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Abstract—We consider SIS contagion processes over networks where, a classical assumption is that individuals’ decisions to adopt a
contagion are based on their immediate neighbors. However, recent literature shows that some attributes are more correlated between
two-hop neighbors, a concept referred to as monophily. This motivates us to explore monophilic contagion, the case where a contagion
(e.g. a product, disease) is adopted by considering two-hop neighbors instead of immediate neighbors (e.g. you ask your friend about
the new iPhone and she recommends you the opinion of one of her friends). We show that the phenomenon called friendship paradox
makes it easier for the monophilic contagion to spread widely. We also consider the case where the underlying network stochastically
evolves in response to the state of the contagion (e.g. depending on the severity of a flu virus, people restrict their interactions with
others to avoid getting infected) and show that the dynamics of such a process can be approximated by a differential equation whose
trajectory satisfies an algebraic constraint restricting it to a manifold. Our results shed light on how graph theoretic consequences affect

contagions and, provide simple deterministic models to approximate the collective dynamics of contagions over stochastic graph

processes.
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1 INTRODUCTION

THE Susceptible-Infected-Susceptible (SIS) model [1] is
one of the widely used models in the study of diffusion
processes e.g. spread of contagious diseases, information
etc. This paper focuses on a discrete time version of the SIS
model on a network that involves two steps (reviewed in
detail in Sec. 2) at each time instant:

Step 1 - An individual (called an agent) m is sampled uni-
formly from the population.

Step 2 - Agent m (from step 1) observes her neighbors (de-
fined by the underlying network) and decides to choose
one of the two possible states: infected or susceptible.

In this context, the aim of this paper is to answer the
following questions:

Aim 1: How does sampling agent m from a non-uniform
distribution change dynamics of the SIS model?

Aim 2: Assume that the diffusion process is based on
monophilic contagion where agent m observes two-hop
neighbors (friends of friends) in step 2. How does this
change the dynamics of the SIS model?

Aim 3: Assume that the underlying network is a reactive
network i.e. the network evolves as a Markov chain
whose transition probability matrix is parameterized
by the diffusion state. How can one obtain a tractable
model of the collective dynamics of the diffusion and
graph process?
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Next, we discuss the motivation behind the above three
aims and how they relate to the literature in detail.

1.1 Motivation

The impact of network structure on diffusion processes
has been studied extensively in literature. Notable works
include [1], [2], [3], [4], [5], [6]. Three key assumptions made
in most of these works are:
i. Each node is equally likely to update her state at each
time instant
ii. The decision of an individual to adopt a contagion or
not is affected only by the immediate neighbors of a
network fully defined by its degree distribution
iii. The underlying social network remains same through-
out the diffusion process.

Motivation for Aim 1: Contradictory to the assumption i,
the probability that an individual updates her state (e.g.
opinion) depends on her social connectivity (i.e. degree in
the social network) according to recent findings [7]. Moti-
vated by such findings, our Aim 1 (in Sec. 3) studies the
modified SIS model where the state of a random friend
(sampled proportional to degree) evolves at each time in-
stant. This modification to the standard SIS model reflects
the fact that high degree nodes evolve more often in real-
world social networks as found in [7]. The main result of Sec.
3 shows that this modification results in different dynamics
(compared to the standard SIS model).

Motivation for Aim 2: It has been shown in several recent
works that the individuals” attributes and decisions in real
world social networks are affected by and/or correlated
with two-hop neighbors (i.e. friends of friends). For exam-
ple, [8] recently showed that certain attributes of individuals
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might be more similar to friends of friends (referred to as
“the company you are kept in”) than to the attributes of
their friends (referred to as “the company you keep”). This
phenomenon is referred to as monophily. This should be
contrasted to homophily [9] where attributes of individuals
are similar to their friends. Further, [10] also discusses
how social influence extends beyond immediate neighbors
and considers a model where strategic agents (on a social
network) are affected by both immediate as well as two-hop
neighbors. Motivated by the works in [8], [10], our second
aim (in Sec. 4) explores the case where the diffusion process
is based on monophilic contagion i.e. agents take their friends
of friends (two-hop neighbors) into account (in contrast to
assumption ii) to decide whether to adopt the contagion'.
Further, Sec. 4 also explores how assortativity (which is a
property that is not captured by the degree distribution of
the network) and the graph theoretic phenomenon called
friendship paradox affects the diffusion process.

Motivation for Aim 3: We note that most real world net-
works are of random nature and evolve rapidly during the
diffusion process. More generally, the underlying network
may evolve in a manner that depends on the state of the
diffusion process as well e.g. depending on the state of a
spreading disease (fraction of infected individuals for ex-
ample), people might restrict their interactions with others
and thus, changing the structure of the underlying contact
network [11]. Hence, modeling a network as a deterministic
graph does not capture this (diffusion state dependent)
evolution of real world networks. Motivated by this, in our
third aim (in Sec. 5), the underlying network is modeled as
a Markovian graph process whose transition probabilities
at each time instant depend on the state of the diffusion
process.

1.2 Related Work

Apart from the literature discussed in Sec. 1.1 that serve as
the main motivation for our work, several other works also
pursued related research directions on friendship paradox,
diffusion processes and evolving networks.

Related to the second aim of this paper, [12] studied how
different methods of perceiving the number of friends of
friends (e.g. mean, median) affect the time taken to reach
consensus in networks (with different assortativities) as a
result of the friendship paradox. Authors experimentally
showed that these different perception models result in
different times for the individuals in the social network
to reach consensus. This is related to our second aim
(monophilic contagion in Sec. 4) in that our aim is also
to compare diffusions driven by two different perception
methods: observing friends vs observing friends of friends.
[13] experimentally (using Twitter and mobile phone data)
discovered that friendship paradox is less pronounced
among most frequently contacted friends and, used a mod-
ified Susceptible-Infected model to numerically illustrate
how this will reduce time taken to reach consensus. Further,

1t should be noted that the concept of monophily presented in [8]
does not give a causal interpretation but only the correlation between
attributes of two-hop neighbors. What we consider is monophilic conta-
gion (motivated by monophily): the contagion caused by the influence
of two hop neighbors.

2

[14] also experimentally explored the connection between
diffusion processes and friendship paradox and proposed
a viral marketing approach which seeds random neighbors
of random nodes instead of random nodes. The main con-
trast between these works and our second research aim is
that our work focuses on the collective effects of two-hop
(monophilic) contagion, assortativity and friendship para-
dox on diffusion processes whereas previous work focused
on aspects related one-hop friends. The effects of degree
correlations on diffusion processes have been explored in
several works. Excellent reviews can be found in [15], [16].
Further, the connection between degree correlations and
effects of friendship paradox has been studied in [12], [17],
[18]. The main difference between these previous works and
our results on assortativity (Sec. 4.2) relies on the fact that
we restrict our attention to the particular case of monophilic
contagion which has not been explored literature previously.
Further, we also aim to illustrate how the effect of friendship
paradox on monophilic contagion is amplified or reduced
by the assortativity.

Related to the third aim this paper, several works pro-
posed and analyzed evolving graph models: [19] studied
susceptible-infected- susceptible (SIS) model on an adap-
tive network where susceptible individuals are allowed
to rewire their connections with infected individuals and
show that rewiring leads to different properties compared
to classical SIS model, [20], [21] studied variants of adaptive
susceptible-infected-susceptible (ASIS) model where sus-
ceptible individuals are allowed to temporarily cut edges
connecting them to infected nodes in order to prevent the
spread of the infection, [22] analyzed the stability of epi-
demic processes over time-varying networks and provides
sufficient conditions for convergence, [23] studied a SIS
process over a static contact network where the nodes have
partial information about the epidemic state and react by
limiting their interactions with their neighbors when they
believe the epidemic is currently prevalent, [24] considered
a diffusion process on a network whose evolution function-
ally depends on the set of initial seeds of the diffusion pro-
cess. In contrast to these prior works, the model we discuss
in Sec. 5 is more general in the sense that the underlying
network is treated as a Markov process with a (functional)
dependency on the state of the contagion. Further, our aim
is to model monophilic contagion on a reactive network in a
manner that is amenable to data-driven statistical inference
methods.

1.3 Main Results and Organization
Main results of this paper are as follows:

1) Random friends (i.e. nodes sampled with probability
proportional to degree) being sampled in step 1 of the
SIS model results in different dynamics compared to
the classical SIS model. However, critical thresholds on
the parameters of the SIS model (which determine if
the contagion will eventually die away or not) are not
affected by this change.

2) The critical threshold corresponding to monophilic con-
tagion is smaller than the critical threshold of non-
monophilic contagion as a result of friendship para-
dox. This makes monophilic contagion easier to spread
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compared to non-monophilic contagion. Further, net-
work disassortativity (negative degree-degree corre-
lation) amplifies the effect of friendship paradox on
monophilic contagion.

3) The collective dynamics of an SIS process (based on
monophilic contagion) on a reactive network can be
modeled by an ordinary differential equation (ODE)
with an algebraic constraint. This provides a simple
deterministic model of the stochastic dynamics of a
complex system (an SIS process on a random graph,
both evolving on the same time scale).

Organization: Section 2 reviews the mean-field dynamics
model of an SIS process and the concept of friendship
paradox. Sec. 3 explores the effect of non-uniformly sam-
pled m in step 1 of SIS-model and states the first main
result. Sec. 4 derives the critical thresholds for monophilic
contagion, states the second main result and discusses some
of its generalizations. Finally, Sec. 5 explores the collective
dynamics of the SIS process on a reactive network and states
the third main result.

2 PRELIMINARIES: APPROXIMATION OF SIS

MODEL AND FRIENDSHIP PARADOX

In this section, the basic SIS diffusion process and how it
can be modeled using deterministic mean-field dynamics
is reviewed briefly. Then, the friendship paradox, some of
its recent generalizations and applications are discussed.
These results related to mean-field dynamics and friendship
paradox are used in subsequent sections to obtain the main
results.

2.1 Discrete time SIS Model

Consider a social network represented by an undirected
graph G = (V, E) where V = {1,2, ..., M} denotes the set
of nodes. At each discrete time instant n, anode v € V of the
network can take the state sgfj) € {0, 1} where, 0 denotes the
susceptible state and 1 denotes the infected state. The degree
d(v) € {1,...,D} of anode v € V is the number of nodes
connected to v and, M (k) denotes the total number of nodes
with degree k. Then, the degree distribution P(k) = %(k)
is the probability that a randomly selected node has degree
k. Further, we also define the population state Z,, (k) as the
fraction of nodes with degree k that are infected (state 1) at
time n i.e.

1
:En(k) = 7M(k)vezv]l{d(“)=’fa855))=1}’ k: 1,...

,D. (1)
For this setting, we adopt the SIS model used in [1], [25]
which is as follows briefly.

Discrete Time SIS Model: At each discrete time instant n,

Step 1: A node m € V is chosen with uniform probability
pX(m) = 1/M where, M is the number of nodes in the
graph.

Step 2: The state st e {0,1} of the sampled node m
(in Step 1) evolves to 85:1)1 € {0,1} with transition
probabilities that depend on the degree of m, number
of infected neighbors of m, population state of the
network z,,

3

Note that the above model is a Markov chain with a state
space consisting of 2 states (since each of the M nodes
can be either infected or susceptible at any time instant).
Due to this exponentially large state space, the discrete
time SIS model is not mathematically tractable. However,
we are interested only in the fraction of the infected nodes
(as opposed to the exact state out of the 2 states) and
therefore, it is sufficient to focus on the dynamics of the
population state Z,, defined in (1) instead of the exact state
of the infection.

2.2 Mean-Field Dynamics Model for SIS Diffusion Pro-
cesses

Mean-Field dynamics refers to a simplified model of a
(stochastic) system where the stochastic dynamics are re-
placed by deterministic dynamics. Most of the research
related to mean-field dynamics are based on the seminal
work of Kurtz [26] on population dynamics models. In this
section, we first discuss how mean-field dynamics can be
used as a deterministic model of a SIS diffusion process
over an undirected network. Since an SIS diffusion over
a social network is a Markov process whose state space
grows exponentially with the number of nodes, mean-field
dynamics offers a deterministic model that is analytically
tractable [1], [2], [3], [25]. The following result from [25]
shows how mean-field dynamics model closely approxi-
mates the stochastic dynamics of the true population state
ZTn.

Theorem 1 (Mean-Field Dynamics). 1) The population
state defined in (1) evolves according to the following
stochastic difference equation driven by martingale difference

process:
1
a1 (k) = Zn (k) + 17 [Por (K, 2n) = Pro(k, 2n)] + G
(2)
where,

Py (k,Zp) = (1 — Z,(k)) x
P(spty = 1lsy = 0,d(m) =k, Tp)
3)
Pio(k,Zy) = Tp(k)P(sp'y = 0lsy' = 1,d(m) =k, Zp).

are the scaled transition probabilities of the states and, (,, is
a martingale difference process with ||(,||2 < 17 for some
positive constant T

2) Consider the mean-field dynamics process associated with the
population state:

P () = (k) + 2 (Pou (k. 2) — Pro(k, 2,)) 6

where, Py1(k,xy,) and Pyo(k,x,,) are as defined in (3), (4)
and xo = Zo. Then, for a time horizon of T points, the
deviation between the mean-field dynamics (5) and the actual
population state Z,, of the SIS model satisfies

-z > e} < —Cyé?
P{OrgnnangHxn Znlloo = €} < Cpexp(—Cae” M) (6)

for some positive constants C, Co providing T = O(M).

First part of Theorem 1 is the martingale representation
of a Markov chain (which is the population state Z,).
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Note from (2) that the dynamics of the population state Z,,
resemble a stochastic approximation recursion (new state is
the old state plus a noisy term). Hence, the trajectory of
the population state Z,, should converge (weakly) to the
deterministic trajectory given by the ODE corresponding to
the mean-field dynamics in (5) as the size of the network
M goes to infinity i.e. the step size of the stochastic approx-
imation algorithm goes to zero (for details, see [27], [28]).
Second part of the theorem provides an exponential bound
on the deviation of the mean-field dynamics approximation
from the actual population state for a finite length of the
sample path. In the subsequent sections of this paper, the
mean-field approximation (5) is utilized to study the effects
of various sampling methods and friendship paradox on the
SIS model of information diffusion.

2.3 Friendship Paradox

Friendship paradox refers to a graph theoretic consequence
that was introduced in 1991 by Scott. L. Feld in [29]. We
briefly review of the main results related to friendship
paradox in this subsection. Feld’s original statement of the
friendship paradox is “on average, the number of friends
of a random friend is always greater than or equal to the
number of friends of a random individual”. Here, a random
friend refers to a random end node Y of a uniformly chosen
edge (a pair of friends). This statement is formally stated in
Theorem 2. Further, Theorem 3 (based on [30]) states that a
similar result holds when the degrees of a random node X
and random friend Z of a random node X are compared as
well.

Theorem 2 (Friendship Paradox - Version 1 [29]). Let
G = (V, E) be an undirected graph, X be a node chosen uni-
formly from V and, Y be a uniformly chosen node from a
uniformly chosen edge e € E. Then,

E{d(Y)} > E{d(X)}, @)
where, d(X) denotes the degree of X.

Theorem 3 (Friendship Paradox - Version 2 [30]). Let
G = (V, E) be an undirected graph, X be a node chosen uni-
formly from V and, Z be a uniformly chosen neighbor of a
uniformly chosen node from V. Then,

d(Z) Zfosd d(X) (8)
where, > f,4q denotes the first order stochastic dominance?.

The intuition behind Theorem 2 and Theorem 3 stems
from the fact that individuals with a large number of
friends (high degree nodes) appear as the friends of a large
number of individuals. Hence, these high degree nodes can
contribute to an increase in the average number of friends
of friends. On the other hand, individuals with smaller
number of friends appear as friends of a smaller number of
individuals. Hence, they do not cause a significant change
in the average number of friends of friends.

2A discrete random variable X (with a cumulative distribution
function F'x) first order stochastically dominates a discrete random
variable Y (with a cumulative distribution function Fy), denoted
X >fosq Y if, Fx(n) < Fy (n), for all n. Further, first order stochastic
dominance implies larger mean.

4

Friendship paradox, which in essence is a sampling bias
observed in undirected social networks has gained attention
as a useful tool for estimation and detection problems in
social networks. For example, [31] proposes to utilize friend-
ship paradox as a sampling method for reduced variance
estimation of a heavy-tailed degree distribution, [32], [33],
[34] explore how the friendship paradox can be used for
detecting a contagious outbreak quickly, [14], [35], [36], [37],
[38] utilizes friendship paradox for maximizing influence in
a social network, [39] proposes friendship paradox based
algorithms for efficiently polling a social network (e.g. to
forecast an election) in a social network, [40] studies how
the friendship paradox in a game theoretic setting can
systematically bias the individual perceptions. Further, [13],
[17], [18], [41], [42], [43], [44], [45], [46] present and analyze
further generalizations of the classical friendship paradox.

3 EFFECT OF THE SAMPLING DISTRIBUTION IN
THE STEP 1 OF THE SIS MODEL

Recall from Sec. 2.3 that we distinguished between three
sampling methods for a network G = (V, E): a random
node X, a random friend Y and, a random friend Z of a
random node. Further, recall that in the discrete-time SIS
model explained in Sec. 2.1, the node m whose state evolves

is sampled uniformly from V ie. m £ X. This section
studies the effect of random friends (Y or Z) evolving at
each time instant instead of random nodes (X) i.e. the cases
where m 4 Y and m 4 Z. Following is our main result in

this section:

Theorem 4. Consider the discrete time SIS model on a graph
G = (V, E) presented in Sec. 2.1.

1) If the node m is a uniformly chosen node Y from a uniformly
chosen edge e € E (i.e. node m with degree d(m) is chosen
with probability p¥ (m) = Zd(ima){(v)), then the stochastic

dynamics of the SIS model can'be approximated by,

1k

Tnt1(k) = xn(k)+ MZ(PM(k’x") — Pio(k,zy)), (9)
where k is the average degree of the graph G = (V, ).

2) If the node m is a random neighbor Z of a random node
X, then the stochastic dynamics of the SIS model can be

approximated by,

enar (k) = 2o (k) + % (Z ]1;((]’;)) P(k|k’)) x
—

(Po1(k,zn) — Pro(k,z,)), (10)

where k is the average degree of the graph G = (V, E), P is
the degree distribution and P(k|k') is the probability that a
random neighbor of a degree k' node is of degree k. Further,
if the network is a degree-uncorrelated network i.e. P(k|k)
does not depend on k', then (10) will be the same as (9).

Proof. Note that the population state {Z,, } .o is a Markov
chain with a state space of the size T} (M(d) +1). Let
PPP denote the transition probability matrix of this Markov
chain and e; denote the 13, (M (d) + 1) dimensional col-
umn vector with 1 in the " position and zeros in all
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other positions. Then, the Martingale representation of this
Markov chain is,

Pn+1 = (Ppop),pn + M

where, p, are states taking values in the space
{er,....emys (nr(ay+1)}, 7m is martingale difference noise.
Then, by multiplying with the state level matrix, we get

Tng1(k) = E{Zn(F)|Zn} + m

where, v, is the product of martingale difference noise 7,
and state level matrix. Then,

Tpi1(k) = B{Zn(k)|Z0n} + Y

(11)

(12)

(13)

5

4 CRITICAL THRESHOLDS UNBIASED-

DEGREE NETWORKS

In Sec. 3 of this paper, we focused on the step 1 of the
SIS model and, showed that different sampling methods for
selecting the node m result in different mean-field dynamics
with the same stationary conditions. In contrast, the focus
of this section is on the step 2 of the SIS model and, how
changes to this step would result in different stationary
conditions and critical thresholds.

FOR

4.1 Critical Thresholds for
Monophilic Contagions

Monophilic and Non-

m m _ _ 1
= P(3£L+)1 =1, SSL ) = 0,d(m) = k|Z,) x (Zn(k) + m)-i- Recall the SIS model reviewed in Sec. 2.1 again. We limit our

P(S{T2) = 0,87 = Ld(m) = Kfza) x (£(8) ~ 3755)

1 n

)
P(s\") = 0,50 = 1,d(m) = k|2,)) (@ (k) +1m (14)

Let,
A=P(sU) = 1,50 = 0,d(m) = k|z,)
B =P(s"") =0, =1,d(m) = k|z,,)
Then, we get
1
Tpy1(k) = Zn(k) + W(A — B) + 7. (15)

Then, the first and second parts of the Theorem 4 follow by
decomposing the joint distributions of A, B with respective
to the degree distributions of a random friend ¥ and a
random friend Z of a random node X respectively.

O

Theorem 4 shows that, if the node m sampled in the step
1 of the SIS model (explained in Sec. 2.1), is chosen to be a
random friend or a random friend of a random node, then
different elements z, (k) of the mean-field approximation
evolc\ifes at rates that are different to the classical case where
m = X. This result allows us to model the dynamics
of the population state in the more involved case where,
frequency of the evolution of an individual is proportional
his/her degree (part 1 - e.g. high degree nodes change
opinions more frequently due to higher exposure) and also
depends on the degree correlation (part 2 - e.g. nodes being
connected to other similar/different degree nodes changes
the frequency of changing the opinion).

Remark 1 (Invariance of the critical thresholds to the
sampling distribution in step 1). The stationary condi-
tion for the mean-field dynamics is obtained by setting
Tpi1(k) —xn(k) =0 for all & > 1. Comparing (5) with
(9) and (10), it can be seen that this condition yields the
same expression Py1 (k, z,,) — Pio(k,2,,) = 0, for all three
sampling methods (random node - X, random end of a ran-
dom link Y and, a random neighbor Z of a random node).
Hence, the critical thresholds of the SIS model are invariant
to the distribution from which the node m is sampled in
step 1. This leads us to Sec. 4 where, modifications to the
step 2 of the SIS model are analyzed in terms of the critical
thresholds.

attention to the case of unbiased-degree networks and viral

+ adoption rules discussed in [47].

Unbiased-degree network: In an unbiased-degree network,
neighbors of agent m sampled in the step 1 of the SIS model
are d(m) (degree of agent m) number of uniformly sampled
agents (similar in distribution to the random variable X)
from the network. Therefore, in an unbiased-degree net-
work, any agent is equally likely to be a neighbor of the
sampled (in the step 1 of the SIS model) agent m.

Viral adoption rules®: If the sampled agent m (in the step 1
of the SIS model) is an infected agent, she becomes suscepti-
ble with a constant probability 4. If the sampled agent m (in
the step 1 of the SIS model) is a susceptible (state 0) agent,
she samples d(m) (degree of m) number of other agents
X1, X2,...,Xq(m) (neighbors of m in the unbiased-degree
network) from the network and, adopts the contagion based
on one of the following rules:
Case 1 - Non-monophilic adoption rule: For each sampled
neighbor X;, m observes the state of X;. Hence, agent
m observes the states of d(m) number of random nodes.
Let a:X denote the number of infected agents among
X1, .., Xg(m)- Then, the susceptible agent m becomes

X
a’HL

infected with probability v 5 where, 0 < v < lisa
constant and D is the largest degree of the network.

Case 2 - Monophilic adoption rule: For each  sampled
neighbor X;, m observes the state of a random
friend Z; € N(X;) of that neighbor. Hence, agent m
observes the states of d(m) number of random friends
Z1,- . Zq(m) of random nodes Xy, ..., Xg(m). Let aZ
be the number of infected agents among Z1, ..., Zg(y).
Then, the sucheptible agent m becomes infected with

probability vz where, 0 < v < 1 is a constant and D
is the largest degree of the network.

In order to compare the effects of non-monophilic and
monophilic adoption rules, we look at the conditions on the
model parameters for which, each rule leads to a positive
fraction of infected nodes starting from a small fraction of
infected nodes i.e. a positive stationary solution to the mean-
field dynamics (5). Our main result is the following:

3The two rules (monophilic and non-monophilic) are called viral
adoption rules as they consider the total number of infected nodes
(denoted by a;X and aZ, in case 1 and case 2 respectively) in the sample
in contrast to the persuasive adoption rules that consider the fraction
of infected nodes in the sample [3].
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Theorem 5. Consider the SIS model described in Sec. 2.1. Define
the effective spreading rate as A = 5 and let X be a random node
and Z be a random friend of X.
1) Under the non-monophilic adoption rule (Case 1), the mean-
field dynamics equation (5) takes the form,

1 koX
Tas (k) = 2 (k) + 37 (1= 20 () 75 = 20 (k)9)
(16)
where,
17)

= ZP(k‘)x
k

is the probability that a randomly chosen node X at time n

is infected. Further, there exists a positive stationary solution

to the mean field dynamics (16) for case 1 if and only if

b

E{d(X)}

2) Under the monophilic adoption rule (Case 2), the mean-field
dynamics equation (5) takes the form,

A> =% (18)

v zZ
Pt (k) = 2a(k) + (1= 20 (k) 208 — ., ()9)
(19)
where,
=S (S pePur) oty @0
k k’

is the probability that a randomly chosen friend Z of a
randomly chosen node X at time n is infected*. Further,
there exists a positive stationary solution to the mean field
dynamics (19) if and only if
D *
)\>IE{d(Z)}_)\Z (21)
Proof. Part 1: Non-monophilic adoption rule: The proof
of the first part is inspired by [3], [47] that consider the
unbiased degree networks with non-monophilic adoption
rules with continuous-time evolutions (as opposed to the
discrete time case considered here). The main purpose of the
first part is to provide a comparison of the non-monophilic
adoption rule with the monophilic adoption rule (part 2).
Consider the mean-field dynamics given in 5. The probabil-
ity of a susceptible agent agent m (with degree d(m) = k)
sampled at time instant n for the unbiased degree network
adopting the contagion can be derived as follows:

P(sphy = sy = 0,d(m) =k, Zy) = (22)
k
E k Xyar1 _ pX\(k—a) _ Vker)f
; D <Cl) (an ) (1 077, ) - D (23)
where,
(24)

=Y P(k)x
k

4We use P(k\k’ ) to denote the conditional probability that a node
with degree k' is connected to a node with degree k. More specifically
P(k|k") = e(k( :) ) where e(k, k') is the joint degree distribution of the
network and ¢(k) is the marginal distribution that gives the probability
of random end (denoted by random variable Y in Theorem 2) of
random link having degree k. We also use o, to denote the variance
of g(k) in subsequent sections.

6

is the probability that a randomly chosen node X is infected
at time instant n. Eq. (22) is based on the following argu-
ment. The neighbors of m (in the case of non-monophilic
adoption rule) are are randomly sampled nodes (X) and
therefore, the number «a of infected neighbors (out of £ total)
follows a binomial distribution with parameter 6:X. Since
the probability of being infected when a susceptible node m
has a (out of k) infected neighbors is %5, the probability of a
degree k susceptible node becoming mfected at time m is the
expectation of ¥$ with respect to the binomial distribution
as calculated in (22). Further, the probability that an infected
node (independent of the degree) becomes susceptible is §
as assumed in the viral adoption rule i.e.

P(sp'y = 0lsy' = 1,d(m) = k,z,) = 0. (25)

Then, substituting (25), (22) in to the mean-field dynamics 5
yields the mean-field dynamics approximation (16) for non-
monophilic adoption rules.

In order to obtain the critical thresholds for non-
monophilic case, consider the stationary condition of 16,
Zn+1(k)—2n (k) = 0, which yields the stationary population
state (k) to follow,

vkoX
D

Ak6X
:I,‘(kj) = LkoX
D

~ MbX + D

+6 (26)

where,
X =" Pk)x(k) =
k

is the probability that a randomly chosen node X is infected
during stationary state (defined in 41). Then, by substituting
(26) in (27), we get

27)

= H{p(p). 28
p= Z Ak:p—i—D xp(p) (28)
The diffusion prevails (without dying away) when (28)
has a positive solution. Further, (28) is an increasing, con-
cave function with Hy 5(0) = 0 and H p(1) < 1.
Hence, in order for the (28) to have a positive solution,

dHX
/\,P(p> > 1, (29)

dp

p=0
which then yields,
D D

A = 30
" S kP(R)  Ed(X) 0

Part 2: Monophilic Adoption Rule: Consider the mean-field
dynamics given in 5. By following steps similar to the part
1 of the proof, The probability of a susceptible agent agent
m (with degree d(m) = k) sampled at time instant n for the
unbiased degree network adopting the contagion is:

P(sitr = 1157 = 0,d(m) = k,3,) = “1"
where,

=% (S Pw)

is the probability that a randomly chosen friend Z of a
randomly chosen node X is infected at time instant n. To

P(KIK ) A (k) 32
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understand how the expression for 67 is derived, recall that
P(k|k') is the probability that a randomly chosen friend of
a node with degree &’ is degree k. Then, taking expectation
of P(k|k") with respect to probability of sampling a node
with degree k' yields >~ ., P(k")P(k|k") as the probability of
a random friend Z (of a random node X) having a degree
k.

Further, the probability that an infected node (indepen-
dent of the degree) becomes susceptible is § as assumed in
the viral adoption rule i.e.

P(sp'y = 0lsy' = 1,d(m) = k,z,) = 4. (33)
Then, substituting (33), (31) in to the mean-field dynamics 5
yields the mean-field dynamics approximation (19) for non-
monophilic adoption rules.

In order to obtain the critical thresholds for non-
monophilic case, consider the stationary condition of 19,
Zn+1(k)—x, (k) = 0, which yields the stationary population
state (k) to follow,

vko? A
vhb— kO
_ D _
o(k) = vRIZ 5~ NKGZ + D (34)
where
92=§j<§jp k|k)() (35)

is the probability that a random friend Z of a randomly
node X is infected during stationary state (defined in 41).
Then, by substituting (34) in (35), we get

Z(ZP P(k|K') )AWZ =Hfp

z
Ak§Z + D (6%)-

(36)
The diffusion prevails (without dying away) when (36)
has a positive solution. Further, (36) is an increasing, con-

cave function of 07 with HY ,(0) = 0 and H{ p(1) < 1.
Hence, in order for the (36) to have a positive solution,

dH% (62)
% >1, (37)
62=0
which then yields,
D D
2 kCy P(R)P(K|E))  Ed(Z)
O

The infection spreading under the monophilic adoption
rule (Case 2 of Theorem 5) can also be thought of as repre-
senting the network by the square graph (corresponding to
the square of the adjacency matrix of the original network).
Proceeding that way would also yield the same critical
threshold as in the Case 2 of Theorem 5. Theorem 5 allows
us to analyze the effects of friendship paradox and degree-
assortativity on the contagion process as discussed in the
next subsection.

7

4.2 Effects of Friendship Paradox and Degree Correla-
tion on the Monophilic Contagion

Theorem 5 showed that the critical thresholds of the mean-
filed dynamics equation (5) for the two adoption rules
(non-monophilic and monophilic contagion) are different.
Following is an immediate corollary of Theorem 5 which
gives the ordering of these critical thresholds using the
friendship paradox stated in Theorem 2.

Corollary 6. The critical thresholds N5, X%, in (18), (21) for the
cases of non-monophilic (case 1) and monophilic (case 2) adoption
rules satisfy
Ny < Ak (39)
Corollary 6 shows that in the case of monophilic adop-
tion rule, it is easier (smaller effective spreading rate) for
the infection to spread to a positive fraction of the agents
as a result of the friendship paradox. Hence, observing
random friends of random neighbors for adopting a con-
tagion makes it easier for the contagion to spread instead of
dying away (in unbiased-degree networks). This shows how
friendship paradox can affect the spreading of a contagion
over a network.

Remark 2. Ifwe interpret an individual’s second-hop connections
as weak-ties, then Theorem 5 and Corollary 6 can be interpreted
as results showing the importance of weak-ties in contagions (in
the context of a SIS model and an unbiased-degree network). See
the seminal works in [48], [49] for the importance and definitions
of weak-ties in the sociology context.

The ordering A%, < A% of the critical thresholds in Corol-
lary 6 holds irrespective of any other network property.
However, the magnitude of the difference of the critical
thresholds A% — A%, depends on the neighbor-degree cor-
relation (assortativity) coefficient defined as,

o S (elh, k) — a(k)a(k))

qkk’

Thiy = (40)

using the notation in Footnote 4. To intuitively understand
this, consider a star graph that has a negative assortativity
coefficient (as all low degree nodes are connected to the only
high degree node). Therefore, a randomly chosen node X
from the star graph has a much smaller expected degree
E{d(X)} than the expected degree E{d(Z)} of a random
friend Z of the random node X compared to the case where
the network has a positive assortativity coefficient.

In order to experimentally illustrate the effects of the
assortativity on the critical threshold, we start with a ran-
dom power-law graph (with power-law coefficient o = 2.4)
Ginitial = (Vvintial; Einitial) with |V;ntial| = 5000 generated
using the configuration model [50]. More specifically, we
generate k half-edges for each node with k ~ ck~2* (where
¢ is the normalizing constant) and then, connect each half-
edge to the another randomly selected half-edge avoiding
self loops. This model will result in a power-law degree
distribution i.e. P(k) = ck~®. Then, three networks with
different assortativity coefficients 7y, (-0.2, 0.0 and 0.2) were
generated by rewiring the edges of Gipitiai according the
edge rewiring procedure [51]. In this method, two random
links (v1,v2), (u1,u2) are chosen at each iteration and they
are replaced with new edges (v1,u1), (v2, u2) if it increases
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(a) CDFs of the of the degree d(Z) of a random friend Z
of a random node for three networks with same degree
distribution but different assortativity 74, values. Note
that the CDFs are point-wise increasing with ryx showing
that E{d(Z)} decreases with ry.

(b) Variation of the stationary fraction p of infected nodes
with the effective spreading rate A for the case 1 (blue)
and case 2 (red), illustrating the ordering of the critical
thresholds of cases 1,2 and the effect of assortativity.

Fig. 1: Comparison of non-monophilic and monophilic adoption rules and the effect of assortativity on the critical thresholds

of the monophilic adoption rule.

(respectively, decreases) the value of the assortativity coeffi-
cient ;. The process is repeated until the desired value
of the assortativity coefficient ry, is achieved. The CDFs
of the distribution of degree d(Z) of a random friend Z
of a random node for the three networks with the three
different assortativies 7, are shown in Fig. 1(a). It can be
seen that the CDFs are point wise increasing with the ryy,
showing that CDFs with smaller assortativity dominates the
CDFs with larger assortativities. This stochastic dominance
corresponds to larger expected degree E{d(Z)} and smaller
critical threshold A}, = % for networks with smaller
assortativities.

Further, the critical threshold A%, for the monophilic
contagion (case 2 of Theorem 5) is related to the critical
threshold presented in [52] which is the inverse of the largest
eigenvalue of the adjacency matrix in the following sense.
In Case 2 of Theorem 5, the critical threshold becomes
A = % when the network has no assortativity
(rge = 0). According to [53], this is inversely proportional
to the largest eigenvalue of the adjacency matrix. Hence, in
the special case where the network has no assortativity, the
critical threshold A% becomes proportional to the inverse of
the largest eigenvalue of the adjacency matrix.

Next, we consider the stationary fraction of the infected
nodes

p=> P(k)x(k) (41)

k
where P(k) is the degree distribution and
xz(k),k=1,...,D are the stationary states of the mean-

field dynamics in (5). Fig. 1b illustrates how the stationary
fraction of the infected nodes p would vary with the
effective spreading rate A for non-monophilic (blue
curve) and monophilic conatgion (red curves), showing
the difference between the two cases and the effect of
assortativity.

4.3 Modeling the existence of both monophilic and
non-monophilic contagion

The main results related to the monophilic contagion (Theo-
rem 5 and Corollary 6) can be easily modified to the setting
where both friends and friends of friends affect the decisions
of individuals. To achieve this, one can assume that at each
time instant, the node m sampled in the first step of the SIS
model (Sec 2.1) makes a decision based on friends of friends
with probability ¢ € [0, 1] and makes the decision based on
immediate friends with probability 1 — ¢. Then, it can be
shown (by following steps similar to Theorem 5) that the
critical threshold corresponding to this case is:

. D
M= EAZ)) T (1 QEAX))

(42)

where D is the largest degree of the network, X is a random
node and Z is a random friend of a random node. Hence,
g = 1 corresponds to the monophilic contagion with critical

threshold A}, = W and ¢ = 0 corresponds to the non-

monophilic contagion with critical threshold Ay = 7 d(DX)}'

2327-4697 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2019.2909015, IEEE

Transactions on Network Science and Engineering

Then, it follows from friendship paradox (Theorem 2 and
Theorem 3) that

Ny A<My Vae 0,1, @)

Tuning parameter ¢ can be used to extend the
monophilic contagion model to a wide array of practical
settings where friends as well as friends of friends affect
an individual’s decision to update her state. For exam-
ple, in Facebook, immediate friends of individuals directly
affect their opinions/actions. However, friends of friends
also affect the opinions/actions of individuals to a certain
extent as their activity is often visible through activities
(such as “sharing” and “liking”) of immediate friends.
With the continuous tuning parameter ¢ € [0, 1], such real
world scenarios can also be analyzed using the monophilic
contagion model. A second hypothetical example is the
situation where a person seeks her friend’s opinion about
which product to buy (e.g. Apple or Samsung). Then, with
probability ¢ the friend might recommend the opinion of
one her friends and with probability 1 — g provide her own
opinion.

5 COLLECTIVE DYNAMICS OF SIS PROCESSES
AND REACTIVE NETWORKS UNDER MONOPHILIC
CONTAGION

So far in Sec. 3 and Sec. 4, the underlying social network on
which the contagion spreads was treated as a deterministic
graph and, the mean-field dynamics (5) was used to approx-
imate the SIS-model. In contrast, this section explores the
more general case where the underlying social network also
randomly evolves at each time step n (of the SIS-model) in
a manner that depends on the population state Z,,. Our aim
is to obtain a tractable model that represents the collective
dynamics of the SIS-model and the evolving graph process.
As explained in Sec. 1.1 with examples, the motivation
for this problem comes from the real world networks that
evolves depending on the state of diffusions on them. Before
stating our main result, we first define a reactive network
and discuss the main assumptions.

Definition 1 (Reactive Network). A reactive network is
a Markovian graph process {Gp}n>0 with a state space
G ={Gi1,...,GNn} consisting of N graphs and transition
probabilities parameterized by the population state I, i.e.
Gus1 ~ P, (- 1Gn).

In Definition 1, the parameterization of the transition
probabilities by the population state Z,, represents the de-
pendency of the graph process on the current state of the
SIS information diffusion process. In other words, the pop-
ulation state Z,, at time instant n determines the probability
distribution with which the graph evolves from G, to G, 4.
The name reactive network is derived from this functional
dependency of the graph evolution on the population state.

We make the following two assumptions on the reactive
network {G), },>0 (Definition 1).

Assumption 1. Each graph G; € G, i = 1,..., N has the
same degree distribution P(k) but different conditional degree
distributions Pg, (k|k'), ..., Pgy (k|k').

9

Assumption 2. The transition probability matrix Py, of the
reactive network {Gp, }n>o (Definition 1) is irreducible and ape-
riodic with a unique stationary distribution sz, for all values of
the population state Z,.

The Assumption 1 imposes the constraint that each
graph in the state space has the same degree distribution but
different conditional distributions. Hence, the state space G
can contain graphs with different higher order properties
but the same degree distribution. Under this assumption,
the number of nodes M (k) with degree k will remain the
same at each time instant n and hence, the new population
state Z,41(k) at time instant n + 1 can still be expressed
as the old population state Z,(k) plus an update term
as in Theorem 1. In other words, Assumption 1 allows
the use of mean-field dynamics (Theorem 1) to model the
dynamics of the population state of a SIS model on a reac-
tive network.The second assumption is standard in Markov
chain models and it ensures the convergence to a unique
stationary distribution.

Before proceeding to state our main result in this section,
we first briefly discuss the motivation for the context of the
result and how it relates to the earlier sections that focused
on monophilic contagion. We consider an SIS process un-
der monophilic contagion spreading on a reactive network
(Definition 1) that satisfies the Assumptions 1 and 2. The
motivation for considering this setting is two fold:

1) Firstly, Sec. 4.2 showed that monophilic contagion is
affected by the assortativity of the network. Consider-
ing monophilic contagion on a reactive network under
Assumptions 1 and 2 allows us to model and study the
more general case where assortativity of the network
evolves depending on the state of the diffusion.

2) Secondly, considering a diffusion process on an evolv-
ing network is more realistic compared to models based
on a deterministic network as discussed in detail in
Sec. 1.1. Our main result provides a model (that can
also be generalized to settings beyond monophilic con-
tagion) which allows contagion dependent state evolu-
tion.

In this context, our main result is the following.

Theorem 7 (Collective Dynamics of SIS-model and Reactive
Network). Consider a reactive network {G,}n>o (Definition
1) with state space G and transition probabilities Pz, (-|Gp)
(parameterized by the population state ) satisfying the Assump-
tions 1 and 2. Let the k" element of the vector H (z,,, G,) be

Z
Hy(zp,,Gr)=(1— xn(k))ykgn —x,(k)§  where, (44)
07 =>" (ZP(k’)PGn(k\k’)>xn(k). (45)
k k'

Further, assume that H(x,G;) is Lipschitz continuous in x for
all G; € G. Then, as the number of nodes M tends to infinity, the
sequence of the population state vectors {Z,, } >0 generated by the
SIS model under monophilic contagion over the reactive network
converges weakly to the trajectory of the deterministic differential
equation

d
ch = Egn, {H(z,G)} (ODE) (46)
Plm, = m,. (algebraic constraint) (47)
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Proof. The following result from [28] will be used to estab-
lish the weak convergence of the sequence of population
states {Z, }n>0 in Theorem 7.

Consider the stochastic approximation recursion,

Tp+1 ::En‘i’EH(g_jnaGn% n=0,1,... (48)

where € > 0, {G,,} is a G valued random process and, Z,, €
RM is the output of recursion at time n = 0,1, .. .. Further,
let

T°(t) = T, fort € [ne,ne+¢), n=0,1,..., (49)

which is a piecewise constant interpolation of {Z, }. In this
setting, the following result holds.

Theorem 8. Consider the stochastic approximation algorithm
(48). Assume

SA1: H(z, Q) is uniformly bounded for all z € RM and G € G.
SA2: Foranyl > 0, there exists h(x) such that

1 N+I-1
% O Ef{H(w,Gu)} = hx) as N = oc,

n=l

(50)

where, Bi{-} denotes expectation with respect to the sigma
algebra generated by {G,, : n < l}.
SA3: The ordinary differential equation (ODE)

dx(t)
"0 _ e

has a unique solution for every initial condition.
Then, the interpolated estimates 0°(t) defined in (49) satisfies

z(0) = Zo (51)

lim P( sup |z°(t) — x(¢)| > n) =0forall T > 0,7 >0
e—0 0<t<T
(52)

where, (t) is the solution of the ODE (51).

Next, we will use Theorem 8 to show how the dynamics
of the population state can be approximated by and ODE
with an algebraic constraint in the case of a reactive net-
work.

By Part 2 of Theorem 1, the stochastic dynamics of the
state Z,, can be replaced by their mean-field dynamics z,, as
follows:

1
Tpt1 = Tp + MH(xna Gn)
where H(x,,G,) is as defined in Theorem 7. Note that (53)
resembles (48).

SA1 condition - Each element Hy(z, G) of H(z, G) (for any
z, G in the domain) is a difference of two values(each in the
interval [0, 1]). Hence, SA1 condition holds.

(33)

SA2 condition - As a result of the law of large numbers of
the Markovian graph process {G), }, SA 2 holds with

h(l‘) =Egnr, {H(:C, G)} (54)

where, 7, is the unique stationary distribution satisfying
Plr, = m,.

SA3 condition - Lipschitz continuity of h(z) is a sufficient
condition for the existence of a unique solution for a non-

linear ODE. Hence, SA3 condition holds.
Therefore, the result follows from Theorem 8. O
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Theorem 7 states that the dynamics of the population
state of the SIS diffusion (under monophilic contagion) on
a reactive network can be approximated by an ODE (46)
with an algebraic constraint (47). The core idea behind this
result (and the proof that leads to it) can also be understood
as follows in order to gain some intuition. Due to the
Assumption 1, the mean-field dynamics

Tn+1 = T + %H(x'n; Gn)
can be used to model the evolution of the population state
of the SIS process over network despite the fact that it is
evolving. Then, as the number of nodes M becomes large
(i-e. the scaling factor ﬁ goes to zero), the sequence {x,, } >0
evolves on a slow time scale compared to the reactive
network {G,, },>0. In other words, it will be a system where
{Zn}n>0 evolves on a slow time scale (due to the large M)
and {G,,},>0 evolves on a fast time scale. Stochastic aver-
aging theory results (used in the proof) for such two time
scale problems state that, the fast dynamics of the reactive
network {G,},>0 can be approximated by their average
on the slow time scale of the population state {z,}n>0.
In other words, the ﬁH (zn, Gy) can be replaced by its
EGrr, {H(z,G)} with respect to the stationary distribution
7, of the Markov chain and thus yielding the ODE (46).
The algebraic constraint follows from the fact that the 7, is
the eigenvector with unit eigenvalue of the parameterized
transition probability matrix P, of the reactive network.

From a statistical modeling perspective, Theorem 7 pro-
vides a useful means of approximating the complex dy-
namics of two inter-dependent stochastic processes (dif-
fusion process and the stochastic graph process) by an
ODE (46) whose trajectory xz(t) at each time instant ¢ > 0
is constrained by the algebraic condition (47). Having an
algebraic constraint restricts the number of possible sam-
ple paths of the population state vector {Z,},>0. More
specifically, the D-dimensional vector z(t) (at each time
instant ¢ > 0) should satisfy the equation (47). Hence,
from a statistical inference/filtering perspective, this makes
estimation/prediction of the population state easier. For
example, the algebraic condition can be used in Bayesian
filtering algorithms (such as the one proposed in [25]) to
estimate the population state with a better accuracy.

(55)

6 CONCLUSION

This paper explored the SIS diffusion processes over social
networks using a discrete-time model where, a randomly
sampled node (at each time instant) faces the decision
of updating her state (infected or susceptible) based on
the states of her friends. The mean-field dynamics was
adopted to model the dynamics due to the exponentially
large state space of the contagion process. It was shown
that distribution with which the updating node is chosen
lead to different mean-field dynamics, but they induce the
same critical threshold on model parameters that decides
whether the contagion will spread or die out. Further, it
was shown that monophilic contagion (taking a decision
by observing friends of friends) make it easier (compared
to standard non-monophilic contagion where the decision
is taken by observing friends) for a contagion to spread
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instead dying out. The reason for this contrast between
monophilic and non-monophilic contagions was shown to
be the friendship paradox whose effect is further amplified
by the network disassortativity (negative neighbor degree
correlation). Finally, the case where underlying network is
a reactive network that randomly evolves depending on
the state of the contagion was studied. It was shown that

the

complex collective dynamics of the two (functionally)

dependent stochastic processes (SIS process and the random
graph process) can be approximated by a deterministic ODE
whose trajectory satisfies an algebraic constraint. Our main
results shed light on how graph theoretic and sociological
concepts such as friendship paradox and weak-ties affect
diffusion processes over social networks. Further, they pro-
vide simple deterministic models for complex collective
dynamics of contagions over stochastic graph processes.
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