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Abstract 22 

An inherent issue of high-throughput rRNA gene tag sequencing microbiome surveys is that they 23 

provide compositional data in relative abundances. This often leads to spurious correlations 24 

making the interpretation of relationships to biogeochemical rates challenging. To overcome this 25 

issue, we quantitatively estimated the abundance of microorganisms by spiking in known 26 

amounts of internal DNA standards. Using a 3-year sample set of diverse microbial communities 27 

from the Western Antarctica Peninsula, we demonstrated that the internal standard method 28 

yielded community profiles and taxa co-occurrence patterns substantially different from those 29 

derived using relative abundances. We found that the method provided results consistent with the 30 

traditional CHEMTAX analysis of pigments and total bacterial counts by flow cytometry. Using 31 

the internal standard method, we also showed that chloroplast 16S rRNA gene data in microbial 32 

surveys can be used to estimate abundances of certain eukaryotic phototrophs such as 33 

cryptophytes and diatoms. In Phaeocystis, scatter in the 16S/18S rRNA gene ratio may be 34 

explained by physiological adaptation to environmental conditions. We conclude that the internal 35 

standard method, when applied to rRNA gene microbial community profiling, is quantitative and 36 

that its application will substantially improve our understanding of microbial ecosystems.  37 

 38 

Importance High-throughput sequencing based marine microbiome profiling is rapidly 39 

expanding and changing how we study the oceans. Although powerful, the technique is not fully 40 

quantitative - it only provides taxon counts in relative abundances. In order to address this issue, 41 

we presented a method to quantitatively estimate microbial abundances per unit volume of 42 

seawater filtered by spiking in known amounts of internal DNA standards to each sample. We 43 

validated this method by comparing the calculated abundances to other independent estimates 44 
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including chemical markers (pigments) and total bacterial cell counts by flow cytometry. The 45 

internal standard approach allows us to quantitatively estimate and compare marine microbial 46 

community profiles, with important implications for linking environmental microbiomes to 47 

quantitative processes such as metabolic and biogeochemical rates.  48 

  49 
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Introduction 50 

Since the first application of Roche 454 pyrosequencing to marine 16S rRNA gene 51 

amplicon samples (1), high-throughput sequencing of environmental PCR-amplified marker 52 

genes has transformed the study of marine microbiomes. It has been at the core of multiple 53 

recent programs varying in scale and breadth, including the International Census of Marine 54 

Microbes (2), TARA expeditions (3, 4), Malaspina 2010 Expedition (5), Ocean Sampling Day (6) 55 

and the Long Term Ecological Research sites (Palmer, HOT, Tahiti and other sites). These studies 56 

and other programs have revealed unprecedented microbial diversity and biogeographic patterns 57 

and advanced our understanding of marine microbial ecology (7) and biogeochemistry (4, 8).   58 

An important limitation of the rRNA gene tag based DNA sequencing approach is that it 59 

only provides compositional data, i.e., taxonomical profiles in relative proportions. While useful, 60 

compositional data is incomplete. As an example, should species A be equally abundant in two 61 

samples, its relative abundance in the first sample will be double that in the second sample if the 62 

total cell concentration is twice as high in the second sample. More broadly, compositional data 63 

can lead to various statistical issues mainly due to two geometric features (9). First, the distance 64 

between two points has no absolute scale, e.g., counts of 1 and 2 have the same information as 65 

100 and 200 (10), and thus the counts from different samples could have different uncertainties, 66 

making it difficult to identify statistically significant differences by standard tests (11). Second, 67 

compositional data is constrained by the ‘sum of 1’ and its projection in space is restricted to a 68 

simplex for which common statistical analyses based on Euclidean space may not be applicable 69 

(12–15). For example, it has long been realized that correlation analyses on compositional data 70 

can yield spurious correlations (16). This problem is particularly severe when communities have 71 

dominant taxa (14), as commonly observed in some environmental samples (1, 17). These issues 72 
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hinder cross-study comparisons of the rapidly expanding communal rRNA gene data sets. 73 

Various transformation (e.g., centered log-ratio transformation) and specialized data analysis 74 

routines have been developed to overcome these issues [e.g., programs such as DESeq2 consider 75 

the weighting of each taxon (18, 19)]. However, such routines make it difficult to interpret the 76 

underlying biological and ecological mechanisms and absolute quantification provides a very 77 

valuable piece of information.  78 

To palliate the artifacts associated with compositional data or relative microbiome 79 

profiling (RMP), two approaches have recently been developed for quantitative microbiome 80 

profiling (QMP). The first approach is to normalize the 16S rRNA gene OTU counts to total 81 

bacterial counts estimated by flow cytometry (FCM) (20) (21). The second approach, internal 82 

standard normalization (ISN), consists of spiking-in known concentrations of internal standards 83 

(DNA or cells) into samples before DNA extraction (22). This approach was adapted from 84 

internal RNA standards in metatranscriptomics (23). ISN has recently been applied to study 85 

prokaryotic community composition in soils (24) and in the human gastrointestinal tract (25). In 86 

this study, as a proof of concept, we estimated the QMP of oceanic prokaryotes and eukaryotic 87 

plankton sampled from the Western Antarctica Peninsula (WAP) (Figure 1A) using 16S and 18S 88 

rRNA gene amplicon sequencing combined with internal DNA standards. The large 89 

environmental gradients (e.g., coast vs. open ocean and open water ice covered regions) at the 90 

WAP lead to diverse and highly variable microbial communities (8, 26), thereby providing an 91 

ideal stage to test the ISN. Below, we present the internal standard normalization method (ISN) 92 

as applied to marine samples. In order to validate the method, we 1) assessed the precision of 93 

ISN by spiking in varying amounts of standards; 2) compared phytoplankton abundances based 94 

on ISN to those based on CHEMTAX estimates, a program to calculate phytoplankton 95 
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abundances based on pigment analyses (27); and 3) compared total bacterial counts estimated by 96 

the 16S rRNA gene ISN to direct measurements by cell counting flow cytometry. As an example 97 

of the numerous applications of this new approach, we demonstrated how the QMP and the 98 

relation of phytoplankton chloroplast 16S to genomic 18S rRNA genes abundances may provide 99 

insight into plankton ecology and photophysiology.  100 

Results and discussion 101 

Brief description of the method 102 

A thorough description of the method is presented in the material and methods section. 103 

Briefly, known amounts of genomic DNA from organisms not expected in the natural seawater 104 

samples, i.e., Schizosaccharomyces pombe for 18S rRNA genes and Thermus thermophiles for 105 

16S rRNA genes, were added to each sample before DNA extraction. The abundance of OTUi (in 106 

16S or 18S rRNA gene copies per ml seawater) in sample j was calculated as: 107 

𝐴 𝑖, 𝑗 =
𝑅 𝑖, 𝑗 ×  𝐶 𝑠

𝑅 𝑠, 𝑗 ×  𝑉𝑗 
 108 

where Ri, j is the number of reads of OTUi in sample j, Rs, j is the number of 16S or 18S rRNA 109 

gene standard reads sequenced in sample j, Cs is the total number of 16S or 18S rRNA gene 110 

copies spiked into each sample, and Vj is the filtered sea water volume in ml. For double-111 

stranded DNA, assuming the average weight of a base pair is 650 Daltons (650 g per mole), Cs 112 

can be calculated as:  113 

𝐶𝑠 =
𝑔𝐷𝑁𝐴 𝑎𝑚𝑜𝑢𝑛𝑡 (𝑛𝑔)  ×  6.022 ×  1023 (𝑐𝑜𝑝𝑖𝑒𝑠 𝑚𝑜𝑙−1)  ×  𝑟𝑟𝑛 𝑠

𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑔𝐷𝑁𝐴 (𝑏𝑝)  ×  1 ×  109 (𝑛𝑔 𝑔−1)  ×  650 (𝑔 𝑚𝑜𝑙−1𝑏𝑝−1)
 114 

where rrns is the 16S or 18S rRNA gene copy number per cell. In our study, the spiked 16S rRNA 115 

gene standard was 14.85 ng of  T. thermophilus gDNA, with rrn  = 2 and genome size = 2.13 Mb 116 
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(28), thus Cs = 1.29 × 107 rRNA gene copies per sample. For the 18S rRNA gene standard S. 117 

pombe, the rrn could vary from 100 – 120 copies per cell (29). For our 18S rRNA gene 118 

calculation we used a median number rrn = 110, which may introduce up to a 10% bias. 119 

However, this bias should be the same across all the samples and thus should not influence the 120 

comparison between samples. With 16.1 ng of spiked 18S standard per sample and the genome 121 

size of 13.8 Mb (29), Cs = 1.19 × 108 copies per sample. With a known number of rRNA gene 122 

copy number per cell rrni for OTUi (e.g., 1 copy per cell for SAR11), cell abundance in sample j 123 

(in cells ml-1) can be calculated as Ai,j / rrni. We note that this is only possible when the rrni is 124 

known and assuming single genome per cell. 125 

Validation of the method  126 

To validate the method, 56 samples were collected at the WAP on three Palmer LTER 127 

annual cruises (years 2012, 2013 and 2015) (Figure 1A). Internal standard recoveries averaged 128 

0.8% (0.2% - 2.9%) of total prokaryotic 16S rRNA gene reads, and 2.4% (0.7% - 5.7%) of total 129 

eukaryotic 18S rRNA gene reads, well within the range appropriate for detection (i.e., ≥ 0.1%) 130 

without overwhelming the environmental reads. Based on ISN, the abundance of rRNA genes 131 

between stations varied by 16- and 27-fold for eukaryotes and prokaryotes, respectively (Figure 132 

2).  Using rrn from the rrnDB database (30), we converted OTU2 (SAR11) and OTU5 133 

(Polaribacter) rRNA gene counts to cell abundances (Supplementary Figure S1). The average 134 

cell abundance of the SAR11 OTU in our samples was 2.0 × 105 cells ml-1, in line with SAR11 135 

estimates reported by other studies in the Southern Ocean (31)(32)(33). Below, we assessed the 136 

precision of the ISN by spiking in two different amounts of internal standards. We also 137 

corroborated our results with abundance estimates using two independent methods, CHEMTAX 138 

pigment analyses for the 18S rRNA gene and FCM for the 16S rRNA gene abundances. 139 
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Precision of ISN  140 

In a test-sequencing run to optimize the standard amount, we added the eukaryotic 141 

internal standards at two different concentrations (1:5) into representative samples (see details in 142 

Material and methods). The response was proportional to the spiked-in level (Figure 1B) with a 143 

maximum deviation estimated at 25% (averaged 18%) across the varying communities sampled 144 

at the coastal and open ocean sites. For comparison, the traditional qPCR methods can yield 145 

errors as large as the signal (34) with typical coefficient of variation (CV) values ranging from 146 

15% to 50% (35)(36). This comparison should be interpreted with caution because the precision 147 

of qPCR has been verified over a wider range of concentrations (i.e., 7-9 orders of magnitude) 148 

(37, 38) than most internal standard studies (39). To test the reproducibility of the sequencing 149 

technique, we also barcoded and sequenced a coastal sample in duplicates (Coastal_2A and 2B), 150 

and the resulting community profiles are highly similar (Figure 1B). The CV for estimated taxa 151 

abundance was 2.8% on average and 12.3% at maximum (supplementary Table S1) with higher 152 

uncertainties for rarer taxa.  153 

Method comparison:  154 

a. Phytoplankton 18S rRNA gene ISN vs. CHEMTAX abundance 155 

We compared phytoplankton QMP estimated by ISN with the traditional CHEMTAX 156 

analysis of High Performance Liquid Chromatography (HPLC) pigment profiles (26, 40) for 157 

three phytoplankton groups commonly observed at the WAP, i.e., cryptophytes, diatoms, and 158 

Phaeocystis. The cryptophyte abundances calculated by 18S rRNA gene and CHEMTAX were 159 

highly correlated (Pearson’s R2 = 0.98, P < 0.0001) (Figure 3A). Significant correlations were 160 

also observed for diatoms (R2 = 0.42, P < 0.0001) (Figure 3C) and Phaeocystis (R2 = 0.57, P < 161 

0.0001) (Figure 3E), although the relationships were weaker. Because alloxanthin is only present 162 
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in cryptophytes, their CHEMTAX estimates are likely more robust than the ones for diatoms and 163 

Phaeocystis. In addition, alloxanthin was the most abundant pigment in our sample set, with an 164 

average concentration of 0.61 μg/L.  In comparison, the other accessory pigments were 165 

substantially less abundant (19’ butanoyloxyfucoxanthin (0.01 μg/L), chlorophyll c2 (0.18 μg/L), 166 

chlorophyll c3 (0.02 μg/L), chlorophyll b (0.01 μg/L), fucoxanthin (0.13 μg/L), 167 

hexanoyloxyfucoxanthin (0.13 μg/L)). Low concentrations of accessory pigments could 168 

introduce errors in CHEMTAX estimates of diatoms and Phaeocystis. Using RMP, a significant 169 

but weaker correlation was observed for cryptophytes (R2 = 0.51, P < 0.001) (Figure 3B). No 170 

significant correlation between RMP and CHEMTAX estimates was observed for diatoms 171 

(Figure 3D) and Phaeocystis (Figure 3F). 172 

b. Bacterial 16S rRNA gene ISN vs. FCM bacterial abundance  173 

The total prokaryotic 16S rRNA gene abundances were significantly correlated with the 174 

bacterial FCM counts albeit with a small correlation coefficient (Pearson’s R2 = 0.19, P <0.001; 175 

or R2 = 0.20, P <0.001 after log-transformation) (Figure 4A). In general, rRNA gene copy 176 

numbers were much higher than the FCM cell counts. A variety of factors may explain this. First, 177 

for the four points circled in grey in Figure 4B), the FCM estimates of ≥ 2.0 × 106 cells ml-1 were 178 

anomalously high compared to the corresponding leucine incorporation rates or Chl a 179 

concentrations. Second, while bacteria associated with particles were efficiently captured by 180 

DNA sequencing, they may have been missed by FCM counts if the vortex step did not break 181 

down the particle-bacteria-associations. In polar and coastal regions, a significant proportion of 182 

bacteria could be attached to particles (41). Corroborating this hypothesis, we found that samples 183 

where ISN predicted a higher abundance of bacteria than FCM tended to have a higher 184 

percentage of particle-associated OTUs (Figure 4A). Finally, the difference in rrn for different 185 
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OTUs could also explain the discrepancy between the ISN and FCM bacterial abundance. For 186 

example, the rrns in SAR11 and Marinomonas sp. MWYL1 are 1 and 8, respectively (30). 187 

Populations with larger rrn should have higher 16S rRNA gene to FCM counts ratios. In 188 

addition, the fact that multiple genomes may exist within a single cell (42) could also contribute 189 

to the discrepancy. To estimate cell abundances, top 20 classified OTU QMP in 16S rRNA gene 190 

copies per ml were divided by their rrn estimated by rrnDB (30) and the resulting OTU cell 191 

abundances were summed up for each sample. Taxa identified as particle-associated bacteria 192 

through size-fractionated filtration in (41) were then excluded. After discarding the four potential 193 

outliers and correcting for rrn and particle – association effects, cell abundances estimated by 194 

rRNA gene and FCM counts displayed a substantially higher correlation coefficient (R2 = 0.61, P 195 

<0.001; or R2 = 0.44, P <0.001 after log-transformation) and were close to the 1:1 line (Figure 196 

4B). 197 

We note that the rrn correction is not only important for ISN but also for the 198 

normalization of FCM (e.g. (20)). The absolute cell abundance of OTU x in a particular sample 199 

should be calculated as  
𝐶𝑥/𝑟𝑟𝑛𝑥

∑ 𝐶𝑖
𝑛
𝑖 /𝑟𝑟𝑛𝑖

×  𝐹𝐶𝑀, where Cx is the rRNA gene counts for OTU x . Should 200 

𝑟𝑟𝑛𝑥 be constant for a particular taxa, changes in the numerator introduces a systematic bias 201 

when comparing relative changes in absolute abundances between samples. However, because 202 

∑ 𝐶𝑥 𝑟𝑟𝑛𝑥⁄𝑛
𝑖 ≠ ∑ 𝐶𝑥

𝑛
𝑖 , the denominator may lead to uneven biases across samples. A simple 203 

example using two OTUs commonly found in the WAP is presented in supplementary Table S2. 204 

Without taking into account the rrn, the estimates of absolute OTU abundances based on FCM 205 

normalization could be off by 5 fold, and the estimated abundance variation between two 206 

samples could be off by 3.6 fold in this particular example. Caution should therefore be taken in 207 

applying the FCM normalization method without resolving the community rrn profile.  208 
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One approach to estimating the rrn profile is to use the phylogenetic information to 209 

predict the rrn of OTUs based on existing rrn databases such as rrnDB (30)(43). A recent human 210 

microbiome study corrected the 16S rRNA gene matrix using rrnDB (21). However, substantial 211 

uncertainties associated with the rrn correction remain as 1) a significant portion of the OTUs are 212 

unclassified and 2) the limited number of known rrn from sequenced genomes likely does not 213 

reflect the natural variability in rrn.  214 

When applying the FCM normalization method to marine samples, the difference in 215 

sampling volume for DNA and FCM should be considered. Cells for DNA analyses are generally 216 

filtered from liters of seawater, while FCM samples are generally estimated from less than 1 ml 217 

of seawater. In patchy environments, these two volumes may reflect different communities.  218 

Application: Case study at the WAP 219 

In our WAP case study, the estimated total eukaryotic rRNA gene abundance was 220 

significantly correlated with environmental variables including the distance to shore (Pearson’s 221 

R = -0.6, P < 0.001; Spearman’s ρ = -0.6, P < 0.001), Chl a concentration (R = 0.8, P < 0.001; ρ 222 

= 0.7, P < 0.001), and primary production rate (R = 0.7, P < 0.001; ρ = 0.5, P < 0.001). 223 

Conversely, the estimated total prokaryotic rRNA gene abundance was not significantly 224 

correlated with distance to shore (R = -0.3, P > 0.05; ρ = -0.2, P > 0.1), but was significantly 225 

correlated with Chl a (R = 0.6, P < 0.001; not significant by Spearman, ρ = 0.3, P > 0.05) and 226 

significantly correlated with bacterial production measured by 3H-Leucine incorporation (R = 227 

0.7, P < 0.001; ρ = 0.6, P < 0.001). Looking at specific taxa, the abundance of Polaribacter 228 

OTU5 increased significantly with increasing Chl a (R = 0.8, P < 0.001; ρ = 0.5, P < 0.001) 229 

(Supplementary Figure S1), which is consistent with the observations that Polaribacter thrives 230 

during phytoplankton blooms (44, 45). The SAR11 OTU2 cell abundances did not show a clear 231 



 12 

trend across Chl a gradients (R = -0.02, P = 0.9; ρ = -0.01, P = 0.9). This could be a result of 232 

patterns at finer taxonomic scales, e.g., amplicon sequence variants resolved down to the single-233 

nucleotide level (46). The relative abundance of SAR11 OTU decreased with increasing Chl a (R 234 

= -0.5, P < 0.001; ρ = -0.5, P < 0.001), but this could be a spurious correlation stemming from an 235 

increase in the total bacterial abundance.   236 

 Community co-occurrence matrices based on Spearman’s correlation coefficients (Figure 237 

5) showed that QMP and RMP matrices were significantly different (P < 0.001) by Jennrich test 238 

(47) and Steiger test (48). QMP resulted in more positive correlations (270 vs. 218 for RMP) 239 

mostly appearing within the prokaryotic communities, and fewer negative correlations overall 240 

(124 vs. 172 for RMP). Interestingly, similar differences in co-occurrence patterns based on RMP 241 

and QMP have also been observed in human gut microbiome studies using the FCM 242 

normalization method (21).  243 

Quantitatively estimating eukaryotic phytoplankton abundances using chloroplast 16S 244 

rRNA gene abundances 245 

The QMP of five eukaryotic phytoplankton groups calculated from internal standard 246 

normalized 18S rRNA gene abundances and the corresponding chloroplast 16S rRNA gene 247 

counts were compared (Figure 6). Strong linear correlations using the type-II least-square fit 248 

were observed between the chloroplast 16S rRNA gene counts and genomic 18S rRNA gene 249 

counts for Cryptophytes (R2 = 0.87, P < 0.0001), and diatoms, including Fragilariopsis (R2 = 250 

0.55, P < 0.0001), Corethron (R2 = 0.72, P < 0.0001) and Proboscia (R2 = 0.40, P < 0.0001).  A 251 

weak correlation was observed for Phaeocystis using the type-II least-square fit (R2 = 0.06, P < 252 

0.0001) but not with a Pearson coefficient (R2 = 0.06, P = 0.09). These results show that 253 

eukaryotic autotroph abundances can be reliably estimated from their corresponding chloroplast 254 
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16S rRNA gene abundances for the three phytoplankton groups examined, i.e., Cryptophytes, 255 

Diatoms and Phaeocystis.  256 

Chloroplast-16S rRNA genes can represent a large fraction of total community 16S rRNA 257 

gene library reads, especially in productive oceanic regions where phototrophic eukaryotes tend 258 

to dominate. For example, 52% of the total 16S rRNA gene reads were annotated as chloroplasts 259 

at our study site (averaged over all sampled stations). While these chloroplast reads are generally 260 

discarded, they may provide valuable information about the phototrophic eukaryote abundance 261 

without incurring the additional cost of 18S rRNA gene amplicon sequencing. Several recent 262 

studies inferred eukaryotic phytoplankton relative abundances from the chloroplast 16S rRNA 263 

gene reads (41, 49). The method described herein may allow us to estimate the host 264 

phytoplankton abundances from the ISN chloroplast sequences (Figure 6).  265 

18S to 16S rRNA gene ratios as measure of phytoplankton ecophysiology 266 

ISN can also be used to quantify variability in the ratio of chloroplast 16S rRNA gene / 267 

genomic 18S rRNA gene, and thus gain insight into phytoplankton ecophysiology. Compared to 268 

diatoms and cryptophytes, laboratory data suggest that Phaeocystis is well adapted to variability 269 

in light availability (50). This photoacclimation capacity could result from a greater plasticity in 270 

pigments per chloroplast (51), or chloroplasts per cell under different light regimes. The latter 271 

strategy could explain the variability in chloroplast 16S vs. genomic 18S rRNA gene reads in 272 

Phaeocystis observed in our study. As shown in Figure 6E, the ratios of Phaeocystis chloroplast 273 

16S/ genomic 18S rRNA gene generally decreased from north to south. Phytoplankton 274 

physiology is influenced by sea ice dynamics at the WAP (52)(53). Considering that the ice 275 

generally retreated from north to south, the southern communities closer to the ice edge might 276 

have been more recently exposed to higher light levels. The northern communities on the other 277 
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hand had been in open water for a longer period of time, being exposed to stronger wind-induced 278 

vertical mixing, and were therefore more likely to be light-limited. This may explain the higher 279 

chloroplast 16S/ genomic18S rRNA gene ratios in the south. These geographic variations were 280 

consistent with changes in the relative abundances of two Phaeocystis subclades (Figure 6F) 281 

which may be adapted to different light conditions. The correlation to mixed-layer depth was not 282 

as strong as  to the geographic gradients (Figure S2). Overall, the chloroplast 16S/ genomic 18S 283 

rRNA gene ratio could prove to be a valuable indicator of in situ algal photophysiology 284 

adaptations when combined with laboratory experiments for further validation. 285 

Limitations of ISN  286 

There are several limitations to ISN. The first issue is associated with the extraction 287 

efficiency. Since the extraction efficiency is never 100%, the calculated rRNA gene abundance 288 

represents a lower bound on the true abundance. This could partially be addressed by spiking in 289 

cells instead of genomic DNA, although cell standards could also introduce biases due to 1) 290 

differences in extraction efficiency between the standard cells and the natural cells, and 2) 291 

variability in number of genomes per cell (42). A second issue is the high uncertainty in rrn 292 

correction (54), which is only relevant when converting rRNA gene copy numbers to cell 293 

numbers or when combining groups with mixed rrn. For example, large eukaryotes such as some 294 

dinoflagellates could have high rrn (> 1000 copies per cell) (55) and thus their 18S rRNA gene 295 

abundances could be orders of magnitude higher than their cell numbers. However, should a 296 

specific OTU have a constant rrn, the relative changes in absolute abundances across samples 297 

will still be captured because the copy numbers are proportional to the cell density. As the rrn is 298 

more comparable at finer taxonomic levels (56), it is best to apply the rrn normalization down to 299 

single genotypes. Defining OTUs at coarse taxonomic levels may combine groups with differing 300 
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rrns. In this case, the rRNA gene copy numbers are no longer proportional to the true cell 301 

numbers thus complicating the interpretation of the rRNA gene counts. Finally, a third issue is 302 

that some eukaryotic species have high plasticity in rrn (57). Variability in their 18S rRNA gene 303 

counts may not reflect variability in their cell numbers. On the other hand, positive correlation of 304 

rrn versus cell biovolume have been reported across different eukaryotic plankton taxon 305 

including diatoms and dinoflagellates (54,52). If this relation is valid, groups with different rrn 306 

could be combined, and the rRNA gene copy numbers could be used as an index for group 307 

specific biomass. This is important because biomass is often of more relevance to 308 

biogeochemical budgets (e.g. carbon, nitrogen) than cell numbers.  309 

PCR bias could skew the relative abundances of mixed community members estimated 310 

from the PCR products (58, 59). One main concern specific to our approach is the biased PCR 311 

amplification caused by the varying template GC contents. Due to the triple hydrogen bonds 312 

between G and G, templates with higher GC contents have higher melting temperatures and are 313 

less efficiently amplified (59, 60). T. thermophilus, the 16S rRNA internal standard used in our 314 

study, has a high GC content (69% for whole genome (61) and 65% for the amplified V4 region). 315 

High GC content can cause underestimation of the internal standard abundance and 316 

overestimation of the natural community member abundance. A second concern is the 317 

amplification bias introduced by the degenerate primers. DNA sequences with G/C at the 318 

degenerate position can be over-amplified compared to sequences with A/T. The deviation in 319 

PCR product due to a single base difference at the priming site could be over 100% after 35 PCR 320 

cycles (58). Various methods have been developed to reduce PCR biases: combining PCR 321 

replicates (combined triplicates in this study), minimizing PCR cycle numbers and the 322 

degeneracy of primers, and reconditioning PCR (62). On the other hand, despite the significant 323 
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PCR biases, inter-sample variability could still be precisely captured by the PCR method (58). A 324 

time-series study reported that PCR primer selection affects the estimated population abundances 325 

but not the community dynamic patterns (63). Although the abundance estimates by PCR based 326 

ISN may deviate from the absolute cell numbers due to PCR bias and rrn issues, the estimated 327 

inter-sample variability is less affected. Hence, this may not be as much of an issue for 328 

correlation analyses, e.g., time series community dynamics, community co-occurrence, and 329 

correlations to environmental variables. 330 

 331 

Conclusions 332 

Addition of internal standards to the amplicon rRNA gene sequencing approach allowed 333 

us to quantitatively compare microbial communities across different samples, as well as 334 

phytoplankton chloroplast 16S and genomic 18S rRNA gene abundances. Conceptually, the ISN 335 

could provide information equivalent to qPCR measurements targeting rRNA genes but with the 336 

advantage of examining a diverse community in a single assay.  In our case study at the WAP, 337 

significant correlations observed in phytoplankton abundances based on 18S rRNA gene vs. 338 

CHEMTAX abundances and in total bacteria abundances based on 16S rRNA gene vs. FCM 339 

counts confirm that the ISN is quantitative. Our study also shows that chloroplast 16S rRNA 340 

gene sequences could be used to estimate phytoplankton abundances, and that the chloroplast 341 

16S to genomic 18S rRNA gene ratio may be an insightful indicator of phytoplankton in situ 342 

photophysiology. The ISN comes at a minimal cost of implementation, and could be applied in 343 

conjunction with metagenomics (64). Overall, the ISN allows for an improved statistical, and 344 

ultimately ecological, interpretation of the rich and rapidly expanding marine microbiome 345 

datasets. More broadly, this approach could be valuable to researchers interested in relating 346 
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microbial ecology to quantitative processes such as microbial interactions, metabolic rates, 347 

energy and material fluxes, and eventually quantitative ecosystem modeling. 348 

 349 

Materials and methods 350 

DNA extraction with internal standard DNA addition 351 

Samples for DNA extraction were collected by seawater filtration (details see 352 

Supplementary Information). Each filter with recorded filtration volume (4 L for most samples) 353 

was split into two with one half for DNA extraction and the other half stored for later RNA work. 354 

We note that this step could introduce errors due to uneven cell distribution on filter. Just prior to 355 

DNA extraction, gDNA from two organisms representing eukaryotic and prokaryotic taxa not 356 

expected to be present in marine surface water samples were added to the tube containing the 357 

sample filter and lysis buffer (see below for optimization of internal standard addition). For the 358 

18S rRNA gene internal standard, 50 μl of Schizosaccharomyces pombe gDNA (ATCC 359 

#24843D-5, Manassas, VA, USA) at 0.322 ng/μl was spiked into each sample. For the 16S rRNA 360 

gene internal standard, 50 μl of Thermus thermophiles gDNA (ATCC 27634D-5) at 0.297 ng/μl 361 

was added to each sample. The internal standard working solutions were made in single use 362 

aliquots to avoid DNA being lost during freeze-thaw cycles. gDNA standard stock solutions and 363 

dilution concentrations were measured using a Qubit 3.0 fluorometer (Thermo Fisher Scientific, 364 

Waltham, MA, USA). After spiking in internal standards, DNA extraction was performed as 365 

described in (8).  366 

Optimizing the amount of internal standard added to a sample 367 
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In order to get enough standard signal without overwhelming the environmental signal, 368 

we added the internal genomic DNA (gDNA) standards targeting a final concentration of around 369 

1% of the total 16S and 18S rRNA gene reads. The amount of the prokaryotic genomic internal 370 

standard to spike in was based on the anticipated total extracted DNA mass as estimated with 371 

trial samples (22). For example, if we expected 10 µg of total genomic DNA in the sample, we 372 

added 100 ng of prokaryotic gDNA internal standard. Because the fraction of eukaryotic gDNA 373 

in total community DNA and the eukaryotic rRNA gene copy numbers per unit weight of gDNA 374 

are highly variable in different marine environments, a test sequencing run was conducted to 375 

optimize the internal standard amount to be spiked in. Test libraries were constructed with 376 

representative samples spiked with different amounts of internal eukaryotic genomic standard 377 

(16.1 ng or 3.22 ng) Schizosaccharomyces pombe gDNA (Figure 1B). The test amplicon libraries 378 

were subsequently sequenced using Illumina MiSeq platform (nano format) as a customized run 379 

at Duke Institute for Genomic Sciences and Policy (IGSP) with 300 bp single coverage forward 380 

reads and 10bp reverse reads to read the reverse barcodes. The averaged read count per sample 381 

was 50,661 after demultiplexing (see supplementary Table S4). 382 

Amplicon library construction 383 

16S rRNA genes were amplified by PCR using V4 primer set 515F (5’ – 384 

GTGYCAGCMGCCGCGGTAA – 3’) (65) and 805R (5’ – GACTACNVGGGTATCTAAT – 3’) 385 

modified from (66) and (67). 18S rRNA genes were amplified by PCR using V4 primer set EukF 386 

(5’ – CCAGCASCYGCGGTAATTCC – 3’) (70) and EukR (5’ – ACTTTCGTTCTTGAT – 3’) 387 

modified from (70) as described in (8) to increase coverage for Haptophytes.  388 

Dual indexed fusion primers had 6-bp barcodes at each end constructed using error proof 389 

Hamming codes (71). In order to improve the “low sequence diversity” issue of the rRNA 390 
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amplicon library, 0 – 5 bp heterogeneity spacers were added to each primer (72). PCR were 391 

performed in triplicates for each sample. 18S rRNA gene PCR and library pooling were 392 

performed as described in (8). 16S rRNA gene library construction was similar to that of 18S 393 

rRNA gene except that 2U of Platinum Taq DNA Polymerase High Fidelity (Invitrogen) were 394 

added to each reaction, and PCR annealing temperature was 60 °C.  395 

Amplicon libraries were sequenced at Duke IGSP using Illumina MiSeq 250PE platform 396 

for 16S rRNA amplicons and MiSeq 300PE platform for 18S rRNA amplicons. For each library, 397 

reads per sample after multiplexing were reported in Supplementary Table S4. 398 

Bioinformatic analysis 399 

For each library, paired-end reads were assembled using VSEARCH v2.3.4 (73) with 400 

quality score of the merged bases calculated following (74). Assembled reads were further 401 

processed using USEARCH (75) and QIIME (76) following (8).  In brief, 16S or 18S rRNA gene 402 

reads were quality-controlled including quality filtering and chimera checking, and then were 403 

trimmed for barcodes and primer sequences. Singletons were discarded. OTUs (97% similarity) 404 

were then clustered using USEARCH and the representative sequences were assigned taxonomy 405 

based on the SILVA SSU database 128 using QIIME.  406 

For 16S rRNA gene library, sequences identified in SILVA as mitochondria were 407 

removed. Sequences identified as chloroplast were filtered out as a separate data set. In order to 408 

further identify the phytoplankton host taxonomy from the chloroplast sequences, representative 409 

chloroplast sequences were blasted against the NCBI nucleotide collection database using 410 

BLAST+ 2.6.0 (77). The top three hits for each sequence were reported in Table S5. 411 

Accession numbers 412 
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Sequences were deposited in the National Center for Biotechnology Information (NCBI) 413 

Sequence Read Archive under the BioProject accession numbers PRJNA508517 and 414 

PRJNA508514.  415 
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