue concentration, and light-isotopologue con-
centration, respectively. V, Hd, and Ld correspond to the water volume,
dissolved heavy-isotopologue concentration, and dissolved light-iso-
topologue concentration at time t. By substituting (H/L)g (Eq. (18)), kH
(Eq. (9)) and γH (Eq. (7)) into Eq. (17) we arrive at:

=dH
dt

k P
V H VH
V L VL

Hd
L k

gi i d

gi i d
L eq d

(19)

The kL value is calculated from the temporal evolution of the buret
water level, while the other variables are known, measured, or inferred
(see below). The model can be stepped in a forward direction using Eqs.
(16) and (19) starting with known isotopologue compositions at time
t=0 to calculate the temporal evolution of the headspace O2 iso-
topologue composition.

Our model inherits most of the notation and expressions used in
Knox et al. (1992). Kaiser (2011) derived a slightly different model,
defining separate evasion (outgassing) and invasion (ingassing) kinetic
fractionation factors:

= +c d
dt

k [c ( ) c (1 )]L sat I E (20)

The evasion kinetic fractionation factor (1+ εE) in Eq. (20) is the same
as αk in Eq. (19), while the invasion kinetic fractionation factor (1+ εI)
is equal to the product of the kinetic and equilibrium fractionation
factors αk×αeq.

Note that over the course of the gas exchange experiment, the
falling water level in the buret causes the flask's headspace pressure P to
decrease. This pressure drop arises from an increase in the ballast vo-
lume (the volume above the headspace of the buret in Fig. 2) and a
decrease in the hydrostatic pressure (ΔPhydrostatic). The former accounts
for about one-third of the excess pressure drop and the latter accounts
for the remaining two-thirds. Both of these effects are included in the
calculation of the flask headspace pressure according to Eq. (21),

= =
+

P P P P P g h P V
V Vi hydrostatic ballast i atm

bulb (21)

where Pi is the initial headspace pressure of water flask, ΔPballast is the
pressure change in the ballast volume caused by the volume change ΔV,
ρ is the density of water, g is the acceleration due to gravity
(9.81m s−2), and Δh is the drop in water level in the buret relative to
that in the flask (it increases over the course of the experiment). The
atmospheric pressure (Patm) used here is the average sea-level pressure,
101.325 kPa.

Finally, during the experiment, the volume of the gas in the flask
headspace also changes by a volume ΔVdis as the gas dissolves into
water:

=V V Vdis gi g (22)

We update this volume change into our forward model at each time
step. An ideal gas law is used to calibrate both the volume change and
the pressure change in the flask system.

A systematic error may arise from the initial O2 saturation state of
the water in the buret. Although the water was carefully degassed via
boiling, air ingassing during buret filling was unavoidable. This ingas-
sing caused a non-zero saturation for the buret water, which enters the
flask during the experiment and degasses into the headspace. The po-
tential errors due to this complication will be discussed in the context of
the results in Section 3.4.

3. Results

3.1. Air-water equilibration

Measurements of O2 dissolved in water yielded δ18O and 17Δ values
consistent with previous determinations, i.e., 0.699 ± 0.032‰ and

10 ± 2 ppm (95% confidence intervals, n=12; see Table 1), which
suggest that θ17/18,eq= 0.528 (Reuer et al., 2007; Palevsky et al., 2016).
The Δ36 values may be slightly lower than from those of air, but they are
not distinguishable at the 95% confidence level: At 25 °C, we measured
clumped-isotope compositions of dissolved O2 in water of
Δ35= 0.98 ± 0.07‰ and Δ36= 1.944 ± 0.018‰ (95% CI; n=12)
compared to Δ35= 1.02 ± 0.05‰ and Δ36= 1.972 ± 0.023‰ (95%
CI; n=17) for Houston air measured during the same analytical ses-
sions (Yeung et al., 2016). These values are consistent with equilibrium
dissolution fractionating O2 isotopologues with θ35/34= 1+θ17/18 and
θ36/34= 2.00. While we cannot rule out θ36/34,eq < 2 at solubility
equilibrium, θ36/34,eq > 2 appears unlikely. Neither isotopologue mass
law leads to detectable changes in Δn values upon dissolution. Based on
these results, we will use θ17/18,eq= 0.528, θ35/34,eq= 1.528, and θ36/
34,eq= 2.00 to describe the isotopologue fractionation at solubility
equilibrium.

3.2. kL value (gas transfer coefficient for 16O16O)

The kL value is the rate coefficient describing O2 dissolution into
water. To obtain this value, we first calculated the O2 saturation state in
water over time using observed buret-volume changes, the ideal gas
law, the O2 solubility, and the total volume of water in the flask. Next,
we used the solution to Eq. (16), i.e.,

=L P (1 e )d L
k tL (23)

to obtain kL from an exponential fit to the temporal evolution of dis-
solved O2 concentration. The results are shown in Fig. 3. The misfit
between some fitted values and experimental data is mainly caused by
the variation of temperature during the experiment. Gas transfer rates
were modulated by changing the size and rotation rate of the stir bar
between experiments.

3.3. Kinetic fractionation factors

Kinetic fractionation factors were determined from the time-evolu-
tion of headspace O2 isotopic compositions. Representative plots of the
change in isotopic composition as a function of O2 saturation are shown
in Fig. 4. The results from the other 2 experiments are presented in
supplementary materials (Figs. S1 and S2). We fit the experimental data
to the model curve (Eqs. (16) and (19)) using a least-squares algorithm
to obtain best-fit kinetic fractionation factors and their fitting errors for
the minor isotopologues. The results are listed in Table 2.

Fig. 4A shows an increase in δ18O values of headspace O2 at the
beginning of the experiment, reaching a peak at around 50% or 60%
saturation. The precise O2 saturation state corresponding to the

Table 1
Isotopic compositions for air dissolved in distilled water at 25 °C.

Sample δ18O/‰ 17Δ/ppm Δ35/‰ Δ36/‰

1 0.724 9 0.89 1.916
2 0.627 14 0.96 1.992
3 0.620 12 0.93 1.933
4 0.704 4 0.93 1.957
5 0.776 6 0.76 1.961
6 0.717 17 1.02 1.900
7 0.764 5 1.07 1.904
8 0.724 9 0.95 1.970
9 0.727 10 1.05 1.938
10 0.634 10 1.16 1.951
11 0.689 10 1.08 1.937
12 0.680 9 0.92 1.968
Mean ± 1σ 0.699 ± 0.051 10 ± 4 0.98 ± 0.11 1.944 ± 0.028
Mean ± 95% CI 0.699 ± 0.032 10 ± 2 0.98 ± 0.07 1.944 ± 0.018
Air ± 95% CIa 0.000 ± 0.016 0 ± 2 1.02 ± 0.05 1.972 ± 0.023

a Measured during the same analytical sessions as the experiments.
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maximum δ18O value depends on kL. In general, lighter isotopologues
diffuse into water faster than heavy isotopologues, so the residual O2 in
the headspace has a higher proportion of heavy isotopologues during
early stages of the experiment. As O2 builds up in the dissolved phase,
the outgassing flux from the dissolved phase increases. The lighter
isotopologues outgas preferentially from the dissolved phase, which
then lowers the proportion of heavy isotopologues in the headspace. An
equilibrium is reached when the outgassing and ingassing rates are
equal for all species. The expected equilibrium values of δ18O are
−0.265‰, −0.245‰, and −0.257‰ for Experiments 1, 2, and 3,

respectively. We note here that all three experiments showed a lower
δ18O than expected at equilibrium. This deviation is also apparent in
the previous experiment by Knox et al. (1992), although it was not
discussed; we will address this disparity and its implications in more
detail in Section 3.4.

The mean 34αk value derived from the three experiments was
0.9978 ± 0.0004 (1σ). The change in 17Δ, Δ35, and Δ36 values was
small, suggesting a θ17/18,k≈ 0.518, θ35/34,k≈ 1+ θ17/18,k≈ 1.5, and
θ36/34,k≈ 2. We obtained a mean θ17/18,k value of 0.517 ± 0.002 and a
mean θ36/34,k value of 1.948 ± 0.032 (1σ, n=3 experiments). The
fitting errors for 34αk and 33αk are smaller than the last digits in the
values reported in Table 2. To test the veracity of these results, we ran
3000 independent fits for each parameter in each experiment after
randomly varying all data points in a normal distribution about the
measured values (within the analytical standard deviation, i.e.,± 3
ppm for 17Δ and ± 0.04‰ for Δ36). The means of the probability
distributions for these “Monte Carlo” experiments (Fig. 5) yield θ17/
18,k= 0.517 ± 0.003 and θ36/34,k= 1.948 ± 0.011 (1σ) for the three
experiments, which are indistinguishable from the unperturbed best-fit
results. Shapiro-Wilk normality tests suggest that the Monte Carlo dis-
tributions are quasi-normal: they are indistinguishable from normal
when n=300 (p=0.08), but distinguishable for n=3000
(p < 3×10−4).

3.4. Main uncertainties

As shown in Fig. 4A, we observed an offset between the modeled
and experimental δ18O value at the end of the experiment (~100% O2

saturation). This offset may have had four potential origins: air con-
taminations present at the start of the experiment, air contaminations
that accumulated over the course of the experiment, artifacts associated
with repeated sampling of the headspace O2, and artifacts associated
with temperature inaccuracy. Below we examine each possibility.
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The most likely source of air contamination at the start of the ex-
periment is air dissolved in the buret water; although the water was
degassed by boiling, air ingassing during buret filling was unavoidable.
Dissolved air in the buret water can outgas into the headspace once it
enters the Kimax flask. To estimate the potential effects from this
contamination, we use a mass-balance relationship to calculate the
isotopic composition of the headspace gas:

+ = +V O V O (V V ) O1
18

air 2
18

WG 1 2
18

WG altered (24)

where V1 and V2 represent the volume of buret oxygen and the volume
of headspace oxygen, respectively. Here, δ18OWG=0 and δ18Oair is
equal to the ambient atmospheric value of −3.2‰. We estimate the
maximum contamination by calculating V1 assuming 100% air satura-
tion for the buret water based on Henry's law. If V2 is the initial
headspace volume, ~450mL, we obtain δ18OWG altered=−0.008‰,
which is not enough to explain the −0.11‰ offset between the ex-
pected value and experimental value. To achieve −0.11‰ for δ18OWG

altered, V1 needs to be 14.5mL, which requires 2.4 L of air-saturated
water (about 12 times more than observed) to enter the Kimax flask. If
V2 is the final headspace volume, ~250mL, we obtain δ18OWG al-

tered=−0.015‰, which is still not enough to explain the −0.11‰
difference. Another potential source of air contamination at the start of
the experiment is incompletely degassed water. We had verified that
the headspace pressure was equal to the vapor pressure of water
(24.9 ± 1.6mbar) before each experiment, so the total contaminant
from this source was negligible.

Air leaks through vacuum fittings during the experiment may also
have affected δ18O values of the headspace O2. Indeed, we observed
small argon peaks during gas chromatography purification of the latter
samples, consistent with the hypothesis of air leaking into the Kimax
flask. The integrated area of argon on the GC suggests that the total
contribution from air-O2 was ~1.4% of the headspace O2, or −0.04‰
in δ18O, during the longest experiment. That experiment had the largest
δ18O offset at the end (−0.11‰), while the shorter second and third
experiments had smaller offsets (−0.05‰ and−0.09‰). This effect
may also have been important for the Knox et al. (1992) study, in which

the experiment lasted> 400 h and showed a δ18O offset> 0.1‰ at
100% O2 saturation.

A third possible source of error is the removal of headspace O2

during the experiment for analysis. It yields two possible errors. The
first error arises from the sampling-induced decrease in the headspace
volume of ~30ml (~60ml for experiment 1 because the headspace was
inadvertently expanded into a larger volume just before sampling the
last two samples) over the course of an experiment. This decrease in
headspace volume alters the partitioning of O2 between the dissolved
and gas phase—a larger proportion of the total O2 remaining is dis-
solved—resulting in a δ18O change of about −0.02‰ (−0.04‰ for
experiment 1) at equilibrium. Samples collected at early stages of the
experiments are affected less. The second error arises from the removal
of kinetically fractionated gas from the system when the δ18O of the
headspace is higher than 0‰. If all the O2 removed has
δ18Oremoved= 0.2‰, the maximally fractionated gas in the experiment,
and the initial headspace is ~450mL, the total change in δ18O for that
system would be −0.014‰ (−0.030‰ for experiment 1). Note that
this is an extreme case because δ18Oremoved≤ 0.2‰ under most con-
ditions.

The fourth possible source of error is an inaccuracy in the tem-
perature during the experiment. Temperature changes would affect the
concentration of O2 in the dissolved phase. The maximum variance of
temperature during the experiment is< 2 °C (i.e., the temperature was
22 ± 1 °C), which results in an uncertainty of± 2% in solubility
and ± 0.005‰ in δ18O values. The temperature inaccuracy would be
manifest on the saturation plot because the saturation state is calculated
according to the measured temperature. The final saturation values
were within 3.5% of 100%, which is similar to the expected accuracy.
Temperature may have affected the gas transfer rate kL, but its effects
were small compared to those of the water-mixing rate.

We estimate that the cumulative δ18O offset at 100% O2 saturation
due to all four of the effects described above is −0.086‰ (−0.121‰
for experiment 1), which can explain the offset observed. We also cal-
culated the expected cumulative offsets due to the four effects described
above for 17Δ, Δ36, and Δ35 values. The maximum deviation in δ18O for

Table 2
Best-fit kinetic fractionation factors and θ values for 16O17O, 16O18O, and 18O18O obtained from gas-exchange experiments.

Experiment 34αk 33αk θ17/18,k θ36/34,k

1 0.9974a 0.9987a 0.514 ± 0.003 1.950 ± 0.043
2 0.9980a 0.9990a 0.520 ± 0.005 1.936 ± 0.063
3 0.9981a 0.9990a 0.517 ± 0.004 1.957 ± 0.058
Mean ± 1σ 0.9978 ± 0.0004 0.9989 ± 0.0001 0.517 ± 0.002 1.948 ± 0.032

a Fit uncertainties not shown because they are much smaller than the experimental reproducibility.
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the whole experiment is −0.11‰ which implies a 3.4% air con-
tamination according to Eq. (24). The 17Δ value for air is −100 ppm
relative to the working gas, whereas the Δ36 and Δ35 values for air are
about 0.64‰, and 0.3‰ higher than that for air, respectively. By
substituting 17Δ, Δ36, or Δ35 into Eq. (24)—which is a sufficiently ac-
curate approximation of the true mixing relationship in this case—we
obtain deviations of –3 ppm, 0.02‰, and 0.01‰ in the 17Δ, Δ36, and
Δ35 values, respectively. These deviations are not detectable based on
our long-term external precision. Air contaminants similar in magni-
tude to the one observed would not result in a detectable offset in those
values.

Consequently, the main uncertainty arising from the δ18O offset is in
the 34αk value. Yet, most data points still show good agreement with the
model: the high-saturation points (those in the equilibrium-dominated
regime) are the most affected, while the low-saturation points (those in
the kinetically controlled regime) were less affected. The sampling
density was highest in the low-saturation region, so the 34αk value is
likely robust.

4. Discussion

4.1. Kinetic fractionation factors of O2 isotopologues

Our mean measured 34αk value is 0.9978 ± 0.0004 (1σ), which is
not significantly different (using p=0.05) from the value determined
by Knox et al. (1992), 34αk= 0.9972 ± 0.0002 (1σ). The mean θ17/18,k
value of 0.517 ± 0.002 (1σ) falls in a reasonable range for mass de-
pendent fractionation (Young et al., 2002). It is also consistent with the
estimated value of ~0.510 invoked by Yeung et al. (2015) to explain
bulk-isotope variations coming from gas transfer in a terrarium ex-
periment. However, that value had been inferred from a biogeochem-
ical model of the terrarium and was not a direct measurement. The
mean θ36/34,k value of 1.948 ± 0.032 is different from the estimated
value of ~3.2 suggested by Yeung et al. (2015) to explain bulk-isotope
variations in a terrarium experiment, but the latter may have been af-
fected by instrumental artifacts (see Section 4.2). Although we were
unable to find a best-fit θ35/34 value from the data, the lack of change in
Δ35 values during gas exchange (Fig. 4D) suggests that the kinetic
fractionation of 17O18O during air-water gas transfer yields a θ35/34
value close to 1.5. Taken together, these data provide insight into the
mass-dependent fractionation mechanism during gas transfer across the
air-water interface.

To understand the physical origin of these θkinetic values, one can
compare the experimental θ17/18,k and θ36/34,k values with mass-de-
pendent fractionation factors for pinhole diffusion and gas-phase O2

diffusion (inter-diffusion) in pure water vapor. The θ17/18 and θ36/34
values for these two processes are 0.509 and 1.943 for pinhole diffusion
and 0.514 and 1.907 for inter-diffusion, respectively (Eq. (14)), calcu-
lated using α1/2= (m2/m1)1/2 and α1/2= (μ2/μ1)1/2, respectively,
where μ is the reduced mass of O2 and a water molecule, i.e.
μ=mO2mH2O/(mO2+mH2O). As the number of water molecules in-
creases [e.g., μO2-H2O=mO2×8mH2O/(mO2+ 8mH2O) for an 8-water
hydration shell], the θ17/18 and θ36/34 values trend from 0.514 and
1.907 toward 0.509 and 1.943, respectively, i.e., from the inter-diffu-
sion to pinhole-diffusion limits.

The measured θ17/18,k and θ36/34,k values for air-water gas
transfer—0.517 ± 0.002 and 1.948 ± 0.032 (1σ), respectively—are
close to theoretical θ17/18 and θ36/34 values for gas-phase O2 diffusion in
water vapor, but they do not unequivocally reflect pinhole- or inter-
diffusion mass dependence. The kinetic θ17/18 value is indistinguishable
from the inter-diffusion θ17/18 value, but it is> 2σ different from that
for pinhole diffusion. Moreover, the Monte Carlo results (Fig. 5) show
fewer than 5% of the best-fit kinetic θ17/18 values being ≤0.509. In
contrast, a large proportion of the best-fit kinetic θ36/34 values lie near
1.907. Note also that the θ36/34,k value for air-water gas transfer de-
pends on the assumed value for θ36/34,eq at solubility equilibrium. If θ36/

34,eq < 2—which the experiments cannot not rule out (see Section
3.1)—then the θ36/34,k value for air-water gas transfer would be lower
than the reported mean value of 1.948. In both cases, the data are more
consistent with an inter-diffusion mass dependence than a pinhole-
diffusion mass dependence being the rate-limiting step in air-water gas
transfer (Jähne and Haußecker, 1998).

4.2. Explaining the unusual clumped-isotope fractionation in the Yeung
et al. (2015) dark incubation experiments

Yeung et al. (2015) presented a clumped-isotope analysis of head-
space O2 in a closed-system terrarium experiment. During the dark
respiration period, they observed a rapid increase in both Δ36 and Δ35
values that they hypothesized could arise from kinetic gas-transfer
fractionation with apparent θ36/34 and θ35/34 values of 3.2 and 1.8,
respectively. The hypothesized kinetic θ36/34 and θ35/34 values are non-
mass-dependent, being significantly different from 2.0 and 1.5, re-
spectively. Our experiments show only subtle kinetic effects for 18O18O
and 17O18O beyond those expected for mass-dependent fractionation
(θ36/34= 1.948 ± 0.032 and θ35/34≈ 1.5; Fig. 4C and D). The Δ36 and
Δ35 signals in the terrarium incubation experiment therefore did not
arise from gas-transfer fractionation. Unusual clumped-isotopologue
fractionation during respiration cannot be ruled out as a factor, how-
ever, and awaits further testing. Analytical artifacts could also have
contributed to the apparent non-mass-dependent fractionation in the
Yeung et al. (2015) terrarium experiment. An empirical ion correction
at mass 36 was used in those analyses because the IRMS was unable to
resolve 18O18O (35.9983 amu) from its isobar 36Ar (35.9676 amu) and
H35Cl (35.9767 amu). The correction was performed by peak-hopping
to mass 40 and assuming a constant 40Ar/36Ar ratio and constant H35Cl.
Variations in 35Cl and H35Cl ion currents could have affected the
measurement of both Δ36 and Δ35 values in the earlier experiments. We
note these corrections were not necessary on the high-resolution IRMS
used in this study (Yeung et al., 2016).

4.3. Effect of kinetic gas-transfer fractionation on GOP estimates

The triple oxygen isotope composition of dissolved O2 in the oceanic
mixed layer has been widely used for determining the gross oxygen
productivity (GOP) (Luz and Barkan, 2000, 2005, 2009; Hendricks
et al., 2004; Juranek and Quay, 2005, 2010, 2013; Sarma et al., 2005;
Reuer et al., 2007; Quay et al., 2010; Kaiser, 2011; Prokopenko et al.,
2011; Munro et al., 2013; Nicholson et al., 2014; Palevsky et al., 2016;
Haskell et al., 2016). However, kinetic gas-transfer effects on these
estimates have not yet been determined in part because the θ17/18,k
value had not been measured before this study. Most of the surface
ocean is out of solubility equilibrium for O2 by several percent, so ki-
netic gas-transfer fractionation could be important. In particular, por-
tions of the Southern Ocean are undersaturated with respect to O2 on an
annual-mean basis (Fig. 1), and it is a key region for the oceanic bio-
logical carbon “pump” on glacial-interglacial timescales (Sigman and
Boyle, 2000).

A kinetic isotopic effect-enabled box model for the mixed layer was
first derived by Kaiser (2011). Below, we present the model using the
notation of Prokopenko et al. (2011):

=h d([O ])
dt

G R k([O ] [O ] )2
2 2 eq (25)

=h d([O ] X )
dt

G X R X k ([O ] X [O ] X )2 dis
p res dis k 2 dis 2 eq eq

(26)

In Eq. (25), h is the depth of mixed layer, d([O2])/dt is the change in
dissolved O2 concentration through time, G and R are the gross pho-
tosynthesis and respiration rates in the mixed layer, respectively. The
third term, k([O2]–[O2]eq), is the gas-transfer term in which k is the
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piston velocity and [O2]–[O2]eq is the extent of O2 solubility dis-
equilibrium in the mixed layer. Eq. (26) describes the isotopologue-
specific concentration change through time using the term ⁎X to
quantify the relative concentration of each minor isotopologue ⁎O2:

=X [ O ]
[ O ]

2
32

2 (27)

corresponding to O2 produced by photosynthesis (Xp), the O2 dissolved
in that water sample (Xdis), and O2 at solubility equilibrium in the local
environment (Xeq). On the right side of Eq. (26), GXp and RαresXdis
characterize the photosynthetic and respiratory fluxes of O2 iso-
topologues, respectively, relative to the flux of the major O2 iso-
topologue (16O16O comprises 99.5% of all O2, so the model assumes
that the total O2 flux is the same as the 16O16O flux). The respiration
and gas-transfer terms include respective fractionation factors αres and
αk to represent the dependence of their rates on isotopologue. The ki-
netic αk term is the only modification from the Prokopenko et al. (2011)
steady-state model.

If the mixed layer is in a steady state for both O2 concentration and
O2 isotopologues (i.e., d([O2])/dt= 0 and d([O2]Xdis)/dt= 0), then
Eqs. (25) and (26) simplify to:
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These equations are similar to those in Prokopenko et al. (2011),
except with kinetic fractionation terms included in the expressions for
F1 and F2. We note that Eq. (28) is similar to Eq. (1) in the paper of
Kaiser and Abe (2012), which has a different preferred notation. All the
terms in Eqs. (28)–(32) can be measured in the mixed layer or have
been measured in the lab; the terms without subscripts are measured in
the mixed-layer's O2.

To evaluate potential effects of kinetic gas-transfer fractionation on
open-ocean estimates of GOP, we used the triple-isotope dataset from
the Southern Ocean reported in Reuer et al. (2007). Because the authors
did not report the O2 saturation state, we assumed an Ar saturation
state in this region of 95%, which, when combined with their reported
δO2/Ar values, yields an O2 saturation state similar to the annually-
averaged range in this region (i.e., 90%–100%). We then compared the
relative error in GOP incurred for several values of θ17/18, k (Fig. 6). We
evaluated the effects of kinetic gas transfer for three values of θ17/18, k:
0.517, the mean experimental value; 0.520, the highest measured
value; and 0.514, the lowest measured value.

The calculation shows that kinetic gas-transfer fractionation of
isotopologues can have a significant impact on GOP estimates, but only
when GOP is low. When GOP is high, the error is generally small
(< 5%). When GOP is low (e.g., GOP < 50mmol O2 m−2 d−1), the
error incurred can be up to±50% in this dataset; however, most data
points are within± 10% of the GOP calculated if kinetic gas-exchange
fractionation is omitted, with a maximum observed inaccuracy of
12mmol O2 m−2 d−1. Evidently, the large relative errors for low GOP
are driven by the small magnitude of triple-isotope signals when GOP is
close to zero. This result highlights not the importance of kinetic gas-

exchange fractionation, but instead the difficulty in measuring GOP in
low-productivity regions, which can also be biased by entrainment of
thermocline waters (Nicholson et al., 2012) or errors in bulk gas
transfer rates (Ho et al., 2006).

The Southern Ocean is an extreme case with respect to dissolved
oxygen saturation, so we expect triple-isotope-based GOP errors arising
from omitting kinetic gas-exchange fractionation to be even smaller in
most open-ocean environments. In some estuaries and coastal en-
vironments, O2 can be strongly supersaturated, however, so GOP de-
terminations in those contexts may require an explicit treatment of O2

kinetic fractionation across the air-water interface (Manning, 2017).

4.4. Potential implications for respiration under diffusion limitation

Both theory and the isotopic data suggest that the rate-limiting step
for O2 gas transfer across the air-water interface is diffusion across the
aqueous boundary layer (Jähne and Haußecker, 1998). Consequently,
kinetic fractionation across the air-water interface can be connected to
diffusive fractionation in the dissolved phase.

Diffusive fractionation is important in marine communities that are
endemic to sediments and in particles, where the fractionation of iso-
topes is determined by both diffusion and respiration. One can use a
“community” fractionation factor to represent the overall effect of these
mechanisms. For a benthic environment (treated as a semi-infinite
slab), it can be shown that the O2 concentration profile inside the slab
follows an exponential decay below the sediment-water interface. The
fractionation factor for this process equals (Bender, 1990):

= k D
k D

34
c

34 34

32 32

1/2

(33)

where k is the respiration rate and D is the diffusion coefficient for
different dissolved O2 isotopologues. The kinetic fractionation due to
microbial O2 consumption is 34αr= 34k/32k≈0.982 (Schleser, 1979;
Bender, 1990), while the kinetic fractionation due to diffusion is the
ratio of coefficients, 34αD= 34D/32D. The ratio of diffusion coefficients
is related to the kinetic gas transfer fractionation via Eq. (11). In our
experiment, we observed no visible waves, so the exponent may be
closer to 2/3 (limit of perfectly smooth surface) than ½ (rough surface),
i.e.,

= D
D

34
k

34

32

2
3

(34)

Using this relationship, we calculate a community fractionation
factor of 34αc= 0.989 for exponents of 2/3 and 1/2. The results for the
other isotopologues are shown in Table 3.

Kinetic fractionation from diffusion, community fractionation, and
respiration fractionation are all important in the aphotic zone.
Depending on whether respiration is diffusion-limited, the expression of
these fractionation factors could be variable; in the case of 18O frac-
tionation, the total range of variability is a factor of two. The θ values
may be more constant. Mixing, however, is also important for the O2

budget (Bender, 1990; Levine et al., 2009). Complementary analysis of
17Δ, Δ36, and Δ35 36 values in the aphotic zone, which reflect the same
contributions from diffusion, respiration, and mixing, may provide the
needed additional constraints on these processes in the dark ocean.

5. Conclusions

We present the first experimental determinations of the kinetic
isotopic fractionation factors for 16O17O, 17O18O, and 18O18O relative to
16O16O during air-water gas transfer, as well as the equilibrium solu-
bility isotopic fractionation factor for 17O18O and 18O18O relative to
16O16O. We also re-determined the kinetic 16O18O/16O16O fractionation
factor for air-water gas transfer, quantified as a 34αk value, which
agrees with the previous determination by Knox et al. (1992). The
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results suggest that kinetic gas transfer likely has negligible effects on
GOP in the open ocean. However, in areas of low GOP, analytical un-
certainties and uncertainties in gas-transfer rate dominate the un-
certainties in GOP estimates. The results may be applicable to the study
of O2 in the deep ocean, where diffusion, respiration, and mixing render
the budget difficult to constrain uniquely. Finally, these data will sup-
port fundamental theoretical studies of diffusive fractionation in the
liquid phase, for which experimental data on the mass dependence of
diffusion for diatomic molecules has been lacking.

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.marchem.2019.02.006.
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Table 3
Fractionation factors relevant to dissolved O2 and calculated relationships be-
tween 16O17O, 16O18O, and 18O18O in the aphotic zone (n=2/3).

Factors Diffusion Respiration Community
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