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Abstract

In this paper, we study a special class of first-order methods, namely bundle-level

(BL) type methods, which can utilize historical first-order information through cutting

plane models to accelerate the solutions in practice. Recently, it has been shown

in Lan (149(1–2):1–45, 2015) that an accelerated prox-level (APL) method and its

variant, the uniform smoothing level (USL) method, have optimal iteration complexity

for solving black-box and structured convex programming (CP) problems without

requiring input of any smoothness information. However, these algorithms require the

assumption on the boundedness of the feasible set and their efficiency relies on the

solutions of two involved subproblems. Some other variants of BL methods which

could handle unbounded feasible set have no iteration complexity provided. In this

work we develop the fast APL (FAPL) method and fast USL (FUSL) method that can

significantly improve the practical performance of the APL and USL methods in terms

of both computational time and solution quality. Both FAPL and FUSL enjoy the same

optimal iteration complexity as APL and USL, while the number of subproblems in

each iteration is reduced from two to one, and an exact method is presented to solve the

only subproblem in these algorithms. Furthermore, we introduce a generic algorithmic

framework to solve unconstrained CP problems through solutions to a series of ball-

constrained CP problems that also exhibits optimal iteration complexity. Our numerical

results on solving some large-scale least squares problems and total variation based

image reconstructions have shown advantages of these new BL type methods over

APL, USL, and some other first-order methods.
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1 Introduction

Many data analysis problems are often modeled as the following broad class of convex

programming (CP) problems:

f ∗ := min
x∈X

f (x), (1.1)

where X ⊆ R
n is a closed convex set, and f : X → R is a convex function. We denote

by X∗ the solution set of the above problem. Throughout this paper, we assume that

the solution set X∗ is nonempty. One example of problem (1.1) is the classic ridge

regression model (namely, Tikhonov regularization) in statistical learning estimates

parameters β by

min
β∈Rn

‖y − Aβ‖2 subject to ‖β‖ ≤ λ, (1.2)

where ‖ · ‖ denotes the Euclidean norm, y describes the observed outcome, A are

the predictors in the observed data, and λ is a regularization parameter. The above

model can be viewed as a special case of (1.1) with x = β, f (x) = ‖y − Ax‖2, and

X = {x ∈ R
n : ‖x‖ ≤ λ}. Another important example is the classical two-dimensional

total variation (TV) based image reconstruction problem [2,3] given by:

min
u∈Rn

1

2
‖Au − b‖2 + λ‖u‖T V , (1.3)

where A is the measurement matrix, u is the n-vector form of a two-dimensional

image to the constructed, b represents the observed data, ‖ · ‖T V is the discrete TV

semi-norm, and λ is the regularization parameter. Problem (1.3) can also be casted as

(1.1) by setting x = u, f (x) = ‖Ax − b‖2/2 + λ‖x‖T V , and X = R
n . It is worth

noting that while problem (1.2) has an Euclidean ball constraint, problem (1.3) is

an unconstrained CP problem. Moreover, the objective function in (1.2) is smooth,

while the objective function in (1.3) is defined as the summation of a smooth term

‖Ax − b‖2/2 and a nonsmooth term λ‖x‖T V .

Due to the high dimensionality of x for many applications in data analysis and

imaging, much recent research effort has been directed to the development of efficient

first-order methods for solving (1.1). First-order methods use gradients (or subgra-

dients) of f exclusively and hence possess significantly reduced iteration cost than

second-order methods. The efficiency of these algorithms are often measured by their

iteration complexity in terms of the number of (sub)gradient evaluations required to

find an approximate solution of (1.1). In view of the classic complexity theory [4],

for any first-order methods the number of (sub)gradient evaluations required to find

an ε-solution of (1.1) (i.e., a point xε ∈ R
n satisfying f (xε) − f ∗ ≤ ε) cannot be

smaller than O(1/ε2) if f is nonsmooth. This can be achieved, for example, by tra-

ditional subgradient methods. For a smooth f , the optimal iteration complexity is

O(1/
√

ε), which can be achieved, for example, by Nesterov’s accelerated gradient
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(AG) algorithms [5–7]. Recently, by adapting Nesterov’s AG schemes and smooth-

ing technique [5], several popular classes of first-order methods have been developed

to improve their iteration complexity bounds. For instance, the accelerated primal

dual (APD) algorithm [8] and accelerated hybrid proximal extragradient algorithm

[9], which exhibit the optimal iterative complexity for solving a broad class of saddle

point problems, and several variants of alternating direction method of multipliers

(ADMM)[10–15], have improved the iteration complexity regarding to the smooth

component.

In this paper, we focus on a different class of first-order methods, i.e., bundle-level

(BL) type methods, which can utilize historical first-order information through cutting

plane models to accelerate the numerical performance of the gradient descent type

methods as mentioned above. We first give a review on several different types of BL

methods.

1.1 Cutting plane, bundle and bundle-level methods

The bundle-level method originated from the well-known Kelley’s cutting-plane

method in 1960 [16]. Consider the convex programming problem

f ∗
X := min

x∈X
f (x), (1.4)

where X is a compact convex set and f is a closed convex function. The fundamental

idea of the cutting plane method is to generate a sequence of piecewise linear func-

tions to approximate f on X . In particular, given x1, x2, . . . , xk ∈ X , this method

approximates f by

mk(x) := max{h(xi , x), 1 ≤ i ≤ k}, (1.5)

and computes the iterate xk+1 by

xk+1 ∈ Argminx∈X mk(x), (1.6)

where

h(z, x) := f (z) +
〈

f ′(z), x − z
〉

, (1.7)

and f ′(x) ∈ ∂ f (x), where ∂ f (x) := {ξ ∈ R
n| f (y) ≥ f (x) + 〈ξ, y − x〉, ∀y ∈ R

n}
denotes the subdifferential of f at x . Clearly, the functions mi , i = 1, 2, . . ., satisfy

mi (x) ≤ mi+1(x) ≤ f (x) for any x ∈ X , and are identical to f at those search

points xi , i = 1, . . . , k. However, the inaccuracy and instability of the piecewise

linear approximation mk over the whole feasible set X may affect the selection of new

iterates, and the above scheme converges slowly both theoretically and practically

[4,7]. Some important improvements of Kelley’s method have been made under the

name of bundle methods (see, e.g., [17–21]). In particular, by incorporating the level

sets into Kelley’s method, Lemaréchal, Nemirovskii and Nesterov [20] proposed in

1995 the classic bundle-level (BL) method by performing a series of projections over

the approximate level sets.

Given x1, x2, . . . , xk , the classic BL iteration consists of the following three steps:
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(a) Set f k := min{ f (xi ), 1 ≤ i ≤ k} and compute a lower bound on f ∗
X by f k =

minx∈X mk(x).

(b) Set the level lk = β f k + (1 − β) f k for some β ∈ (0, 1).

(c) Set Xk := {x ∈ X : mk(x) ≤ lk} and determine the new iterate by

xk+1 = argminx∈Xk
‖x − xk‖2. (1.8)

In the BL method, the localizer Xk is used to approximate the level set Lk := {x :
f (x) ≤ lk}, because the projection over Lk is often too difficult to compute. Intuitively,

as k increases, the value of lk will converge to f ∗
X , and consequently both Lk and Xk

will converge to the set of optimal solutions to problem (1.4). It is shown in [20] that

the number of BL iterations required to find an ε-solution to problem (1.4), i.e., a point

x̂ ∈ X s.t. f (x̂) − f ∗
X ≤ ε, can be bounded by O(1/ε2), which is optimal for general

nonsmooth convex optimization in the black-box model.

Observe that for the above BL methods, the localizer Xk accumulates constraints,

and hence the subproblem in Step c) becomes more and more expensive to solve.

In order to overcome this difficulty, some restricted memory BL algorithms have

been developed in [19,22]. In particular, Ben-Tal and Nemirovski [22] introduced the

non-Euclidean restricted memory level (NERML) method, in which the number of

extra linear constraints in Xk can be as small as 1 or 2, without affecting the optimal

iteration complexity. Moreover, the objective function ‖ · ‖2 in (1.8) is replaced by a

general Bregman distance d(·) for exploiting the geometry of the feasible set X . From

our understanding, the efficiency of NERML can be attributed to its combination of

previous progresses on BL methods (e.g., [7,11,5,36]) with the incorporation of the

mirror descent idea in order to exploit the geometry of the feasible set. Some more

recent development of inexact proximal bundle methods and BL methods could be

found in [23–30].

While the classic BL method was optimal for solving nonsmooth CP problems only,

Lan [1] recently significantly generalized this method so that it can optimally solve

any black-box CP problems, including nonsmooth, smooth and weakly smooth CP

problems. In particular, for problem (1.4) over compact feasible set X , the two new

BL methods proposed in [1], i.e., the accelerated bundle-level (ABL) and accelerated

prox-level (APL) methods, can solve these problems optimally without requiring any

information on problem parameters. The ABL method can be viewed as an accelerated

version of the classic BL method. Same as the classic BL method, the lower bound on

f ∗
X is estimated from the cutting plane model mk in (1.5), the upper bound on f ∗

X is

given by the best objective value found so far. The novelty of the ABL method exists

in that three different sequences, i.e., {x l
k}, {xk} and {xu

k }, are used for updating the

lower bound, prox-center, and upper bound respectively, which leads to its accelerated

iteration complexity for smooth and weakly smooth problems. The APL method is a

more practical, restricted memory version of the ABL method, which also employs

non-Euclidean prox-functions to explore the geometry of the feasible set X . It is shown

in [1] that both the ABL and APL methods achieve the optimal iteration complexity

uniformly for smooth, weakly smooth and nonsmooth convex functions for solving

problem (1.4). Moreover, by incorporating Nesterov’s smoothing technique [5] into

the APL method, Lan also presented in [1] that the uniform smoothing level (USL)
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method which can achieve the optimal complexity for solving an important class

of nonsmooth structured saddle point (SP) problems without requiring input of any

problem parameters (see Sect. 2.2 for more details).

1.2 Motivation and contribution of this paper

One crucial problem associated with most existing BL type methods, including APL

and USL, is that each iteration of these algorithms involves solving two optimization

problems: first a linear programming problem to compute the lower bound, and then a

constrained quadratic programming problem to update the prox-center or new iterate.

In fact, the efficiency of these algorithms relies on the solutions to these two involved

subproblems, and the latter one is often more complicated than the projection subprob-

lem in the gradient projection type methods. Moreover, most existing BL type methods

require the assumption that the feasible set is bounded due to the following two rea-

sons. Firstly, the feasible set has to be bounded to compute a meaningful lower bound

by solving the aforementioned linear programming problem. Secondly, the iteration

complexity analysis of those methods, such as the classical BL method [20], NERML

[22], ABL, APL and USL [1], relies on the assumption that the feasible set is compact.

It should be noted that there exist some variants of BL methods [23,29,31,32] for solv-

ing nonsmooth CP problems in which the computation of the subproblem for updating

the lower bound is skipped, so that the feasible set X is allowed to be unbounded. For

instance, the level bundle method in [32] updates the level parameter directly when the

distance from the stability center to the newly generated iterate becomes larger than a

chosen parameter. However, all these methods are focusing on solving nonsmooth CP

problems. From the complexity analysis point of view, when applied to solve smooth

CP problems, the methods do not necessarily achieve the optimal rate of convergence

for smooth convex optimization. In this paper, our main focus is to develop a BL

type method that achieves the optimal rate of convergence for unconstrained smooth

convex optimization. Our contribution in this paper mainly consists of the following

three aspects.

Firstly, we propose the FAPL and FUSL methods that greatly reduce the computa-

tional cost per iteration of the APL and USL methods for solving ball-constrained CP

problems. The improvement is achieved mainly by eliminating the linear optimization

subproblem for computing the lower bound and removing the ball constraint in the

quadratic subproblem by properly choosing the prox-functions. More importantly, we

are able to show that with these simplifications the FAPL and FUSL methods can

also achieve the optimal iteration complexity uniformly for smooth, nonsmooth and

weakly smooth functions.

Secondly, we propose a novel algorithmic framework for solving unconstrained

CP problems. The proposed framework solves unconstrained CP problems through

solutions to a series of ball-constrained CP problems and achieves the same order of the

iteration complexity as the corresponding ball-constrained CP problems. In particular,

if there exists a uniformly optimal method (e.g., the APL and USL methods) that solves

ball-constrained black-box or structured CP problems, then the proposed algorithm

solves unconstrained black-box or structured CP problems with optimal complexity
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without requiring the input of any additional problem parameters. To the best of our

knowledge, this is the first time in the literature that the complexity analysis has been

performed for BL type methods to solve unconstrained CP problems (see Sections 3.2

and 3.3 in [33] for more details).

Finally, we apply the FAPL and FUSL methods to solve large-scale least squares

problems and total variation based image reconstruction problems. Our experimental

results show that these algorithms outperform APL, NERML, Nesterov’s optimal

method [5], the accelerated primal dual (APD) method [8], Nesterov’s smoothing

(NEST-S) gradient method [5,34] and the accelerated linearized ADMM (AL-ADMM)

with line-search method [15], and the MATLAB solver for linear systems, especially

when the dimension and/or the Lipschitz constant of the problem is large. Moreover,

by using the FAPL and FUSL methods, we could achieve more accurate solutions to

the corresponding CP problems, which results in better reconstructed image qualities

and lower acquisition rates.

1.3 Organization of the paper

The paper is organized as follows. In Sect. 2, the new FAPL and FUSL methods are

proposed followed by their convergence analysis, then an exact approach is introduced

to solve the subproblem in these algorithms. In Sect. 3, we present a general scheme

to extend the optimal methods for ball-constrained CP problems to unconstrained CP

problems. The applications to quadratic programming and image processing problems

are presented in Sect. 4.

2 Fast prox-level typemethods for ball-constrained problems

In this section, we discuss the following ball-constrained CP problem:

f ∗
x,R := min

x∈B(x,R)
f (x), (2.1)

where B(x̄, R) := {x ∈ R
n : ‖x − x‖ ≤ R} denotes the closed Euclidean ball cen-

tered at x̄ with radius R, and f : R
n → R is a convex function satisfying

f (y) − f (x) −
〈

f ′(x), y − x
〉

≤ M

1 + ρ
‖y − x‖1+ρ, ∀x, y ∈ B(x̄, R), (2.2)

for some M > 0 and ρ ∈ [0, 1]. This f (·) can be nonsmooth (ρ = 0), smooth (ρ = 1)

and weakly smooth (0 < ρ < 1).

This section contains four subsections. We first present a much simplified APL

method, referred to the fast APL (FAPL) method, for solving ball-constrained black-

box CP problems in Sect. 2.1, and then present the fast USL (FUSL) method for

solving a special class of ball-constrained structured CP problems in Sect. 2.2. We

show how to solve the subproblems in these two algorithms in “Appendix A”.
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2.1 FAPL for ball-constrained black-box problems

Our goal in this subsection is to present the FAPL method, which can reduce the

iteration cost for the APL method applied to problem (2.1). In particular, we show

that only one subproblem, rather than two subproblems (see the two subproblems in

Equations (2.9) and (2.10) in [1]) as in the APL method, is required in the FAPL

method for defining a new iterate (or prox-center) and updating lower bound. We also

demonstrate that the ball constraint in (2.1) can be eliminated from the subproblem

by properly specifying the prox-function.

Similarly to the APL method, the FAPL method consists of outer-inner loops, and

in each outer iteration, an inner loop, the FAPL gap reduction procedure denoted by

GF AP L , is called to reduce the gap between the upper and lower bounds on f ∗
x,R in

(2.1) by a constant factor.

We start by describing the FAPL gap reduction procedure in Procedure 1. This

procedure differs from the gap reduction procedure used in the APL method in the

following several aspects. Firstly, the localizers Qk and Qk in procedure GF AP L (see

Steps 1 and 4) only contain linear constraints and hence are possibly unbounded,

while the localizers in the APL method must be compact. Secondly, we eliminate the

subproblem that updates the lower bound on f ∗
x,R in the APL method. Instead, in the

FAPL method, the lower bound is updated to the level l directly whenever Qk = ∅
or ‖xk − x‖ > R. Note that this strategy has been used in some existing BL methods

[32]. Thirdly, we choose a specific prox-function d(x) = 1
2
‖x − x‖2, and as a result,

all the three sequences {xk}, {x l
k} and {xu

k } will reside in the ball B(x, R). At last, as

we will show in next subsection, since the subproblem (2.6) only contains a limited

number of linear constraints (depth of memory), we can solve it efficiently, or even

exactly if the depth of memory is small (e.g., less than 10).

We now add a few more remarks about the technical details of Procedure 1. Firstly,

Procedure 1 is terminated at Step 2 if Qk = ∅ or ‖xk − x‖ > R, which can be

checked automatically when solving the subproblem (2.6) (see Subsection A for more

details). Secondly, the set Qk �= ∅ in Step 4 (otherwise, the procedure stops at Step

2). Moreover, we can show that Qk is a subset of Q̄k (see Lemma 2.2). Therefore,

Q̄k will never be empty at Step 4. Thirdly, in Step 4, Qk can be any polyhedral set

between Qk and Qk . In practice, we can simply choose Qk to be the intersection of

the half-space {x ∈ R
n : 〈xk − x, x − xk〉 ≥ 0} and a few most recently generated

half-spaces, each of which is defined by {x ∈ R
n : h(x l

τ , x) ≤ l} for some 1 ≤ τ ≤ k.

Finally, in order to guarantee the termination of procedure GF AP L and the optimal

iteration complexity, the parameters {αk} used in this procedure need to be properly

chosen. One set of conditions that {αk} should satisfy to guarantee the convergence of

procedure GF AP L is given as follows:

α1 = 1, 0 < αk ≤ 1, αk ≤ c

k
and

1 − αk+1

α
1+ρ
k+1

≤ 1

α
1+ρ
k

,∀k ≥ 1, (2.10)

for some constants c > 0 and ∀ρ ∈ [0, 1].
The following lemma provides two examples for the selection of {αk}.
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Procedure 1 The FAPL gap reduction procedure: (x+, lb+) = GF AP L(x̂, lb, R, x,

β, θ)

0: Set k = 1, f 0 = f (x̂), l = β · lb + (1 − β) f 0, Q0 = R
n , and let xu

0 = x̂ , x0 = x .

1: Update the cutting plane model:

xl
k = (1 − αk )xu

k−1 + αk xk−1, (2.3)

h(x l
k , x) = f (x l

k ) +
〈

f ′(x l
k ), x − x l

k

〉

, (2.4)

Qk = {x ∈ Qk−1 : h(x l
k , x) ≤ l}. (2.5)

2: Update the prox-center and lower bound:

xk = argminx∈Qk

{

d(x) := 1

2
‖x − x‖2

}

. (2.6)

If Qk = ∅ or ‖xk − x‖ > R, then terminate with outputs x+ = xu
k−1, lb+ = l.

3: Update the upper bound: set

x̃u
k = (1 − αk )xu

k−1 + αk xk , (2.7)

xu
k =

{

x̃u
k
, if f (x̃u

k
) < f k−1,

xu
k−1, otherwise,

(2.8)

and f k = f (xu
k
). If f k ≤ l + θ( f 0 − l), then terminate with x+ = xu

k
, lb+ = lb.

4: Choose any polyhedral set Qk satisfying Qk ⊆ Qk ⊆ Qk , where

Qk := {x ∈ R
n : 〈xk − x, x − xk 〉 ≥ 0}. (2.9)

Set k = k + 1 and go to Step 1.

Lemma 2.1 (a) If αk = 2/(k + 1), k = 1, 2, . . ., then the condition (2.10) is satisfied

with c = 2.

(b) If {αk} is recursively defined by

α1 = 1, αk+1 =
−α2

k +
√

α4
k + 4α2

k

2
,∀k ≥ 1, (2.11)

then the condition (2.10) holds with c = 2. Note that the stepsizes in (2.11) satisfies

α2
k+1 = (1 − αk+1)α

2
k (2.12)

Proof To prove part a), note that if αk = 2/(k +1), then we have α1 = 1, 0 < αk ≤ 1,

and αk ≤ 2/k. Moreover, for any ρ ∈ [0, 1] we have

(1 − αk+1) ·
α

1+ρ
k

α
1+ρ
k+1

= k

k + 2
·
(

k + 2

k + 1

)1+ρ

= k

k + 1
·
(

k + 2

k + 1

)ρ

≤ k

k + 1
·
(

k + 1

k

)ρ

=
(

k

k + 1

)1−ρ

≤ 1.
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Therefore (2.10) holds.

We continue to prove part b). First it is easy to verify that the stepsizes defined in

(2.11) satisfy the relation (2.12). Moreover, by (2.12) we also have αk+1 �= 0 as long

as αk �= 0. Therefore, noting that α1 = 1 we have αk �= 0 for all k ≥ 1. Consequently,

from (2.11) we have

αk+1 =
4α2

k

2(α2
k +

√

α4
k + 4α2

k )

≤
4α2

k

4α2
k

= 1, ∀k ≥ 1,

and thus we have αk ∈ (0, 1] for all k ≥ 1. Using this result and (2.12), we also have

α2
k+1 < α2

k , hence αk+1 < αk . Now rearranging the terms in (2.12), we observe that

α2
k − α2

k+1 = αk+1α
2
k . Using this observation and the previous result that αk+1 < αk ,

we obtain

1

αk+1
− 1

αk

= αk − αk+1

αkαk+1
=

α2
k − α2

k+1

αk+1α
2
k

· αk

αk + αk+1
= αk

αk + αk+1
>

1

2
,∀k ≥ 1.

Using the above inequality and noting that α1 = 1, we have

1

αk

=
(

1

αk

− 1

αk−1

)

+
(

1

αk−1
− 1

αk−2

)

+ · · ·
(

1

α2
− 1

α1

)

+ 1

α1
> (k − 1) · 1

2
+ 1 = k + 1

2
, (2.13)

and hence αk ≤ 2(k + 1) < 2/k. Finally, using (2.12) and the result that αk+1 < αk ,

for any ρ ∈ [0, 1] we have

(1 − αk+1) ·
α

1+ρ
k

α
1+ρ
k+1

=
(1 − αk+1)α

2
k

α2
k+1

·
α

ρ−1
k

α
ρ−1
k+1

=
α

ρ−1
k

α
ρ−1
k+1

=
(

αk+1

αk

)1−ρ

< 1.

Therefore (2.11) holds. ��

The following lemma describes some important observations regarding the execu-

tion of procedure GF AP L .

Lemma 2.2 Let E f (l) := {x ∈ B(x, R) : f (x) ≤ l}, the following statements hold

for procedure GF AP L .

(a) If E f (l) �= ∅, then E f (l) ⊆ Qk ⊆ Qk ⊆ Qk for any k ≥ 1.

(b) If Qk �= ∅, then problem (2.6) in Step 2 has a unique solution. Moreover, if

procedure GF AP L terminates at Step 2, then l ≤ f ∗
x,R .

Proof To prove part a), it suffices to prove that E f (l) ⊆ Qk and Qk ⊆ Qk for all

k ≥ 1, since from the definition of Qk we already have Qk ⊆ Qk ⊆ Qk . we first

use induction to prove the former relation. As Q0 is set to R
n , we have E f (l) ⊆ Q0.

Moreover, if E f (l) ⊆ Qk−1 for some k ≥ 1, then from the definition of Qk in (2.5)
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and the observation that h(x l
k, z) ≤ f (z) ≤ l for all z ∈ E f (l), we have E f (l) ⊆ Qk .

To prove the relation that Qk ⊆ Qk , observe that the definition of Qk in (2.9) implies

that Qk = {x ∈ R
n : d(x) ≥ d(xk)}. Combining such observation with the definition

of xk in (2.6), we have Qk ⊆ Qk and conclude part a).

We now provide the proof of part b). From the definition of Qk in Step 4 and the

definition of Qk in (2.5), we can see that Qk is the intersection of half-spaces, hence

it is convex and closed. Therefore, the subproblem (2.6) always has a unique solution

as long as Qk is non-empty.

To finish the proof it suffices to show that E f (l) = ∅ when either Qk = ∅ or

‖xk −x‖ > R, which can be proved by contradiction. Firstly, if Qk = ∅ but E f (l) �= ∅,

then by part a) proved above, we have E f (l) ⊆ Qk , which contradicts the assumption

that Qk is empty. On the other hand, suppose that ‖xk − x‖ > R and E f (l) �= ∅,

let x∗
R ∈ Argminx∈B(x,R) f (x), it is clear that x∗

R ∈ E f (l) ⊆ Qk by a), however

‖x∗
R − x‖ ≤ R < ‖xk − x‖ which contradicts the definition of xk in (2.6). ��
Let ub := f (x̂), ub+ := f (x+) be the input and output upper bounds on f ∗

x,R in

procedure GF AP L , respectively. The following lemma shows that whenever procedure

GF AP L terminates, the gap between the upper and lower bounds on f ∗
x,R is reduced

by a constant factor.

Lemma 2.3 Whenever procedure GF AP L terminates, we have ub+−lb+ ≤ q(ub−lb),

where

q := max{β, 1 − (1 − θ)β}. (2.14)

Proof By the definition of xu
k in (2.7) and the definition of f k in Step 3 of procedure

GF AP L , we have f k ≤ f k−1, ∀k ≥ 1, which implies ub+ ≤ ub. Procedure GF AP L

could terminate at either Step 2 or Step 3. We first assume that it terminates at Step 2

at K th iteration. The termination condition gives lb+ = l = β · lb + (1 − β)ub, then

we have

ub+ − lb+ ≤ ub − β lb − (1 − β)ub = β(ub − lb).

Next suppose that Procedure 1 terminates at Step 3 at K th iteration. We have ub+ =
f (x+) = f K ≤ l + θ(ub− l), since lb+ ≥ lb and l = β · lb+ (1−β)ub, we conclude

that

ub+ − lb+ ≤ l + θ (ub − l) − lb = [1 − (1 − θ)β](ub − lb).

The lemma is proved by combining the above two cases. ��
We now provide a bound on the number of iterations performed by procedure

GF AP L . Note that the proof of this result is similar to Theorem 3 in [1].

Proposition 2.4 If the stepsizes {αk}k≥1 are chosen such that (2.10) holds, then the

number of iterations performed by procedure GF AP L does not exceed

N (�) :=
(

c1+ρ M R1+ρ

(1 + ρ)θβ�

)

2
1+3ρ

+ 1, (2.15)

where � := ub − lb.

123



Fast bundle-level methods for unconstrained and ball-constrained… 169

Proof Suppose that procedure GF AP L does not terminate at the K th iteration for some

K > 0. Then observing that xk ∈ Qk ⊆ Qk−1 ⊆ Qk−1 for any 2 ≤ k ≤ K due to (2.5)

and (2.6), and x1 ∈ Q0, x0 = argminx∈Q0
d(x), we have 〈∇d(xk−1), xk − xk−1〉 ≥

0,∀1 ≤ k ≤ K . Since d(x) is strongly convex with modulus 1, we also have

d(xk) ≥ d(xk−1) + 〈∇d(xk−1), xk − xk−1〉 + 1

2
‖xk − xk−1‖2.

Combining the two relations above, it implies 1
2
‖xk − xk−1‖2 ≤ d(xk) − d(xk−1).

Summing up these inequalities for 1 ≤ k ≤ K , we conclude that

1

2

K
∑

k=1

‖xk − xk−1‖2 ≤ d(xK ) = 1

2
‖xK − x‖2 ≤ 1

2
R2. (2.16)

By (2.2), (2.7), (2.8) and the convexity of f , we have for any 1 ≤ k ≤ K ,

f (xu
k ) ≤ f (x̃u

k ) ≤ h(x l
k, x̃u

k ) + M

1 + ρ
‖x̃u

k − x l
k‖1+ρ (2.17)

= (1 − αk)h(x l
k, xu

k−1) + αkh(x l
k, xk) + M

1 + ρ
‖x̃u

k − x l
k‖1+ρ . (2.18)

Since h(x l
k, xu

k−1) ≤ f (xu
k−1), h(x l

k, xk) ≤ l due to (2.5) and (2.6), and x̃u
k − x l

k =
αk(xk − xk−1) due to (2.3) and (2.7), we have

f (xu
k ) − l ≤ (1 − αk)( f (xu

k−1) − l) +
α

1+ρ
k M

1 + ρ
‖xk − xk−1‖1+ρ (2.19)

Dividing both sides of (2.19) by α
1+ρ
k , and then summing up these inequalities for

1 ≤ k ≤ K , by (2.10) and the fact f (xu
k ) − l ≥ 0, ∀1 ≤ k ≤ K , we have

f (xu
K ) − l ≤

α
1+ρ
K M

1 + ρ

K
∑

k=1

‖xk − xk−1‖1+ρ (2.20)

Apply Hölder’s inequality, and use (2.16), we have

K
∑

k=1

‖xk − xk−1‖1+ρ ≤ K
1−ρ

2

(

K
∑

k=1

‖xk − xk−1‖2

)

1+ρ
2

≤ K
1−ρ

2 R1+ρ,

and a
1+ρ
K ≤ c1+ρ K −(1+ρ) due to (2.10). Therefore (2.20) gives

f (xu
K ) − l ≤ M R1+ρ

(1 + ρ)
· c1+ρ

K
1+3ρ

2

(2.21)
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In view of Step 3 in procedure 1, and using the fact that l = β · lb + (1 − β)ub in

Step 0, we also have

f (xu
K ) − l > θ(ub − l) = θβ�.

Combining the above two relations, and using (2.10) and (2.16), we obtain

θβ� <
M R1+ρ

(1 + ρ)
· c1+ρ

K
1+3ρ

2

, (2.22)

which implies that

K <

(

c1+ρ M R1+ρ

(1 + ρ)θβ�

)

2
1+3ρ

. (2.23)

��

In view of Lemma 2.3 and Proposition 2.4, we are now ready to describe the FAPL

method, which performs a sequence of calls to procedure GF AP L until an approximate

solution with sufficient accuracy is found.

Algorithm 1 The fast accelerated prox-level (FAPL) method

0: Given ball B(x, R), choose initial point p0 ∈ B(x, R), tolerance ε > 0 and parameters β, θ ∈ (0, 1).

1: Set p1 ∈ Argminx∈B(x,R)h(p0, x), lb1 = h(p0, p1), ub1 = min{ f (p0), f (p1)}, let x̂1 be either p0

or p1 such that f (x̂1) = ub1, and s = 1.

2: If ubs − lbs ≤ ε, terminate and output approximate solution x̂s .

3: Set (x̂s+1, lbs+1) = GF AP L (x̂s , lbs , R, x, β, θ) and ubs+1 = f (x̂s+1).

4: Set s = s + 1 and go to Step 2.

For the sake of simplicity, each iteration of Procedure GF AP L is also referred to

as an inner iteration of the FAPL method. Our complexity bound is then built based

on the total number of combined inner iterations of the FAPL method, namely, the

number of inner iterations performed by all calls to Procedure GF AP L , combined

together. The following theorem establishes the complexity bounds on the numbers

of gap reduction procedures GF AP L and total combined inner iterations performed by

the FAPL method, its proof is similar to that of Theorem 4 in [1].

Theorem 2.5 For any given ε > 0, if the stepsizes {αk} in procedure GF AP L are chosen

such that (2.10) holds, then the following statements hold for the FAPL method to

compute an ε-solution to problem (2.1).

(a) The number of gap reduction procedures GF AP L performed by the FAPL method

does not exceed

S :=
⌈

max

{

0, log 1
q

(

(2R)1+ρ M

(1 + ρ)ε

)}⌉

. (2.24)
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(b) The total number of combined inner iterations performed by the FAPL method can

be bounded by

N (ε) := S + 1

1 − q
2

1+3ρ

(

c1+ρ M R1+ρ

(1 + ρ)θβε

)

2
1+3ρ

, (2.25)

where q is defined in (2.14).

Proof We first prove part a). Let �s := ubs − lbs , without loss of generality, we

assume that �1 > ε. In view of Step 0 in Algorithm 1 and (2.2), we have

�1 ≤ f (p1) − h(p0, p1) = f (p1) − f (p0) −
〈

f ′(p0), p1 − p0

〉

≤ (2R)1+ρ M

1 + ρ
.

(2.26)

Also, by Lemma 2.3 we can see that �s+1 ≤ q�s for any s ≥ 1, which implies that

�s+1 ≤ qs�1, ∀s ≥ 0.

Moreover, if an ε-solution is found after performing S gap reduction procedures

GF AP L , then we have

�S > ε ≥ �S+1. (2.27)

Combining the above three inequalities, we conclude that

ε < q S−1�1 ≤ q S−1 (2R)1+ρ M

1 + ρ
, (2.28)

and part a) follows immediately from the above inequality. We are now ready to prove

part b). In view of Lemma 2.3 and (2.27), we have �s ≥ εqs−S for any 1 ≤ s ≤ S.

Using this estimate, part a), and Proposition 2.4, we conclude that the total number of

combined inner iterations performed by the FAPL method is bounded by

N (ε) =
S

∑

s=1

Ns = S +
(

c1+ρ M R1+ρ

(1 + ρ)θβε

)

2
1+3ρ S

∑

s=1

q
2(S−s)
1+3ρ

< S + 1

1 − q
2

1+3ρ

(

c1+ρ M R1+ρ

(1 + ρ)θβε

)

2
1+3ρ

, (2.29)

where Ns denotes the number of the inner iterations performed by the sth gap reduction

procedure GF AP L for any 1 ≤ s ≤ S. ��

A few remarks are in place for Theorem 2.5. First, the number of iterations

performed by the FAPL method is defined as the number of gradient/subgradient

evaluations, but the FAPL method requires two function evaluations for each itera-

tion. Therefore, the number of function evaluations of the FAPL method is the same
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Table 1 The total number of

inner iterations N (ε) performed

by the FAPL method with

respect to different smoothness

condition of f

Nonsmooth (ρ = 0)Smooth (ρ = 1)Weakly smooth (0 < ρ < 1)

N (ε)O
(

M2 R2

ε2

)

O

(
√

M R2

ε

)

O

(

(

M R1+ρ

ε

)
2

1+3ρ

)

as that of the APL method in [1], but twice as some BL methods for nonsmooth opti-

mization (e.g., [20,22]) and Nesterov’s accelerate gradient method [5]. Second, when

f is nonsmooth (i.e., ρ = 0 in (2.2)), setting ρ = 0 in (2.25) we have

N (ε) = S + 1

1 − q2

(

cM R

θβε

)2

= O

(

M2 R2

ε2

)

. (2.30)

Following similar computations, we can summarize the total number of inner iterations

N (ε) performed by the FAPL method in Table 1. Third, it is important to note that,

in the case when f is smooth, the total number of inner iterations N (ε) in Table 1 is

smaller in an order than that of the case when f is nonsmooth. Finally, we can compare

the iteration complexity results in Table 1 with other BL methods in the literature. For

BL methods that focus on nonsmooth CP problems, e.g., the NERML method in [22],

their complexity results matches our result for nonsmooth f (i.e., ρ = 0). However,

we are able to improve the complexity results when f is smooth or weakly smooth. To

the best of our knowledge, in the current literature the APL method in [1] is the only

other method that is able to achieve all the three iteration complexity results in Table

1. However, the APL method is not applicable to unconstrained CP problems, while

we can extend our study to an expansion algorithm for unconstrained CP problems

(see Sect. 3 later).

2.2 FUSL for ball-constrained structured problems

In this subsection, we still consider the ball-constrained problem (2.1), but assume

that its objective function is given by

f (x) := f̂ (x) + F(x), (2.31)

where f̂ is a smooth convex function, i.e., ∃L
f̂

> 0 s.t.

f̂ (y) − f̂ (x) − 〈∇ f̂ (x), y − x〉 ≤
L

f̂

2
‖y − x‖2, (2.32)

and

F(x) := max
y∈Y

{〈Ax, y〉 − ĝ(y)}. (2.33)
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Here, Y ⊆ R
m is a compact convex set, ĝ := Y → R is a relatively simple convex

function, and A : R
n → R

m is a linear operator. We will integrate Nesterov’s smooth-

ing technique for minimizing nonsmooth functions [5] into the FAPL method to solve

problem (2.1)–(2.31) (i.e., problem (2.1) with f defined in (2.31)), which can reduce

the iteration cost of the USL method [1].

Let v : Y → R be a prox-function with modulus σv and denoting cv :=
argminv∈Y v(y), by employing the idea in the important work of Nesterov [5], we

can approximate F in (2.33) by the smooth function

Fη(x) : = max
y∈Y

{〈Ax, y〉 − ĝ(y) − ηV (y)}, (2.34)

where η > 0 is called the smoothing parameter, and V (·) is the Bregman divergence

defined by

V (y) := v(y) − v(cv) − 〈∇v(cv), y − cv〉 . (2.35)

It was shown in [5] that the gradient of Fη(·) given by ∇Fη(x) = A∗y∗(x) is Lipschitz

continuous with constant

Lη := ‖A‖2/(ησv), (2.36)

where ‖A‖ is the operator norm of A, A∗ is the adjoint operator, and y∗(x) ∈ Y is

the solution to the optimization problem (2.34). Moreover, the “closeness” of Fη(·) to

F(·) depends linearly on the smoothing parameter η, i.e.,

Fη(x) ≤ F(x) ≤ Fη(x) + ηDv,Y , ∀x ∈ X , (2.37)

where

Dv,Y := max
y,z∈Y

{

v(y) − v(z) − 〈∇v(z), y − z〉
}

. (2.38)

Therefore, if we denote

fη(x) := f̂ (x) + Fη(x), (2.39)

then

fη(x) ≤ f (x) ≤ fη(x) + ηDv,Y . (2.40)

Applying an optimal gradient method to minimize the smooth function fη in (2.39),

Nesterov proves in [5] that the iteration complexity for computing an ε-solution to

problem (2.1)–(2.31) is bounded by O( 1√
ε

+ 1
ε
). However, the values of quite a few

problem parameters, such as ‖A‖, σv and Dv,Y , are required for the implementation

of Nesterov’s smoothing scheme.

By incorporating Nesterov’s smoothing technique [5] into the APL method, Lan

developed in [1] a new bundle-level type method, namely the uniform smoothing

level (USL) method, to solve structured problems given in the form of (2.1)–(2.31).

While the USL method achieves the same optimal iteration complexity as Nesterov’s
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smoothing scheme in [5], one advantage of the USL method over Nesterov’s smoothing

scheme is that the smoothing parameter η is adjusted dynamically during the execution,

and an estimate of Dv,Y is obtained automatically, which makes the USL method

problem parameter free. However, similar to the APL method, each iteration of the

USL method involves the solutions to two subproblems. Based on the USL method in

[1] and our analysis of the FAPL method in Sect. 2.1, we propose a fast USL (FUSL)

method that solves problem (2.1)–(2.31) with the same optimal iteration complexity as

the USL method, but requiring only to solve one simpler subproblem in each iteration.

Similar to the FAPL method, the FUSL method has an outer-inner loops structure,

and each outer iteration calls an inner loop, a gap reduction procedure denoted by

GFU SL , to reduce the gap between the upper and lower bounds on f ∗
x,R in (2.1)–(2.31)

by a constant factor unless an ε-solution is found. We start by describing procedure

GFU SL .

Procedure 2 The FUSL gap reduction procedure: (x+, D+, lb+) = GFU SL(x̂, D,

lb, R, x, β, θ)

0: Let k = 1, f 0 = f (x̂), l = β · lb + (1 − β) f 0, Q0 = R
n , xu

0 = x̂ , x0 = x , and

η := θ( f 0 − l)/(2D). (2.41)

1: Update the cutting plane model: Set xl
k

to (2.3), Qk to (2.5), and

h(x l
k , x) = hη(x l

k , x) = fη(x l
k ) +

〈

f ′
η(x l

k ), x − x l
k

〉

. (2.42)

2: Update the prox-center: Set xk to (2.6). If Qk = ∅ or ‖xk − x‖ > R, then terminate with outputs

x+ = xu
k−1

, D+ = D, lb+ = l.

3: Update the upper bound and the estimate of Dv,Y : Set x̃u
k

to (2.7), xu
k

to (2.8), and f k = f (xu
k
). Check

the following conditions:

3a) if f (xu
k
) ≤ l + θ( f 0 − l), then terminate with outputs x+ = xu

k
, D+ = D, lb+ = lb;

3b) if f (xu
k
) > l + θ( f 0 − l) and fη(xu

k
) ≤ l + θ

2 ( f 0 − l), then terminate with outputs x+ =
xu

k
, D+ = 2D, lb+ = lb.

4: Choose Qk as same as Step 4 in GF AP L . Set k = k + 1, and go to step 1.

A few remarks about procedure GFU SL are in place. Firstly, since the nonsmooth

objective function f is replaced by its smoothed approximation fη, we replace the

cutting plane model in (1.7) with the one for fη (see (2.42)). Also note that for the

USL method in [1], f̂ is assumed to be a simple Lipschitz continuous convex function,

and only Fη is approximated by the linear estimation. However, in the FUSL method,

we assume f̂ is general smooth and convex, and linearize both f̂ and Fη in (2.42).

Secondly, the smoothing parameter η is specified as a function of the parameter D,

f̄0 and l, where D is an estimator of Dv,Y defined by (2.38) and given as an input

parameter for procedure GFU SL . Thirdly, same as the FAPL method, the parameters

{αk} are chosen according to (2.10). Such conditions are required to guarantee the

optimal iteration complexity of the FUSL method for solving problem (2.1)–(2.31).

Fourthly, similar to the FAPL method, the localizers Qk, Qk, Qk only contain a limited

123



Fast bundle-level methods for unconstrained and ball-constrained… 175

number of linear constraints, and there is only one subproblem (i.e., (2.6)) involved in

procedure GFU SL , which can be solved exactly when the depth of memory is small.

The following lemma provides some important observations about procedure

GFU SL , which are similar to those for the USL gap reduction procedure in [1].

Lemma 2.6 The following statements hold for procedure GFU SL .

(a) If procedure GFU SL terminates at Steps 2 or 3(a), then we have ub+ − lb+ ≤
q(ub − lb), where q is defined by (2.14) and ub := f (x̂), ub+ := f (x+).

(b) If procedure GFU SL terminates at Step 3b), then D < Dv,Y and D+ < 2Dv,Y .

Proof The proof of part (a) is the same as that of Lemma 2.3, and we only prove part

(b) here. By the termination condition at Step 3b), we have

f (xu
k ) − fη(xu

k ) >
θ

2
( f 0 − l).

We conclude from the above relation, (2.40), and (2.41) that

Dv,Y ≥
f (xu

k ) − fη(xu
k )

η
>

θ( f 0 − l)

2η
= D.

Finally, D+ < 2Dv,Y follows immediately from the above relation and the definition

of D+ in Step 3b). ��

The following result provides a bound on the number of iterations performed by

procedure GFU SL .

Proposition 2.7 Suppose that {αk}k≥1 in procedure GFU SL are chosen such that (2.10)

holds. Then, the number of iterations performed by this procedure does not exceed

N (�, D) := cR

⎛

⎝

√

L
f̂

θβ�
+

√
2‖A‖
θβ�

√

D

σv

⎞

⎠ + 1, (2.43)

where � := f (x̂) − lb.

Proof It is easy to see that the gradient of fη in (2.31) has Lipschitz continuous

gradient with constant L = L
f̂

+ Lη, where Lη and L
f̂

are defined in (2.36) and

(2.32), respectively. Suppose that procedure GFU SL does not terminate at iteration K .

As the GFU SL procedure could be viewed as applying the GF AP L procedure to fη,

similar to the discussion on (2.21), and notice that ρ = 1 as fη is smooth, we have

fη(xu
K ) − l ≤ c2Ld(xK )

K 2
≤ c2 L R2

2K 2
, (2.44)
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where c is defined in (2.10). Also, since procedure GFU SL does not terminate at

iteration K , in view of the termination condition in Step 3b) and the definition of l in

Step 0, we have

fη(xu
K ) − l >

θβ�

2
. (2.45)

By (2.44), (2.45), (2.36) and (2.41), we conclude that

K <

√

c2 L R2

θβ�
≤ cR

⎛

⎝

√

L
f̂

θβ�
+

√
2‖A‖
θβ�

√

D

σv

⎞

⎠ . (2.46)

��

We are now ready to describe the FUSL method which iteratively calls procedure

GFU SL to solve the structured saddle point problem (2.1)-(2.31).

Algorithm 2 The fast uniform smoothing level (FUSL) method

0: Given ball B(x, R), choose initial point p0 ∈ B(x, R), prox-function v(·) for the smoothing function

Fη in (2.34) and (2.35), initial guess D1 on the size Dv,Y in (2.38), tolerance ε > 0, and parameters

β, θ ∈ (0, 1).

1: Set p1 ∈ Argminx∈B(x,R) h(p0, x), lb1 = h(p0, p1), ub1 = min{ f (p0), f (p1)}, let x̂1 be either p0

or p1 such that f (x̂1) = ub1, and s = 1.

2: If ubs − lbs ≤ ε, terminate and output approximate solution x̂ .

3: Set (x̂s+1, Ds+1, lbs+1) = GFU SL (x̂s , Ds , lbs , R, x, β, θ) and ubs+1 = f (x̂).

4: Set s = s + 1 and go to Step 2.

For simplicity, we say that a phase (i.e., an outer iteration) of the FUSL method

occurs when s increases by 1. More specifically, similar to the USL method, we

classify two types of phases in the FUSL method. A phase is called significant if the

corresponding GFU SL procedure terminates at Steps 2 or 3a), otherwise it is called

non-significant. Clearly, if the value of Dv,y is provided, which is the assumption made

in Nesterov’s smoothing scheme [5], then we can set D1 = Dv,Y in the schemes of

both the USL and FUSL methods, and consequently, all the phases of both methods

become significant.

As the same as the FAPL method, an iteration of procedure GFU SL is also referred

to an iteration of the FUSL method. The following result establishes a bound on the

total number of iterations performed by the FUSL method to find an ε-solution to

problem (2.1)–(2.31). Note that the proof of this result is similar to that of Theorem 7

in [1].

Theorem 2.8 Suppose that {αk} in procedure GFU SL are chosen such that (2.10) holds.

Then, the total number of iterations performed by the FUSL method for computing an

ε-solution to problem (2.1)–(2.31) is bounded by

N (ε) := S1 + S2 +
(

2√
2 − 1

+
√

2

1 − q

)

cR‖A‖
θβε

√

D̃

σv

+
(

S1 + 1

1 − √
q

)

cR

√

L
f̂

θβε
,

(2.47)
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where q and Dv,Y are defined by (2.14) and (2.38) respectively, and

D̃ := max{D1, 2Dv,Y }, S1 := max

{⌈

log2

Dv,Y

D1

⌉

, 0

}

and

S2 :=

⎡

⎢

⎢

⎢

log 1
q

4
√

2R‖A‖
√

Dv,Y

σv
+ 2R2 L

f̂

ε

⎤

⎥

⎥

⎥

. (2.48)

Proof We prove this result by estimating the numbers of iterations performed within

non-significant and significant phases separately. Suppose that the sets of indices of

the non-significant and significant phases are {m1, m2, . . . , ms1} and {n1, n2, . . . , ns2}
respectively. For any non-significant phase mk , 1 ≤ k ≤ s1, we can easily see from

Step 3b) that Dmk+1
= 2Dmk

, by part b) in Lemma 2.6, the number of non-significant

phases performed by the FUSL method is bounded by S1 defined above, i.e., s1 ≤ S1.

In addition, since Dms1
≤ D̃, we have Dmk

≤ (1/2)s1−k D̃, where D̃ is defined

above. Combining the above estimates on s1 and Dmk
, and in view of the fact �mk

> ε

for all 1 ≤ k ≤ s1, we can bound the number of iterations performed within the non-

significant phases by

N 1 =
s1
∑

k=1

N (�mk
, Dmk

) ≤
s1
∑

k=1

N
(

ε, D̃/2s1−k
)

≤ S1

⎛

⎝cR

√

L
f̂

θβε
+ 1

⎞

⎠ +
√

2cR‖A‖
θβε

√

D̃

σv

S1
∑

k=1

2− (S1−k)

2

≤ S1

⎛

⎝cR

√

L
f̂

θβε
+ 1

⎞

⎠ + 2cR‖A‖
(
√

2 − 1)θβε

√

D̃

σv

.

(2.49)

Applying Lemma 8 in [1] and relation (2.32), and in view of the fact that p0, p1 ∈
B(x, R) in Algorithm 2, the initial gap is bounded by

�1 := ub1 − lb1 ≤
[

F(p0) − F(p1) −
〈

F ′(p1), p0 − p1

〉]

+
[

f̂ (p0) − f̂ (p1) −
〈

f̂ ′(p1), p0 − p1

〉]

(2.50)

≤ 4
√

2R‖A‖
√

Dv,Y

σv

+ 2R2 L
f̂
, (2.51)

where F ′(p1) ∈ ∂ F(p1). Then for the significant phases, similar to the proof of

Theorem 2.5, we have s2 ≤ S2. Moreover, for any nk , 1 ≤ k ≤ s2, using Lemmas 2.3,

2.6, we have Dnk
≤ D̃, �nk+1

≤ q�nk
, and �ns2

> ε, which implies �nk
> ε/qs2−k .

Combine these estimates on Dnk
,�nk

and bound on s2, we can see that the total

number of iterations performed within the significant phases is bounded by
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N 2 =
s2
∑

k=1

N (�nk
, Dnk

) ≤
s2
∑

k=1

N (ε/qs2−k, D̃)

≤ S2 + cR

√

L
f̂

θβε

S2
∑

k=1

q
S2−k

2 +
√

2cR‖A‖
θβε

√

D̃

σv

S2
∑

k=1

q S2−k

≤ S2 + cR

1 − √
q

√

L
f̂

θβε
+

√
2cR‖A‖

θβε(1 − q)

√

D̃

σv

.

(2.52)

Finally, the total number of iterations performed by the FUSL method is bounded by

N 1 + N 2, and thus (2.47) holds. ��

From (2.47) in the above theorem, we can see that the iteration complexity of the

FUSL method for solving problem (2.1)–(2.31) is bounded by

O

⎛

⎝

√

L
f̂

ε
+ ‖A‖

ε

⎞

⎠ . (2.53)

Note that, similar to the FAPL method, the FUSL method requires two function eval-

uations for each iteration . The above iteration complexity is the same as that of the

Nesterov smoothing scheme in [5] and the USL method in [1]. However, both the

USL and FUSL methods improve Nesterov’s smoothing scheme in that both of them

are problem parameter free. In addition, as detailed in Subsection A below, the FUSL

method further improves the USL method by reducing its iteration cost and improving

the accuracy for solving its subproblems.

3 Solving unconstrained CP problems through ball-constrained CP
problems

In this section we discuss the following unconstrained CP problem:

f ∗ := min
x∈Rn

f (x), (3.1)

where f : R
n → R is convex, and for any closed sets � ∈ R

n , there exists M(�) > 0

and ρ(�) ∈ [0, 1], such that

f (y) − f (x) −
〈

f ′(x), y − x
〉

≤ M(�)

1 + ρ(�)
‖y − x‖1+ρ(�), ∀x, y ∈ �. (3.2)

The above assumption on f (·) covers unconstrained nonsmooth (ρ(�) = 0), smooth

(ρ(�) = 1) and weakly smooth (0 < ρ(�) < 1) CP problems.

We first present a generic algorithmic framework to solve unconstrained CP prob-

lems through solutions to a series of ball-constrained CP problems in Sect. 3.1, then
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extend the FAPL and FUSL methods to unconstrained CP problems with iteration

complexity analysis in Sect. 3.2.

3.1 Expansion algorithm for unconstrained CP problems

In order to analyze the computational complexity of BL methods, it is commonly

assumed that the feasible set of interest is compact (e.g., [1,20,22]). While the

compactness assumption is essential for performing complexity analysis, the appli-

cability of existing BL methods on unconstrained CP problem may be impaired.

In practice, one possible workaround for BL methods to solve (3.1) may involve

an assumption on the distance from a point x̄ to an optimal solution x∗, namely,

x∗ ∈ B(x̄, R) := {x ∈ R
n : ‖x − x‖ ≤ R} for some x̄ and R. With such an assump-

tion, we can solve (3.1) by considering a ball-constrained CP problem

f ∗
x,R := min

x∈B(x,R)
f (x). (3.3)

The above technique was also discussed in [32] (see Sect. 4 in [32]). It should be

noted that, while the above equivalent reformulation seems straightforward, its com-

putational complexity relies almost exclusively on the radius R. In particular, if R is

close to the distance from x̄ to X∗, the optimal solution set of (3.1), i.e., R − D∗ is

small enough, where

x∗ := argminx {‖x − x‖ : x ∈ X∗} and D∗ := ‖x − x∗‖, (3.4)

then the computational complexity for computing approximate solutions to the ball-

constrained CP problem (3.3) and the original unconstrained CP problem (3.1) are

close, and it is definitely reasonable to solve (3.3) instead. However, if R is severely

overestimated, the computational complexity for solving the ball-constrained CP (3.3)

may become much higher than the optimal complexity bound that depends on D∗.

Based on the above discussion, we can conclude that a good BL method should

tackle the unconstrained CP problem (3.1) from two perspectives. Firstly, without any

satisfiable knowledge regarding D∗, such BL method should still be able to solve

(3.1) with optimal complexity bound that depends on D∗. Secondly, if there exists

an approximate distance R that is close to D∗, a good BL method should solve the

ball-constrained problem (3.3) efficiently. We will consider a generic framework that

follows the former perspective in this subsection, and then extend the BL method to

solve (3.1) in the next subsection.

In this subsection, our goal is to design a generic algorithmic framework that follows

the former perspective in the above discussion, and solve the unconstrained CP problem

(3.1) through solutions to a series of ball-constrained CP problems. It should be noted

that such concept indeed follows naturally from the two perspectives discussed above:

if a BL method is computationally efficient for ball-constrained CP problems of form

(3.3), starting from certain R for (3.3) and enlarging it by two each time, we will

eventually reach a close enough estimate of D∗ after logarithmic amount of times.
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Given x ∈ R
n, R > 0, ε > 0, let us assume that there exists a first-order algorithm,

denoted by A(x, R, ε), which can find an ε-solution to (3.3). In other words, we

assume that each call to A(x, R, ε) will compute a point z ∈ B(x, R) such that

f (z) − f ∗
x,R ≤ ε. Moreover, throughout this section, we assume that the number of

(sub)gradient evaluations required by A(x, R, ε) for finding an ε-solution to (3.3) is

bounded by

Nx,R,ε := C1(x, R, f )Rα1

εβ1
+ C2(x, R, f )Rα2

εβ2
, (3.5)

where α1 ≥ β1 > 0 and α2 ≥ β2 > 0. C1(x, R, f ) and C2(x, R, f ) are constants

that depend on f in (3.3) and nondecreasing with respect to R. For example, if f is a

smooth convex function, ∇ f is Lipschitz continuous in R
n with constant L , i.e., (3.2)

holds with ρ(Rn) = 1 and M(Rn) = L , and we apply the APL method to (3.3), then

we have only one term with α1 = 1, β1 = 1/2, and C1(x, R, f ) = c
√

L in (3.5),

where c is a universal constant. Observe that the two complexity terms in (3.5) will be

useful for analyzing some structured CP problems in Sect. 2.2. It should also be noted

that a more accurate estimate of C1(x, R, f ) is cM(B(x, R)), since the Lipschitz

constant L = M(Rn) throughout R
n is larger than or equal to the local Lipschitz

constant on B(x, R).

Let A be the algorithm that can find an ε-solution to ball-constrained problem (3.3).

By utilizing a novel guess and check procedure, we present an expansion algorithm

for unconstrained convex optimizations as follows:

Algorithm 3 Expansion algorithm for unconstrained CP problems

Choose an arbitrary r1 > 1 and compute the initial gap �1 := f (x) − minx∈B(x,r1) h(x, x).

For k = 1, 2, . . .,

Step 1. Solve x ′
k

= A(x, rk , �k ), then use x̄ ′
k

as the initial point to solve x ′′
k

= A(x, 2rk ,�k ).

Step 2. If f (x ′
k
) − f (x ′′

k
) > �k , update rk ← 2rk and go to Step 1.

Step 3. Otherwise, output x∗
k

= x ′′
k

, and let �k+1 = �k/2 and rk+1 = rk .

Note that in order to reflect the flexibility we choose r1 as any positive constant

in Algorithm 3. However, from the theoretical complexity point of view, we prefer

to starting with a smaller r1 (i.e., a lower bound on D∗). In fact, given the target

accuracy ε one can derive a theoretically viable selection of r1 given as follows. For

simplicity, assume that f has Lipschitz continuous gradient with constant L , we have

f (x0) − f ∗ ≤ L
2
‖x0 − x∗‖2. If ‖x0 − x∗‖ ≤

√
2ε/L , then x0 already satisfies

f (x0) − f ∗ ≤ ε. Therefore, we can set r1 =
√

2ε/L . Such an estimate requires some

prior information of L . It should be noted that an overestimate on L does not hurt

the complexity bound, since r1 is updated exponentially fast and will approach D∗

quickly.

Steps 1 and 2 in Algorithm 3 constitute a loop for finding a pair of solutions (x ′
k, x ′′

k )

satisfying 0 ≤ f (x ′
k) − f (x ′′

k ) ≤ �k for any k ≥ 1. Since x ′
k and x ′′

k are �k-optimal

solutions to minx∈B(x,rk ) f (x) and minx∈B(x,2rk ) f (x) respectively, this loop must

terminate in finite time, because it will terminate whenever rk ≥ D∗.
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For simplicity, we call it an expansion if we double the radius in Step 2. Each

iteration may contain several expansions before outputting solution x∗
k in Step 3.

Note that, for the implementation of Algorithm 3, most computational work exists

in Step 1, which involves a sequence of calls to algorithm A. However, notice that

the gaps (�k) and radiuses (rk) for these calls are monotonically decreasing and

increasing, respectively, numerous computational cost could be saved by using results

from previous expansions and iterations. For instance, the output solutions of previous

calls to A associated with larger gaps or smaller radiuses could always be used as the

starting point for the current call to A. For successive expansions, if the previous

execution of Step 1 called A(x̄, rk,�k) and A(x̄, 2rk,�k) and the current execution

of Step 1 calls A(x̄, 2rk,�k) and A(x̄, 4rk,�k), the computation of call A(x̄, 2rk,�k)

could be saved. Moreover, if A is referred to some specific algorithms, such as BL

type methods, more previous results, like the lower bounds and prox-centers, could

also be utilized to save computational cost.

Note that there are proximal bundle methods incorporating with trust region tech-

niques for updating the new iterate [35,36]. In [35] an quadratic cutting plane model

based method and in [36] the idea of Chebychev center were used to generate the trust

regions. These trust region methods restrict the iterates in the trust region for better

convergence to the optimal solution, while the approximate solutions in the searching

balls generated by our expansion algorithm are used only for checking whether or not

the current searching ball needs to be expanded in order to get a better estimate of D∗.

Before analyzing the iteration complexity of Algorithm 3, we discuss some impor-

tant observations related to the aforementioned expansions.

Lemma 3.1 Let x̄ ∈ R
n and r > 0 be a constant, x1 and x2 be �-solutions to CP

problems

f ∗
x,r := min

x∈B(x,r)
f (x) and f ∗

x,2r := min
x∈B(x,2r)

f (x), (3.6)

respectively. If 0 ≤ f (x1) − f (x2) ≤ �, then we have

f (x2) − f ∗ ≤
(

3 + 2D∗

r

)

�, (3.7)

where f ∗ and D∗ are defined in (3.1) and (3.4) respectively.

Proof Clearly, by definition, we have ‖x1−x‖ ≤ r , ‖x2−x‖ ≤ 2r , 0 ≤ f (x1)− f ∗
x,r ≤

� and 0 ≤ f (x2) − f ∗
x,2r ≤ �. It suffices to consider the case when f ∗

x̄,2r > f ∗

and ‖x∗ − x‖ > 2r , since otherwise (3.7) holds trivially. Suppose x∗
1 and x∗

2 are the

solutions to the first and second problems in (3.6) respectively, let x̂ be the intersection

of the line segment (x∗, x∗
1 ) with the ball B(x, 2r), and denote R1 := ‖x̂ − x∗

1‖ and

R2 := ‖x∗ − x∗
1‖. Clearly, x̂ = (1− R1

R2
)x∗

1 + R1
R2

x∗. By the convexity of f (·), we have

f (x̂) ≤
(

1 − R1

R2

)

f (x∗
1 ) + R1

R2
f (x∗), (3.8)
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which implies that
R1

R2

[

f (x∗
1 ) − f (x∗)

]

≤ f (x∗
1 ) − f (x̂), (3.9)

and that f (x̂) ≤ f (x∗
1 ) due to the fact that f (x∗) ≤ f (x∗

1 ). Also, we have f (x̂) ≥
f (x∗

2 ) since x̂ ∈ B(x, 2r). In addition,

f (x∗
1 ) − f (x∗

2 ) = [ f (x∗
1 )− f (x1)]+[ f (x1)− f (x2)] + [ f (x2) − f (x∗

2 )] (3.10)

≤ 0 + � + � = 2�. (3.11)

Combining the previous inequalities, we obtain

f (x∗
1 ) − 2� ≤ f (x∗

2 ) ≤ f (x̂) ≤ f (x∗
1 ), (3.12)

which implies that f (x∗
1 ) − f (x̂) ≤ 2�. Using (3.9), and the fact that R1 ≥ r and

R2 ≤ D∗ + r , we have

f (x∗
1 ) − f (x∗) ≤ 2R2�

R1
≤

(

2 + 2D∗

r

)

�.

Therefore,

f (x2) − f (x∗) ≤ f (x1) − f (x∗) ≤ [ f (x1) − f (x∗
1 )] + [ f (x∗

1 ) − f (x∗)]

≤
(

3 + 2D∗

r

)

�. ��

We are now ready to prove the iteration complexity of Algorithm 3 for solving the

unconstrained CP problem (3.1).

Theorem 3.2 Suppose that the number of (sub)gradient evaluations required by

A(x, R, ε) for finding an ε-solution to (3.3) is bounded by (3.5). For any k ≥ 1,

denote εk := f (x∗
k) − f ∗ for the output x∗

k in Algorithm 3. Then we have

(a) rk ≤ r̄ := max{r1, 2D∗} for all k ≥ 1, where D∗ is defined in (3.4);

(b) limk→∞ εk = 0;

(c) The total number of (sub)gradient evaluations performed by Algorithm 3 for finding

the εk-solution x̄∗
k to problem (3.1) is bounded by

O

(

C1(x, 2r̄ , f )r̄α1

ε
β1

k

+ C2(x, 2r̄ , f )r̄α2

ε
β2

k

)

. (3.13)

Proof We start by proving a), if r1 ≥ D∗, then f (x̄ ′
k) − f (x̄ ′′

k ) ≤ �k for any k ≥ 1

and no expansion takes place, hence rk = r1 = r̄ . If r1 ≤ D∗, from Algorithm 3,

we see that expansion occurs at Step 2 if and only if f (x ′
k) − f (x ′′

k ) > �k . Hence,
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if rk ≥ D∗, this condition is not satisfied and no more expansion is performed. This

implies rk < 2D∗.

To prove (b), observe that x̄ ′
k is used as the initial point for computing x̄ ′′

k in Algo-

rithm 3 and hence f (x̄ ′′
k ) ≤ f (x̄ ′

k). Combining this observation with the condition in

Step 3, we have 0 ≤ f (x̄ ′
k) − f (x̄ ′′

k ) ≤ �k . Applying Lemma 3.1 implies

εk = f (x ′′
k ) − f ∗ ≤

(

3 + 2D∗

rk

)

�k . (3.14)

Note that the total number of expansion is bounded by

S1 :=
⌈

log2

r̄

r1

⌉

, (3.15)

hence �k decreases to 0 as k increases, we have limk→∞ εk = 0.

To prove c), assume that the number of executions of Step 1 in Algorithm 3 for

finding x∗
k is K . For any 1 ≤ j ≤ K , let A(x, R j , δ j ) and A(x, 2R j , δ j ) be called in

the j th execution of Step 1. By using (3.5) and noting that C1(x, R, f ) and C2(x, R, f )

are nondecreasing with respect to R, we have the number of (sub)gradient evaluations

performed by the j th execution of Step 1 is bounded by

N j :=
(1 + 2α1)C1(x, 2R j , f )R

α1

j

δ
β1

j

+
(1 + 2α2)C2(x, 2R j , f )R

α2

j

δ
β2

j

. (3.16)

Let N ′
j and N ′′

j be the first and second terms on the right of (3.16), respectively.

The ( j + 1)th execution of Step 1 either doubles the radius or reduces the gap by

half comparing to the j th execution, i.e., R j+1 = 2R j or δ j+1 = δ j/2 respectively.

Therefore we have either N ′
j+1 ≥ 2α1 N ′

j and N ′′
j+1 ≥ 2α2 N ′′

j , or N ′
j+1 ≥ 2β1 N ′

j and

N ′′
j+1 ≥ 2β2 N ′′

j . Since 2α1 ≥ 2β1 > 1 and 2α2 ≥ 2β2 > 1, we can combine these two

cases and have

N ′
j ≤ 2−β1 N ′

j+1 and N ′′
j ≤ 2−β2 N ′′

j+1, for 1 ≤ j ≤ K − 1, (3.17)

which further implies

N ′
j ≤ 2−β1(K− j)N ′

K and N ′′
j ≤ 2−β2(K− j)N ′′

K , for 1 ≤ j ≤ K . (3.18)

Then the total number of (sub)gradient evaluations performed by these K executions

of Step 1 in Algorithm 3 is bounded by

123



184 Y. Chen et al.

N : =
K
∑

j=1

(N ′
j + N ′′

j ) ≤ N ′
K

K
∑

j=1

2−β1(K− j) + N ′′
K

K
∑

j=1

2−β2(K− j) (3.19)

< N ′
K

+∞
∑

j=0

2−β1 j + N ′′
K

+∞
∑

j=0

2−β2 j ≤ 1

1 − 2−β1
N ′

K + 1

1 − 2−β2
N ′′

K (3.20)

≤ (1 + 2α1)C1(x, 2rk, f )

1 − 2−β1
·

r
α1

k

�
β1

k

+ (1 + 2α2)C2(x, 2rk, f )

1 − 2−β2
·

r
α2

k

�
β2

k

. (3.21)

The last inequality follows from the observation that the last (i.e., K th) execution of

Step 1 before x̄∗
k is found has RK = rk and δK = �k . Combining the above inequality

with (3.14), we have

N <

2
∑

i=1

(1 + 2αi )Ci (x, 2rk, f )

1 − 2−βi
·

r
αi

k

(

3 + 2D∗
rk

)βi

ε
βi

k

. (3.22)

Since αi ≥ βi > 0, Ci (x, 2rk, f )r
αi

k (3+ 2D∗
rk

)βi = Ci (x, 2rk, f )r
αi −βi

k (3rk +2D∗)βi

for i = 1, 2 are monotonically increasing with respect to rk , which, in view of the fact

rk < 2r̄ proved by part a), therefore clearly implies

N <

2
∑

i=1

(23βi + 2αi +3βi )Ci (x, 2r̄ , f )

2βi − 1
· r̄αi

ε
βi

k

. (3.23)

Hence the proof is complete. ��

Note that to solve the unconstrained CP problem (3.1), the termination criterions of

most first-order algorithms are based on the residual of the (sub)gradient, which would

lead to different complexity analysis. To the best of our knowledge, without any prior

information on D∗, there is no verifiable termination criterion based on functional

optimality gap that could guarantee the termination of algorithms for finding an ε-

solution to (3.1). Comparing to Nesterov’s optimal gradient method for unconstrained

problems in [6], Algorithm 3 only provides efficiency estimates about εk := f (x∗
k) −

f ∗ when the output x∗
k is updated, while the optimal gradient method could have

estimates about εk := f (xk)− f ∗ for each iterate xk . For both methods the efficiency

estimates involve D∗. Since Algorithm 3 extends methods for ball-constrained CP

problems to solve (3.1), and the iterations in the expansions of Algorithm 3 could

be regarded as a guess and check procedure to estimate D∗, it is reasonable that the

efficiency estimates are only provided for unexpansive steps, i.e., Step 3 of Algorithm

3, which output x∗
k .

It has been shown in [1] that the APL method and its variant, the USL method,

achieve the optimal iteration complexities in (3.3) for smooth, nonsmooth and weakly

smooth CP problems and a class of structured saddle point problems respectively, on

any convex and compact feasible set. So Algorithm 3 could be incorporated to solve
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(3.1) with the optimal iteration complexities too. Therefore, the remaining part of this

paper will focus on how to improve the efficiency of these BL type methods for solving

ball-constrained CP problems.

3.2 Extending FAPL and FUSL for unconstrained problems

In this subsection, we study how to utilize the FAPL and FUSL methods to solve the

unconstrained problems based on our results in Sect. 3.

Let us first consider the case when f in (3.1) satisfies (3.2). If the method A in

Step 1 of Algorithm 3 is given as the FAPL method, then by Theorem 2.5, and the fact

that only one (sub)gradient of f is computed in each iteration of the FAPL method,

the number of (sub)gradient evaluations within one call to A(x, R, ε) is bounded by

N (ε) given by (2.33).

Therefore, for the FAPL method, we have α1 = 2(1+ρ)
3+2ρ

, β1 = 2
1+3ρ

, C1(x, R, f ) =
C ′M

2
1+3ρ and C2(x, R, f ) = α2 = β2 = 0 in (3.5), where C ′ is a constant depending

on the parameters q, θ, β, ρ and c in the FAPL method. Letting εk := f (x∗
k)− f ∗ for

k ≥ 1 in Algorithm 3 and applying Theorem 3.2, we then conclude for finding the εk-

solution x∗
k to problem (3.1), the total number of (sub)gradient evaluations performed

by Algorithm 3 is bounded by

O

⎛

⎝

[

M(2r)1+ρ

εk

]

2
1+3ρ

⎞

⎠ , (3.24)

where M := M(B(x, 2r)), ρ := ρ(B(x, 2r)) and r is defined in part a) of Theorem

3.2. It should be noted that the constants M and ρ are local constants that depend

on the size of the initial ball, i.e., r1, and the distance from x and x∗, which are not

required for the FAPL method and Algorithm 3, and also generally smaller than the

constants M(Rn) and ρ(Rn), respectively, for the global Hölder continuity condition.

Moreover, if f in (3.1) is given in the form of (2.31) as a structured nonsmooth

CP problem, then the FUSL method could be applied to solve the corresponding

structured ball-constrained problems in Algorithm 3. By Theorem 2.8, the number of

(sub)gradient evaluations of f within one call to A(x, R, ε) is bounded by

S1 + S2 + C ′ R

√

L
f̂

ε
+ C ′′ R‖A‖

ε
, (3.25)

where C ′, C ′′ are some constants depending on the parameters q, θ, β, σv, c, D0 and

Dv,Y in the FUSL method.

Applying Theorem 3.2 with α1 = α2 = 1, β1 = 1
2

, β2 = 1, C1(x, R, f ) = C ′
√

L
f̂
,

and C2(x, R, f ) = C ′′‖A‖, we conclude that the total number of (sub)gradient eval-

uations performed by Algorithm 3 to find the εk-solution x∗
k to problem (3.1)-(2.31)

is bounded by
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O

⎛

⎝2C ′r

√

L
f̂

εk

+ 2C ′′r‖A‖
εk

⎞

⎠ . (3.26)

Similar to the FAPL method, here L f := L f (B(x, 2r)) is a lower bound of L f (R
n).

4 Numerical experiments

In this section we apply the FAPL and FUSL methods to solve a few large-scale CP

problems, including the quadratic programming problems with large Lipschitz con-

stants, synthetic and real world total variation based image reconstruction problems,

then compare them with some other first-order algorithms. All the algorithms were

implemented in MATLAB, Version R2011a and all experiments were performed on a

desktop with an Inter Dual Core 2 Duo 3.3 GHz CPU and 8G memory. In Sects. 4.1

and 4.2, some random matrices are generated during the numerical experiments.

4.1 Quadratic programming

The main purpose of this section is to investigate the performance of the FAPL

method for solving smooth CP problems especially with large Lipschitz constants

and demonstrate the improvement of the FAPL method comparing to some other BL

type methods. And since most BL type methods require compact feasible sets, we

consider the following quadratic programming problem:

min
‖x‖≤1

‖Ax − b‖2, (4.1)

where A ∈ R
m×n and b ∈ R

m . We compare the FAPL method with NERML [22] and

APL [1]. We also compare the FAPL method with the built-in Matlab linear system

solver . In the APL method, the subproblems are solved by MOSEK [37], an efficient

software package for linear and second-order cone programming. Two cases with

different choices of initial lower bound LB in these experiments are conducted: (1).

L B = 0 and (2). L B = −∞. Moreover, for all the instances, except for the worst-

case instance where the given data is specially designed and has no randomness, we

randomly generate the data and run the algorithms 100 times, then the means and

standard deviations of the number of iterations, CPU time and accuracy of solution

are computed and reported for each algorithm.

In our experiments, given m and n, two types of matrix A are generated. The first

type of matrix A is randomly generated with entries uniformly distributed in [0,1],

while the entries of the second type are normally distributed according to N (0, 1). We

then randomly choose an optimal solution x∗ within the unit ball in R
n , and generate

the data b by b = Ax∗. We apply FAPL, NERML and APL to solve (4.1) with the set

of data A and b, and the accuracy of the solutions are measured by ek = ‖Axk − b‖2.

Additionally, for each type of matrix A, we run one instance 30 times and compute the

means and standard deviations of the numbers of iterations, CPU time and accuracies.

The results are shown in Tables 2 and 3.
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Table 2 Uniformly distributed QP instances

Alg LB Iter. Time Acc. Iter. Time Acc.

(mean, std) (mean, std) (mean, std) (mean, std) (mean, std) (mean, std)

A : n = 4000, m = 3000, L ≈ 2.0e6, e0 ≈ 3.0e4

FAPL 0 (102.5, 3.3) (4.2, 0.5) (8.8e−7, 7.6e−8) (141.1, 4.0) (5.6, 0.6) (8.7e−9, 8.6e−10)

−∞ (254.3, 40.3) (8.1, 1.4) (8.1e−7, 1.4e−7) (435.8, 54.2) (13.8, 1.9) (8.1e−9, 1.6e−9)

APL 0 (128.2, 4.1) (33.6, 2.0) (9.1e−7, 5.8e−8) (174.8, 5.0) (46.3, 2.8) (9.3e−9, 5.5e−10)

−∞ (408.6, 35.7) (103.4, 10.7) (6.8e−7, 2.1e−7) (717.1, 52.0) (187.5, 16.4) (7.0e−9, 1.9e−9)

NERML 0 (219.8, 5.2) (51.1, 3.0) (9.2e−7, 6.4e−8) (287.7, 7.0) (67.8, 4.2) (9.3e−9, 6.0e−10)

−∞ (1000, 0) (257.1, 16.5) (1.2e−3, 5.3e−4) (2000, 0) (526.6, 35.4) (8.1e−4, 3.7e−4)

A : n = 8000, m = 4000, L ≈ 8.0e6, e0 ≈ 7.0e4

FAPL 0 (63.9, 2.9) (6.8, 0.7) (8.2e−7, 1.1e−7) (80.8, 3.3) (8.5, 0.8) (8.3e−9, 1.1e−9)

−∞ (153.7, 22.1) (13.0, 2.1) (7.7e−7, 1.6e−7) (228.7, 28.6) (19.3, 2.7) (7.6e−9, 1.8e−9)

APL 0 (78.0, 2.1) (60.5, 2.8) (8.9e−7, 6.9e−8) (99.6, 2.6) (78.3, 3.7) (8.8e−9, 8.0e−10)

−∞ (259.5, 17.9) (187.4, 14.8) (6.4e−7, 2.4e−7) (420.0, 37.1) (318.7, 31.8) (7.1e−9, 2.2e−9)

NERML 0 (155.3, 2.8) (108.4, 4.2) (8.7e−7, 7.9e−8) (189.7, 3.2) (133.6, 5.2) (8.9e−9, 8.2e−10)

−∞ (1000, 0) (782.9, 44.3) (1.9e−4, 1.8e−4) (2000, 0) (1594.2, 91.6) (1.3e−4, 1.1e−4)

A ∈ R
m×n LB Iter. Time Acc. Iter. Time Acc.

m=10000 (mean, std) (mean, std) (mean, std) (mean, std) (mean, std) (mean, std)

FAPL method for large dimension matrix

n = 20000 0 (100.0, 2.2) (173.7, 7.7) (8.2e−11, 1.1e−11) (142.4, 2.6) (247.0, 9.4) (8.4e−16, 1.1-16)

L ≈ 5.0e7 −∞ (201.5, 23.4) (335.7, 41.8) (7.8e−8, 1.7e−8) (557.8, 44.9) (934.7, 81.9) (7.1e−15, 2.0e−15)

n = 40000 0 (69.2, 1.8) (244.3, 14.9) (7.9e−11, 1.4e−11) (97.5, 2.6) (342.8, 19.8) (7.8e−16, 1.3e−16)

L ≈ 1.0e8 −∞ (131.9, 12.3) (438.8, 45.2) (7.1e−8, 2.2e−8) (330.9, 29.4) (1111.1, 110.8) (6.6e−15, 2.3e−15)

n = 60000 0 (58.1,0.7) (309.3, 18.6) (9.5e−11, 3.3e−12) (78.1, 0.6) (414.1, 22.5) (7.5e−16, 2.0e−17)

L ≈ 1.5e8 −∞ (119.8, 13.6) (595.8, 71.4) (6.3e−8,2.5e−8) (279.5,25.4) (1411.0, 138.6) (7.1e−15, 2.1e−15)

In order to investigate the efficiency of solving unconstrained CP problems

using the proposed expansion algorithm (i.e., Algorithm 3), we conduct two sets of

experiments to compare the performance of solving the unconstrained QP problem

minx∈Rn ‖Ax −b‖2 using two different strategies: one starts with small initial feasible

ball, then applies the unconstrained FAPL method (i.e., incorporating the expansion

algorithm with the FAPL method as subroutine A), while the other one, under the

assumption that a bound on D∗ defined in (3.4) is known, applies the ball-constrained

FAPL method directly by choosing some large ball that contains at least one optimal

solution.

Since the performance of both methods would be affected by the distance between

the initial point x0 and the optimal solution set, in both experiments, we set x̄ =
0, D∗ ≈ 1 , and for any initial ball B(x̄, R), we choose the starting point x0 randomly

within the ball and then normalize x0 and set ‖x0‖ = R
2

. For both methods, the initial
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Table 3 Gaussian distributed QP instances

Alg LB Iter. Time Acc. Iter. Time Acc.

(mean, std) (mean, std) (mean, std) (mean, std) (mean, std) (mean, std)

A : n = 4000, m = 3000, L ≈ 2.3e4, e0 ≈ 2.0e3

FAPL 0 (101.7, 2.2) (4.2, 0.4) (8.9e−7, 7.0e−8) (134.1, 2.9) (5.5, 0.5) (8.8e−9, 8.2e−10)

−∞ (291.7, 37.5) (9.3, 1.4) (7.8e−7, 1.6e−7) (481.1, 55.8) (15.3, 2.1) (7.8e−9, 1.5e−9)

APL 0 (124.4, 3.4) (33.3, 1.9) (9.1e−7, 6.0e−8) (164.0, 4.2) (44.3, 2.6) (9.2e−9, 5.9e−10)

−∞ (593.6, 57.6) (158.0, 16.4) (6.5e−7, 2.2e−7) (937.2, 99.9) (254.4, 31.5) (7.1e−9, 2.2e−9)

NERML 0 (193.5, 5.5) (46.1, 2.5) (9.1e−7, 6.3e−8) (252.8, 6.4) (60.7, 3.3) (9.0e−9, 7.2e−10)

−∞ (1000, 0) (262.7, 15.8) (3.3e−2, 1.8e−2) (2000, 0) (537.2, 34.0) (2.3e−2, 1.3e−2)

A : n = 8000, m = 4000, L ≈ 2.3e4, e0 ≈ 2.0e3

FAPL 0 (48.7, 1.1) (5.2, 0.5) (8.2e−7, 1.1e−7) (61.5, 1.2) (6.5, 0.6) (8.4e−9, 1.1e−9)

−∞ (151.5, 18.3) (12.7, 1.6) (7.4e−7, 1.7e−7) (221.2, 20.9) (18.5, 1.9) (6.9e−9, 2.1e−9)

APL 0 (56.7, 2.1) (44.4, 2.3) (8.5e−7, 9.1e−8) (71.9, 2.2) (56.9, 2.8) (8.5e−9, 8.9e−10)

−∞ (356.9, 24.0) (279.2, 22.3) (6.1e−7, 2.3e−7) (536.9, 58.9) (427.9, 55.0) (6.9e−9, 2.4e−9)

NERML 0 (107.5, 2.4) (75.5, 3.2) (8.6e−7, 7.8e−8) (134.8, 2.7) (95.5, 3.9) (8.7e−9, 8.5e−10)

−∞ (1000, 0) (796.7, 41.2) (4.2e−3, 3.7e−3) (2000, 0) (1611.5, 85.3) (3.3e−2, 3.1e−3)

A ∈ R
m×n LB Iter. Time Acc. Iter. Time Acc.

m=10000 (mean, std) (mean, std) (mean, std) (mean, std) (mean, std) (mean, std)

FAPL method for large dimension matrix

n = 20000 0 (77.4, 1.1) (135.5, 6.8) (8.1e−11, 1.1e−11) (110.1, 1.3) (192.1, 8.8) (8.1e−16, 1.1-16)

L ≈ 6.0e4 −∞ (179.1, 8.5) (298.1, 16.9) (7.3e−8, 2.0e−8) (525.6, 41.2) (882.8, 71.1) (7.3e−15, 2.0e−15)

n = 40000 0 (48.0, 0.0) (169.2, 10.1) (6.6e−11, 4.5e−12) (67.2, 0.4) (235.5, 11.7) (8.6e−16, 1.3e−16)

L ≈ 9.0e4 −∞ (114.1, 10.6) (380.2, 37.0) (6.5e−8, 2.4e−8) (282.6, 32.0) (947.3, 121.9) (6.5e−15, 2.3e−15)

n = 60000 0 (34.2, 0.4) (186.4, 17.4) (7.9e−11, 1.7e−11) (49.8, 0.4) (269.0, 21.8) (6.4e−16, 1.5e−16)

L ≈ 1.2e5 −∞ (94.2, 5.5) (471.1, 33.2) (6.0e−8,2.4e−8) (232.0,22.5) (1176.8, 119.8) (5.9e−15, 2.6e−15)

lower bound is set to −∞, and the parameters of the FAPL method are the same. In

this first experiment, A is generated randomly with entries uniformly distributed in

[0, 1]. In the second experiment, we use the worst-case QP instance for first-order

methods which are generated by A. Nemirovski (see the construction scheme in [7]

and [4] ). When we apply the unconstrained FAPL method, the radiuses of the initial

balls are chosen as 10−5 D, 10−4 D, 10−3 D, 10−2 D and 10−1 D, respectively. While

the ball-constrained FAPL method is employed, the radiuses of the balls are selected

as 105 D, 104 D, 103 D, 102 D and 10D, respectively. The results are shown in Table 5.

The advantages of the FAPL method can be observed from these experiments.

Firstly, among these three BL type methods, NERML requires more iterations than

APL and FAPL, which have optimal iteration complexity for this problem. Moreover,

in view of the CPU time, FAPL has 10 times cheaper computational cost per iteration

than that of APL and NERML.
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Table 4 Comparison to Matlab solver

Matrix A:m × n Matlab A\b FAPL method

Time ‖Ax − b‖ Iter. Time ‖Ax − b‖
(mean, std) (mean, std) (mean, std) (mean, std) (mean, std)

Uniform 2000 × 4000 (3.6, 0.2) (2.1e−12, 5.9e−13) (196.7, 3.4) (5.5, 0.4) (1.3e−11, 7.3e−13)

Uniform 2000 × 6000 (6.5, 0.3) (2.6e−12, 6.9e−13) (155.2, 4.5) (6.1, 0.5) (1.3e−11, 8.3e−13)

Uniform 2000 × 8000 (9.5, 0.3) (3.1e−12, 7.1e−13) (135.2, 4.3) (6.8, 0.6) (1.3e−11, 8.7e−13)

Uniform 2000 × 10000 (12.5, 0.4) (3.6e−12, 8.3e−13) (118.2, 8.8) (7.3, 0.8) (1.3e−11, 8.5e−13)

Gaussian 2000 × 4000 (3.6, 0.2) (4.1e−13, 5.5e−14) (151.3, 1.8) (4.2, 0.3) (1.3e−11, 8.1e−13)

Gaussian 2000 × 6000 (6.5, 0.5) (4.5e−13, 5.7e−14) (94.8, 0.5) (3.8, 0.3) (1.2e−11, 1.1e−12)

Gaussian 2000 × 8000 (9.5, 0.5) (4.6e−13, 5.5e−14) (92.0, 0.2) (4.7, 0.4) (1.2e−11, 8.3e−13)

Gaussian 2000 × 10000 (12.6, 0.6) (4.6e−13, 5.8e−14) (83.6, 1.1) (5.3, 0.5) (1.2e−11, 1.1e−12)

Secondly, consider the difference between the performance of setting the initial

lower bound equal to 0 and −∞, it is also evident that FAPL is more robust to the

choice of the initial lower bound and it updates the lower bound more efficiently

than the other two BL type methods. Though setting the initial lower bound equal to

−∞ increases the numbers of iterations for all these three BL type methods, a close

examination reveals that the difference between setting the lower bound to zero and

−∞ for FAPL is not so significant as that for APL and NERML, especially for large

matrix, for example, the second one in Table 2 .

Thirdly, FAPL needs less number of iterations than APL, especially when the

required accuracy is high. A plausible explanation is that exactly solving the subprob-

lems provides better updating for the prox-centers, and consequently, more accurate

prox-centers improve the efficiency of algorithm . The experiments show that, for APL

and NERML, it is hard to improve the accuracy beyond 10−10. However, FAPL can

keep almost the same speed for deceasing the objective value from 106 to 10−21.

Fourthly, we can clearly see from Table 4 that FAPL is comparable to or outperforms

the built-in Matlab solver for randomly generated linear systems, even though our

code is implemented in MATLAB rather than lower-level languages, such as C or

FORTRAN. We can expect that the efficiency of FAPL will be improved by using C

or FORTRAN implementation, which has been used in the MATLAB solver for linear

systems.

Finally, from Table 5 it is evident that the performance of both the unconstrained

FAPL method and the ball-constrained FAPL method are affected by the distance

between the starting point x0 and the optimal solution set. And improper estimations

on D∗ would increase the computational cost significantly. Comparing the results

presented in the same rows of the left and right columns in Table 5, one can see

that, for the uniform instance, both methods could achieve high accuracy of solution,

and the ball-constrained FAPL method needs less iterations and CPU time than the

unconstrained FAPL method, but for the worst-case instance, the unconstrained FAPL

method outperforms the the ball-constrained FAPL method more significant in terms

of accuracy of solution, iterations and CPU time.
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Table 5 Unconstrained QP instances

Uniform instance: A = rand(4000, 8000)

FAPL-Unconstrained FAPL-Ball constrained

Radius Iter. Time Acc. Radius Iter. Time Acc.

(mean, std) (mean, std) (mean, std) (mean, std) (mean, std) (mean, std)

1e−5 (1377.0, 55.4) (110.2, 6.8) (7.1e−11, 2.0e−11) 1e5 (966.1, 69.3) (79.4, 5.9) (7.2e−11, 1.8e−11)

1e−4 (1114.8, 88.2) (88.7, 8.0) (7.1e−11, 2.0e−11) 1e4 (947.6, 74.0) (78.2, 6.6) (7.1e−11, 1.8e−11)

1e−3 (918.4, 73.5) (73.5, 6.8) (7.3e−11, 2.0e−11) 1e3 (828.9, 71.0) (68.4, 6.6) (7.1e−11, 2.0e−11)

1e−2 (900.9, 73.6) (72.8, 6.6) (7.3e−11, 2.0e−11) 1e2 (667.2, 54.4) (54.7, 4.9) (7.2e−11, 1.9e−11)

1e−1 (834.3, 66,7) (67.7, 6.1) (7.3e−11, 2.0e−11) 1e1 (531.9, 41.9) (43.4, 3.9) (7.3e−11, 1.7e−11)

Worst-case instance: A = Bdata(2062, 4124)

FAPL-Unconstrained FAPL-Ball constrained

Radius Iter. Time Acc. Radius Iter. Time Acc.

1e−5 1385 27.9 9.93e−8 1e5 4000 76.2 9.66e−3

1e−4 1284 24.7 9.97e−8 1e4 4000 74.2 2.66e−5

1e−3 1113 21.1 9.97e−8 1e3 3500 65.6 2.4e−6

1e−2 881 16.6 9.81e−8 1e2 2500 46.2 3.38e−7

1e−1 773 13.9 9.93e−8 1e1 1500 26.9 9.35e−8

1
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In summary, due to its low iteration cost and effective usage of the memory of first-

order information, the FAPL method is a powerful tool for solving ball-constrained

smooth CP problems especially when the number of variables is huge and/or the

value of Lipschitz constant is large. And by incorporating the proposed Expansion

Algorithm, the unconstrained FAPL method is very efficient for solving unconstrained

CP problems especially when a proper estimation on the optimal solution set is not

available.

4.2 Total variation based image reconstruction

In this subsection, we apply the FUSL method to solve the nonsmooth total variation

(TV) based image reconstruction problem:

min
u∈RN

1

2
‖Au − b‖2

2 + λ‖u‖T V , (4.2)

where A is a given matrix, u is the vector form of the image to be reconstructed, b

represents the observed data, and ‖ · ‖T V is the discrete TV semi-norm defined by

‖u‖T V :=
N
∑

i=1

‖Di u‖2, (4.3)

where Di u ∈ R
2 is the discrete gradient (finite differences along the coordinate

directions) of the i th component of u, and N is the number of pixels in the image.

Note that ‖u‖T V is convex and nonsmooth.

One of the approaches to solve this problem is to consider the associated dual or

primal-dual formulations of (4.3) based on the dual formulation of the TV norm:

‖u‖T V = max
p∈Y

〈p, Du〉 , where Y = {p = (p1, . . . , pN ) ∈ R
2N : pi ∈ R

2,

‖pi‖2 ≤ 1, 1 ≤ i ≤ N }. (4.4)

Consequently, we can rewrite (4.2) as a saddle-point problem:

min
u∈RN

max
p∈Y

1

2
‖Au − b‖2

2 + λ 〈p, Du〉 . (4.5)

Note that (4.5) is exactly the form we considered in the USL and FUSL methods

if we set ĝ(y) = 0. Specifically, the prox-function v(y) on Y is simply chosen as

v(y) = 1
2
‖y‖2 in these smoothing techniques.

In our experiments, we consider two types of instances depending on how the

matrix A is generated. Specifically, for the first case, the entries of A are normally

distributed, while for the second one, the entries are uniformly distributed. For both

types of instances, first, we generate the matrix A ∈ R
m×n , then choose a true image

xture and convert it to a vector, and finally compute b by b = Axtrue + ε, where
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Fig. 1 TV-based reconstruction (Shepp–Logan phantom)

ε is the Gaussian noise with distribution ε = N (0, σ ). We compare the following

algorithms: the accelerated primal dual (APD) method [8], Nesterov’s smoothing

(NEST-S) method [5,34], and the FUSL method.

For our first experiment, the entries of the matrix A of size 4, 096 × 16, 384 is

randomly generated from a normal distribution N (0, 64), the image xtrue is a 128×128

Shepp–Logan phantom generated by MATLAB. Moreover, we set λ = 10−3 and the

standard deviation σ = 10−3. The values of Lipschitz constants are provided for APD

and NEST-S, and the initial lower bound for FUSL is set to 0. We run 300 iterations for

each algorithm, and present the objective values of problem (4.2) and the relative errors

defined by ‖xk − xtrue‖2/‖xtrue‖2 in Fig. 1. In our second experiment, the matrix A is

randomly generated with entries uniformly distributed in [0, 1]. We use a 200 × 200

brain image [38] as the true image xtrue, and set m = 20, 000, λ = 10, σ = 10−2.

Other setup is the same as the first experiment, and the results are shown in Fig. 2.

We make some observations about the results in Figs. 1 and 2. For the first experi-

ment, there is almost no difference between APD and NEST-S, but FUSL outperforms

both of them after 5 seconds in terms of both objective value and relative error. The

second experiment clearly demonstrates the advantage of FUSL for solving CP prob-

lems with large Lipschitz constants. The Lipschitz constant of matrix A in this instance

is about 2×108, much larger than the Lipschitz constant (about 5.9) in the first exper-

iment. FUSL still converges quickly and decreases the relative error to 0.05 in less

than 100 iterations, while APD and NEST-S converge very slowly and more than

1, 000 iterations are required due to the large Lipschitz constants. It seems that FUSL

is not so sensitive to the Lipschitz constants as the other two methods. This feature of
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Fig. 2 TV-based reconstruction (brain image)

FUSL makes it more efficient for solving large-scale CP problems which often have

big Lipschitz constants.

In summary, for the TV-based image reconstruction problem (4.2), FUSL not only

enjoys the completely parameter-free property (and hence no need to estimate the

Lipschitz constant), but also demonstrates advantages for its speed of convergence

and its solution quality in terms of relative error, especially for large-scale problems.

4.3 Partially parallel imaging

In this subsection, we compare the performance of the FUSL method with several

related algorithms in reconstruction of magnetic resonance (MR) images from partial

parallel imaging (PPI), to further confirm the observations on advantages of the FUSL

method. The detailed background and description of PPI reconstruction can be found

in [38]. This image reconstruction problem can be modeled as

min
u∈Cn

k
∑

j=1

‖MF S j u − f j‖2 + λ

N
∑

i=1

‖Di u‖2,

where n = 2 (we consider two dimensional case), u is the N-vector form of a two-

dimensional complex valued image to be reconstructed, k is the number of coils

(consider them as sensors) in the magnetic resonance (MR) parallel imaging sys-

tem. F ∈ Cn×n is a 2D discrete Fourier transform matrix, S j ∈ Cn×n is the sensitivity

map of the j-th sensor, and M ∈ Rn×n is a binary mask describes the scanning pattern.
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Fig. 3 Sensitivity map and Cartesian masks

Fig. 4 PPI image reconstruction (acquisition rate: 14%)

Note that the percentages of nonzero elements in M describes the compression ratio

of PPI scan. In our experiments, the sensitivity maps {S j }k
j=1 are shown in Fig. 3, the

image xtrue is of size 512 × 512 shown in Figs. 4 and 5, and the measurements { f j }
are generated by

f j = M(F S j xtrue + εre
j /

√
2 + εim

j /
√

−2), j = 1, . . . , k, (4.6)

where εre
j , εim

j are the noise with entries independently distributed according to

N (0, σ ). We conduct two experiments on this data set with different acquisition rates,

and compare the FUSL method to NEST-S method, and the accelerated linearized

alternating direction of multipliers (AL-ADMM) with line-search method [15].

For both experiments, set σ = 3 × 10−2, λ = 10−5, and { f j }k
j=1 are generated

by (4.6). In the first experiment, we use Cartesian mask with acquisition rate 14%:
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Fig. 5 PPI image reconstruction (acquisition rate: 10%)

acquire image in one row for every successive seven rows, while for the second one,

we use Cartesian mask with acquisition rate 10%: acquire image in one row for every

successive ten rows. The two masks are shown in Fig. 3. The results of the first and

second experiments are shown in Figs. 4 and 5, respectively. These experiments again

demonstrate the advantages of the FUSL method over other techniques for PPI image

reconstruction,

5 Concluding remarks

In this paper, we presented two new BL type methods, the FAPL and FUSL methods,

to uniformly solve smooth, nonsmooth, and weakly smooth CP problems and a class

of structured nonsmooth problems with optimal iteration complexities. Because of the

use of cutting plane model, technique of restricted memory and an efficient and scalable

solver for solving involved subproblem, the proposed methods have lower iteration

cost, and can find a solution with higher accuracy within less number of iterations

than many gradient descent type methods. Moreover, these BL type methods do not

require the input of any problem parameter, or involve any stepsize that could be

affected by large Lipschitz constant of the objective function and large dimension

of the problem. These built-in features of the proposed methods are essential for

solving large-scale CP problems. Our numerical results of least squares problems and

total variation based image reconstructions clearly demonstrate the advantages of the

FAPL and FUSL methods over the original APL, USL and some other first-order

methods.
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Appendix A. Solving the subproblems of FAPL and FUSL

In this section, we introduce an efficient method to solve the subproblems (2.6) in the

FAPL and FUSL methods, which are given in the form of

x∗
c := argminx∈Q

1

2
‖x − p‖2. (A.1)

Here, Q is a closed polyhedral set described by m linear inequalities, i.e.,

Q := {x ∈ R
n : 〈Ai , x〉 ≤ bi , i = 1, 2, . . . , m},

where Ai ∈ R
n and bi ∈ R for 1 ≤ i ≤ m.

Now let us examine the Lagrange dual of (A.1) given by

max
λ≥0

min
x∈Rn

1

2
‖x − p‖2 +

m
∑

i=1

λi [〈Ai , x〉 − bi ]. (A.2)

It can be checked from the theorem of alternatives that problem (A.2) is solvable if

and only if Q �= ∅. Indeed, if Q �= ∅, it is obvious that the optimal value of (A.2) is

finite. On the other hand, if Q = ∅, then there exists λ̄ ≥ 0 such that λ̄T A = 0 and

λ̄T b < 0, which implies that the optimal value of (A.2) goes to infinity. Moreover, if

(A.2) is solvable and λ∗ is one of its optimal dual solutions, then

x∗
c = p −

m
∑

i=1

λ∗
i Ai . (A.3)

It can also be easily seen that (A.2) is equivalent to

max
λ≥0

−1

2
λT Mλ + CT λ, (A.4)

where Mi j :=
〈

Ai , A j

〉

, Ci := 〈Ai , p〉 − bi , ∀i, j = 1, 2, . . . , m. Hence, we can

determine the feasibility of (A.1) or compute its optimal solution by solving the

relatively simple problem (A.4).

Many algorithms are capable of solving the above nonnegative quadratic program-

ming in (A.4) efficiently. Due to its low dimension (usually less than 10 in our practice),

we propose a brute-force method to compute the exact solution of this problem. Con-

sider the Lagrange dual associated with (A.4):

min
λ≥0

max
μ≥0

L(λ, μ) := 1

2
λT Mλ − (CT + μ)λ,

where the dual variable is μ := (μ1, μ2, . . . , μm). Applying the KKT condition, we

can see that λ∗ ≥ 0 is a solution to problem (A.4) if and only if there exists μ∗ ≥ 0

such that
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∇λL(λ∗, μ∗) = 0 and 〈λ∗, μ∗〉 = 0. (A.5)

Note that the first identity in (A.5) is equivalent to a linear system:

(

M −I
)

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

λ1

...

λm

μ1

...

μm

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎝

C1

C2

...

Cm

⎞

⎟

⎟

⎟

⎠

, (A.6)

where I is the m ×m identity matrix. The above linear system has 2m variables and m

equations. But for any i = 1, . . . , m, we have either λi = 0 or μi = 0, and hence we

only need to consider 2m possible cases on the non-negativity of these variables. Since

m is rather small in practice, it is possible to exhaust all these 2m cases to find the exact

solution to (A.5). For each case, we first remove the m columns in the matrix (M − I )

which correspond to the m variables assumed to be 0, and then solve the remaining

determined linear system. If all variables of the computed solution are non-negative,

then solution (λ∗, μ∗) to (A.5) is found, and the exact solution x∗
c to (A.1) is computed

by (A.3), otherwise, we continue to examine the next case. It is interesting to observe

that these different cases can also be considered in parallel to take the advantages of

high performance computing techniques.
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