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Abstract—Many efforts have been made for decades in order 

to improve the accuracy of radioactivity map in positron 

emission tomography (PET) images, which has important clinical 

implications for better diagnosis and understanding of diseases. 

However, there is still a challenging problem for reconstructing 

high resolution image with the limited acquired photon counts. In 

this paper, we present a nonlocal self-similar constraint for the 

purpose of exploiting structured sparsity within the PET 

reconstructed images. It is based on image patches and 

approached by low-rank approximation. Moreover, we adopt 

total variation regulation into our method to further denoise and 

compensate the demerits inherited in patch-based methods. 

These two regulation terms are firstly employed in the Poisson 

model, and are jointly solved in a distributed optimization 

framework. Experiments have presented that our proposed 

PNLTV method substantially outperforms existing 

state-of-the-art methods in PET reconstruction. 

Keywords—positron emission tomography; Poisson 

model;image reconstruction; nonlocal; low-rank approximation; 

total variation 

I. INTRODUCTION 

As a typical type of Emission Computed Tomography 
(ECT), positron emission tomography (PET) is irreplaceably 
used in functional imaging. By injecting a certain 
isotope-labeled compound, positrons will be emitted and 
annihilated with nearby electrons in the body. The photons 
generated by annihilations can be collected and then be used to 
recover the tomographic radioactivity maps. How to recover 
high quality images is continuously studied and discussed by 
numerous researchers, given the increasing diagnosis 
requirement. 

The emission image reconstruction algorithms largely fall 
into two groups: analytic strategies and iterative statistical 
methods. The first group is filtered back-projection (FBP) 
based algorithms, or modifications thereof, which is built on 
the Radon transform. Although this method is fast and easy to 
be implemented, it overlooks the statistical property and fails to 
produce high quality reconstructed images. 

Iterative statistical approaches have become the primary 
focus of researches. Maximum likelihood-expectation 
maximization (ML-EM) [1][2] integrating the Poisson model, 
serves as a milestone in PET reconstruction algorithms. 
Nevertheless, it suffers from the ill-conditioning problem, i.e. 

the solutions are sensitive to small changes in the data [3] and 
consequently lead to the ‘checkboard’ effect in recovered 
images. In order to overcome these drawbacks, image priors 
(or regulations) are introduced into the objective function, 
forming the maximum a posteriori (MAP) estimation [4], or 
penalized ML method [5]. Typical priors and regulations 
include quadratic regulation [6], Gaussian prior [7], Huber 
prior and Gibbs prior [8]. Though many algorithms are already 
developed, there is still a tradeoff between the noise depression 
and the resolution improvement in practice. What is more, the 
traditional priors may overlook the structural information and 
hence over-smooth the edges of different regions.  

Like some other medical images are, PET images are fairly 
assumed to have the piece-wise constant property-- each pixel 
in the same region should have the same value, while the 
boundary of each region is allowed to be sharply-variant. Total 
variation (TV) [9] minimization is properly used based on this 
feature. From the other perspective, with the rapid rising of 
compressive sensing, sparsity is well employed in this 
piece-wise constant images. Several related efforts were made 
in this area. Xu developed a method based on dictionary 
learning to exploit structural sparsity in the low-dose CT 
reconstruction [10]. Simultaneous sparse coding was proposed 
in [11]. More recently, it was found that both natural and 
medical images have plenty of similar structures within 
themselves, and this originated the conception of ‘nonlocal 
self-similarity’, which has led to the famous nonlocal means 
methods [12], block-matching 3D denoising (BM3D)[13], etc. 

Also, nonlocal self-similarity was introduced in [14] and [15] 

to enhance the structural sparsity dramatically. 

Although TV constraint is widely reckoned as eminent in 

providing edge-preserving guidance and proved to be quite 

efficient in denoising of medical image, it unfortunately 

causes the so-called ‘stair-case’ effect, which degrades the 

accuracy and the visuality of the recovered image. On the 

other hand, while the nonlocal patch-based methods are 

remarkably in keeping structural information, they are less 

effective in ruling out the noise, especially when the penal 

parameter is small. However, if the parameter were tuned to a 

large degree, the recovered image would suffer from the 

rectangular-shaped edge. In that sense, it is natural to develop 

an algorithm which utilizes the merits of both methods. 
In this paper, we propose a novel algorithm which exploits 

both the local and nonlocal self-similarity of reconstructed 
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image to remarkably improve the resolution while keeping the 
noise at a low level. Nonlocal traits conducted by the low rank 
approach are firstly introduced into the reconstruction based on 
Poisson model, while total variation method is simultaneously 
implemented in this frame in order to compensate the 
shortcoming which inherited in patch-based methods. We 
implement these two regulations into Poisson model jointly, 
and optimize this function in an alternative and distributed 
way.  Denoted as PNLTV, our proposed method shows its 
substantial superiority in reconstruction accuracy, denoising 
quality as well as robustness. Detailed implementation and 
experiments are presented in the following sections. 

II. METHOD 

A. PET imaging model 

As a typical type of Emission Computed Tomography 

(ECT), the reconstruction of PET can be modeled as the affine 

transform, 

 y Gx r s= + + , (1) 

where y  denotes the expectation of sinogram y, and x 

denotes the radioactivity image which is supposed to be 

reconstructed. Here { , 1, , }qy y q M= = ⋅⋅⋅  denotes the sum 

of collected photons along each detector pair, and M is the 

number of detector pairs; 
M NG ×∈ is the system matrix, 

whose entry 
qjG is the average probability of detecting a true 

coincidence from voxel site j at Line of Response (ROI) q; r 

and s refer to random incidence and scattered coincidence 

respectively. 

Given the photon detecting nature mentioned above, y is 

modeled by independent Poisson distribution: y~Poisson{ y }, 

In that sense, the likelihood function of y can be written as: 

 Pr( | )
!

q

q

yM
y q

q q

y
y x e

y

−
= ∏ , (2) 

And for the sake of optimizational convenience, we often 

minimize the negative log-likelihood function instead: 

min P( ) min log(Pr( | )) min log( )
M

q q q
x x x

q

x y x y y y= − = −         s.t. y Gx r s= + +   (3) 
The constant term log( !)qy  is left out in (3). It’s also worth 

noticing that since the log function is monotonic, (3) is equal 

to maximizing the probability in (2).  

B. Problem Formulation 

Furthermore, based on (3), we can organize our regularized 

objective function in the form of:  ),(TV),NL()P( min
,,

ωβα
ω

xLxx
Lx

++ .  (4) 

Here the latter two terms jointly serve as the prior: NL( , )x L  
denotes the nonlocal low-rank constraint which aiming at 

exploiting the nonlocal structured sparsity; TV( , )x ω  denotes 

the total variation constraint which is used to enhance local 

structure sparsity and complement the rectangular-edge effect 

inherited in patch-based methods; P( )x denotes the fidelity 

term mentioned in (3); ,α β serve as the weighting parameter 

respectively. 

1) Nonlocal low-rank regularization 

In this model, we use a low-rank constraint to exploit the 

nonlocal property in the reconstructed image. The 

implementation of nonlocal regularization includes 2 steps: 

grouping the self-similar characterized patches within the 

image and enforcing low-rank constraint on the grouped 

matrix [15]. The basic assumption underlying regularization 

term is that self-similarity is abundant in the restored image 

[15].  

Practically, after each iteration, we can obtain lots of

n n× sized patches n

ix ∈ at position i from the temporary 

estimated image. For each exemplar patch vector ix , we 

search its m-nearest patches based on Euclidean distance 

within the image, i.e. 
,S { | || ||<T}i i i s is x x= − , where T

i
is 

distance threshold which is determined by the m-th nearest 

patch to ix , andSi is the set of  positions of patches related to

ix . Then we can get a matrix 
i

X =
,0 ,1 , , 1[ , ,..., ,..., ]i i i s i mx x x x − ,

n m

iX C ×∈  based on each exemplar patch vector ix , where

,0ix is denotes the patch vector ix . 

  The low-rank constraint comes after the grouping 

procedure. Since the image has the nonlocal self-similar 

structures, each matrix
i

X  is meant to possess low-rank 

property. In practice, each matrix
i

X  can be decomposed into

i i
L W+ , where 

i
L  is the low-rank matrix while 

i
W  is the 

Poisson noise matrix which is meant to be eliminated by the 

constraint. Therefore,
iL can be recovered by the following 

simplified model: 

 2 2arg ( ),  . . || ||
i

i i i i F
L

L rank L s t X L ωσ= − ≤  ,  (5) 

where 2
|| ||F is the Frobenious norm and 2

ωσ  denotes the 

variance of Poisson noise. 

2) Total variation regulation 

Rudin, Osher, and Fatemi (ROF) [16] first introduced total 

variation (TV) method into the image denoising. From then 

on, TV method had become a classic and widely-discussed 

topic in this field. The general version of TV objective 

function in image reconstruction is: 

 
pmin || ||     s.t. j

x
j

D x y Gx r s= + + ,  (6) 

where the operating matrix 
jD to represent the discrete 

differential operation at position j; p=1or 2. 

However, in order to implement the augment Lagrangian 

method into global optimization, we consider an equivalent l2 

form of (6): 

2min || ||  j
x

j

ω  

 s.t.  and =  for all j jy Gx r s D x jω= + +   (7) 
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C. The Optimization of PNLTV 

Solving the objective function (4) directly is nearly an 

impossible mission. However, note that the objective function 

(4) is composed of three subproblems related to , ,x L ω , thus 

we would minimize (4) by each variable while make other 

variables fixed. In this section we demonstrate our distributed 

optimization method with respect to each subproblem. 

1) L-subproblem 

During the optimization procedure, suppose a estimation 

of image
kx is given after k-th iteration, we can get a set of

1 1

,0 ,1 , 1[ , ,..., ]k k k k k k n m

i i i i i mX B x x x x C+ + ×
−= = ∈ ,  ݅ = 1,2, … , ݊௜ , 

where 1k

iB + denotes the operative matrix which can extract 

1k

iX
+  from 

kx . While the original low-rank approximation 

problem is given by (4), we practically rewrite the problem 

into a Lagrangian form by choosing a properλ , namely: 
1 1 2

*arg min || || || ||
i

k k

i i i F i
L

L X L Lλ+ += − + . 

        1 2arg min || || ( )
i

k k

i i F u i
L

u

B x L Lλ σ+= − +   (8) 

where *|| || denotes nuclear norm, or sum of the singular value 

in other words; uσ denotes the u-th largest singular value. 

By approximating the rank to nuclear norm, the low-rank 

model can be turned into convex optimization from NP-hard 

problem. In this algorithm, we adopt the singular value 

thresholding (SVT) method [17] to solve the 

rank-minimization problem efficiently and effectively. In that 

sense, 1k

iL + can be estimated by: 

 
~

1 ( )k T

iL U Vλ+
+= −   (9) 

where TVU
~

 denotes the singular value decomposing (SVD) 

of matrix 1k

iX + , and ( )x + = max( ,0)x  

2) ω -subproblem 

Based on Augmented Lagrangian method, we formulate 

theω -subproblem as: 

 1 2

2 2arg min || || || || ( )
2

k k k k
Dx Dx

ω

η
ω ω ω ν ω+ = + − − − (10) 

where η  is called penalty parameter and 
kν  is called 

Lagrange multiplier. Equation (10) share the same purpose 

with (7) .Applying shrinkage operator to (10) yields the 

algorithm:   

 1

2

2

1 /
max || || ,0

|| / ||

k k k
k k

k k

Dx
Dx

Dx

ν ν η
ω

η η ν η
+   −

= − − 
− 

, (11) 

and the multiplier is updated as: 1 +1( )k k k kv v Dxη ω+ ← − − . 

3) x-subproblem 

  After ,L ω being updated, current estimation of 

reconstructed image x can be solved by our proposed 

algorithm with other variable fixed. Actually previous 

subproblems both serve as the penalty terms of x-subproblem, 

thus this part plays a key role in our proposed framework. 

   

  Initially, based on (4), our objective function can be written 

in a joint way: 

2

*

2

22

( , , ) log( )+ ( || || )

                          ( || || )    
2

M

q q q i i F i

q i

x L y y y B x L L

Dx

ω α λ

η
β ω ω

Ω = − − +

+ + −

 
  

  s.t. y Gx r s= + + . (12) 

Here we adopt L to represent 
k 1L +

 and ω to represent 
1kω +

for illustrative simplicity. Thus, in this subproblem, the 

aim of the optimization is to solve: 
N

2 2

ˆarg min ( ; ) arg min ( log( ))  

                       ( ) ( )
2

i

M
k

qj j qj qj j
x x

j q

n N N

ij j ij j j j

i j j

x x x g x c g x

B x L D x
βη

α ω

= Ω = − +

− + −



 

 

 ˆs.t.  
j

k

qj j

qj in k

qj j q qj

g x
c y

g x r s
=

+ +
, (13) 

where 
qjg  denotes the qj-th entry of system matrix G; 

ijB

denotes the j-th entry of operative matrix B; 
jD represents the 

discrete differential operation at position j. It is worth 

mentioning that we adopt expectation maximization (EM) in 

our algorithm by introducing
qjc , whose expectation 

qjĉ  

represents the possibility of the j-th voxel detected by the q-th 

detector pair. 

By differentiating ( ; )kx xΩ  with respect to x, we get a 

quadric function: 

 
( ; ) 1

0 A B C 0
k

j j j j

j j

x x
x

x x

∂Ω
= ⇔ + + =

∂
, (14) 

where the solution 1k

jx +  is the positive root of (14): 

Algorithm 1:PET reconstruction via joint regulations 

(PNLTV)  

Input: Sinogram y and system matrix G, weighting parameter

, , ,α β λ η . 

1: Initialization: 00, ( )k x FBP y= = . 

2: Repeat: 

3:   Compute matrix ,
k

iX i∀  using (9) L
4:   Update differential vector 1kω +  using (11)   ω
5:   Update multiplier 1 +1( )k k k kv v Dxη ω+ ← − − . 

6:   Repeat:   x
7:     E-step: compute ( ; )kx xΩ  using (13). 

8:     M-step: update 1,k

jx j+ ∀  using (15). 

9:   Until: Inner Relative change 1 1 4) 10k k kx x x+ + −− <(10:  1k k← +  

11:Until: Relative change 1 1 5) 10k k kx x x+ + −− <(  

12:Output: 
kx  
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2

1
B B 4A C

 A   2 B
2A

j j j jk

j j ij j

ij

x Dα βη+
− + −

= = +，  

 
j

ˆB 2 C
q qn n

k

qj ij j j qj

q i q

g L cα βηω= − − = −  ，   (15) 

Note that since the exact solution of x is no available, we 

conduct EM step iteratively until approaching a inner 

convergence within x-subproblem. 

III. EXPERIMENTS 

In this section, we conduct groups of experiments in order 

to validate the merits of our proposed method. The data we 

adopt are mainly based on the Monte Carlo simulation, which 

is widely-used in research of emission tomography. The 

simulation data consist of a set of Zubal brain phantoms aimed 

at testing the reconstruction accuracy and robustness, and 

lesion phantom aimed at evaluating the detection property. 

Furthermore, analysis respect to denoising and structural 

enhancement are conducted based on the Monte Carlo 

simulated data. Also, we employ the real PET thorax data 

obtained from CTI ECAT EXACT System provided by 

Fesslers’s group, in order to validate the proposed method in 

real case. 

 For quantitative accuracy evaluation, we employed the 

relative bias as well as relative variance, which are defined as: 

1
ˆ ˆ

N

j j jj
bias x x x

N
= − , 

2

j

1
ˆvariance ( )

1

N

j jx x x
N

= −
−
 [20], 

where N denotes the pixel number in the tested region; x  

denotes the mean value within this region; ˆ
jx  denotes the 

value of ground truth at position j. Given the fact that the 

emission tomography images are of piece-wise constancy, the 

better the reconstruction outcome is, the smaller the bias and 

variance are within each region. Besides, the peak signal to 

noise ratio (PSNR) is introduced in validating the convergent 

performance. Also, the qualitative evaluation is visually 

presented by contrasting the ground truth image with images 

reconstructed by different algorithms, including the famous 

maximum likelihood-expectation maximization (ML-EM) 

algorithm [19], penalized likelihood incremental optimization 

(denoted as PL-IO) method[20], and total variation 

minimization by augmented Lagrangian (TVAL) method [21].  

A. Zubal brain phantom 

Initially, we use the Zubal brain phantom to examine the 
accuracy of the reconstructed image. As the ground truth 
shown in Fig.1(a), the image includes 4 regions of interest 
(ROI), and pixel shares same value within the same ROI 
according to the piece-wise constant property. On the other 
hand, the Monte Carlo simulation is based on Geant4 
Application for Emission Tomography (GATE) platform. In 
this experiment, all the settings are simulated completely 
corresponding to real case, including the photon energy, 
scanner structure and so on. Data measured under different 

counting rates ( 6 6 71 10  5 10  2 10× × ×， ， ) are collected in the 

form of sinogram, and each one has 64 64× projections. 

Table 1 demonstrates the relative bias and variance of the 

reconstructed results of different algorithms under diversified 

counting rates: 6 6 71 10  5 10  2 10× × ×， ， , and minimums of each 

column are in bold. According to the table, our proposed 

method PNLTV has substantially lower biases and variances 

than that of others, which means less differences compared 

with ground truth and lower level of noise. Besides, the 

    (a) Zubal brain phantom              (b) Lesion phantom 

Fig.1. Ground truth phantom 

TABLE I 

RELATIVE BIAS AND VARIANCE OF RECONSTRUCTED BRAIN 
PHANTOM UNDER DIFFERENT COUNTING RATES 

Algorithm 
Bias 

 
Variance 

1x106 5x106 2x107  1x106 5x106 2x107 

ML-EM 0.2870 0.2199 0.1984 
 

0.1517 0.0773 0.0572 

TV-AL 0.2182 0.1323 0.0771 
 

0.1106 0.0524 0.0229 

PL-IO 0.2706 0.1403 0.0826  0.1109 0.0408 0.0263 

PNLTV 0.1753 0.1086 0.0764 
 

0.0917 0.0294 0.0149 

 

 
       (a) ML-EM         (b) TV-AL 

 
        (c) PL-IO             (d) PNLTV 
Fig. 2. Reconstruction of Monte Carlo simulated brain phantom data under 106 

counting rate. 
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robustness of PNLTV is validated under different counting 

rates. 

To analyze each algorithm further, relative bias and 

variance of each ROI are collected under 65 10× counting rate, 

as shown in Table 2. Similarly, optimal statistical results are 

shown in bold. It can be seen that the results of proposed 

method are overall superior to its counterparts of other 

algorithms. Nevertheless, there is only one exception that the 

bias of TVAL in ROI3 is slightly lower than that of PNLTV, it 

is partially owing to TVAL’s good edge preserving property. 

Also, visual analyses are introduced in this trail of 

experiments. In order to simulate the low-dose cases, we adopt 
61 10× counting rate data to present the reconstructed images, 

as shown in fig.2. According to this figure, image 

reconstructed by ML-EM suffers from noises severely; image 

reconstructed by TVAL has a stair-case effect; 

over-smoothness is spotted in image reconstructed by Pl-IO. 

In contrast, our proposed method not only suppresses the 

Poisson noise excellently but also has an eminent performance 

in preserving structural information. 

In addition, the convergence performance of mentioned 

algorithms is shown in Fig.5. As we can see, our PNLTV and 

PL-IO have demonstrated faster convergence while PNLTV 

finally converged at the highest PSNR. 

B. Lesion phantom 

One major goal of emission tomography is to detect lesions 

or tumors, especially in PET and SPECT image analysis. In 

this regard, a 128 128× sized lesion phantom simulated by 

Monte Carlo is adopted in this experiment. The lesion 

phantom, as indicated in Fig.1.(b), has two groups of lesion 

regions, and each group has three sizes of circular lesion 

regions. 

Lesion images with 55 10× counting rate reconstructed by 

different methods are present in Fig.3. In this study, different 

algorithms perform variedly. Without image prior, ML-EM 

fails to discern the smallest lesion regions from the 

background noise. Moreover, although TVAL and PL-IO both 

have acceptable results when recover the white regions, they 

fail to recover the smallest black lesion regions. In 

comparison, our method recognizes each of the regions and 

shows a better performance in detection. 

C. Real patient data 

The data set is provided by Prof. Fessler. It was collected in 

160 radial samples (varies fastest) by 192 angular samples 

(over 180 degrees), obtained from CTI 921 ECAT EXACT 

 
        (a) ML-EM                (b) TV-AL 

 
        (c) PL-IO                  (d) PNLTV 

Fig.4. Reconstruction results of real thorax data. 

 
        (a)ML-EM                 (b)TV-AL 

 
        (c) PL-IO                   (d)PNLTV 

Fig.3. Detectability experiment on lesion phantom under 5x105 

counting rate. 

TABLE II 

RELATIVE BIAS AND VARIANCE OF DIFFERENT ROI  

UNDER 5x106 COUNTING RATE  

Algorithm 
Bias 

 
Variance 

Whole ROI1 ROI2 ROI3 ROI4  Whole ROI1 ROI2 ROI3 ROI4 

ML-EM 0.2199 0.2514 0.1830 0.2348 0.3843  0.0773 0.0168 0.0399 0.0099 0.1936 

TV-AL 0.1323 0.0916 0.1504 0.0734 0.5472  0.0524 0.0131 0.0551 0.0035 0.5386 

PL-IO 0.1403 0.1187 0.1488 0.1033 0.3895  0.0408 0.0087 0.0442 0.0025 0.2532 

PNLTV 0.1086 0.0879 0.1131 0.0877 0.3583  0.0294 0.0074 0.0325 0.0026 0.1586 
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Scanner. The sum of the photons is 920653. The reconstructed 

results are presented in Fig. 4. It can be witnessed that PNLTV 

performs better while images recovered by TVAL and PL-IO 

suffer from stair-case effect and over-smoothness respectively. 

IV. CONCLUSION 

In this paper, we have designed a novel algorithm for PET 

reconstruction. On one hand, by a low-rank approach, our 

method introduces the nonlocal self-similarities within the 

recovered image to itself, thus the structural information is 

enhanced while the sparsity is also strongly kept. On the other 

hand, total variation constraint is adopted in order to further 

depressed the noise and compensate the rectangular-edge 

effect inherited in the patch-based methods. These two penalty 

terms, which serve as the image prior, are firstly and jointly 

optimized in the Poisson reconstruction frame. The proposed 

method shows remarkable performance in resolution 

improvement, denoising, lesion detection and convergence. 

Moreover, since the structural information is acquired from 

the recovered image itself during the iterations, the method is 

of outstanding adaptability as well as robustness. 
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