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Nonlinear magnetotransport in a two-dimensional electron gas in one-dimensional lateral lattices fabricated
from a selectively doped GaAs/AlAs heterostructure is investigated. One-dimensional potential modulation
is imposed on the two-dimensional electron gas by means of a set of metal strips formed on the planar surface
of Hall bars. The dependences of the differential resistance  on the magnetic field  T are studied at
a temperature  K in lattices with a period of  nm. It is shown that periodic oscillations in

 occur in such lattices under the action of a current-induced Hall field due to Zener tunneling
between Landau levels. Interference is found between Zener oscillations and commensurability oscillations
of  in two-dimensional electron systems with one-dimensional periodic modulation. The experimental
results are qualitatively explained by the role of Landau bands in nonlinear transport at large filling factors.
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The quantization of the orbital motion of electrons
in a magnetic field  leads to a qualitative change in
their energy spectrum. In particular, in an ideal two-
dimensional (2D) system, the energy spectrum of
electrons in a perpendicular magnetic field becomes

discrete: , where n is the Landau

level number,  is the cyclotron frequency, and m* is
the effective mass. A random scattering potential in a
disordered electron system leads to the broadening of

Landau levels: , where  is the width of

the nth Landau level and  is the quantum lifetime. In
high-mobility 2D electron systems based on remotely
doped GaAs quantum wells, the transport electron

scattering time is . For this reason, there exists
a range of strong magnetic fields in which Landau lev-

els overlap .

The modulation of the energy spectrum of 2D elec-
tron states in strong magnetic fields in the case of a
large number of filled Landau levels is the origin of a
number of new nonequilibrium phenomena discov-
ered over the past two decades in high-mobility 2D
systems [1]. One of these phenomena is Zener tunnel-
ing between Landau levels [2–13]. It was shown that

oscillations of the differential resistance 
appear in Hall bars with the width W under the action

of a direct electric current , the positions of the
resistance maxima being determined by

(1)

where  is the cyclotron radius,  is

the Hall electric field,  is the Hall resistivity, and j
is a positive integer. Zener tunneling between Landau
levels results from backscattering of electrons by impu-
rities, whereby the center of the cyclotron orbit of a

scattered electron shifts by  and its energy changes

by .

Here, we experimentally investigate Zener tunnel-
ing between Landau levels in a high-mobility 2D elec-
tron gas with one-dimensional periodic lateral poten-

tial modulation , where a is the
period of modulation. The probability of tunneling

between Landau levels depends on their width  and

the backscattering time  [14]. One-dimensional

potential modulation slightly affects  but signifi-
cantly modifies the energy spectrum of 2D electrons
in the magnetic field owing to the removal of degener-

acy with respect to the coordinate  of the center of
the wavefunction, which leads to the appearance of
Landau bands. The main goal of this work is to estab-
lish the role of Landau bands in Zener tunneling at
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large filling factors , where  is the
Fermi energy.

The magnetotransport properties of the 2D elec-
tron gas in a one-dimensional periodic potential have
been studied for more than a quarter of a century [15–
17]. The most striking effect found in such a system is
the commensurability oscillations of the magnetore-
sistance [15]. In much the same way as Shubnikov–de
Haas (SdH) oscillations, commensurability oscilla-
tions are periodic in . The minima of commensu-
rability oscillations occur under the condition

(2)

where i is a positive integer. These oscillations can be
observed if the period a is smaller than the electron

mean free path , where  is the electron
Fermi velocity. In the classical description, commen-
surability oscillations occur because of a resonance
between the periodic motion of electrons along cyclo-
tron orbits and the oscillatory drift of the orbit guiding
center, induced by the potential  [18].

In the quantum description, a one-dimensional
potential modulation results in the appearance of

Landau bands. Under the condition , the
energy of the Landau level with an index  is

expressed as a function of  as follows [17]:

(3)

(4)

According to Eqs. (3) and (4), the width of the Landau

bands  depends periodically on 1/B. The

dependence of  and, thus, of the band conductivity
on 1/B explains commensurability oscillations in the
quantum description. The gap between the classical
and quantum approaches to magnetotransport in
weakly modulated 2D electron systems was eliminated
very recently [19].

Here, we study nonlinear electron transport in
one-dimensional lateral lattices made of a GaAs/AlAs
heterostructure. The original selectively doped het-
erostructure was a GaAs quantum well confined
between AlAs/GaAs superlattice barriers [20, 21]. The
width of the quantum well was 13 nm. The hetero-
structure was grown by molecular beam epitaxy on a
GaAs (100) substrate. The measurements were carried
out at a temperature of  K in magnetic fields of

 T on Hall bars with a width of  μm
and a length of  μm. The bars were fabricated
using optical lithography and wet etching. The elec-
tron density and mobility in the original heterostruc-
ture after illumination by a red LED at  K were

 m–2 and  m2/(V s), respectively.

The layout of the sample is shown schematically in
the inset of Fig. 1a. The sample is a Hall bar with a
metal lattice deposited on its planar surface. The lat-
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tices were made by means of electron-beam lithogra-
phy and “lift-off” of a Au/Ti bilayer metal film. The
thicknesses of the Au and Ti layers were 40 and 5 nm,
respectively. The lattice represented a series of
100-nm-wide Au/Ti strips. The lattice period  was
200 nm. The electron density and mobility in bars with
a lattice after illumination by a red LED at  K

were  m–2 and  m2/(V s), respec-

tively. The differential resistance  was

measured at an alternating current  μA with a
frequency from 10 Hz to 1 kHz. Simultaneously with

the alternating current, a direct current  from 0 to

100 μA was passed through the sample. For ,

.

The electron density  in the selectively doped
GaAs/AlAs heterostructure used for the fabrication of
the lattices increased by ~0.2 × 1015 m–2 after illumi-
nation with a red LED at  K. The lateral peri-
odic modulation of the potential  in the resulting
lattices occurs because the increase in the electron
density upon illumination is smaller beneath the metal
strips than in the open areas of the sample [22]. If we

assume that  after illumination remains completely
unchanged beneath the strips and increases only in the
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Fig. 1. (Color online) (a) Experimental magnetic field

dependence of  measured for a Hall bar with a lat-
tice at  K. The arrows indicate the minima of com-
mensurability oscillations for , 7, and 9. The inset
shows the simplified layout of the sample. (b) Theoretical
dependence calculated by Eq. (4) with the parameters

 nm and  m–2. The arrows indicate

the magnetic fields  for , 7, and 9.
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open areas of the bar, then the modulation amplitude

in the lattices under study is  meV.

Figure 1a shows the dependence  (where

 is the resistance in zero magnetic field) in which
two types of oscillations are observed. Both of them
are periodic in the inverse magnetic field. Oscillations
with a shorter period are SdH oscillations, and their

period is determined by the ratio . Oscillations
with a larger period are commensurability oscillations,
since the positions of their minima are determined by
Eq. (2). This gives evidence of one-dimensional peri-
odic modulation of the 2D electron gas in the studied

lattices. The dependence of  on B, shown in

Fig. 1b, demonstrates that the width  of the Landau
bands is zero at the minima of commensurability

oscillations  and attains maximum values at
the oscillation maxima.

Figure 2a shows schematically the layout for mea-

suring the differential resistance  and shows the

dependences of  on 1/B for  (line 1) 0 and
(line 2) 80 μA. The maxima marked by arrows on
line 2 originate from Zener tunneling, because their
positions are described by Eq. (1). It can be seen that
Zener oscillations, induced by the Hall electric field,
interfere with commensurability oscillations. The
behavior of commensurability oscillations is shown in

more detail in Fig. 2b. The dependences of  on
1/B were obtained by subtracting the SdH oscillations
and the nonoscillating components from experimental
curves 1 and 2. These dependences show that, in the
presence of direct current, the phase of commensura-
bility oscillations periodically changes by π. The three
nodes where the phase change takes place are marked
by arrows in Fig. 2b.

The interference of commensurability oscillations
and microwave photoresistance oscillations in a 2D
electron system with one-dimensional periodic mod-
ulation was recently observed in [22], and, in addition,
it was found that microwave-induced states with zero

resistance  occur only at the minima of com-
mensurability oscillations [23]. Furthermore, it was

shown that, in the nonlinear regime, states with 
occur in one-dimensional lattices also only at the min-
ima of commensurability oscillations [24]. These
experimental results indicate the role of Landau bands
in nonequilibrium phenomena arising in 2D electron
systems with one-dimensional periodic modulation
under the influence of microwave radiation or a static
electric field.

The impact of Landau bands on SdH oscillations
in the linear regime was studied in [25]. It was shown
that modulation of SdH oscillations occurs in one-
dimensional lateral superlattices based on a 2D elec-
tron gas in selectively doped heterostructures. The
behavior of SdH oscillations for the case of strongly
overlapping Landau levels and weak one-dimensional
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modulation of the 2D electron gas is described by the
expression [25]

(5)

where ,

, δ =

 is the Dingle factor, and  is a
dimensionless parameter on the order of unity.

In comparison to an unmodulated 2D electron gas,

 in latteral lattices acquires an additional factor

, which is responsible for the modula-
tion of the amplitude of SdH oscillations. At the min-

ima of commensurability oscillations , the

additional factor is  and is indepen-
dent of B. At the maxima of commensurability oscilla-
tions, this factor is smaller than unity, decreases with
increasing 1/B, and vanishes under the condition

 [25]. Formula (5) is valid only for

 [25]. In this case, the periodic poten-
tial causes only an additional broadening of the Lan-
dau levels.
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Fig. 2. (Color online) (a) Ratio  versus 1/B mea-

sured on a Hall bar with a latteral lattice at  K for

 (1) 0 and (2) 80 μA. The inset shows the layout for

measuring the differential resistance . The
arrows indicate the maxima of Zener oscillations for 

and 2. (b) Ratio  versus 1/B. The arrows indicate
the nodes of the beats in commensurability oscillations.
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Figure 3a shows the experimental dependence of

, where SdH and commensurability oscil-
lations, as well as a nonoscillating component, are

clearly manifested. The dependence of 
(Fig. 3b), obtained by subtracting commensurability
oscillations and the nonoscillating component from
the experimental curve, shows that no modulation of
SdH oscillations takes place in our lattices. The behav-
ior of the amplitude of SdH oscillations is well

described by Eq. (5) with , , and

 ps. This means that SdH oscillations in the
lattices under study behave as in a 2D system without
potential modulation. The comparison of the depen-
dences shown in Figs. 3b and 4a suggests that the
amplitude of one-dimensional modulation of the

potential in these lattices is  meV.

The insignificant modulation of the amplitude of
SdH oscillations in the studied lattices (thick line in
Fig. 4a) means that the role of Landau bands in the
modification of the electron spectrum can be taken
into account by introducing additional Landau level
broadening depending on 1/B. In fields B where

 (  T for  meV), this
additional broadening can be taken into account by

0(1/ )/xxR B R

Δ SdH 0(1/ )/R B R

= .SdH 0 85A =0 0V

τ = .q 2 3

< .0 0 35V
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introducing an effective quantum lifetime 

. The dependence of  on 1/B

calculated by Eq. (5) with  

 and  ps is shown in Fig. 4b.
This dependence is similar to the dependence calcu-

lated by Eq. (5) with  = –2J0 ×

 (Fig. 4a),

which justifies the introduction of 

 to take into account the additional broad-
ening of Landau levels in a weak one-dimensional
periodic potential.

The behavior of Zener oscillations of the differen-
tial resistance in an unmodulated 2D electron system

under the condition  is determined
by the expression [14]

(6)
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Fig. 3. (Color online) (a) (Thin line) Measured ratio

 versus 1/B and (thick line) the smoothed depen-
dence. The arrows indicate the minima of commensurabil-
ity oscillations for , 5, 6, and 7. (b) (Thin line) Ratio

 versus 1/B and (thick line) the ratio calculated

by Eq. (5) with the parameters , ,

 ps, and .
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culated by Eq. (5) with the parameters ,

 meV, and  ps (thin line) without and

(thick line) with the condition . The
arrows indicate the minima of commensurability oscilla-

tions for , 5, 6, and 7. (b) Ratio  versus 1/B
calculated by Eq. (5) with the parameter ΔD/D0 =
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,  meV, and  ps.
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where  is a dimensionless parameter of the order
of unity. To take into account the effect of additional
broadening of the Landau levels in a weak one-dimen-

sional periodic potential, we replace  in Eq. (6) by

the effective quantum lifetime :

(7)

Like Eq. (5), this formula is valid only in the case of

.

Figure 5a shows the calculated dependences of

 (thin line) and  (thick line) on
 calculated by Eqs. (6) and (7) for unmodulated

and modulated 2D electron gases, respectively. The
thick and thin lines in Fig. 5b show the difference

between the calculated  dependences of 

and  and the experimental dependence,
respectively. There is good agreement between the

theoretical and experimental curves. The times  and

 were used as the fitting parameters. The depen-

dence of  on  is described with  ps.
In fact, this is the averaged value for the dependence of

 on , whose behavior is specified by

 ps. This means that the latter value deter-
mines the behavior of Zener oscillations in a modu-
lated 2D electron gas.

The quantum times  ps and  ps
determined from the comparison of experimental and
theoretical dependences of the amplitudes of SdH and
Zener oscillations on the inverse magnetic field are
different because Eq. (6) is valid only under the condi-

tion . In our case, this condition is
not satisfied. However, good agreement between the
experimental and calculated dependences presented in
Fig. 5b indicates that the observed interference
between the resistance oscillations induced by a con-
stant Hall electric field and the commensurability
oscillations is caused by the additional broadening of
Landau levels in a 2D electron gas with one-dimen-
sional periodic modulation.

In summary, we have studied nonlinear magne-
totransport in a high-mobility 2D electron gas with
one-dimensional periodic modulation. The modula-
tion potential was imposed by a set of metal strips
formed on a planar surface of a selectively doped
GaAs/AlAs heterostructure. The magnetic-field
dependences of the differential resistance at a tem-
perature of 1.6 K in lattices with a period of 
200 nm were investigated. It was found that oscilla-
tions in the differential resistance induced by a con-
stant Hall electric field in a 2D system with one-
dimensional periodic potential modulation interfere

HIROA
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with commensurability oscillations. The experimental
data obtained can be qualitatively explained by the
modification of the energy spectrum of electron states
in a one-dimensional periodic potential. It was shown
that the modification of the spectrum can be taken
into account by introducing an effective quantum life-
time depending on the inverse magnetic field.
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Fig. 5. (Color online) (a) (Thin line) Ratio  ver-
sus 1/B calculated by Eq. (6) with the parameters

,  µA, and  ps and (thick line)

 calculated by Eq. (7) with the parameters

,  µA,  meV, and  ps.

The arrows indicate the nodes of the beats in commensu-
rability oscillations. (b) (Thin line) Experimental ratio

 versus 1/B for  K and  µA; the
curve is shifted upwards by 0.05. (Thick line) ΔrCO/R0 =

 versus 1/B calculated by Eqs. (6)

and (7) with the parameters ,  µA,

 meV,  ps, and  ps.
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