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Abstract—Many efforts have been made for decades in order
to improve the accuracy of radioactivity map in positron
emission tomography (PET) images, which has important clinical
implications for better diagnosis and understanding of diseases.
However, there is still a challenging problem for reconstructing
high resolution image with the limited acquired photon counts. In
this paper, we present a nonlocal self-similar constraint for the
purpose of exploiting structured sparsity within the PET
reconstructed images. It is based on image patches and
approached by low-rank approximation. Moreover, we adopt
total variation regulation into our method to further denoise and
compensate the demerits inherited in patch-based methods.
These two regulation terms are firstly employed in the Poisson
model, and are jointly solved in a distributed optimization
framework. Experiments have presented that our proposed

PNLTV method substantially outperforms existing
state-of-the-art methods in PET reconstruction.
Keywords—positron emission tomography; Poisson

model;image reconstruction; nonlocal; low-rank approximation;
total variation

1. INTRODUCTION

As a typical type of Emission Computed Tomography
(ECT), positron emission tomography (PET) is irreplaceably
used in functional imaging. By injecting a certain
isotope-labeled compound, positrons will be emitted and
annihilated with nearby electrons in the body. The photons
generated by annihilations can be collected and then be used to
recover the tomographic radioactivity maps. How to recover
high quality images is continuously studied and discussed by
numerous researchers, given the increasing diagnosis
requirement.

The emission image reconstruction algorithms largely fall
into two groups: analytic strategies and iterative statistical
methods. The first group is filtered back-projection (FBP)
based algorithms, or modifications thereof, which is built on
the Radon transform. Although this method is fast and easy to
be implemented, it overlooks the statistical property and fails to
produce high quality reconstructed images.

Iterative statistical approaches have become the primary
focus of researches. Maximum likelihood-expectation
maximization (ML-EM) [1][2] integrating the Poisson model,
serves as a milestone in PET reconstruction algorithms.
Nevertheless, it suffers from the ill-conditioning problem, i.e.
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the solutions are sensitive to small changes in the data [3] and
consequently lead to the ‘checkboard’ effect in recovered
images. In order to overcome these drawbacks, image priors
(or regulations) are introduced into the objective function,
forming the maximum a posteriori (MAP) estimation [4], or
penalized ML method [5]. Typical priors and regulations
include quadratic regulation [6], Gaussian prior [7], Huber
prior and Gibbs prior [8]. Though many algorithms are already
developed, there is still a tradeoff between the noise depression
and the resolution improvement in practice. What is more, the
traditional priors may overlook the structural information and
hence over-smooth the edges of different regions.

Like some other medical images are, PET images are fairly
assumed to have the piece-wise constant property-- each pixel
in the same region should have the same value, while the
boundary of each region is allowed to be sharply-variant. Total
variation (TV) [9] minimization is properly used based on this
feature. From the other perspective, with the rapid rising of
compressive sensing, sparsity is well employed in this
piece-wise constant images. Several related efforts were made
in this area. Xu developed a method based on dictionary
learning to exploit structural sparsity in the low-dose CT
reconstruction [10]. Simultaneous sparse coding was proposed
in [11]. More recently, it was found that both natural and
medical images have plenty of similar structures within
themselves, and this originated the conception of ‘nonlocal
self-similarity’, which has led to the famous nonlocal means
methods [12], block-matching 3D denoising (BM3D)[13], efc.
Also, nonlocal self-similarity was introduced in [14] and [15]
to enhance the structural sparsity dramatically.

Although TV constraint is widely reckoned as eminent in
providing edge-preserving guidance and proved to be quite
efficient in denoising of medical image, it unfortunately
causes the so-called ‘stair-case’ effect, which degrades the
accuracy and the visuality of the recovered image. On the
other hand, while the nonlocal patch-based methods are
remarkably in keeping structural information, they are less
effective in ruling out the noise, especially when the penal
parameter is small. However, if the parameter were tuned to a
large degree, the recovered image would suffer from the
rectangular-shaped edge. In that sense, it is natural to develop
an algorithm which utilizes the merits of both methods.

In this paper, we propose a novel algorithm which exploits
both the local and nonlocal self-similarity of reconstructed



image to remarkably improve the resolution while keeping the
noise at a low level. Nonlocal traits conducted by the low rank
approach are firstly introduced into the reconstruction based on
Poisson model, while total variation method is simultaneously
implemented in this frame in order to compensate the
shortcoming which inherited in patch-based methods. We
implement these two regulations into Poisson model jointly,
and optimize this function in an alternative and distributed
way. Denoted as PNLTV, our proposed method shows its
substantial superiority in reconstruction accuracy, denoising
quality as well as robustness. Detailed implementation and
experiments are presented in the following sections.

II. METHOD

A. PET imaging model

As a typical type of Emission Computed Tomography
(ECT), the reconstruction of PET can be modeled as the affine
transform,

y=Gx+r+s, )
where ) denotes the expectation of sinogram y, and x
denotes the radioactivity image which is supposed to be
reconstructed. Here y={y ,g=1,---,M} denotes the sum
of collected photons along each detector pair, and M is the
number of detector pairs; Ge R is the system matrix,
whose entry G, is the average probability of detecting a true

coincidence from voxel site j at Line of Response (ROI) q; t
and s refer to random incidence and scattered coincidence
respectively.

Given the photon detecting nature mentioned above, y is
modeled by independent Poisson distribution: y~Poisson{ y 2,

In that sense, the likelihood function of y can be written as:

M _ y Yq
= SECIA 2
Pr(ylx) 1:[e X (2)
And for the sake of optimizational convenience, we often
minimize the negative log-likelihood function instead:

M
min P(x) = min—log(Pr(y}x)) = min ) 7, -, log(7,)
q

st.y=Gx+r+s 3)
The constant term log(y,!) is left out in (3). It’s also worth
noticing that since the log function is monotonic, (3) is equal
to maximizing the probability in (2).
B. Problem Formulation

Furthermore, based on (3), we can organize our regularized
objective function in the form of:

n}in P(x)+oNL(x, L)+ fTV(x, w). %)

Here the latter two terms jointly serve as the prior: NL(x, L)
denotes the nonlocal low-rank constraint which aiming at
exploiting the nonlocal structured sparsity; TV(x,@) denotes
the total variation constraint which is used to enhance local
structure sparsity and complement the rectangular-edge effect
inherited in patch-based methods; P(x)denotes the fidelity
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term mentioned in (3); «, S serve as the weighting parameter

respectively.

1) Nonlocal low-rank regularization

In this model, we use a low-rank constraint to exploit the
nonlocal property in the reconstructed image. The
implementation of nonlocal regularization includes 2 steps:
grouping the self-similar characterized patches within the
image and enforcing low-rank constraint on the grouped
matrix [15]. The basic assumption underlying regularization
term is that self-similarity is abundant in the restored image
[15].

Practically, after each iteration, we can obtain lots of
Jnx+/n sized patches x, € C" at position i from the temporary

estimated image. For each exemplar patch vector X, , we
search its m-nearest patches based on Euclidean distance
within the image, i.e. Siz{s|||xi—xi’s||<Ti} , where T, is
distance threshold which is determined by the m-th nearest
patch to X; , and S, is the set of positions of patches related to

X, . Then we can get a matrix X, =[X, X 505 X, (5-0r X, 1 ]

X,e C™ based on each exemplar patch vectorX;, where

X, , is denotes the patch vector X; .

The low-rank constraint comes after the grouping
procedure. Since the image has the nonlocal self-similar
structures, each matrix X, is meant to possess low-rank
property. In practice, each matrix X, can be decomposed into
L+W,, where L, is the low-rank matrix while w, is the
Poisson noise matrix which is meant to be eliminated by the
constraint. Therefore, L. can be recovered by the following
simplified model:

L =argrank(L), st.|| X,— L, |} <o) » (%)
Li

where || is the Frobenious norm and g’ denotes the

variance of Poisson noise.

2) Total variation regulation

Rudin, Osher, and Fatemi (ROF) [16] first introduced total
variation (TV) method into the image denoising. From then
on, TV method had become a classic and widely-discussed
topic in this field. The general version of TV objective
function in image reconstruction is:

min Y [|D x|, sty=Gx+r+s, (6)
J

where the operating matrix D, to represent the discrete

differential operation at position j; p=1lor 2.
However, in order to implement the augment Lagrangian
method into global optimization, we consider an equivalent /,

form of (6):
min ||, |,
J

st.y=Gx+r+s and Djx=a)j. for all j 7



C. The Optimization of PNLTV

Solving the objective function (4) directly is nearly an
impossible mission. However, note that the objective function
(4) is composed of three subproblems related to x, L, @, thus

we would minimize (4) by each variable while make other
variables fixed. In this section we demonstrate our distributed
optimization method with respect to each subproblem.

1) L-subproblem

During the optimization procedure, suppose a estimation
of image x*is given after k-th iteration, we can get a set of
X[k+1 ZB[kH k :[xk[)o,xk[,l;u-,xk,-,m,l]e Cnxm , i = 1’2’ o,

where Bl.’”l denotes the operative matrix which can extract

X from x* . While the original low-rank approximation

problem is given by (4), we practically rewrite the problem
into a Lagrangian form by choosing a proper A, namely:

k+1 : k 2
L =argmin|[X, = L, |2 +4 | L, |}

=argmin||B""'x" - L |z +AY o, (L) (¥

u

where ||¢||« denotes nuclear norm, or sum of the singular value

in other words; O, denotes the u-th largest singular value.

By approximating the rank to nuclear norm, the low-rank
model can be turned into convex optimization from NP-hard
problem. In this algorithm, we adopt the singular value
thresholding (SVT) method [17] to solve the
rank-minimization problem efficiently and effectively. In that

sense, Lf“ can be estimated by:
L =UE-A), 0" )
where U i V'™ denotes the singular value decomposing (SVD)

of matrix X', and (x), =max(x,0)

2) -subproblem
Based on Augmented Lagrangian method, we formulate
the D -subproblem as:

@' =argmin || o, +%|| ®—Dx" ||; —=v*(w— Dx")(10)

where 7] is called penalty parameter and v* is called

Lagrange multiplier. Equation (10) share the same purpose
with (7) .Applying shrinkage operator to (10) yields the
algorithm:

k
v 1
™! zmax{| Dx* ——||, ——,0}
n n
and the multiplier is updated as: v**' « v —p(Dx"

Dx*—v*/n . an
I Dx" =v* /],
—a)"“) )
3) x-subproblem
After L, being

reconstructed image x can be solved by our proposed
algorithm with other variable fixed. Actually previous
subproblems both serve as the penalty terms of x-subproblem,
thus this part plays a key role in our proposed framework.

updated, current estimation of

Algorithm 1:PET
(PNLTV)

reconstruction via joint regulations

Input: Sinogram y and system matrix G, weighting parameter
o,B,1.1.

1: Initialization: & =0,x" = FBP(y).

2: Repeat:

3:  Compute matrix X[",Vi using (9) > L
Update differential vector /"' using (11) > @
Update multiplier v**' « v* —p(Dx* —0*™").

> X

4

5

6:  Repeat:
7 E-step: compute Q(x;x"*) using (13).
8 M-step: update xf”,‘v’j using (15).

9

Until: Inner Relative change (x**' —x*)/x*"' <107

10: k<« k+l
11:Until: Relative change(x**! —x*)/x*"' <107

12:Output: x*

Initially, based on (4), our objective function can be written
in a joint way:

M
Qx, Lw) =37, -y, log(7 )+ || Bx-L, | +A|L,
q i

.

+ (o, +§||Dx—w||§>

st.y=Gx+r+s. (12)

Here we adopt L to represent L' and @to represent

@"*" for illustrative simplicity. Thus, in this subproblem, the
aim of the optimization is to solve:

N M
x = argmin Q(x;x") = argminZZ(gq,xi —¢, log(g,x,))+
. s Ll . .

no ]

N /AN 2
aZZ(Bij—L,j) +TZ(Djxj—wj)
i J J

k
s.t = £
g T n; k yi’
Z‘/_ g, X +r +s,

where g, denotes the gj-th entry of system matrix G; Bij

(13)

>

denotes the j-th entry of operative matrix B; D represents the
discrete differential operation at position j. It is worth
mentioning that we adopt expectation maximization (EM) in
our algorithm by introducing Cy o whose expectation éq/.

represents the possibility of the j-th voxel detected by the g-th
detector pair.
By differentiating Q(x;x*) with respect to x, we get a
quadric function:
0Q(x; x* 1
WU o g e Loy,

axj. X;

(14)

where the solution x;f“ is the positive root of (14):

3876



2
o :—Bj+JBj —4A C,

A =
I 2A,

’ J

200 B, + D,

g
B, =qu/.—2aZLl.j—/3nwj, C,
q i
Note that since the exact solution of x is no available, we
conduct EM step iteratively until approaching a inner
convergence within x-subproblem.

III. EXPERIMENTS

In this section, we conduct groups of experiments in order
to validate the merits of our proposed method. The data we
adopt are mainly based on the Monte Carlo simulation, which
is widely-used in research of emission tomography. The
simulation data consist of a set of Zubal brain phantoms aimed
at testing the reconstruction accuracy and robustness, and
lesion phantom aimed at evaluating the detection property.
Furthermore, analysis respect to denoising and structural
enhancement are conducted based on the Monte Carlo
simulated data. Also, we employ the real PET thorax data
obtained from CTI ECAT EXACT System provided by
Fesslers’s group, in order to validate the proposed method in
real case.

For quantitative accuracy evaluation, we employed the
relative bias as well as relative variance, which are defined as:
bias:%Z‘:‘xj—ﬁj‘/)%j , variance:ﬁzyqxj—}vfj)z [20],
where N denotes the pixel number in the tested region; X
denotes the mean value within this region; X, denotes the
value of ground truth at position j. Given the fact that the
emission tomography images are of piece-wise constancy, the
better the reconstruction outcome is, the smaller the bias and
variance are within each region. Besides, the peak signal to
noise ratio (PSNR) is introduced in validating the convergent
performance. Also, the qualitative evaluation is visually
presented by contrasting the ground truth image with images
reconstructed by different algorithms, including the famous
maximum likelihood-expectation maximization (ML-EM)
algorithm [19], penalized likelihood incremental optimization
(denoted as PL-IO) method[20], and total variation
minimization by augmented Lagrangian (TVAL) method [21].

I background

(a) Zubal brain phantom (b) Lesion phantom
Fig.1. Ground truth phantom

TABLE I
RELATIVE BIAS AND VARIANCE OF RECONSTRUCTED BRAIN
PHANTOM UNDER DIFFERENT COUNTING RATES

n, .
_Z ok (15) Algorithm
4
q

Bias Variance
1x10° 5x10°  2x107 1x10° 5x10° 2x10’
ML-EM 0.2870  0.2199  0.1984 0.1517  0.0773  0.0572
TV-AL 02182 0.1323  0.0771 0.1106  0.0524  0.0229
PL-IO 0.2706  0.1403  0.0826 0.1109  0.0408 0.0263
PNLTV 0.1753 0.1086 0.0764 0.0917  0.0294 0.0149
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(d) PNLTV
Fig. 2. Reconstruction of Monte Carlo simulated brain phantom data under 10°
counting rate.

(c) PL-IO

A. Zubal brain phantom

Initially, we use the Zubal brain phantom to examine the
accuracy of the reconstructed image. As the ground truth
shown in Fig.1(a), the image includes 4 regions of interest
(ROI), and pixel shares same value within the same ROI
according to the piece-wise constant property. On the other
hand, the Monte Carlo simulation is based on Geant4
Application for Emission Tomography (GATE) platform. In
this experiment, all the settings are simulated completely
corresponding to real case, including the photon energy,
scanner structure and so on. Data measured under different
counting rates (1x10°, 5x10° 2x10”) are collected in the
form of sinogram, and each one has 64x 64 projections.

Table 1 demonstrates the relative bias and variance of the
reconstructed results of different algorithms under diversified
counting rates:1x10°, 5x10°, 2x10”, and minimums of each
column are in bold. According to the table, our proposed
method PNLTYV has substantially lower biases and variances
than that of others, which means less differences compared
with ground truth and lower level of noise. Besides, the



TABLE 11
RELATIVE BIAS AND VARIANCE OF DIFFERENT ROI
UNDER 5x10° COUNTING RATE

. Bias Variance
Algorithm
Whole _ROIl__ROI2___ROI3____ROM Whole _ROIl__ROL2___ROI3___ROM
ML-EM 02199 02514 01830 02348 03843 0.0773 00168 00399 0:0099 01936
TV-AL 01323 0.0916 0.1504 0-0734 05472 00524 00131 0.0s51 00035 05386
PL-IO 01403 0.1187 0.1488 01033 03895 0.0408 00087 00442 00025 02532
PNLTV  0.1086 0.0879 0.1131 00877 03583 0.0204  0.0074 0.0325  0.0026 0.1586

(c) PL-IO (d)PNLTV
Fig.3. Detectability experiment on lesion phantom under 5x10°
counting rate.
robustness of PNLTV is validated under different counting

rates.

To analyze each algorithm further, relative bias and
variance of each ROI are collected under 5x10°counting rate,
as shown in Table 2. Similarly, optimal statistical results are
shown in bold. It can be seen that the results of proposed
method are overall superior to its counterparts of other
algorithms. Nevertheless, there is only one exception that the
bias of TVAL in ROI3 is slightly lower than that of PNLTV, it
is partially owing to TVAL’s good edge preserving property.

Also, visual analyses are introduced in this trail of
experiments. In order to simulate the low-dose cases, we adopt

1x10°counting rate data to present the reconstructed images,
as shown in fig.2. According to this figure, image
reconstructed by ML-EM suffers from noises severely; image
reconstructed by TVAL has a stair-case effect;
over-smoothness is spotted in image reconstructed by PI-10.
In contrast, our proposed method not only suppresses the
Poisson noise excellently but also has an eminent performance
in preserving structural information.

In addition, the convergence performance of mentioned
algorithms is shown in Fig.5. As we can see, our PNLTV and

(a) ML-EM (b) TV-AL

(c) PL-IO (d) PNLTV
Fig.4. Reconstruction results of real thorax data.

PL-IO have demonstrated faster convergence while PNLTV

finally converged at the highest PSNR.

B. Lesion phantom

One major goal of emission tomography is to detect lesions
or tumors, especially in PET and SPECT image analysis. In
this regard, a 128x128sized lesion phantom simulated by
Monte Carlo is adopted in this experiment. The lesion
phantom, as indicated in Fig.1.(b), has two groups of lesion
regions, and each group has three sizes of circular lesion
regions.

Lesion images with 5x10° counting rate reconstructed by
different methods are present in Fig.3. In this study, different
algorithms perform variedly. Without image prior, ML-EM
fails to discern the smallest lesion regions from the
background noise. Moreover, although TVAL and PL-IO both
have acceptable results when recover the white regions, they
fail to recover the smallest black lesion regions. In
comparison, our method recognizes each of the regions and
shows a better performance in detection.

C. Real patient data

The data set is provided by Prof. Fessler. It was collected in
160 radial samples (varies fastest) by 192 angular samples
(over 180 degrees), obtained from CTI 921 ECAT EXACT
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Fig.5 PSNR curves of the four algorithms along the iteration on the
brain phantom.

Scanner. The sum of the photons is 920653. The reconstructed
results are presented in Fig. 4. It can be witnessed that PNLTV
performs better while images recovered by TVAL and PL-IO

suffer from stair-case effect and over-smoothness respectively.

IV. CONCLUSION

In this paper, we have designed a novel algorithm for PET
reconstruction. On one hand, by a low-rank approach, our
method introduces the nonlocal self-similarities within the
recovered image to itself, thus the structural information is
enhanced while the sparsity is also strongly kept. On the other
hand, total variation constraint is adopted in order to further
depressed the noise and compensate the rectangular-edge
effect inherited in the patch-based methods. These two penalty
terms, which serve as the image prior, are firstly and jointly
optimized in the Poisson reconstruction frame. The proposed
method shows remarkable performance in resolution
improvement, denoising, lesion detection and convergence.
Moreover, since the structural information is acquired from
the recovered image itself during the iterations, the method is
of outstanding adaptability as well as robustness.
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