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Abstract

An inherent issue of high-throughput rRNA gene tag sequencing microbiome surveys is that they
provide compositional data in relative abundances. This often leads to spurious correlations
making the interpretation of relationships to biogeochemical rates challenging. To overcome this
issue, we quantitatively estimated the abundance of microorganisms by spiking in known
amounts of internal DNA standards. Using a 3-year sample set of diverse microbial communities
from the Western Antarctica Peninsula, we demonstrated that the internal standard method
yielded community profiles and taxa co-occurrence patterns substantially different from those
derived using relative abundances. We found that the method provided results consistent with the
traditional CHEMTAX analysis of pigments and total bacterial counts by flow cytometry. Using
the internal standard method, we also showed that chloroplast 16S rRNA gene data in microbial
surveys can be used to estimate abundances of certain eukaryotic phototrophs such as
cryptophytes and diatoms. In Phaeocystis, scatter in the 16S/18S rRNA gene ratio may be
explained by physiological adaptation to environmental conditions. We conclude that the internal
standard method, when applied to rRNA gene microbial community profiling, is quantitative and

that its application will substantially improve our understanding of microbial ecosystems.

Importance High-throughput sequencing based marine microbiome profiling is rapidly
expanding and changing how we study the oceans. Although powerful, the technique is not fully
quantitative - it only provides taxon counts in relative abundances. In order to address this issue,
we presented a method to quantitatively estimate microbial abundances per unit volume of
seawater filtered by spiking in known amounts of internal DNA standards to each sample. We

validated this method by comparing the calculated abundances to other independent estimates
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including chemical markers (pigments) and total bacterial cell counts by flow cytometry. The
internal standard approach allows us to quantitatively estimate and compare marine microbial
community profiles, with important implications for linking environmental microbiomes to

quantitative processes such as metabolic and biogeochemical rates.
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Introduction

Since the first application of Roche 454 pyrosequencing to marine 16S rRNA gene
amplicon samples (1), high-throughput sequencing of environmental PCR-amplified marker
genes has transformed the study of marine microbiomes. It has been at the core of multiple
recent programs varying in scale and breadth, including the International Census of Marine
Microbes (2), TARA expeditions (3, 4), Malaspina 2010 Expedition (5), Ocean Sampling Day (6)
and the Long Term Ecological Research sites (Palmer, HOT, Tahiti and other sites). These studies
and other programs have revealed unprecedented microbial diversity and biogeographic patterns
and advanced our understanding of marine microbial ecology (7) and biogeochemistry (4, 8).

An important limitation of the rRNA gene tag based DNA sequencing approach is that it
only provides compositional data, i.e., taxonomical profiles in relative proportions. While useful,
compositional data is incomplete. As an example, should species A be equally abundant in two
samples, its relative abundance in the first sample will be double that in the second sample if the
total cell concentration is twice as high in the second sample. More broadly, compositional data
can lead to various statistical issues mainly due to two geometric features (9). First, the distance
between two points has no absolute scale, e.g., counts of 1 and 2 have the same information as
100 and 200 (10), and thus the counts from different samples could have different uncertainties,
making it difficult to identify statistically significant differences by standard tests (11). Second,
compositional data is constrained by the ‘sum of 1’ and its projection in space is restricted to a
simplex for which common statistical analyses based on Euclidean space may not be applicable
(12-15). For example, it has long been realized that correlation analyses on compositional data
can yield spurious correlations (16). This problem is particularly severe when communities have

dominant taxa (14), as commonly observed in some environmental samples (1, 17). These issues
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hinder cross-study comparisons of the rapidly expanding communal rRNA gene data sets.
Various transformation (e.g., centered log-ratio transformation) and specialized data analysis
routines have been developed to overcome these issues [e.g., programs such as DESeq?2 consider
the weighting of each taxon (18, 19)]. However, such routines make it difficult to interpret the
underlying biological and ecological mechanisms and absolute quantification provides a very
valuable piece of information.

To palliate the artifacts associated with compositional data or relative microbiome
profiling (RMP), two approaches have recently been developed for quantitative microbiome
profiling (QMP). The first approach is to normalize the 16S rRNA gene OTU counts to total
bacterial counts estimated by flow cytometry (FCM) (20) (21). The second approach, internal
standard normalization (ISN), consists of spiking-in known concentrations of internal standards
(DNA or cells) into samples before DNA extraction (22). This approach was adapted from
internal RNA standards in metatranscriptomics (23). ISN has recently been applied to study
prokaryotic community composition in soils (24) and in the human gastrointestinal tract (25). In
this study, as a proof of concept, we estimated the QMP of oceanic prokaryotes and eukaryotic
plankton sampled from the Western Antarctica Peninsula (WAP) (Figure 1A) using 16S and 18S
rRNA gene amplicon sequencing combined with internal DNA standards. The large
environmental gradients (e.g., coast vs. open ocean and open water ice covered regions) at the
WAP lead to diverse and highly variable microbial communities (8, 26), thereby providing an
ideal stage to test the ISN. Below, we present the internal standard normalization method (ISN)
as applied to marine samples. In order to validate the method, we 1) assessed the precision of
ISN by spiking in varying amounts of standards; 2) compared phytoplankton abundances based

on ISN to those based on CHEMTAX estimates, a program to calculate phytoplankton
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abundances based on pigment analyses (27); and 3) compared total bacterial counts estimated by
the 16S rRNA gene ISN to direct measurements by cell counting flow cytometry. As an example
of the numerous applications of this new approach, we demonstrated how the QMP and the
relation of phytoplankton chloroplast 16S to genomic 18S rRNA genes abundances may provide
insight into plankton ecology and photophysiology.

Results and discussion

Brief description of the method

A thorough description of the method is presented in the material and methods section.
Briefly, known amounts of genomic DNA from organisms not expected in the natural seawater
samples, 1.e., Schizosaccharomyces pombe for 18S rRNA genes and Thermus thermophiles for
16S rRNA genes, were added to each sample before DNA extraction. The abundance of OTUi (in

16S or 18S rRNA gene copies per ml seawater) in sample j was calculated as:

Ri,j X Cs

A.'.:—
b Rs,j X Vj

where R; ; is the number of reads of OTU;j in sample j, R, ; is the number of 16S or 18S rRNA
gene standard reads sequenced in sample j, Cs is the total number of 16S or 18S rRNA gene
copies spiked into each sample, and Vjis the filtered sea water volume in ml. For double-
stranded DNA, assuming the average weight of a base pair is 650 Daltons (650 g per mole), Cs

can be calculated as:

_ gDNA amount (ng) x 6.022 x 10%° (copies mol™") X rrns
S length of gDNA (bp) x 1 x 10°(ng g~1) x 650 (g mol-1hp~1)

where rrns is the 16S or 18S rRNA gene copy number per cell. In our study, the spiked 16S rRNA

gene standard was 14.85 ng of 7. thermophilus gDNA, with rrn = 2 and genome size = 2.13 Mb

6
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(28), thus Cs = 1.29 x 107 rRNA gene copies per sample. For the 18S rRNA gene standard S.
pombe, the rrn could vary from 100 — 120 copies per cell (29). For our 18S rRNA gene
calculation we used a median number rrn = 110, which may introduce up to a 10% bias.
However, this bias should be the same across all the samples and thus should not influence the
comparison between samples. With 16.1 ng of spiked 18S standard per sample and the genome
size of 13.8 Mb (29), Cs = 1.19 x 10® copies per sample. With a known number of rRNA gene
copy number per cell rrni for OTU; (e.g., 1 copy per cell for SAR11), cell abundance in sample j
(in cells mI) can be calculated as Aij/ rrni. We note that this is only possible when the rrn; is

known and assuming single genome per cell.

Validation of the method

To validate the method, 56 samples were collected at the WAP on three Palmer LTER
annual cruises (years 2012, 2013 and 2015) (Figure 1A). Internal standard recoveries averaged
0.8% (0.2% - 2.9%) of total prokaryotic 16S rRNA gene reads, and 2.4% (0.7% - 5.7%) of total
eukaryotic 18S rRNA gene reads, well within the range appropriate for detection (i.e., > 0.1%)
without overwhelming the environmental reads. Based on ISN, the abundance of rRNA genes
between stations varied by 16- and 27-fold for eukaryotes and prokaryotes, respectively (Figure
2). Using rrn from the rrnDB database (30), we converted OTU2 (SAR11) and OTUS
(Polaribacter) rRNA gene counts to cell abundances (Supplementary Figure S1). The average
cell abundance of the SAR11 OTU in our samples was 2.0 x 10° cells ml'!, in line with SAR11
estimates reported by other studies in the Southern Ocean (31)(32)(33). Below, we assessed the
precision of the ISN by spiking in two different amounts of internal standards. We also
corroborated our results with abundance estimates using two independent methods, CHEMTAX

pigment analyses for the 18S rRNA gene and FCM for the 16S rRNA gene abundances.
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Precision of ISN

In a test-sequencing run to optimize the standard amount, we added the eukaryotic
internal standards at two different concentrations (1:5) into representative samples (see details in
Material and methods). The response was proportional to the spiked-in level (Figure 1B) with a
maximum deviation estimated at 25% (averaged 18%) across the varying communities sampled
at the coastal and open ocean sites. For comparison, the traditional gPCR methods can yield
errors as large as the signal (34) with typical coefficient of variation (CV) values ranging from
15% to 50% (35)(36). This comparison should be interpreted with caution because the precision
of JPCR has been verified over a wider range of concentrations (i.e., 7-9 orders of magnitude)
(37, 38) than most internal standard studies (39). To test the reproducibility of the sequencing
technique, we also barcoded and sequenced a coastal sample in duplicates (Coastal 2A and 2B),
and the resulting community profiles are highly similar (Figure 1B). The CV for estimated taxa
abundance was 2.8% on average and 12.3% at maximum (supplementary Table S1) with higher

uncertainties for rarer taxa.

Method comparison:

a. Phytoplankton 18S rRNA gene ISN vs. CHEMTAX abundance

We compared phytoplankton QMP estimated by ISN with the traditional CHEMTAX
analysis of High Performance Liquid Chromatography (HPLC) pigment profiles (26, 40) for
three phytoplankton groups commonly observed at the WAP, i.e., cryptophytes, diatoms, and
Phaeocystis. The cryptophyte abundances calculated by 18S rRNA gene and CHEMTAX were
highly correlated (Pearson’s R* = 0.98, P < 0.0001) (Figure 3A). Significant correlations were
also observed for diatoms (R? = 0.42, P < 0.0001) (Figure 3C) and Phaeocystis (R*> =0.57, P <

0.0001) (Figure 3E), although the relationships were weaker. Because alloxanthin is only present
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in cryptophytes, their CHEMTAX estimates are likely more robust than the ones for diatoms and
Phaeocystis. In addition, alloxanthin was the most abundant pigment in our sample set, with an
average concentration of 0.61 pg/L. In comparison, the other accessory pigments were
substantially less abundant (19’ butanoyloxyfucoxanthin (0.01 pg/L), chlorophyll ¢2 (0.18 pg/L),
chlorophyll c3 (0.02 pg/L), chlorophyll b (0.01 pg/L), fucoxanthin (0.13 pg/L),
hexanoyloxyfucoxanthin (0.13 pg/L)). Low concentrations of accessory pigments could
introduce errors in CHEMTAX estimates of diatoms and Phaeocystis. Using RMP, a significant
but weaker correlation was observed for cryptophytes (R?> = 0.51, P <0.001) (Figure 3B). No
significant correlation between RMP and CHEMTAX estimates was observed for diatoms

(Figure 3D) and Phaeocystis (Figure 3F).
b. Bacterial 16S rRNA gene ISN vs. FCM bacterial abundance

The total prokaryotic 16S rRNA gene abundances were significantly correlated with the
bacterial FCM counts albeit with a small correlation coefficient (Pearson’s R =0.19, P <0.001;
or R?=0.20, P <0.001 after log-transformation) (Figure 4A). In general, rRNA gene copy
numbers were much higher than the FCM cell counts. A variety of factors may explain this. First,
for the four points circled in grey in Figure 4B), the FCM estimates of > 2.0 x 10° cells ml™! were
anomalously high compared to the corresponding leucine incorporation rates or Chl a
concentrations. Second, while bacteria associated with particles were efficiently captured by
DNA sequencing, they may have been missed by FCM counts if the vortex step did not break
down the particle-bacteria-associations. In polar and coastal regions, a significant proportion of
bacteria could be attached to particles (41). Corroborating this hypothesis, we found that samples
where ISN predicted a higher abundance of bacteria than FCM tended to have a higher

percentage of particle-associated OTUs (Figure 4A). Finally, the difference in rrn for different
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OTUs could also explain the discrepancy between the ISN and FCM bacterial abundance. For
example, the rrns in SAR11 and Marinomonas sp. MWYL1 are 1 and 8, respectively (30).
Populations with larger rrn should have higher 16S rRNA gene to FCM counts ratios. In
addition, the fact that multiple genomes may exist within a single cell (42) could also contribute
to the discrepancy. To estimate cell abundances, top 20 classified OTU QMP in 16S rRNA gene
copies per ml were divided by their rrn estimated by rrnDB (30) and the resulting OTU cell
abundances were summed up for each sample. Taxa identified as particle-associated bacteria
through size-fractionated filtration in (41) were then excluded. After discarding the four potential
outliers and correcting for rrn and particle — association effects, cell abundances estimated by
rRNA gene and FCM counts displayed a substantially higher correlation coefficient (R> = 0.61, P
<0.001; or R* = 0.44, P <0.001 after log-transformation) and were close to the 1:1 line (Figure

4B).

We note that the rrn correction is not only important for ISN but also for the

normalization of FCM (e.g. (20)). The absolute cell abundance of OTU x in a particular sample

Cy/TTNy
Stci/rrng

should be calculated as X FCM, where C, is the rRNA gene counts for OTU x . Should

1, be constant for a particular taxa, changes in the numerator introduces a systematic bias
when comparing relative changes in absolute abundances between samples. However, because
YrCy/rrn, # Y1 Cy, the denominator may lead to uneven biases across samples. A simple
example using two OTUs commonly found in the WAP is presented in supplementary Table S2.
Without taking into account the rrn, the estimates of absolute OTU abundances based on FCM
normalization could be off by 5 fold, and the estimated abundance variation between two
samples could be off by 3.6 fold in this particular example. Caution should therefore be taken in

applying the FCM normalization method without resolving the community rrn profile.

10



209 One approach to estimating the rrn profile is to use the phylogenetic information to

210  predict the rrn of OTUs based on existing rrn databases such as rrnDB (30)(43). A recent human
211  microbiome study corrected the 16S rRNA gene matrix using rrnDB (21). However, substantial
212 uncertainties associated with the rrn correction remain as 1) a significant portion of the OTUs are
213 unclassified and 2) the limited number of known rrn from sequenced genomes likely does not
214 reflect the natural variability in rrn.

215 When applying the FCM normalization method to marine samples, the difference in

216  sampling volume for DNA and FCM should be considered. Cells for DNA analyses are generally
217  filtered from liters of seawater, while FCM samples are generally estimated from less than 1 ml
218  of seawater. In patchy environments, these two volumes may reflect different communities.

219  Application: Case study at the WAP

220 In our WAP case study, the estimated total eukaryotic rRNA gene abundance was

221  significantly correlated with environmental variables including the distance to shore (Pearson’s
222 R =-0.6,P<0.001; Spearman’s p =-0.6, P <0.001), Chl a concentration (R = 0.8, P <0.001; p
223  =0.7,P<0.001), and primary production rate (R =0.7, P <0.001; p = 0.5, P <0.001).

224  Conversely, the estimated total prokaryotic rRNA gene abundance was not significantly

225  correlated with distance to shore (R =-0.3, P> 0.05; p =-0.2, P> 0.1), but was significantly
226  correlated with Chl a (R = 0.6, P < 0.001; not significant by Spearman, p = 0.3, P> 0.05) and
227  significantly correlated with bacterial production measured by *H-Leucine incorporation (R =
228  0.7,P<0.001; p=0.6, P<0.001). Looking at specific taxa, the abundance of Polaribacter
229  OTUS increased significantly with increasing Chl a (R = 0.8, P <0.001; p = 0.5, P <0.001)
230  (Supplementary Figure S1), which is consistent with the observations that Polaribacter thrives

231  during phytoplankton blooms (44, 45). The SAR11 OTU2 cell abundances did not show a clear
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trend across Chl a gradients (R =-0.02, P=0.9; p =-0.01, P = 0.9). This could be a result of
patterns at finer taxonomic scales, e.g., amplicon sequence variants resolved down to the single-
nucleotide level (46). The relative abundance of SAR11 OTU decreased with increasing Chl a (R
=-0.5,P<0.001; p =-0.5, P <0.001), but this could be a spurious correlation stemming from an
increase in the total bacterial abundance.

Community co-occurrence matrices based on Spearman’s correlation coefficients (Figure
5) showed that QMP and RMP matrices were significantly different (P < 0.001) by Jennrich test
(47) and Steiger test (48). QMP resulted in more positive correlations (270 vs. 218 for RMP)
mostly appearing within the prokaryotic communities, and fewer negative correlations overall
(124 vs. 172 for RMP). Interestingly, similar differences in co-occurrence patterns based on RMP
and QMP have also been observed in human gut microbiome studies using the FCM

normalization method (21).

Quantitatively estimating eukaryotic phytoplankton abundances using chloroplast 16S
rRNA gene abundances

The QMP of five eukaryotic phytoplankton groups calculated from internal standard
normalized 18S rRNA gene abundances and the corresponding chloroplast 16S rRNA gene
counts were compared (Figure 6). Strong linear correlations using the type-II least-square fit
were observed between the chloroplast 16S rRNA gene counts and genomic 18S rRNA gene
counts for Cryptophytes (R?> = 0.87, P < 0.0001), and diatoms, including Fragilariopsis (R* =
0.55, P <0.0001), Corethron (R*=0.72, P < 0.0001) and Proboscia (R* = 0.40, P < 0.0001). A
weak correlation was observed for Phaeocystis using the type-II least-square fit (R*> = 0.06, P <
0.0001) but not with a Pearson coefficient (R> = 0.06, P = 0.09). These results show that

eukaryotic autotroph abundances can be reliably estimated from their corresponding chloroplast

12
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16S rRNA gene abundances for the three phytoplankton groups examined, i.e., Cryptophytes,

Diatoms and Phaeocystis.

Chloroplast-16S rRNA genes can represent a large fraction of total community 16S rRNA
gene library reads, especially in productive oceanic regions where phototrophic eukaryotes tend
to dominate. For example, 52% of the total 16S rRNA gene reads were annotated as chloroplasts
at our study site (averaged over all sampled stations). While these chloroplast reads are generally
discarded, they may provide valuable information about the phototrophic eukaryote abundance
without incurring the additional cost of 18S rRNA gene amplicon sequencing. Several recent
studies inferred eukaryotic phytoplankton relative abundances from the chloroplast 16S rRNA
gene reads (41, 49). The method described herein may allow us to estimate the host

phytoplankton abundances from the ISN chloroplast sequences (Figure 6).

18S to 16S rRNA gene ratios as measure of phytoplankton ecophysiology

ISN can also be used to quantify variability in the ratio of chloroplast 16S rRNA gene /
genomic 18S rRNA gene, and thus gain insight into phytoplankton ecophysiology. Compared to
diatoms and cryptophytes, laboratory data suggest that Phaeocystis is well adapted to variability
in light availability (50). This photoacclimation capacity could result from a greater plasticity in
pigments per chloroplast (51), or chloroplasts per cell under different light regimes. The latter
strategy could explain the variability in chloroplast 16S vs. genomic 18S rRNA gene reads in
Phaeocystis observed in our study. As shown in Figure 6E, the ratios of Phaeocystis chloroplast
16S/ genomic 18S rRNA gene generally decreased from north to south. Phytoplankton
physiology is influenced by sea ice dynamics at the WAP (52)(53). Considering that the ice
generally retreated from north to south, the southern communities closer to the ice edge might

have been more recently exposed to higher light levels. The northern communities on the other
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hand had been in open water for a longer period of time, being exposed to stronger wind-induced
vertical mixing, and were therefore more likely to be light-limited. This may explain the higher
chloroplast 16S/ genomic18S rRNA gene ratios in the south. These geographic variations were
consistent with changes in the relative abundances of two Phaeocystis subclades (Figure 6F)
which may be adapted to different light conditions. The correlation to mixed-layer depth was not
as strong as to the geographic gradients (Figure S2). Overall, the chloroplast 16S/ genomic 18S
rRNA gene ratio could prove to be a valuable indicator of in sifu algal photophysiology

adaptations when combined with laboratory experiments for further validation.

Limitations of ISN

There are several limitations to ISN. The first issue is associated with the extraction
efficiency. Since the extraction efficiency is never 100%, the calculated rRNA gene abundance
represents a lower bound on the true abundance. This could partially be addressed by spiking in
cells instead of genomic DNA, although cell standards could also introduce biases due to 1)
differences in extraction efficiency between the standard cells and the natural cells, and 2)
variability in number of genomes per cell (42). A second issue is the high uncertainty in rrn
correction (54), which is only relevant when converting rRNA gene copy numbers to cell
numbers or when combining groups with mixed rrn. For example, large eukaryotes such as some
dinoflagellates could have high rrn (> 1000 copies per cell) (55) and thus their 18S rRNA gene
abundances could be orders of magnitude higher than their cell numbers. However, should a
specific OTU have a constant rrn, the relative changes in absolute abundances across samples
will still be captured because the copy numbers are proportional to the cell density. As the rrn is
more comparable at finer taxonomic levels (56), it is best to apply the rrn normalization down to

single genotypes. Defining OTUs at coarse taxonomic levels may combine groups with differing
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rrns. In this case, the rRNA gene copy numbers are no longer proportional to the true cell
numbers thus complicating the interpretation of the rRNA gene counts. Finally, a third issue is
that some eukaryotic species have high plasticity in rrn (57). Variability in their 18S rRNA gene
counts may not reflect variability in their cell numbers. On the other hand, positive correlation of
rrn versus cell biovolume have been reported across different eukaryotic plankton taxon
including diatoms and dinoflagellates (54,52). If this relation is valid, groups with different rrn
could be combined, and the rRNA gene copy numbers could be used as an index for group
specific biomass. This is important because biomass is often of more relevance to
biogeochemical budgets (e.g. carbon, nitrogen) than cell numbers.

PCR bias could skew the relative abundances of mixed community members estimated
from the PCR products (58, 59). One main concern specific to our approach is the biased PCR
amplification caused by the varying template GC contents. Due to the triple hydrogen bonds
between G and G, templates with higher GC contents have higher melting temperatures and are
less efficiently amplified (59, 60). T. thermophilus, the 16S rRNA internal standard used in our
study, has a high GC content (69% for whole genome (61) and 65% for the amplified V4 region).
High GC content can cause underestimation of the internal standard abundance and
overestimation of the natural community member abundance. A second concern is the
amplification bias introduced by the degenerate primers. DNA sequences with G/C at the
degenerate position can be over-amplified compared to sequences with A/T. The deviation in
PCR product due to a single base difference at the priming site could be over 100% after 35 PCR
cycles (58). Various methods have been developed to reduce PCR biases: combining PCR
replicates (combined triplicates in this study), minimizing PCR cycle numbers and the

degeneracy of primers, and reconditioning PCR (62). On the other hand, despite the significant
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PCR biases, inter-sample variability could still be precisely captured by the PCR method (58). A
time-series study reported that PCR primer selection affects the estimated population abundances
but not the community dynamic patterns (63). Although the abundance estimates by PCR based
ISN may deviate from the absolute cell numbers due to PCR bias and rrn issues, the estimated
inter-sample variability is less affected. Hence, this may not be as much of an issue for
correlation analyses, e.g., time series community dynamics, community co-occurrence, and

correlations to environmental variables.

Conclusions

Addition of internal standards to the amplicon rRNA gene sequencing approach allowed
us to quantitatively compare microbial communities across different samples, as well as
phytoplankton chloroplast 16S and genomic 18S rRNA gene abundances. Conceptually, the ISN
could provide information equivalent to qPCR measurements targeting rRNA genes but with the
advantage of examining a diverse community in a single assay. In our case study at the WAP,
significant correlations observed in phytoplankton abundances based on 18S rRNA gene vs.
CHEMTAX abundances and in total bacteria abundances based on 16S rRNA gene vs. FCM
counts confirm that the ISN is quantitative. Our study also shows that chloroplast 16S rRNA
gene sequences could be used to estimate phytoplankton abundances, and that the chloroplast
16S to genomic 18S rRNA gene ratio may be an insightful indicator of phytoplankton in situ
photophysiology. The ISN comes at a minimal cost of implementation, and could be applied in
conjunction with metagenomics (64). Overall, the ISN allows for an improved statistical, and
ultimately ecological, interpretation of the rich and rapidly expanding marine microbiome

datasets. More broadly, this approach could be valuable to researchers interested in relating
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microbial ecology to quantitative processes such as microbial interactions, metabolic rates,

energy and material fluxes, and eventually quantitative ecosystem modeling.

Materials and methods

DNA extraction with internal standard DNA addition

Samples for DNA extraction were collected by seawater filtration (details see
Supplementary Information). Each filter with recorded filtration volume (4 L for most samples)
was split into two with one half for DNA extraction and the other half stored for later RNA work.
We note that this step could introduce errors due to uneven cell distribution on filter. Just prior to
DNA extraction, gDNA from two organisms representing eukaryotic and prokaryotic taxa not
expected to be present in marine surface water samples were added to the tube containing the
sample filter and lysis buffer (see below for optimization of internal standard addition). For the
18S rRNA gene internal standard, 50 ul of Schizosaccharomyces pombe gDNA (ATCC
#24843D-5, Manassas, VA, USA) at 0.322 ng/ul was spiked into each sample. For the 16S rRNA
gene internal standard, 50 pl of Thermus thermophiles gDNA (ATCC 27634D-5) at 0.297 ng/ul
was added to each sample. The internal standard working solutions were made in single use
aliquots to avoid DNA being lost during freeze-thaw cycles. gDNA standard stock solutions and
dilution concentrations were measured using a Qubit 3.0 fluorometer (Thermo Fisher Scientific,
Waltham, MA, USA). After spiking in internal standards, DNA extraction was performed as
described in (8).

Optimizing the amount of internal standard added to a sample
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In order to get enough standard signal without overwhelming the environmental signal,
we added the internal genomic DNA (gDNA) standards targeting a final concentration of around
1% of the total 16S and 18S rRNA gene reads. The amount of the prokaryotic genomic internal
standard to spike in was based on the anticipated total extracted DNA mass as estimated with
trial samples (22). For example, if we expected 10 pg of total genomic DNA in the sample, we
added 100 ng of prokaryotic gDNA internal standard. Because the fraction of eukaryotic gDNA
in total community DNA and the eukaryotic rRNA gene copy numbers per unit weight of gDNA
are highly variable in different marine environments, a test sequencing run was conducted to
optimize the internal standard amount to be spiked in. Test libraries were constructed with
representative samples spiked with different amounts of internal eukaryotic genomic standard
(16.1 ng or 3.22 ng) Schizosaccharomyces pombe gDNA (Figure 1B). The test amplicon libraries
were subsequently sequenced using Illumina MiSeq platform (nano format) as a customized run
at Duke Institute for Genomic Sciences and Policy (IGSP) with 300 bp single coverage forward
reads and 10bp reverse reads to read the reverse barcodes. The averaged read count per sample
was 50,661 after demultiplexing (see supplementary Table S4).

Amplicon library construction

16S rRNA genes were amplified by PCR using V4 primer set 515F (5 —
GTGYCAGCMGCCGCGGTAA —3”) (65) and 805R (5 — GACTACNVGGGTATCTAAT - 3°)
modified from (66) and (67). 18S rRNA genes were amplified by PCR using V4 primer set EukF
(5 - CCAGCASCYGCGGTAATTCC —3”) (70) and EukR (5’ —= ACTTTCGTTCTTGAT - 3°)

modified from (70) as described in (8) to increase coverage for Haptophytes.

Dual indexed fusion primers had 6-bp barcodes at each end constructed using error proof

Hamming codes (71). In order to improve the “low sequence diversity” issue of the rRNA
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amplicon library, 0 — 5 bp heterogeneity spacers were added to each primer (72). PCR were
performed in triplicates for each sample. 18S rRNA gene PCR and library pooling were
performed as described in (8). 16S rRNA gene library construction was similar to that of 18S
rRNA gene except that 2U of Platinum Taq DNA Polymerase High Fidelity (Invitrogen) were

added to each reaction, and PCR annealing temperature was 60 °C.

Amplicon libraries were sequenced at Duke IGSP using Illumina MiSeq 250PE platform
for 16S rRNA amplicons and MiSeq 300PE platform for 18S rRNA amplicons. For each library,

reads per sample after multiplexing were reported in Supplementary Table S4.

Bioinformatic analysis

For each library, paired-end reads were assembled using VSEARCH v2.3.4 (73) with
quality score of the merged bases calculated following (74). Assembled reads were further
processed using USEARCH (75) and QIIME (76) following (8). In brief, 16S or 18S rRNA gene
reads were quality-controlled including quality filtering and chimera checking, and then were
trimmed for barcodes and primer sequences. Singletons were discarded. OTUs (97% similarity)

were then clustered using USEARCH and the representative sequences were assigned taxonomy

based on the SILVA SSU database 128 using QIIME.

For 16S rRNA gene library, sequences identified in SILVA as mitochondria were
removed. Sequences identified as chloroplast were filtered out as a separate data set. In order to
further identify the phytoplankton host taxonomy from the chloroplast sequences, representative
chloroplast sequences were blasted against the NCBI nucleotide collection database using

BLAST+ 2.6.0 (77). The top three hits for each sequence were reported in Table S5.

Accession numbers
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Sequences were deposited in the National Center for Biotechnology Information (NCBI)
Sequence Read Archive under the BioProject accession numbers PRINAS08517 and

PRINAS508514.
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