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a b s t r a c t

This paper considers a multiple stopping time problem for a Markov chain observed in noise, where a
decision maker chooses at most L stopping times to maximize a cumulative objective. We formulate the
problem as a Partially Observed Markov Decision Process (POMDP) and derive structural results for the
optimalmultiple stopping policy. Themain results are as follows: (i) The optimalmultiple stopping policy
is shown to be characterized by threshold curves Γl, for l = 1, . . . , L, in the unit simplex of Bayesian
Posteriors. (ii) The stopping sets S l (defined by the threshold curves Γl) are shown to exhibit the following
nested structure S l−1

⊂ S l. (iii) The optimal cumulative reward is shown to be monotone with respect
to the copositive ordering of the transition matrix. (iv) A stochastic gradient algorithm is provided for
estimating linear threshold policies by exploiting the structural results. These linear threshold policies
approximate the threshold curves Γl, and share the monotone structure of the optimal multiple stopping
policy. (v) Application of the multiple stopping framework to interactively schedule advertisements in
live online social media. It is shown that advertisement scheduling using multiple stopping performs
significantly better than currently used methods.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Classical optimal stopping time problems are concerned with
choosing a single time to take a stop action by observing a sequence
of random variables in order to maximize a reward function. It has
applications in numerous fields ranging from hypothesis testing
(Lai, 1997), parameter estimation, machine replacement, multi-
armed bandits and quickest change detection (Krishnamurthy,
2011; Krishnamurthy & Bhatt, 2016; Poor & Hadjiliadis, 2008). The
optimal multiple stopping time problem generalizes the classical
single stopping problem; the objective is to stop L-times to maxi-
mize the cumulative reward.

In this paper,motivated by the problemof interactive advertise-
ment (ad) scheduling in personalized live socialmedia,we consider
a multiple stopping time problem in a partially observed Markov
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chain. Fig. 1 shows the schematic setup of the ad scheduling prob-
lem considered in this paper. The broadcaster (decision maker) in
Fig. 1 wishes to schedule at most L ads to maximize the cumulative
advertisement revenue.

Main results and organization. Themultiple stopping timeproblem
considered in this paper is a non-trivial generalization of the single
stopping time problem, in that applying the single stopping policy
multiple times does not yield the maximum possible cumulative
reward; see Section 5 for a numerical example. Section 2 formu-
lates the stochastic control problem faced by the decision maker
(Broadcaster in Fig. 1) as a multiple stopping time partially ob-
servedMarkov decision process (POMDP); the POMDP formulation
is natural in the context of a partially observedmulti-state Markov
chain with multiple actions (L stops, continue). It is well known
that for a POMDP, the computation of the optimal policy is PSPACE-
complete (Krishnamurthy, 2016). Hence, we provide structural re-
sults on the optimalmultiple stopping policy. The structural results
are obtained by imposing sufficient conditions on themodel — the
main tools used are submodularity and stochastic dominance on
the belief space of posterior distributions.

This paper has the following main results:

1. Optimality of threshold policies: Section 3.3 provides the main
structural result of the paper. Specifically, Theorem 1 asserts that
the optimal policy is characterized by up to L threshold curves,
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Fig. 1. Block diagram showing the stochastic scheduling problem faced by the
decisionmaker (broadcaster) in advertisement scheduling on live media. The setup
is detailed in Section 5 of the paper. The broadcaster wishes to schedule at most
L-ads during the live session. To maximize advertisement revenue, the ads need to
be scheduled when the interest in the content is high. The interest in the content
cannot be measured directly, but noisy observations of the interest are obtained
from the viewer engagement (viewer comments and likes) during the live session.

Γl on the unit simplex of Bayesian posteriors (belief states). To
prove this result we use the monotone likelihood ratio (MLR)
stochastic order since it is preserved under conditional expecta-
tions. However, determining the optimal policy is non-trivial since
the policy can only be characterized on a partially ordered set
(more generally, a lattice) within the unit simplex. We modify the
MLR stochastic order to operate on line segments within the unit
simplex of posterior distributions. Such line segments form chains
(totally ordered subsets of a partially ordered set) and permit us to
prove that the optimal decision policy has a threshold structure.
In addition, similar to Nakai (1985), we show that the stopping
sets (set of belief states at which the decision maker stops) have
a nested structure.

2. Monotonicity of cumulative reward with transition matrix: Sec-
tion 3.4 characterizes how the cumulative reward changes with
respect to copositive ordering of the transition matrix. Specifi-
cally, Theorem 2 asserts that the optimal cumulative reward is
monotone with respect to the copositive ordering of the transition
matrix. The result can be used to implement reduced complexity
posterior calculations for Markov chains with large dimension
state space.

3. Optimal Linear Threshold and their Estimation: For the threshold
curves Γl, l = 1, . . . , L, Theorems 3 and 4 give necessary and
sufficient conditions for the optimal linear hyperplane approxima-
tion (linear threshold policies) that preserves the structure of the
optimal multiple stopping policy. Section 4 presents a simulation
based stochastic gradient algorithm (Algorithm 1) to compute the
optimal linear threshold policies. The advantage of the simulation
based algorithm is that it is very easy to implement and is compu-
tationally efficient.

4. Application to Interactive Advertising in live social media: To il-
lustrate the usefulness of the structural results for the multiple
stopping time problem, we consider the application of interactive
advertisement scheduling in personalized live social media. The
problem of optimal scheduling of ads has been studied in the
context of advertising in television; see Popescu and Crama (2015)
and the references therein. However, scheduling ads on live online
social media is different from scheduling ads on television in two
significant ways (Kang & McAllister, 2011): (i) real-time measure-
ment of viewer engagement (comments and likes on the content).
The viewer engagement provides a noisy measurement of the

underlying interest in the content. (ii) revenue is based on viewer
engagement with the ads rather than a pre-negotiated contract.
Section 5 uses a real dataset fromPeriscope, a popular personalized
live streaming application owned by Twitter, to optimally schedule
multiple ads (L > 1) in a sequential manner to maximize the
advertising revenue.

Context and related literature. The problem of optimal multiple
stopping has been well studied in the literature. In the classic L-
secretary problem, independent and identically (i.i.d) observations
are presented sequentially to the decision maker and the objective
is to select L observations so as to maximize the sum of reward
(a function of observation). The classical setting with i.i.d observa-
tions have been extended to consider variety of scenarios such as
the observation times arising out of Poisson process (Stadje, 1987),
observations with a joint distribution and possibly depending on
the stopping times in Nikolaev (1999) and for random horizon in
Krasnosielska-Kobos (2015). However, fewworks consider optimal
multiple stopping over a partially observed Markov chain. The
closest work is due to Nakai (1985) who considers optimal L-
stopping over a finite horizon of length N in a partially observed
Markov chain. In Nakai (1985), properties of the value function and
the nested property of the stopping regions are derived. However,
Nakai (1985) does not present an algorithm to compute the optimal
policy utilizing the structural results. In addition, for many practi-
cal applications such as the interactive advertisement scheduling
problem considered in this paper, the length of the horizon is not
known apriori. Hence, this paper considers the multiple stopping
problem over an infinite horizon, derives additional structural re-
sults compared to Nakai (1985) and provides a stochastic gradient
algorithm to compute optimal approximation policies satisfying
the structural results.

The optimal multiple stopping time problem can be contrasted
to the recent work on sequential sampling with ‘‘causality con-
straints’’. Bayraktar and Kravitz (2015) considers the case where
a decision maker is limited to a finite number of observations
(sampling constraints) andmust adaptively decide the observation
strategy so as to perform quickest detection on a data stream.
The extension to the case where the sampling constraints are
replenished randomly is considered in Geng, Bayraktar, and Lai
(2014). In the multiple stopping time problem, considered in this
paper, there is no constraint on the observations and the objective
is to stop at most L times to maximize the cumulative reward.

The optimal multiple stopping time problem, considered in this
paper, is similar to the sequential scheduling problem with uncer-
tainty (Alexander & Nikolaev, 2010) and the optimal search prob-
lem considered in the literature. Lobel, Patel, Vulcano, and Zhang
(2015) considers the problem of finding the optimal launch times
for a firm under strategic consumers and competition from other
firms to maximize profit. However, in this paper, we deal with
sequential scheduling in a partially observed case. The multiple-
stopping problem considered in this paper is equivalent to a search
problemwhere the underlying process is evolving (Markovian) and
the searcher needs to optimally stop L > 1 times to achieve a
specific objective.

Apart from interactive advertising, other applications of the
multiple stopping problem include American options with multi-
ple exercise times (Carmona & Touzi, 2008), L-commodities prob-
lem (Stadje, 1987), and investment decision making (Dahlgren &
Leung, 2015).

2. Sequential multiple stopping and stochastic dynamic pro-
gramming

In this section,we formulate the optimalmultiple stopping time
problem as a POMDP. In Section 2.3, we present a solution to the
POMDP using stochastic dynamic programming. This sets the stage
for Section 3 where we analyze the structure of the optimal policy.
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2.1. Optimal multiple stopping: POMDP formulation

Consider a discrete time Markov chain Xt with state-space S =
{1, 2, . . . , S}. Here, t = 0, 1, . . . denote discrete time. The decision
maker receives a noisy observation Yt of the state Xt at each time t .
The decision maker wishes to stop at most L times over an infinite
horizon. The positive integer L, is chosen a priori. At each time the
decisionmaker either stops or continues, and obtains a reward that
depends on the current state of the Markov chain. The objective
of the decision maker is to opportunistically select the best time
instants to stop so as to maximize the cumulative reward. This
problem of stopping atmost L times sequentially so as tomaximize
the cumulative reward corresponds to a multiple stopping time
problem with L-stops.

The multiple stopping time problem consists of the following
components:

1. State Dynamics: The Markov chain has time invariant transition
matrix P and initial probability vector π0; so

P(i, j) = P(Xt+1 = j|Xt = i), π0(i) = P(X0 = i). (1)

2. Observations: At each time instant t , the decision maker receives
noisy observation Yt of the state Xt . Denote, the conditional prob-
ability of receiving observation y ∈ Y (Yt = y) in state i (Xt = i) by
B(i, y). Then, the time invariant observation distribution is

B(i, y) = P (Yt = y|Xt = i) ∀i ∈ S, y ∈ Y. (2)

3. Actions: At each time instant t , the decision maker chooses an
action ut ∈ A = {1 (Stop), 2 (Continue)} to either stop or to
continue.

4. Reward: Choosing the stop action at time t , when there are l
additional stops remaining, the decision maker accrues a reward1

rl(Xt , a = 1), where Xt is the state of the Markov chain at time t .
Similarly, if the decision maker chooses to continue, it will accrue
rl(Xt , a = 2).

5. Scheduling Policy: The history available to the decision maker at
time t is Zt = {π0, u0, Y1, . . . , ut−1, Yt}. The scheduling policyµ, at
each time t , maps Zt to action ut i.e. the action chosen at time t is
ut = µ(Zt ). Let U denote the set of admissible policies.

Objective: For l ∈ {1, 2, . . . , L}, let τl denote the stopping time
when there are l stops remaining, i.e.

τl = inf {t : t > τl+1, ut = 1} ,with τL+1 = 0. (3)

For policy µ and initial belief π0, the cumulative reward is:

Jµ(π0) = Eµ

⎧⎨⎩
τL−1∑
t=0

ρt rL(Xt , 2)+ ρτL rL(XτL , 1) (4)

+

τL−1−1∑
t=τL+1

ρt rL−1(Xt , 2)+ · · · + ρτ1 r1(Xτ1 , 1)
⏐⏐⏐π0

⎫⎬⎭ ,

where the expectation is over the state dynamics and the observa-
tiondistribution. In (4),ρ ∈ [0, 1] denotes a user-defined economic
discount factor.2 Choosing ρ < 1 de-emphasizes the effect of
decisions taken at later time instants on the cumulative reward.

1 In interactive advertisement scheduling, the reward is indexed by the number
of stops remaining to denote the varying ad revenue from the different ads placed
during a session.
2 In the multiple stopping time problem, considered here, ρ = 1 is allowed.

For undiscounted problem (ρ = 1), the stopping times may not be finite and the
objective in (4) becomes unbounded. However, themultiple stopping time problem
considered in this paper will terminate in finite time: Assume R = max

i,l
rl(i, 1) > 0

The decisionmaker aims to compute the optimal strategyµ∗ to
maximize (4), i.e.

µ∗ = argmax
µ∈U

Jµ(π0). (5)

Remark 1. The above formulation is an instance of a stopping
time POMDP. This is seen as follows: the objective in (4) can be
expressed as an infinite horizon criteria by augmenting a fictitious
absorbing state-0 that has zero reward, i.e. r0(0, u) = 0 u ∈ A.
When L stop actions are taken, the system transitions to state 0 and
remains there indefinitely. Then (4) is equivalent to the following
discounted infinite horizon criteria:

Jµ(π0) = Eµ

⎧⎨⎩
τL−1∑
t=0

ρt rL(Xt , 2)+ ρτL rL(XτL , 1)

+ · · · + ρτ1 r1(Xτ1 , 1)+
∞∑

t=τ1+1

ρt r0(0, 2)
⏐⏐⏐π0

⎫⎬⎭ ,

where the last summation is zero.

2.2. Belief state formulation of the objective

Let Π denote the belief space of S-dimensional probability
vectors. The belief space is the unit S − 1 dimensional simplex:

Π =

{
π : 0 ≤ π (i) ≤ 1,

S∑
i=1

π (i) = 1

}
. (6)

The belief state at time t , denoted by πt ∈ Π , is the posterior
probability of Xt given the history Zt . The belief state is a suffi-
cient statistic of Zt , and evolves according to the following Hidden
Markov model (HMM) Bayesian update (Krishnamurthy, 2016):

πt+1 = T (πt , Yt+1), where

T (π, y) =
ByP ′π
σ (π, y)

, σ (π, y) = 1′SByP ′π,
(7)

where, By = diag (B(1, y), . . . , B(S, y)) and 1S represents the S-
dimensional vectors of ones.

Using the smoothing property of conditional expectations, the
objective in (4) can be reformulated in terms of belief state as:

Jµ(π0) = Eµ

⎧⎨⎩
τL−1∑
t=0

ρt r ′2,Lπt + ρτL r ′1,LπτL (8)

+

τL−1−1∑
t=τL+1

ρt r ′2,L−1πt + · · · + ρτ1 r ′1,1πτ1 +

∞∑
t=τ1+1

ρt r ′2,0πt

⏐⏐⏐π0

⎫⎬⎭ ,

where ru,l = [rl(1, u), . . . , rl(S, u)]′. For the stopping time prob-
lem (8), there exists a stationary optimal policy. Since the belief
state is a sufficient statistic of Zt , (5) is equivalent to computing
the optimal stationary policy µ∗ : Π × [L] → A, where [L] =
{1, 2, . . . , L}, as a function of belief and number of stops remaining
to maximize (8).

2.3. Stochastic dynamic programming

Computing the optimal policy µ∗ to maximize (5) or equiva-
lently (8) involves solving multiple stopping Bellman’s dynamic

i.e. themaximum stop reward is positive and R = min
i,l

rl(i, 2) < 0, i.e. theminimum

reward to continue is negative. Then, it is clear that any optimal policy will stop in
less than T̄ = LR/|R| time steps. The intuition is that if T > T̄ then the accumulated
reward is negative and can be strictly improved by taking a stop action before T̄ .
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programming equation

µ∗(π, l) = argmax
u∈A

Q (π, l, u),

V (π, l) = max
u∈A

Q (π, l, u),
(9)

Q (π, l, 1) = r ′1,lπ + ρ
∑
y∈Y

V (T (π, y), l− 1) σ (π, y),

Q (π, l, 2) = r ′2,lπ + ρ
∑
y∈Y

V (T (π, y), l) σ (π, y).

Discussion: In (9), V (π, l) denotes the optimal value function at

belief π when l stops are remaining, and is the expected accumu-
lated reward induced by the optimal policy µ∗. The optimal value
function is the fixed point solution of the set of Bellman equations
in (9). The fixed point solution can be obtained using the value
iteration algorithm (see Appendix B). Q (π, l, u) is the expected
accumulated reward starting at belief π when l stops remaining,
and taking action u and then using the optimal policy µ∗. The
Bellman equations can be explained as follows:When a stop action
(u = 1) is taken, the decision maker obtains an instantaneous
reward r ′1,lπ and the number of stops remaining reduce by 1.When
the continue action is taken (u = 2), the decisionmaker obtains an
instantaneous reward of r ′2,lπ , and the number of stops remaining
is unaffected. The belief evolves according to (7).

Since the state-space Π is a continuum, Bellman’s equation (9)
or the value iteration algorithm in Appendix B does not translate
into a practical solution methodology as V (π, l) needs to be evalu-
ated at each π ∈ Π . This, in turn, renders the computation of the
optimal policy µ∗(π, l) intractable.3

3. Optimal multiple stopping: structural results

In this section, we derive structural results for the optimal
policy (9) of themultiple stopping time problem. In Section 3.3, we
show that under reasonable conditions on the POMDP parameters,
the optimal policy is a monotone policy. In addition, in Section 3.4,
we show the monotone property of the cumulative reward.

3.1. Definitions

Define stopping set S l (the set of belief states where Stop is the
optimal action), when l stops are remaining as:

S l =
{
π : µ∗(π, l) = 1

}
. (10)

Correspondingly, the continue set (the set of belief states where
Continue is the optimal action) is defined as

C l
=
{
π : µ∗(π, l) = 2

}
. (11)

LetW (π, l) be defined as

W (π, l) = V (π, l)− V (π, l− 1). (12)

The stopping and continue sets in terms of W defined in (12) is as
follows:

S l = {π |r ′lπ ≥ ρ
∑
y

W (T (π, y), l)σ (π, y)},

C l
= {π |r ′lπ < ρ

∑
y

W (T (π, y), l)σ (π, y)}.
(13)

where, rl ≜ r1,l − r2,l.

3 It is well known that a finite horizon POMDP with finite observation space
can be solved exactly, indeed the value function is piecewise linear and convex
(Krishnamurthy, 2016). However, the problem is PSPACE complete; the worst case
computational cost increases exponentially with the number of actions and doubly
exponential with the time index.

Remark 2. For notational convenience, in this paper, without loss
of generality, assume r1,l = rl and r2,l = 0. So, the decision maker
accrues no reward for the continue action. Similarly, we consider
r1 = r2 = · · · = rL = r , i.e. the rewards are not dependent on l.

In general, the stopping and continue sets can be arbitrary par-
titions of the simplexΠ . However, in Section 3.3, we give sufficient
conditions on the model so that these sets can be characterized by
threshold curves. The question of computing the optimal policy,
then, reduces to estimating the threshold curves.

It is worth pointing out that in the classical stopping POMDPs in
Krishnamurthy (2016) with a single stop action, the stopping and
continue sets are characterized in terms of convex value function.
The key difficulty of the multiple stopping problem, considered in
this paper, is thatW being the difference of two convex value func-
tions does not share the convex properties of the value function.

3.2. Assumptions

Themain result below, namely, Theorem 1, requires the follow-
ing assumptions on the reward vector, r (refer to Remark 3), the
transition matrix, P and the observation distribution, B.

(A1) P is totally positive of order 2 (TP2), i.e. all second order
minors are non-negative (see Definition 4 in Appendix A.1).

(A2) B is TP2.
(A3) The vector, r̄ = (I−ρP)r , has decreasing elements, i.e. r̄(1) ≥

· · · ≥ r̄(S).

Discussion of Assumptions: Refer to Krishnamurthy (2016) for de-
tailed discussions and examples of (A1)–(A3).

When S = 2, (A1) is valid when P(1, 1) ≥ P(2, 1). When
S > 2, consider the tridiagonal transition matrix.4 with P(i, j) =
0, i > j + 2 and i < j − 2. (A1) is valid if P(i, i)P(i + 1, i + 1) ≥
P(i+ 1, i)P(i, i+ 1).

(A2) holds for numerous examples. Examples include binomial,
Poisson, geometric, Gaussian, exponential, etc. Table 1.15 and
Table 1.25 in Müller and Stoyan (2002) contains a detailed list. In
the numerical results in Section 5, we use the Poisson distribution
where B(i, y) = gyi exp(−gi)

y! , where gi is the mean of the Poisson
distribution. (A2) is satisfied if gi decreases monotonically with i.
For a continuous observation distribution such as Gaussian whose
mean is dependent on the state of the Markov chain (variance is
fixed), (A2) is satisfied when the mean monotonically decreases
with i.

(A3) is a joint condition on the reward vector and the transition
matrix. Proposition 1, below, shows that (A3) and (A1) jointly
imply that the reward vector r has decreasing elements.When S =
2, it can be verified that r having decreasing elements is sufficient
for (I − ρP) r to have decreasing elements. For S > 2, (A3) is a
stronger condition than having the elements of r decreasing.

(A3) is easy to interpret when P has additional structure. For
example, consider a slowly varyingMarkov chain with P = I+ϵQ ,
where Q (i, j) > 0, i ̸= j,

∑
jQ (i, j) = 0, and ϵ > 0. Here

1
ϵ

> max
i

∑
j|Q (i, j)| for P to be a valid transition matrix. Then (A3)

is equivalent to r having decreasing elements. The reward vector
r captures the preference of the decision maker — the highest
reward is accrued in State 1.

Proposition 1 (Proof in Appendix D.1). If P is TP2 and (I − ρP)r has
decreasing elements, then r has decreasing elements.

4 The transition matrices computed on real dataset in Section 5 follow a tridiag-
onal structure; refer to (24).
5 Continuous distributions that satisfy (A2): Exponential, Normal, Gamma,

Weibull, Lognormal, Beta. Discrete distributions that satisfy (A2): Poisson, Binomial,
Geometric.
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Fig. 2. Visual illustration of Theorem 1 when S = 3 so that the belief space is a
2-dimensional unit simplex (equilateral triangle). Each of the stopping sets S l is
characterized by a threshold curve Γl . Each of the threshold curve Γl intersects the
line L(e1, π̄ ) at most once.

3.3. Main result 1: optimality of threshold policies

The main result below (Theorem 1) states that the optimal
policy is monotone with respect to the belief state π . However,
for a monotone policy to be well defined, we need to first define
the ordering between two belief states. For S = 2, the belief
π =

[
1− π (2) π (2)

]
can be completely ordered with respect

to π (2) ∈ [0, 1]. However, for S > 2, comparing belief states
requires using stochastic orders which are partial orders. We will
use the monotone likelihood ratio (MLR) (see Definition 1 in Ap-
pendix A.1); it is ideal for partially observed control problems since
it is preserved under conditional expectation (Bayesian update).

Under reasonable conditions, Theorem 1 asserts that the opti-
mal policy µ∗(π ) is monotonically decreasing in π with respect
to the MLR order. However, despite this monotonicity, determin-
ing the optimal policy is nontrivial since the policy can only be
characterized on a partially ordered set. The main innovation in
Theorem 1 is to modify the MLR stochastic order to operate on
lines L(e1, π̄ ) and L(eS, π̄ ) (see Appendix A) within the belief
space. Such line segments form chains (totally ordered subsets of
a partially ordered set) and permit us to prove that the optimal
decision policy has a threshold structure.

Theorem 1. Assume (A1)–(A3). Then,

A There exists an optimal policyµ∗(π, l) that is decreasing on lines
L(e1, π̄ ), and L(eS, π̄ ) in the belief space Π for each l.

B There exists an optimal switching curve Γl, for each l, that
partitions the belief space Π into two individually connected
sets S l and C l,such that the optimal policy is

µ∗(π, l) =
{
1 if π ∈ S l

2 if π ∈ C l (14)

C S l−1 ⊂ S l, l = 1, 2, . . . , L.

The proof of Theorem 1 is given in Appendix C.4.

Discussion: Theorem 1A asserts that the optimal policy is mono-
tonically decreasing on the line L(e1, π̄ ), as shown in Fig. 2. Hence,
on each line L(e1, π̄ ) there exists a threshold above (in MLR sense)
which it is optimal to Stop and below which it is optimal to Con-
tinue. Theorem1B asserts, for each l, the stopping and continue sets
are connected. Hence, there exists a threshold curve, Γl, as shown
in Fig. 2, obtained by joining the thresholds, from Theorem 1A, on
each of the lineL(e1, π̄ ). Theorem1Cproves the nested structure of
the stopping sets: The stopping set when l− 1 stops are remaining
is a subset of the stopping set when there are l stops remaining.

In addition, Proposition 2, below, shows that the stopping set
enclosed by the threshold curve is a union of convex sets and
hence, the threshold curve is continuous and differentiable almost
everywhere.

Proposition 2. The stopping set S l is a finite union of convex sets.
(Proof in Appendix D.2.)

3.4. Main result 2:monotonicity of cumulative rewardwith transition
matrix

Large transition matrices, common in real world applications,
require large number of numerical computations to keep track of
the belief dynamics in (7). Knowledge of the belief state is crucial
to implement the optimal policy using a scheduler. One approach
to deal with the computational bottleneck is to select a suitable
transition matrix ‘‘close’’ to the true transition matrix such that
the computation of the belief update is cheaper. It was shown in
Krishnamurthy and Rojas (2014) that convex optimization tech-
niques can be used to compute reduced rank matrices that bound
(in terms of copositive ordering- Definition 6 in Appendix) the true
transitionmatrix P from above and below, i.e. P ⪯ P ⪯ P̄ . Comput-
ing the belief state in (7) requiresO(S2) computations, which could
be expensive for large dimensional state space. The computational
cost is reduced by using low rank (rank R) transition matrices (P
and P̄) which requires only O(RS) numerical operations.

This leads us to the following question: How does the optimal
cumulative reward of a multiple stopping time problem vary with
transition matrix P? The main result below shows that if the tran-
sition matrices are partially ordered with respect to the copositive
ordering so that P ⪰ P̄ then Jµ∗(P) ≥ Jµ∗(P̄).

Theorem 2. Consider two multiple stopping time problems with
transition matrices P and P̄, respectively, where P ⪰ P̄ with respect to
copositive ordering (Definition 6 in Appendix). If (A1) to (A3) hold,
then the optimal cumulative rewards satisfy Jµ∗(P) ≥ Jµ∗(P̄).

The proof follows from Krishnamurthy (2016, Theorem 14.8.1).

Discussion: Theorem 2 asserts that larger transition matrix (with
respect to the copositive order) always results in a larger optimal
reward. This is useful in obtaining bounds on the achievable re-
wards in applications like interactive advertisement scheduling,
where the interest dynamics change slowly over time. Also, the
performance loss from using a low rank transitionmatrix for inter-
est dynamics – to reduce the complexity of the real time scheduler
– can be characterized.

Summary: This section derived the structural results of the opti-
mal multiple stopping problem. The main structural result is in
Theorem 1. Theorem 1 generalizes the results in Nakai (1985). In
addition to the nested property in Nakai (1985), Theorem 1 char-
acterizes the optimal policy by up to L threshold curves. Theorem 2
established the monotonicity of the optimal cumulative reward
with respect to the copositive ordering of the transition matrix.

4. Stochastic gradient algorithm for estimating optimal linear
threshold policies

In light of Theorem 1, computing the optimal policy reduces to
estimating L-threshold curves in the unit simplex (belief space),
one for each of the L-stops. The threshold curves can be approxi-
mated by any of the standard basis functions. In this paper, we will
restrict the approximation to linear threshold policies, i.e. policies
of the form given in (15). However, any such approximation needs
to capture the essence of Theorem 1, i.e. the optimal policy is MLR
decreasing on lines, connected and satisfy the nested property. We
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call such linear threshold policies (that captures the essence of
Theorem 1) as the optimal linear threshold policies.

Section 4.1 derives necessary and sufficient conditions to char-
acterize such linear threshold policies. Algorithm 1 in Section 4.2
is a simulation based algorithm to compute the optimal linear
threshold policies. The simulation based algorithm is computation-
ally efficient (see comments at end of Section 4.2).

4.1. Structure of optimal linear threshold policies for multiple stop-
ping

We define a linear parametrized policy on the belief space Π as
follows. Let θl ∈ RS−1 denote the parameters of linear hyperplane.
Then, linear threshold policies as a function of the belief π and the
number of stops remaining l, are defined as

µθ (π, l) =

⎧⎨⎩1 if
[
0 1 θl

] [ π

−1

]
≤ 0

2 otherwise .

(15)

The linear policy µθ (π, l) is indexed by θ to show the explicit
dependence of the parameters on the policy. In (15), θ = (θ1, θ2,
. . . , θL) ∈ RL×(S−1) is the concatenation of the θl vectors, one for
each of the L-stops.

Discussion: We will briefly discuss (15): Given a general linear
policy of the form α′π ≤ β , the specific form in (15) is obtained
using (i) the sum constraint on the belief π , i.e.

∑S
i=1π (i) = 1,

(ii) Scale invariance: For any positive constant c , α′π ≤ β ⇒
cα′π ≤ cβ . Also, notice that the dimension of both

[
0 1 θl

]
and

[
π −1

]
is S + 1, since θl ∈ RS−1 and π ∈ RS .

In Theorem 1A, it was established that the optimal multiple
stopping policy isMLR decreasing on specific lineswithin the belief
space, i.e. for π1≥Li π2, µ(π1, l) ≤ µ(π2, l); i = 1, S. Theorem 3
gives necessary and sufficient conditions on the coefficient vector
θl such that π1≥Li π2, µθ (π1, l) ≤ µθ (π2, l); i = 1, S.

Theorem3. A necessary and sufficient condition for the linear thresh-
old policies µθ (π, l) to be

(1) MLR decreasing on line L(e1), iff θl(S − 1) ≥ 0 and θl(i) ≥
0, i ≤ S − 2.

(2) MLR decreasing on line L(eS), iff θl(S − 1) ≥ 0, θl(S − 2) ≥ 1
and θl(i) ≤ θl(S − 2), i < S − 2.

The proof of Theorem 3 is similar to Theorem 12.4.1 in Krishna-
murthy (2016) and hence omitted. In Theorem 3, θl(i) denotes the
ith element of S − 1 dimensional vector θl.

Discussion: By Theorem 3, the constraints on the parameters θ
ensure that only MLR decreasing linear threshold policies are con-
sidered; the necessity and sufficiency imply that non-monotone
policies are not considered, andmonotone policies are not left out.

Theorem 1B established that the optimal stopping sets are
connected, which is satisfied trivially since we approximate the
threshold curve using a linear hyperplane. Theorem 4 below pro-
vides sufficient conditions so that the parametrized linear thresh-
old curves satisfy the nested property established in Theorem 1C.

Theorem 4 (Proof in Appendix C.6). A sufficient condition for the
linear threshold policies in (15) to satisfy the nested structure in
Theorem 1C is given for each l by
θl−1(S − 1) ≤ θl(S − 1)

θl−1(i) ≥ θl(i) i < S − 1,
(16)

4.2. Simulation-based stochastic gradient algorithm for estimating
linear threshold policies

We now estimate the optimal linear threshold policies using a
simulation based stochastic gradient algorithm (Algorithm 1). The

algorithmensures that the estimated policies satisfy the conditions
in Theorems 3 and 4.

The optimal policy of a multiple stopping time problem max-
imizes the expected cumulative reward Jµ in (4). In Algorithm 1,
we approximate Jµ over a finite time horizon (N), as JN which is
computed as:

JN (θ ) = Eµθ

{ L∑
l=1

ρτl r ′πτl

⏐⏐⏐ τl ≤ N; ∀l
}
. (17)

For the optimal policy µ∗, a horizon of length N and the discount
factor of ρ, |Jµ∗ − JN |2 ≤

ρN

1−ρ
max
l,x,u
|rl(x, u)| (Krishnamurthy, 2016

Theorem 7.6.3).6

Algorithm 1 Stochastic Gradient Algorithm for Optimal Multiple
Stopping
Require: POMDP parameters satisfy (A1)–(A2).
1: Choose initial parameters φ0 and initial linear threshold poli-

cies µθφ0 using (15).
2: for iterations n = 0, 1, 2, . . . : do
3: Evaluate JN (θφn+cnωn ) and JN (θφn−cnωn ) using (17)
4: SPSA: Gradient estimate ∇̂φ JN (θφn ) using (19).
5: Update parameter vector φn to φn+1 using (20).

Algorithm 1 is a stochastic gradient algorithm that generates
a sequence of estimates θn, that converges to a local maximum.
It requires the computation of the gradient: ∇θ JN (·). Evaluating
the gradient in closed form is intractable due to the non-linear
dependence of JN (θ ) on θ . We can estimate ∇̂θ JN (·) using a simu-
lation based gradient estimator. There are several such simulation
based gradient estimators available in the literature including in-
finitesimal perturbation analysis, weak derivatives and likelihood
ratio (score function) methods. For simplicity, we use the SPSA
algorithm (Spall, 2005), which estimates the gradient using a finite
difference method.

To make use of the SPSA algorithm, we convert the constrained
optimization problem in θ (constraints imposed by Theorems 3
and 4) into an unconstrained problem using spherical co-ordinates
as follows:

θ
φ

l (i) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ2
1 (S − 1)

L−1∏
ℓ=l

sin2(φℓ(S − 1)) i = S − 1

1+ φ2
1 (S − 2)

l∏
ℓ=2

sin2(φℓ(S − 2)) i = S − 2

θl(S − 2)
L∏

ℓ=1

sin2(φℓ(i)) i < S − 2.

(18)

It can be verified that the parametrization, θφ in (18), satisfies the
conditions in Theorems 3 and 4. For example, consider i = S − 1,
then the product term involving sin(·) ensures that θl−1(S − 1) ≤
θl(S − 1) (the first part of Theorem 4).

Following Spall (2005), the gradient estimate using SPSA is
obtained by picking a random direction ωn, at each iteration n. The
estimate of the gradient is then given by

∇̂φ JN (θφn ) =
JN (θφn+cnωn )− JN (θφn−cnωn )

2cn
ωn, (19)

where ωn(i) =
{
−1 with probability 0.5
+1 with probability 0.5.

6 Given an error tolerance ε, the required horizon can be calculated as N >

log
(

(1−ρ)ε
max
l,x,u
|rl(x,u)|

)
/log ρ.
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The two JN (·) terms in the numerator of (19) is estimated using the
finite time horizon approximation (17). A more detailed descrip-
tion of the finite time horizon approximation in given in Algorithm
2 in Appendix E. Using the gradient estimate in (19), the parameter
update is as follows (Spall, 2005):

φn+1 = φn + an∇̂φ JN (θφn ). (20)

The parameters an and cn are typically chosen as (Spall, 2005):

an = ε(n+ 1+ ς )−κ 0.5 < κ ≤ 1, and ε, ς > 0
cn = µ(n+ 1)−υ 0.5 < υ ≤ 1 µ > 0

(21)

The decreasing step size stochastic gradient algorithm, Algorithm
1, converges to a local optimum with probability one. There
are several methods available in the literature that can be used
for stopping criteria in Step 2 of Algorithm 1 (Spall, 2005). In
this paper, we used the following criteria: (i) Small gradient:
∥∇̂φ JN (θφn )∥2
≤ ε. (ii) Max Iteration: Iterations are stopped when a maximum
number is reached.

At each iteration of Algorithm 1, evaluating the gradient esti-
mate in (19) requires two POMDP simulations. However, this is
independent of the number of states, the number of observations
or the number of stops.

5. Numerical examples: interactive advertising in live social
media

This section has three parts. In Section 5.1, we illustrate the
main result of the paper using numerical examples. Second, using
a Periscope dataset, we study how the multiple stopping problem
can be used to schedule advertisements in live social media. We
show numerically that the linear threshold scheduling policies
(derived in Section 4) outperforms conventional techniques for
scheduling ads in live social media. Finally, we illustrate the per-
formance of the linear threshold policies for a large size POMDP
by comparing with the SARSOP algorithm, which is a popular sub-
optimal POMDP solver.

5.1. Synthetic data

This section has four parts. First, we visually illustrate the opti-
malmultiple stopping policy, using numerical examples, for S = 3.
The objective is to illustrate how the assumptions in Section 3.2 af-
fect the optimal multiple stopping time policy. The optimal policy
can be obtained by solving the dynamic programming equations
in (9) and can be computed approximately by discretizing the
belief space. The belief space Π , for all examples below, was uni-
formly quantized into 100 states, using a finite grid approximation.
Second, we illustrate how the optimal accumulated rewards varies
with the number of stops. Third, we benchmark the performance
of linear threshold policies (obtained using Algorithm 1) against
optimal multiple stopping policy. Finally, we illustrate the advan-
tage of structural results for designing approximation algorithm
by comparing the performance of the linear threshold policies in
Section 4 against the popular softmax parametrization, which are
not constrained to satisfy the structural results.

Example 1. POMDP parameters: Consider a Markov chain with

3−states with the transition matrix P and the reward vector spec-
ified in (22). The observation distribution is given by B(i, y) =
gyi exp(−gi)

y! , i.e. the observation distribution is Poisson with state
dependent mean vector g given in (22). It is easily verified that

Fig. 3. Example 1: S1 (shown in black) and S5 (shown in red) obtained by solving
the dynamic programming (9). The figure illustrates monotone, connected and the
nested structure of the stopping sets (S l−1 ⊂ S l), in Theorem 1. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

Fig. 4. Example 2: Optimal policy when (A3) is violated. S1 is shown in black and
S5 is shown in red. The monotone property of Theorem 1A is violated.

the transition matrix, the observation distribution and the reward
vector satisfy the conditions (A1)–(A3).

P =

[0.2 0.1 0.7
0.1 0.1 0.8
0 0.1 0.9

]
, g =

[
12 7 2

]′
, r =

[
9 3 1

]′ (22)

We choose L = 5, i.e. the decision maker wishes to stop at most 5
times. Fig. 3 shows the stopping sets S5 and S1. It is evident from
Fig. 3 that the optimal policy is monotone on lines, stopping sets
are connected and satisfy the nested property; thereby illustrating
Theorem 1.

Example 2. Consider the same parameters as in Example 1, except
reward r =

[
1 2 1

]′ which violates (A3). Fig. 4 shows the
optimal multiple stopping policy in terms of the stopping sets. As
can be seen from Fig. 4 that the optimal policy does not satisfy the
monotone property (Theorem 1A). However, the nested property
continues to hold.

Example 3. Consider the same parameters as in Example 1, except
L = 2 and r1 =

[
9 3 1

]′and r2 =
[
3 9 1

]′. (A3) is
violated for l = 2. Fig. 5 shows the optimal multiple stopping
policy in terms of the stopping sets. As can be seen from Fig. 5 that
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Fig. 5. Example 3: Optimal policy when (A3) is violated. S1 is shown in black and
S2 is shown in red. The stopping sets are not nested.

Table 1
Optimal accumulated reward (normalized w.r.t L = 1) versus number of stops.
As the number of stops increases the accumulated reward increases. The table was
generated by solving the dynamic programming equations in (9). The accumulated
reward is with a starting belief π0 =

( 1
3

1
3

1
3

)
.

L 1 2 3 4 5

reward 1 1.66 2.12 2.46 2.75

the optimal policy does not satisfy the monotone property or the
nested property.

Thus, the conditions (A1)-(A3) of Theorem 1 are useful in the
sense that when they are violated, there are examples where the
optimal policy does not have the monotone or nested property.

Optimal accumulated reward against L: Consider Example 1 with
POMDP parameters in (22). At each stop, we accumulate a reward.
It is easy to see that as the number of stops increase, the reward
accrued will also increase. Table 1 illustrates that this is indeed the
case. The values in Table 1 were obtained by solving the dynamic
programming equations in (9) for various values of L ranging from
1 to 5.

Performance of linear threshold policies: In order to benchmark the
performance of optimal linear threshold policies (that satisfy the
constraints in Theorems 3 and 4),we ranAlgorithm1 for Example 1
(parameters in (22)). The performance was compared based on the
expected cumulative reward between the optimal policy and the
linear threshold policies for 1000 independent runs. The following
parameters were chosen for the SPSA algorithm µ = 2, υ = 0.2,
ς = 0.5, κ = 0.602 and ε = 0.1667; these values are as
suggested in Spall (2005). It was observed that there is a 12% drop
in performance of the linear threshold policies compared to the
optimal multiple stopping policy.

Advantage of parametrization satisfying structural results: Here, we
illustrate the advantage of parametrization of the policy to satisfy
the structural results in Theorem 1. The softmax function is a
popular parametrization for decision-making and is widely used
in reinforcement learning (Sutton & Barto, 1998). Consider the
following softmax parametrization of the policy

Pr(µ(π, l) = u) =
exp

([
0 θl,u

]′
π

)
∑2

u=1 exp
([

0 θl,u
]′
π

) . (23)

In (23), Pr(µ(π, l) = u) denotes the probability of taking action u
(either ‘Stop’ or ‘Continue’) as a function of belief π and number

of stops remaining l. The parameters in (23) θl,u ∈ RS−1
; l =

1, . . . , L u = 1, 2 are indexed by number of stops remaining
and the actions. Compared to linear threshold policies in (15), the
policies in (23) are not restricted to satisfy the structural results
in Theorem 1. Algorithm 3 in Appendix E summarizes the compu-
tation of the finite time horizon approximation with the softmax
parametrization in (23).

Comparing the expected cumulative reward, we find that the
optimal policy and the linear threshold policies outperform the
softmax parametrization by 40% and 30%, respectively. Hence, this
illustrates the advantage of taking into account the structure of
the optimal policy while designing algorithms for computing an
approximation policy.

5.2. Real dataset: interactive ad scheduling on periscope using viewer
engagement

We now formulate the problem of interactive ad scheduling on
live online social media as a multiple stopping problem and illus-
trate the performance of linear threshold policies using a Periscope
dataset.7 Periscope is a popular live personalized video streaming
application where a broadcaster interacts with the viewers via
live videos. Each such interaction lasts between 10 − 20 minutes
and consists of: (i) A broadcaster who starts a live video using a
handheld device. (ii) Video viewerswho engagewith the live video
through comments and likes.

Dataset: The dataset inWang et al. (2016) contains details of all
public broadcasts on the Periscope application from May 15, 2015
to August 20, 2015. The dataset consists of timestamped events:
time instants at which the live video started/ended; time instants
at which viewers join; and, time instants at which the viewers
engage using likes and comments. In this paper, we consider viewer
engagement through likes, since comments are restricted to the first
100 viewers in the Periscope application.

Ad scheduling Model
Here we describe how the model in Section 2 can be adapted to

the problem of interactive ad scheduling in live video streaming;
see Fig. 1 for the setup.

1. Interest Dynamics: In live online social media, it is well known
that the viewer engagement is correlated with the interest of the
content being streamed or broadcast. Markov models have been
used to model interest in online games (Baldominos, Esperanza,
Marrero, & Saez, 2016), and in online social networks (Benevenuto,
Rodrigues, Cha, & Almeida, 2009). We therefore model the interest
in live video as a Markov chain, Xt , where the different states
denote the level of interest in the live content. The states are
ordered in the decreasing order of interest.

Homogeneous Assumption: Periscope utilizes the Twitter network
to link broadcasters with the viewers and hence shares many of
the properties of the Twitter social network. Different sessions of
a broadcaster, therefore, tend to follow similar statistics due to the
effects of social selection and peer influence (Lewis, Gonzalez, &
Kaufman, 2012). It was shown in Hamilton, Garretson, and Kerne
(2014) that live sessions on live online gaming platforms can be
viewed as communities and communities in online social media
have similar information consumption patterns (Del Vicario, Bessi,
Zollo, Petroni, Scala, Caldarelli, Stanley, & Quattrociocchi, 2016).
We therefore model the interest dynamics as a time homogeneous
Markov chain.

2. Engagement Dynamics: The interest in the video, Xt , cannot be
measured directly by the broadcaster and has to be inferred from

7 We use the dataset in Wang, Zhang, Wang, Zheng, and Zhao (2016), which
can be downloaded from http://sandlab.cs.ucsb.edu/periscope/. Wang et al. (2016)
deals with the performance of Periscope application in terms of delay and scalabil-
ity.

http://sandlab.cs.ucsb.edu/periscope/
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the viewer engagement, denoted by Yt . Since the viewer engage-
ment measures the number of likes in a given time interval, we
model it using a Markov modulated Poisson distribution. Denote
the rate of the Poisson observation process when the interest is
in state i by gi. The observation probability in (2) can be obtained
using B(i, y) = gy

i exp(−gi)/y!.

3. Broadcaster Revenue: The ad revenue in online social media de-
pends on the click rate (the probability that the ad will be clicked).
In a recent research, Adobe Research8 concluded that video view-
ers are more likely to engage with an ad if they are interested in
the content of the video that the ad is inserted into. The reward
vector in Section 2.1 should capture the positive correlation that
exists between interest in the videos and the click rate (Lehmann,
Lalmas, Yom-Tov, &Dupret, 2012). Since the information regarding
the click rate and actual number of viewers are not available in the
dataset, we choose the reward vector r to be a vector of decreasing
elements, each being proportional to the reward in that state, such
that (A3) is satisfied.

4. Broadcaster operation: The broadcaster wishes to schedule at
most L ads at instants when the interest is high. Here, we choose.9
the number of stops L = 5. At each discrete time, after receiving
the observation Yt , the broadcaster either stops and schedules an
ad or continues with the live stream; see Fig. 1 The ad scheduling
model that we consider in this paper assumes that the interest
in the content does not change with scheduling ads. This is a
simplifiedmodelwhen the live video content is paused to allow for
advertisements, as in Twitch. However, the model captures the in-
video overlay ads that are popular in YouTube Live. In video overlay
ads, the advertisement is shown in a portion of the screen (typically
below). Here, it is safe to assume that the interest is not affected by
ad-scheduling.

5. Broadcaster objective: The objective of the broadcaster is given
by (4). It aims to schedule ads when the content is interesting, so
as to elicit maximum number of clicks, thereby maximizing the
expected revenue. In personalized live streaming applications like
Periscope, the discount factor in (4) captures the ‘‘impatience’’ of
live broadcaster in scheduling ads.

The above model and formulation correspond to a multiple
stopping problem with L stops, as discussed in Section 2. Theo-
rem 1 establishes structural results on the optimal ad scheduling
policy. In addition, personalized live social media applications like
Periscope need to work seamlessly on a mobile smart phone plat-
form, where computing resources are limited. Hence, advertising
scheduling algorithm should have minimal real-time computa-
tional requirements. The real-time computational requirement for
implementing any POMDP policy consists of (i) Updating the belief
using the HMM Bayesian update in (7), (ii) Evaluating the policy
using the updated belief to obtain a decision. The linear threshold
policies reduce the computational requirement of obtaining a de-
cision from an updated belief.

Below, we describe how to estimate the model parameters
from the data (viewer engagement Yt ) for computing the linear
threshold policies using Algorithm 1.

Estimation of parameters: The live video sessions in Periscope
have a range of 10–20 min (Wang et al., 2016). The viewer en-
gagement information consists of a time series of likes obtained
by sampling the timestamped likes at a 2-s interval. Sampling at
a 2-s interval, each session provides 1000 data points. The model
parameters P and B are computed using maximum likelihood

8 https://gigaom.com/2012/04/16/adobe-ad-research/.
9 Most of the popular Periscope sessions last 15–30 min. Broadcast television

usually average 13.5mins per hour of advertisement or approximately one ad every
5 min. Hence, we choose the number of advertisements L = 5.

Table 2
BIC model order selection for the popular live session. The maximum likelihood
estimated parameters are given in (24). The BIC criteria were run for S varying from
2 to 12 (only values for 2–6 are shown below). S = 4 has the lowest BIC value.

S − log(L ) BIC = −2 log(L )+ n log(N)

2 −4707.254 9535.053
3 −4190.652 8601.122
4 −3969.955 8287.364
5 −3951.155 8405.764
6 −3887.453 8462.725

•L denotes the likelihood value.
• n denotes the number of parameters: n = S2 + S − 1.
• N denotes the number of observations. Here, N = 104 .

Fig. 6. The maximum likelihood estimated parameters are given in (24). The QQ-
plot is used for validating the goodness of fit. The linearity of the points suggests
that the estimated parameters in (24) are a good fit.

estimation. Since the interest dynamics are time homogeneous,
we utilize data from multiple sessions to estimate the parameters
P and B. The model was validated using the QQ-plot (see Fig. 6)
of normal pseudo-residuals. The estimated value of the transition
matrix P and the state dependent mean g of a popular live session
are given as:

P =

⎡⎢⎣0.733 0.266 0.000 0.000
0.081 0.718 0.201 0.000
0.000 0.214 0.670 0.116
0.000 0.000 0.222 0.778

⎤⎥⎦ , g =

⎡⎢⎣38
21
10
1

⎤⎥⎦ . (24)

The model order dimension was estimated using the penalized
likelihood criterion; specifically Table 2 shows the model order
selection using the Bayesian information criterion (BIC). The like-
lihood values in Table 2 were obtained using an Expectation–
Maximization algorithm. In Table 2, S = 4 has the lowest BIC value.
The reward vector was chosen as r ′ =

[
4 3 2 1

]
, and satisfies

(A3) for ρ ∈ [0, 1].

5.2.1. Multiple ad scheduling: performance results
We now compare the linear threshold scheduling policies (ob-

tained from Algorithm 1) with two existing schemes:

(1) Periodic: Here, the broadcaster stops periodically to ad-
vertise. Twitch,10 for example, uses periodic ad schedul-
ing (Smith, Obrist, & Wright, 2013). Periodic advertisement

10 Twitch is a video platform that focuses primarily on video gaming. In 2015,
Twitch had more than 1.5 million broadcasters and 100 million visitors per month.

https://gigaom.com/2012/04/16/adobe-ad-research/
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scheduling is also widely used for pre-recorded videos on
social media platforms like YouTube.

(2) Heuristic:Here, the broadcaster solves a classical single stop-
ping problem (L = 1 in Section 2). The single stopping policy
is used to schedule all the advertisements.

PerformanceResults: Itwas seen that the optimal linear threshold
policies outperforms conventional periodic scheduling by 25% and
the heuristic scheduling by 10%. The periodic scheme performs
poorly because it does not take into account the viewer engage-
ment or the interest in the content while scheduling ads. The
multiple stopping policy, in comparison to the heuristic scheme,
takes into account the fact that L-ads need to be scheduled and
hence, is optimal.

5.3. Large dimensional state spacemodels&Comparisonwith SARSOP

We consider a Markov chain with 100 states. The transition
matrix and observation distribution are generated as discussed
in Krishnamurthy and Rojas (2014). In order for the transition
matrix P satisfy the TP2 assumption in (A1), we use the following
approach: First construct a 10-state transitionmatrix A = exp(Qt),
where Q is a tridiagonal generator matrix (off-diagonal entries are
non-negative and row sums to 0) and t > 0. Since Kronecker
product preserves TP2 structure, we let P = A ⊗ A. The obser-
vation distribution B, containing 100 observations satisfying (A2)
is similarly generated. The reward vector is chosen as follows:
r = [100, 99, . . . , 1]. The number of stops is L = 5.

Because of the large state space dimension, computing the op-
timal policy using dynamic programming is intractable. We com-
pare linear threshold policies (obtained through Algorithm 1), the
heuristic policy and periodic policy (described in the Section 5.2),
in terms of the expected cumulative reward by each of the policy.
Also, we compare the linear threshold policy against the state-
of-the-art solver for POMDP: SARSOP (an approximate POMDP
planning algorithm) (Kurniawati, Hsu, & Lee, 2008).

Table 3 shows the normalized cumulative reward by each of the
policies. The expected rewardwas calculated using 1000 indepen-
dent Monte Carlo simulations. From Table 3 we observe that the
linear threshold policy and heuristic policy outperforms periodic
scheduling by a factor of 2. Also, the linear threshold policy out-
performs the heuristic policy by 14%. The linear threshold policy
has a performance drop of 12% compared to the solution obtained
using SARSOP. This can be attributed to the linear hyperplane
approximation to the threshold curve compared to the SARSOP
solution where the number of linear segments is exponential in
the number of states and observations.

Although the linear threshold policies have a slight perfor-
mance drop compared to SARSOP, it has two significant advan-
tages: (i) The policy (the linear threshold vectors corresponding to
each stop) is easy to implement. In comparison, the SARSOP policy
has approximately 7e4 piecewise linear segments. (ii) Computing
the linear threshold approximation is computationally cheaper
compared to SARSOP algorithm. It can be noted from Table 3 that
Algorithm 1 is computationally cheaper by a factor of 10. The
linear threshold policies that exploit the structure of the optimal
policy perform nearly as well as the optimal policy computed via
a general purpose approximate POMDP solver, with substantially
lower computational cost.

6. Conclusion

Wepresented fourmain results regarding themultiple stopping
time problem.
(i) The optimal policy was shown to be monotone with respect
to a specialized monotone likelihood ratio order on lines (under

Table 3
Comparison of the expected cumulative reward (Normalized w.r.t SARSOP) and
number of computations by various algorithm. The linear threshold policies have a
performance drop of 12% compared to the solution obtained using SARSOP and out-
performs the heuristic policy by 14%. SARSOP solution computed using a 2.5 GHz
CPU running for 2 hours. The calculation assumes a floating point operation every
CPU cycle. Algorithm 1, for obtaining linear threshold policies, was run with finite
horizon N = 1000.

Algorithm Cumulative reward #Computations

SARSOP 1 18e12
Linear Threshold 0.88 1.25e11
Heuristic 0.74 1.25e11
Periodic 0.35 0

reasonable conditions). Therefore the optimal policy was charac-
terized by multiple threshold curves on the belief space and the
optimal stopping sets satisfied a nested property (Theorem 1).
(ii) The cumulative reward was shown to be monotone with re-
spect to the copositive ordering of the transition matrix (Theo-
rem 2).
(iii) Necessary and sufficient conditions were given for linear
threshold policies to satisfy the MLR increasing condition for the
optimal policy (Theorems 3 and 4). We then gave a stochastic
gradient algorithm (Algorithm 1) to estimate the linear threshold
policies.
(iv) Finally, the linear scheduling policy was illustrated on a
real dataset involving interactive advertising in live social media
videos.

Extension of the current work involves developing upper and
lower myopic bounds to the optimal policy as in Krishnamurthy
and Pareek (2015), optimizing the ad length, and constraints on
ad placement in the advertisement scheduling problem, multiple
stopping problems with social learning (Krishnamurthy, 2012),
and multiple stopping problems with measurement cost (Krishna-
murthy, 2013).

Appendix A. Preliminaries and definitions

The proof of the main results require concepts in stochastic
dominance (Karlin & Rinott, 1980) and submodularity (Topkis,
2011).

A.1. First-order and MLR stochastic dominance

To compare belief states, we use the monotone likelihood ratio
(MLR) stochastic ordering and a specialized version of the MLR
order restricted to lines in the simplex.

Definition 1 (MLR Ordering). Let π1, π2 ∈ Π be two belief state
vectors. Then, π1 is greater than π2 with respect to Monotone
Likelihood Ratio (MLR) ordering–denoted as π1≥r π2, if

π1(j)π2(i) ≤ π2(j)π1(i), i < j, i, j ∈ {1, . . . , S} (A.1)

Definition 2 (First Order Stochastic Dominance). Let π1, π2 ∈

Π be two belief state vectors. Then, π1 is greater than π2 with
respect to first-order stochastic dominance–denoted as π1≥s π2,
if
∑S

i=jπ1(i) ≤
∑S

i=jπ2(i), j ∈ {1, 2, . . . , S}.

Result (Krishnamurthy, 2016):

(i) π1, π2 ∈ Π . Then, π1≥r π2 implies π1≥s π2.
(ii) π1≥s π2 if and only if for any increasing function φ(·),

Eπ1 {φ(x)} ≥ Eπ2 {φ(x)}.
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For state-space dimension S = 2, MLR is a complete order and
coincides with first-order stochastic dominance. For state-space
dimension S > 2 MLR is a partial order i.e. [Π,≥r ] is a partially
ordered set since it is not always possible to order any two belief
states. However, on line segments in the simplex defined below,
MLR is a total ordering.

Define the sub simplex Hi = {π̄ : π̄ ∈ Π and π̄ (i) = 0}, i =
1, S. Fig. 2 illustrates H1 for S = 3. Consider two types of lines,
L (ei, π̄) ; i = 1, S, where ei is the unit indicator vector with 1
in the i position and 0 elsewhere, as follows: For any π̄ ∈ Hi,
construct the line L(ei, π̄ ) that connects π̄ to ei as L (ei, π̄) =
{π : π = (1− γ ) π̄ + γ ei, γ ∈ [0, 1]}. For brevity, we denote
L(ei, π̄ ) by L(ei). Fig. 2 illustrates the definition of L(e1).

Definition 3 (MLR Ordering on Lines). π1 is greater than π2 with
respect to MLR ordering on the lines L(ei), denoted as π1≥Li π2, if
π1, π2 ∈ L(ei), for some π̄ ∈ Hi and π1≥r π2.

Remark 3 (Krishnamurthy, 2016). For i = 1, S, π1≥Li π2 is
equivalent to πj = εjei + (1− εj)π̄ , for some π̄ ∈ Hi and ε1 ≥ ε2.

Discussion: The MLR ordering on lines is a complete order, i.e. it
forms a chain, meaning that all elements π1, π2 ∈ L(ei) are
comparable, i.e. either π1≥Li π2 or π2≥Li π1; see Krishnamurthy
(2016). The complete order on L(ei, π̄ ); i = 1, S allows us to give a
threshold characterization of the optimal policy on the belief space.

Definition4 (TP2). A stochasticmatrix,A is Totally Positive of order
2 (TP2), if all the second order minors are non-negative i.e. the
determinants⏐⏐⏐⏐ai1j1 ai1j2
ai2j1 ai2j2

⏐⏐⏐⏐ ≥ 0,∀i2 ≥ i1, j2 ≥ j1 (A.2)

An important consequence of (A1) and (A2) is the following the-
orem,which state that the Bayesian update T (π, y) in (7) preserves
MLR dominance.

Theorem5 (Krishnamurthy, 2016). If the transitionmatrix, P, and the
observation matrix, B, satisfies the condition in (A1) and (A2), then

• For π1≥r π2, the filter satisfies T (π1, ·)≥r T (π2, ·).
• For π1≥r π2, σ (π1, ·)≥s σ (π2, ·)

Definition 5 (Submodular Function). A function f : L(ei)×{1, 2} →
R is submodular if f (π, u) − f (π, ū) ≤ f (π̄ , u) − f (π̄ , ū) for u ≥
ū, π ≥Li π̄ .

Theorem 6 (Topkis, 2011). If f (π, u) is submodular, then there
exists a version of the optimal policy u∗(π ) = argmax

u∈U
f (π, u) that

is decreasing in π .

Hence, to prove the structural result, we show that the
Q (π, l, u) in (9) is submodular on the lines L(ei); i = 1, S with
respect to the MLR order≥Li .

Appendix B. Value iteration

The value iteration algorithm is a successive approximation
approach for solving Bellman’s equation (9). However, in this
paper, we use the value iteration algorithm in a mathematical
induction proof; and not as a numerical algorithm. For iterations
k = 0, 1, . . . ,

Vk+1(π, l) = max
u∈{1,2}

Qk+1(π, l, u), (B.1)

µk+1(π, l) = argmax
u∈{1,2}

Qk+1(π, l, u), (B.2)

where

Qk+1(π, l, 1) = r ′π + ρ
∑
y

Vk(T (π, y), l− 1)σ (π, y), (B.3)

Qk+1(π, l, 2) = ρ
∑
y

Vk(T (π, y), l)σ (π, y), (B.4)

with V0(π, l) initialized arbitrarily. DefineWk(π, l) as

Wk(π, l) ≜ Vk(π, l)− Vk(π, l− 1). (B.5)

The stopping and continue sets (at each iteration k) when l stops
are remaining is defined as follows:

S lk+1 = {π |r
′π ≥ ρ

∑
y

Wk(T (π, y), l)σ (π, y)},

C l
k+1 = {π |r

′π < ρ
∑
y

Wk(T (π, y), l)σ (π, y)}.
(B.6)

The optimal stationary policy µ∗(π, l) is given by µ∗(π, l) =
limk→∞µk(π, l).. Correspondingly, the stationary stopping and
continue sets in (10) and (11) are given by

S l = lim
k→∞

S lk, C l
= lim

k→∞
C l
k. (B.7)

The value function, Vk(π, l) in (B.1), can be rewritten, using (B.6),
as follows:

Vk(π, l) =

(
r ′π + ρ

∑
y

Vk−1(T (π, y), l− 1)σ (π, y)

)
ISlk

+

(
ρ
∑
y

Vk−1(T (π, y), l)σ (π, y)

)
IC l

k
, (B.8)

where IC l
k
and ISlk

are indicator functions on the continue and
stopping sets respectively, for each iteration k.

Assume S l−1k ⊂ S lk (see Theorem 9) and substituting (B.8) in the
definition ofWk(π, l) in (B.5),

Wk(π, l) =

(
ρ
∑
y

Wk−1(T (π, y), l)σ (π, y)

)
IC l

k
(π )

+ r ′πIC l−1
k ∩Slk

(π ) (B.9)

+

(
ρ
∑
y

Wk−1(T (π, y), l− 1)σ (π, y)

)
ISl−1k

(π ).

In order to prove the main theorem (Theorem 1), we require the
following results, proofs of which are provided in Appendix C.

Theorem 7. Vk(π, l) is increasing in π .

Theorem 8. Wk(π, l) is decreasing in l.

Theorem 9. S lk+1 ⊃ S l−1k+1

Appendix C. Proof of theorems

C.1. Proof of Theorem 7

Recall from (B.1), Vk(π, l) = max
u∈{1,2}

Qk(π, l, u). To prove Theo-

rem 7, we show Qk(π, l, u) is MLR increasing in π for u = {1, 2}.
From (B.3),

Qk(π, l, 1) = r ′π + ρ
∑
y

Vk−1(T (π, y), l− 1)σ (π, y),

Using Theorem 5 and the induction hypothesis, the term∑
yVk−1(T (π, y), l − 1)σ (π, y) is MLR increasing in π . From (A3),
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r ′π is MLR increasing in π . The proof for Qk(π, l, 2) MLR increasing
in π is similar and is omitted. Hence, Vk(π, l) is MLR increasing in
π .

C.2. Proof of Theorem 8

The proof follows by induction. From (B.9), we have

Wk(π, l− 1) =
∑
y

Wk−1(T (π, y), l− 1)σ (π, y)IC l−1
k

(π )+

r ′πIC l−2
k ∩Sl−1k

(π )+ (C.1)∑
y

Wk−1(T (π, y), l− 2)σ (π, y)ISl−2k
(π )

Hence, we compare Wk(π, l) and Wk(π, l − 1) in the following 4
regions:

(a) S l−2k : Wk(π, l)−Wk(π, l− 1) =
∑

y(Wk−1(T (π, y), l− 1)−
Wk−1(T (π, y), l − 2))σ (π, y), which is non-negative by the
induction assumption.

(b) C l−2
k ∩ S

l−1
k : Wk(π, l)−Wk(π, l−1) =

∑
yWk−1(T (π, y), l−

1)σ (π, y)− r ′π, which is non-negative since π ∈ S l−1k .
(c) C l−1

k ∩S
l
k : Wk(π, l)−Wk(π, l−1) = r ′π−

∑
yWk−1(T (π, y),

l− 1)σ (π, y), which is non-negative since π ∈ C l−1
k .

(d) C l
k: Similar to Case a above.

C.3. Proof of Theorem 9

If π ∈ S l−1k , then r ′π ≥
∑

yWk−1(T (π, y), l − 1)σ (π, y). By
Theorem 8, r ′π ≥

∑
yWk−1(T (π, y), l)σ (π, y). Hence π ∈ S lk.

C.4. Proof of Theorem 1

Existence of optimal policy: In order to show the existence of a
threshold policy of L(e1), we need to show that Qk+1(π, l, 2) −
Qk+1(π, l, 1) is submodular in π ∈ L(e1). Since, Qk+1(π, l, 2) −
Qk+1(π, l, 1) = ρ

∑
yWk(T (π, y), l)σ (π, y)− r ′π . We need to show

that ρ
∑

yWk(T (π, y), l)σ (π, y)− r ′π is MLR decreasing in π .

ρ
∑
y

Wk(T (π, y), l)σ (π, y)− r ′π (C.2)

=

∑
y

((
ρWk(T (π, y), l)− ρr ′T (π, y)

)
−
(
r ′π − ρr ′T (π, y)

))
σ (π, y)

= ρ
∑
y

(
Wk(T (π, y), l)− r ′T (π, y)

)
σ (π, y)

− r ′(I − ρP ′)π (C.3)

The term−r ′(I − ρP ′)π in (C.3) is MLR decreasing in π due to our
assumption. Hence, to show that ρ

∑
yWk(T (π, y), l)σ (π, y) − r ′π

is MLR decreasing in π it is sufficient to show that Wk(π, l) − r ′π
is MLR decreasing in π . Define, W̄k(π, l) ≜ Wk(π, l)− r ′π .

Now, W̄k(π, l) =(∑
y

ρ
((
W̄k−1(T (π, y), l)+ r ′T (π, y)

)
− r ′π

)
σ (π, y)

)
IC l

k
(π )+(∑

y

ρ
((
W̄k−1(T (π, y), l− 1)+ r ′T (π, y)

)
− r ′π

)
σ (π, y)

)
ISlk

(π )

=

(∑
y

(
ρW̄k−1(T (π, y), l)σ (π, y)

)
− r ′(I − ρP)′π

)
IC l

k
(π )+

(∑
y

(
ρW̄k−1(T (π, y), l− 1)σ (π, y)

)
− r ′(I − ρP)′π

)
ISlk

(π )

(C.4)

We prove using induction that W̄k(π, l) is MLR decreasing in π ,
using the recursive relation over k in (C.4). For k = 0, W̄0(π, l) =
W0(π, l)−r ′π = V0(π, l)−V0(π, l−1)−r ′π . The initial conditions
of the value iteration algorithm can be chosen such that W̄0(π, l) is
decreasing in π .

Next, we show that W̄k(π, l) is MLR decreasing in π , if
W̄k−1(π, l) is MLR decreasing in π . For π1≥r π2, consider the fol-
lowing cases: (a) π1, π2 ∈ S l−1k , (b) π1 ∈ S l−1k , π2 ∈ C l−1

k ∩ S lk, (c)
π1, π2 ∈ C l−1

k ∩ S lk, (d) π1 ∈ C l−1
k ∩ S lk, π2 ∈ C l

k, (e) π1, π2 ∈ C l
k, (f)

π1 ∈ S l−1k , π2 ∈ C l
k. For cases (a), (c), (e), W̄k(π1, l) ≤ W̄k(π2, l) by

the induction assumption. For case (b) W̄k(π1, l) ≤ W̄k(π2, l), since
π1 ∈ S l−1k . Case (d) is similar to case (b). For case (f), W̄k(π1, l) −
W̄k(π2, l) =(∑

y

(
ρW̄k−1(T (π1, y), l− 1)σ (π1, y)

)
− r ′(I − ρP)′π1

)

−

(∑
y

(
ρW̄k−1(T (π2, y), l)σ (π2, y)

)
− r ′(I − ρP)′π2

)

≤ ρ

(∑
y

((
W̄k−1(T (π1, y), l− 1)− W̄k−1(T (π1, y), l)

)
σ (π1, y)

))
≤ 0,

where the first inequality is due to induction hypothesis and the
second inequality is due to Theorem 8. Hence, W̄k(π, l) is decreas-
ing in π , if W̄k−1(π, l) is decreasing in π , finishing the induction
step.

Characterization of the switching curve Γl: For each π̄ ∈ H con-
struct the line segmentL(e1, π̄ ). The line segment can be described
as (1− ε)π̄ + εe1. On the line segment L(e1, π̄ ) all the belief states
are MLR orderable. Since µ∗(π, l) is monotone decreasing in π , for
each l, we pick the largest ε such thatµ∗(π, l) = 1. The belief state,
π ε∗,π̄ is the threshold belief state, where ε∗ = inf{ε ∈ [0, 1] :
µ∗(π ε,π̄ , l) = 1}. Denote by Γl(π̄ ) = π ε∗,π̄ . The above construction
implies that there is a unique threshold Γl(π̄ ) on L(e1, π̄ ). The
entire simplex can be covered by considering all pairs of lines
L(e1, π̄ ), for π̄ ∈ H1, i.e. Π = ∪π̄∈HL(e1, π̄ ). Combining, all points
yield a unique threshold curve in Π given by Γl = ∪π̄∈H1Γl(π̄ ).

Connectedness of S l and C l: Since e1 ∈ S l for all l, call S la, the
subset of S l that contains e1. Suppose S lb is the subset that was
disconnected from S la. Since every point on Π lies on the line
segment L(e1, π̄ ), for some π̄ , there exists a line segment starting
from e1 ∈ S la that would leave the set S la, pass through the set
where action 2 is optimal and then intersect set S lb, where action
1 is optimal. But, this violates the requirement that the policy
µ∗(π, l) is monotone on L(e1, π̄ ). Hence, S la and S lb are connected.
The proof for connectedness of C l is similar to S l by considering the
line L(eS, π̄ ) instead of L(e1, π̄ ), and is hence omitted.

Nested structure: The proof follows from Theorem 9.

C.5. Copositive ordering

Definition 6 (Copositive Ordering (Krishnamurthy, 2016)). Given
two S × S transition matrices P and Q , we say that P ⪯ Q if the
sequence of S × S matrices Γ j are: π ′Γ jπ ≥ 0, π ∈ Π, j =
1, . . . , S − 1, where each element of Γ j is given by Γ

j
m,n =

1
2

(
γ

j
m,n + γ

j
n,m

)
, γ j

m,n = Pm,jQn,j+1 − Pm,j+1Qn,j.
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Theorem 10 (Krishnamurthy, 2016, Theorem 10.6.1). Suppose tran-
sitionmatrices P and P̄ are constructed such that P ⪯ P ⪯ P̄ . Then for
any observation y and belief π ∈ Π , the filtering update T (π, y; P)11

in (7) satisfies T (π, y; P)≤rT (π, y; P)≤rT (π, y; P̄).

C.6. Proof of Theorem 4

For l1 > l2, due to the nested structure in Theorem 1 S l2 ⊂ S l1 .
This implies µθ (l2, π ) ≥ µθ (l1, π ), i.e.,

[
0 0 θl2 − θl1

] [ π

−1

]
≥

0. It is straightforward to check that the conditions in (16) in
Theorem 4 satisfy the above conditions.

Appendix D. Proof of propositions

D.1. Proof of Proposition 1

Let v = (I − ρP)r . When ρ < 1, (I − ρP) is invertible.
Hence, r = (I − ρP)−1v =

∑
∞

k=0ρ
kPkv. Since the product of TP2

matrices is TP2, each Pk is TP2. Then, r been decreasing follows
from Theorem 9.2.2 in Krishnamurthy (2016). For ρ = 1, g =
limρ↑1(1 − ρ)(I − ρP)−1v is the solution of (I − P)r = v. This
limit exists (Puterman, 2005, Cor. 8.2.5) andhence, r has decreasing
elements.

D.2. Proof of Proposition 2

The proof follows from the finite stopping time property of the
multiple stopping time problem; see Footnote 2. A finite horizon
POMDP with a finite state and observation space has a value
function that is piecewise linear and convex; see Theorem 7.4.1 in
Krishnamurthy (2016). For l = 1, V (π, 1) = max

γ∈Γ
γ ′π, where Γ is

a finite set due to the finite stopping time property. For l = 2, the
dynamic programming equation in (9) can be written as:

V (π, 2) = max

{
r ′π +max

γ∈Γ
γ ′P ′π, ρ

∑
y∈Y

V (T (π, y), 2) σ (π, y)

}
.

For each γ ∈ Γ , the stopping set is convex; see the proof of
Theorem 12.2.1 in Krishnamurthy (2016). Hence, the stopping set
for l = 2 is a union of convex sets. Similar argument holds for any
value of l.

Appendix E. Finite horizon algorithms

Algorithm 2 details the steps to compute the finite time horizon
approximation in (17) for the linear threshold policies. Its input is
the POMDP parameters, policy (in terms of the parameter θ ) and
number of stops. It computes the accumulated reward using the
input policy by running a POMDP simulation of at most N time
points. Algorithm 3 summarizes the computation of the finite time
horizon approximation with the softmax parametrization of the
policy in (23). The key difference with Algorithm 2 is in Steps 5–7:
the softmax policy in (23) replaces the linear threshold policies in
Step 5 of Algorithm 2.

11 The notation T (·, ·; P) makes explicit the transition matrix used in the filter
update.

Algorithm 2 Finite Horizon Approximation Algorithm for linear
threshold policies
Require: Finite time approximation parameter N , policy parameter θ , number of

stops L, initial belief π0 , discount factor ρ, reward vector r .
1: l← L, J ← 0.
2: for iterations n = 1, 2, · · ·N: do
3: while l ̸= 0 do
4: Obtain observation Yn and update belief πn according to (7).
5: Compute an ← µθ (πn, l) according to (15).
6: if an = 1 then
7: J ← J + ρnπ ′nr , l← l− 1

return J

Algorithm 3 Finite Horizon Approximation Algorithm: Using soft-
max parametrization

Identical to Algorithm 2 except for Steps 5-7
5: actionprob =

[
exp

([
0 θl,1

]′
π

)
exp

([
0 θl,2

]′
π

)]
6: actionprob← actionprob/

∑
actionprob

7: Sample an ∼ actionprob
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