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Abstract—In this study, we explore the use of low rank and
sparse constraints for the noninvasive estimation of epicardial
and endocardial extracellular potentials from body-surface elec-
trocardiographic data to locate the focus of premature ventric-
ular contractions (PVCs). The proposed strategy formulates the
dynamic spatiotemporal distribution of cardiac potentials by
means of low rank and sparse decomposition, where the low
rank term represents the smooth background and the anomalous
potentials are extracted in the sparse matrix. Compared to
the most previous potential-based approaches, the proposed low
rank and sparse constraints are batch spatiotemporal constraints
that capture the underlying relationship of dynamic potentials.
The resulting optimization problem is solved using alternating
direction method of multipliers . Three sets of simulation exper-
iments with eight different ventricular pacing sites demonstrate
that the proposed model outperforms the existing Tikhonov
regularization (zero-order, second-order) and L1-norm based
method at accurately reconstructing the potentials and locating
the ventricular pacing sites. Experiments on a total of 39 cases of
real PVC data also validate the ability of the proposed method
to correctly locate ectopic pacing sites.

Index Terms—Inverse problem of electrocardiography, low
rank, sparsity.

I. INTRODUCTION

ONINVASIVE electrophysiological imaging (ECGI), for

characterizing and localizing cardiac electrical events
from body surface electrocardiograms (ECGs), constitutes a
promising strategy for evaluating normal and abnormal cardiac
electrophysiology, offering the potential for great impact on
cardiac diseases such as ventricular fibrillation [1], premature
ventricular contraction (PVC) [2], or ventricular tachycardia
(VT) [3]. In particular, the ECGI technique is extensively
applied in the precise localization of the PVC origin, for the
purpose of facilitating the planning of, and thereby simplifying
and shortening, the electrophysiological procedure.
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In order to determine the focus of the origin of cardiac
electrical activity, various ECGI approaches have previously
been proposed within different scopes. A traditional approach
is the use of current dipoles. The concept of using a single
dipole to represent intracardiac electrical activity originated
in [4]. Subsequently, improved equivalent generators, such as
moving dipoles [5], [6] or multiple dipoles [7], [8], have been
developed. While these approaches specialize in localizing
electrical events in the heart, the solutions contain limited
information about the spatiotemporal pattern of the cardiac
electrical activity.

Alternatively, potential-based electrophysiological imaging
provides intracardiac potential estimates from the body sur-
face potentials. Various regularization techniques have been
performed at solving the illposed inverse problem of cardiac
potential imaging. In [9], Tikhonov regularization [10], [11]
and the generalized minimal residual (GMRes) iterative tech-
nique [12], [13] were used to reconstruct epicardial potential
sequences, from which the PVC origin was located by means
of the local negative potential minimum of early activa-
tion. However, L2-norm based methods inherently provide
smoothed solutions, and therefore offer compromised accuracy
in capturing the PVC origin site [2]. In order to overcome
the drawback of L2-norm methods, more recently, Ghosh
and Rudy [2] developed a sparse-based L1-norm scheme for
epicardial potential reconstruction and locating the epicardial
pacing sites, where the L1-norm method outperformed the
quadratic methods in terms of accuracy. Further works were
later presented to improve the stability and convergence of
this method [14], [15]. However, these methods limit the
positioning of the pacing site to the epicardium. Therefore, in
[16], transmural regularization combined with temporal spline
interpolation was used to estimate the potential on the inner
(endocardial) as well as outer (epicardial) ventricle surfaces in
order to locate the pacing sites. From the estimated potential
sequence, the activation time at each node was estimated by
the time with the most negative derivative, and the pacing
site. was located at the earliest activation point. Recently,
much attention has been given to approaches that incorporate
temporal constraints, such as Kalman filter [17] and doubly
truncated singular value decomposition (TSVD) regularization
[18].

Typically, another type of ECGI work is activation imaging,
which involves estimating the activation times that generate a
QRS complex that best fits the recorded QRS on the body sur-
face [19]. Numerous endeavors have been made to reconstruct
the activation time on the heart surface [20]-[24] or throughout
3D ventricles [25]-[31]. The solution of activation time, which
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indicates the arrival time of the action potential depolarization
of the cardiomyocytes, has an explicit interpretation of the
“wavefront” behavior of cardiac activation [32] with a clear
physiological meaning and can be directly used in clinic.
While solution of potentials often needs a further deduction to
obtain useful parameters. Thus, activation imaging is very well
applied to provide valuable clinical information in simple or
complex activation patterns [25], [29]. One of the applications
is to find the focus of an arrhythmia (eg., PVC [25]), namely,
the site with the earliest activation. It is worthy to mention
that there are some new methods for activation imaging based
on the temporal (time/frequency) characteristics [25], [28],
[31] of equivalent current density, typically, the exploitation
of sparsity in the time domain [25], [28] and gradient sparsity
in frequency domain [29]. On the other hand, potential based
approach may has more versatility. It can not only recover
the information from the active band (QRS complex), but
also provide the information from the repolarization wave
(ST segment or T wave) [33]. Technically, it can estimate the
potential distribution on the myocardial surface or within the
myocardium tissue at any time during the cardiac cycle. In
addition, more parameters may be derived from the potential
based reconstruction [29].

In this paper, a new spatiotemporal low rank and sparse
decomposition (LSD) framework has been proposed to re-
construct dynamic extracellular endo- and epicardial potential
(EEP) and localize the PVC origin. Based on the electrophys-
iological property of myocardial tissue, when depolarization
occurs, a rapid change in ion permeability of the myocardial
cell membrane cause ions to rapidly cross the cell membrane,
which causes a shift of the extracellular potential, resulting in
potential spikes, as pointed in Fig. 1(a) (left). In the rest of the
cardiac cycle, myocardial tissue remains almost static. These
spikes (potential foreground) account for a relatively small
proportion of the space-time distribution of potentials, which
are sparse. The remainder (potential background) consists of
some of the lower amplitude, relatively flat potentials, which
can be low rank for its physical spatiotemporal correlation.
This property exists because of the EEP dynamic is spatially
smooth and temporally self-similar. That is, the background
potentials tend to lie within a low-rank subspace, as illustrated
in the empirical results provided in Fig. 1(b). Moreover, the
sparse outliers, namely potential spikes, are annotated by the
high potential peaks (red) and low potential valleys (blue) in
the spatial-temporal map in Fig.1(c).

The novelty of the potential-based LSD method proposed
in this study is twofold:

1) Low rank is a batch constraint that makes use of the
underlying spatiotemporal correlation of electrophysiological
dynamics to provide accurate reconstruction.

2) Compared to previous smooth/sparse assumption (spatial
or/and temporal), we do not mandate that the potential is
smooth or sparse, but the appropriate combination of the
two components. Therefore, the proposed method may be
applicable to extensive cardiac electrophysiological dynamics.
In addition, it is not necessary to make assumptions on
the explicit form of the potential to be evaluated, compared
to some state model based methods such as Kalman filter.
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Fig. 1. Rank and sparsity statistics for decomposition of EEP spatiotemporal-
distribution matrix U of eight simulated ventricular pacing cases. The geomet-
ric model of the heart consists of 502 mesh nodes. Each case takes 250 frames
in time; that is, U € R502X250 for each case. (a) Temporal distribution of
EEP for all heart nodes (left) and spatial-temporal EEP dynamic. (b) Low rank
part of EEP matrix U (x-axis: case number, y-axis: rank). The rank of the
background part for each case is approximately 50, which is significantly
smaller than the dimension 250 or 502 of the matrix. (c) Sparse part of
U (x-axis: case number, y-axis: non-zero elements). The number of non-
zero elements in the foreground part is approximately 5000, substantially less
than the total number of matrix elements 125500 (502#250). Therefore, the
spatiotemporal distribution matrix of the EEP can be decomposed into a low-
rank background and sparse foreground.
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Therefore, the approach can be applied to ventricles with
structural lesions.

In order to demonstrate the effectiveness of the proposed
method, we implemented a series of experiments on sim-
ulated data and real patient data. Firstly, to estimate the
accuracy of the proposed LSD method quantitatively in EEP
reconstruction, we performed simulation experiments consid-
ering eight different pacing sites. For each case, three EEP-
based quantities were quantitatively analyzed: EEP spatial
distribution, cardiac electrograms, and activation times. The
accuracy of the solutions of the zero-order and second-order
Tikhonov methods (uniformly abbreviated as Tikhonov-0 and
Tikhonov-2 in the following text) and an Ll-norm based
method were used for comparison with the proposed method.
Furthermore, real data experiments were carried out on two
patient sets. The first set of experiments were performed on
ECG data corresponding to 33 different pacing sites paced
on the healthy ventricles of a subject. The second set of
experiments were carried out with clinical data of six PVC
patients. By comparing the location of the ventricular ectopic
pacing site captured by the LSD method to that detected by
Ensite3000 system (gold standard), the proposed method was
confirmed to locate the ectopic pacing site position correctly.

II. METHOD

In this section, we present the LSD framework to solve
the ill-posed inverse problem of dynamic cardiac electrophys-
iological imaging. Firstly, we introduce the forward model
of the ECG imaging problem. The boundary element model
(BEM) is adopted to model the relationship between the EEP
and BSP. Thereafter, the LSD framework is developed to
reconstruct the EEP from the body surface ECG. Finally, a
mathematical method for obtaining the optimal solution is
designed for the proposed LSD model, and the corresponding
iterative algorithm is introduced in detail.

A. Forward Model of Electrocardiography

In this part, we model the forward relationship between
the EEP and BSP. In particular, the heart surface model,
unlike the popular standard “capped” full-heart epicardial
model, is a union of the “uncapped” ventricular epicardium
and endocardium. For ease of description, Thereafter, the
“heart surface” refers to both the epicardium and endocardium.
According to existing work [16], the relationship between
the potentials of our equivalent electrical source and the
body surface can still be formulated by the standard Laplace
equation, based on the quasi-static and isotropic assumptions.
Thus, the cardiac electric field between the heart and body
surfaces can be expressed by:

0, V2p, (r) =0 (1)

where o, is the torso conductivity scalar, and ¢, (r) represents
the potentials boundaried between the heart and body surfaces,
generated by cardiac electrophysiological activity.

We can solve the Laplace equation (1) by means of the
BEM [34]. Then, the forward relationship between the EEP
and BSP can be modeled as

¢ =Hu 2

¢€RN><1 uERJ\/[XI HGRNXM

where ¢ is an N-dimensional column vector representing the
potentials measured by N-lead electrodes on the body surface;
u is a column vector of the M-dimensional cardiac EEP;
and H is a time-invariant transfer matrix that is specific to
the heart-torso geometric model of each subject. The heart-
torso model can be obtained from the patient’s individual pre-
procedural thoracic CT scan, which will be detailed in section
1.

B. Multi-frame EEP-BSP Model

As illustrated in Fig. 1(a), in order to consider
a time sequence of body surface potentials:
@:[¢17¢27"'7¢f7"'¢}7'], d) S RNXI (P S RNXF,

where ¢ represents the f-th frame of the body surface
potentials, and the corresponding time sequence of the heart
surface potential matrix: U = [ui,uo,- - -, uys,- - -, up),
u € RMx1 U e RMXF  where uy is the f-th frame of the
heart epicardial and endocardial extracellular potentials, the
EEP-BSP model (2) of a single-frame ECG can be extended
to the multiple-frame form as

$ = HU. 3)

C. Low Rank and Sparsity Formulation

As illustrated in Fig. 1, we analyze the dynamic ECG
inverse problem from the image perspective. Fig. 1(a) (left)
depicts the dynamic EEP signals over a fragment of ventricular
pacing rhythm. The data of single-frame EEPs can be rep-
resented by a column vector. Then, the vectored multi-frame
EEPs over the cardiac cycle can compose a spatiotemporal dis-
tribution image, as illustrated in Fig. 1(a) (right). Although the
electrophysiology of the heart exhibits complex spatiotemporal
changes, the spatiotemporal distribution of the EEP is locally
smooth in space and self-similar in time (certain mesh nodes
exhibit similar patterns of cardiac electrogram, as illustrated
in Fig. 1(a) (left)). Therefore, the underlying background of
the dynamic EEP may be low-rank, as indicated in Fig. 1(b),
while the remaining potential outliers are sparse, as depicted
in Fig. 1(c). Thus, the spatiotemporal EEP matrix U can be
expressed as

U=L+S 4

where the low-rank matrix L can be interpreted as the low-
level background of the spatiotemporal EEP, and the sparse
matrix S can be expressed as “unaligned” details, such as
the wavefront of the electrical activation propagating over the
heart surface.

Owing to the ill-posedness of the electrophysiological in-
verse problem, small noise will result in a large error in the
solution. By enforcing a low-rank background and sparse fea-
tures for the spatiotemporal EEP distribution, the disturbance
of noise in the reconstruction can be eliminated to a certain
extent. Eventually, the LSD framework can be expressed as a
constrained minimization problem:

min rank(L) 4+ A[|S]|, (5)
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st. =HU U=L+S

where rank(L) indicates the rank of L; ||S||, is the LO norm
of S, namely the number of non-zero elements in S; and A is
a parameter that balances between the two terms.

However, the minimization problem of the objective (5) is
NP hard, as both the matrix rank and L0 norm are non-convex
and discontinuous. Fortunately, the minimization of the nuclear
norm is a convex relaxation of the rank minimization problem
[35], and the L1 norm is a convex approximation of the LO
problem [36]. Therefore, we can solve the optimization target
approximately using the following objective function:

LA+ AlISlly (6)
st. ®=HU U=L+S

min

where ||L||, is the nuclear norm of matrix L; that is, the sum
of the singular values of L; and [[S[[;=3_,,|S;;| is the L1
norm of matrix S by treating matrix S(M X F') as a long
vector in RMF,

Moreover, because of the disturbance of Gaussian noise in
the system, the forward constraint ® = HU cannot be strictly
established. The error can only be minimized by optimization,
as follows:

min L], +AIS],+5 [HU - @[5 @)
st. U=L+S

where the Frobenius norm |[|Al|, is defined for any matrix

2

m n

A(mxn) as ||Al|p=4/ > >_ |asj| . and p is another param-
i=1j=1

eter controlling the contribution of the data fitting term to the

objective function.

D. Optimal Estimation Strategy

In this paper, the alternating direction method of multipliers
(ADMM [37]) is used to solve the LSD optimization problem
in formula (7). Thus, the augmented Lagrangian function for
the constrained minimization problem in (7) can be formulated
as an unconstrained equation:

L(L,S,U) = [IL[, + AlS[l; = (Z,U — (L +8))

B J (®)
+5 U= (L+8)[F+ 5 [HU - @[

where Z is a Lagrangian multiplier, and A\, 3, and p are
weighting factors. It is difficult to solve all of the unknown
matrices L, S, and U directly. In this paper, we decompose
the augmented Lagrangian function (8) into two types of
sub-problems, and then solve each sub-problem by alternate
updating and successive iterations.

1) L, S Sub-problem: According to the theory mentioned
in [38], the minimization of the rank problem formulated as
the following form:

. 1
min e[ X[|, + 5 |X = Y| ©)

can be solved directly by means of singular value thresholding
(SVT). We obtain the solution as

X =8SVT (Y) = Uy S-(2)V4- (10)

where X and Y are matrices of the same dimension, and
UyXVif = Y is the singular value decomposition of Y.
Moreover, ¥ = diag(v1, - 7vi,  -7n) IS a diagonal matrix
with all singular values of Y as diagonal elements, and S, ()
is the soft shrinkage of ¥, which is defined for every element
of ¥ as S; (7) = sgn(y) - max(|y| — &,0).

We separate all of the terms related to L from the augmented
Lagrangian function (8) and provide the necessary constants to
construct a frame-like formula (9). Then, the L sub-problem
can be structured as

(1)

According to the above theory, we can adopt SVT to solve
the minimum rank problem directly. The solution to the L
sub-problem can be formulated by the following equation and
subjection:

min (L], + 5 L~ (U -8 +2/5) .

L =Uy, S1/5(Zv,) Vi (12)
st. Yo =U-S+Z/5.

Similarly, the S sub-problem can be structured as
. p
min S|, + 5 IS~ (U-L+Z/p)[5.  (13)

Soft shrinkage [36] has been exploited to calculate the
optimal solution of the sparse (L1 norm) problem. The solution
can be obtained by one step as

S =Sy (Ys)
Ys=U—-L+27/8

(14)

2) U Sub-problem: The U sub-problem is composed of two
F-norm fidelity terms and an inner product term containing a
Lagrange multiplier. It can be reformulated as

min £ [HU - @3 + g IU—(L+S+2/8)}. (15

This is a convex minimization problem, and the solution
can be expressed directly as

U= (uHTH+ ) [pH'® +5(L+S+2/8). (16

By solving the sub-problems alternately, we can obtain the
optimal solution to the LSD model. The complete algorithm
is summarized in Algorithm 1.

E. Algorithm Summary

Initialization: In order to overcome the mathematical ill-
posedness of the inverse problem, Tikhonov-0 regularization
is applied to initialize the EEPs prior to the first iteration as:
U = (HTH + \I'T)"'H” ®, where I is an identity matrix.
The weighting coefficient Ay can be estimated by means of the
L-curve method [39].

Parameters: A, 3, and p are scalars to balance the min-
imization target. Among these, A is weighting parameter
of the sparse matrix S. According to the theorem in [36],
1/y/max(m,n) is an appropriate selection for A, where the
dimension of S is m x n. Moreover, 3 is a Lagrangian penalty
parameter, which lies within [0.01, 0.1] in this study, and p
is the coefficient of fidelity term, determined by the noise
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Algorithm 1 LSD Algorithm
Require: BSP matrix ®, transfer matrix H, weighting coef-
ficients A, 3, p
1: Initialize: U° = (HTH + \I7T)"'HT ®, L° = S°
0,Z°=0
2: repeat
3. Update L1 by formula (12)
4:  Update S**! by formula (14)
5.
6

Update U**! by formula (16)
Update ZF+1:

Zk+1 Zk + 5k (Uk+1 Lk+1 _ Sk-‘rl)
7. Update 4:
e T o il s 0 <o

0 else
8: until L, S, U are all converged

Ensure: L, S, U

intensity. For the experiments presented in this paper, u is
fixed at 0.5. Furthermore, 7, p, and ¢ affect the convergence
speed and are fixed at 0.1, 1.2, and 0.1, respectively.

III. EXPERIMENTS

In this section, the proposed method is evaluated by three
types of datasets: 1) simulated ventricular single pacing at
eight different pacing sites; 2) real ventricular pacing at 33
sites from the endocardial surface of the healthy ventricles of
a subject; 3) and six cases of clinical PVCs. We compared
the accuracy of the proposed LSD to that of the L2-norm-
based Tikhonov-0, Tikhonov-2 regularization, and L1-norm
method, which is formulated as: min |[|[Hu — ¢||,+A?||Dul|,
[2], where D indicates the normal derivative operator.

A. Simulation Experiments on Ventricular Pacings

In this section, we discuss the simulation experiments
performed considering eight different pacing sites. The endo-
and epicardial extracellular potential ground truths of the ven-
tricular pacings were obtained from the Internal database - Ex-
perimental Data and Geometric Analysis Repository (EDGAR,
http://edgar.sci.utah.edu/) [40], where the ventricular beats
were simulated on a voxel-based grid using cellular automaton
[41], and the extracellular potentials were extracted from
a tetrahedral mesh at 163 electrode positions [42]. In this
work, the body surface potentials were forward calculated by
® = HU + N, where N is a matrix of 25 dB white Gaussian
noise.

From the reconstructed potential, we examined the follow-
ing three reconstructed quantities: 1) the spatial distribution
map of EEP at a given time node during the pacing rhythm;
2) the electrogram, which illustrates the change of potential
at a given mesh node over time; and 3) the map of activation
time, which is defined when the negative derivative (—du/dt)
of the electrogram reaches a maximum. In order to analyze the
reconstruction accuracy quantitatively, the relative errors (RE)
and correlation coefficient (CC) between the reconstructed
quantities and ground truths were utilized:
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Fig. 2. Reconstruction of EEP by LSD method with pacing site located
at lateral left ventricle (LV), where (a) represents a low-rank and sparse
reconstruction of a single pacing . Among these, (b) is the spatial distribution
of the EEP at approximately 20 ms following the onset of pacing rhythm.

M 2
Z (xri - xti)
i=1
RE = i . (17
('rti)
i=1
co— Cov(x,,xy) (18)
D(zr)\/D(a1)

where x, denotes a column vector of the reconstructed quan-
tity and x; is the corresponding ground truth. Moreover, M is
the number of mesh nodes of the heart surface, Cov(z,, x¢)
is the covariance between the reconstructed quantity and the
truth, and D(-) represents the variance.

1) Spatial EEP mapping: Fig. 2(a) provides an example of
the dynamic EEP reconstruction over a fragment of cardiac
cycle of the lateral LV pacing. The first image, on the left in
Fig. 2(a), illustrates the ground truth of the color-scaled spatio-
temporal EEP map throughout the pacing rhythm. The two
middle maps, from top to bottom, are the low-rank background
and sparse foreground of the reconstructed EEP. The rightmost
image is the final solution of the EEP reconstruction. The
spatial distribution of the EEP at an instant of the initial time
(20 ms) was extracted and is illustrated in Fig. 2(b). From the
middle two maps, it can be seen that the low-rank component
of the EEP reconstruction mainly includes the smooth part of
the potential, while the sparse component contains the outlier
negative potential valley (blue) and the positive potential wall
(red).

Fig. 3 shows the spatial distribution of EEP at four instances
(23, 52, 152, and 199 ms) in the process of electrical ex-
citation during the lateral LV pacing, roughly demonstrating
the process of electrical activation spreading from the pacing
site at the lateral LV to the remote right ventricle (RV). The
solutions of Tikhonov-0, Tikhonov-2, and L1-norm methods
mentioned in the beginning of this section were used for
comparison with the LSD method. The leftmost column in Fig.
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TABLE 1 TABLE II
MEAN AND STANDARD DEVIATION OF CC AND RE BETWEEN LOCALIZATION ERRORS OF THE 8 SIMULATED VENTRICULAR PACINGS.

RECONSTRUCTED AND TRUE ELECTROGRAMS OF EIGHT DIFFERENT

PACING SITES, WHERE THE ‘£’ INTERVAL REPRESENTS THE STANDARD Pacing site | Tikhonov-2 | Ll-norm | LSD
DEVIATION. LV localization error (mm)

pacine o Tikhonov-2 Linorm LSD anterior 31.65 28.34 14.35

acing site cc RE cc RE cc RE apex 16.56 8.92 2.82
LV lateral-endo 10.68 7.81 4.88
anterior 0.6440.16 076033 | 0.6840.16 0.674023 | 0744018  0.61+0.25 Jateral-epi 546 484 170

0614020  0.80£028 | 0.6240.18  0.794£0.19 | 0.71£0.20  0.67+0.22

Apex lateral 11.37 11.36 9.22
lateral-endo | 0.70£0.18 074037 | 0704020  0.66:£020 | 0.73+£021  0.61:£0.23
lateral-epi | 0.634£0.16 0794026 | 0.684£0.17 0694019 | 0.68+£021  0.66+-0.60 septum 35.21 29.45 18.14
lateral 0674019 0744025 | 0.69+0.18  0.664+0.17 | 0774017  0.5840.21 RV
septum 0624017 0894047 | 0.6310.19 0.86+£024 | 0.6740.17  0.70+0.17 anterior 2119 14.05 936
RV posterior 20.29 24.82 13.17
anterior 0.65+0.17 076031 | 0.6740.18  0.6940.19 | 0734019  0.62+0.22
posterior 0.63£020 076031 | 0.64£0.19 0724022 | 0.73£0.20  0.58+0.22

3 illustrates the ground truth, followed by the solutions of the
Tikhonov-0, Tikhonov-2, L1 norm, and the proposed methods.
According to the comparison, Tikhonov-0 could only roughly
denote the position of the negative potential valley and positive
potential peak, but the potential pattern is seriously distorted.
The overall accuracy of the Tikhonov-2 was improved, but
the reconstruction was over-smooth, and the steep gradient
between the negative potential valley and positive potential
nearby could not be maintained effectively. Compared to the
previous two methods based on the L2-norm, the method based
on the L1 norm could better maintain steep potential mutation,
but in terms of the potential pattern fidelity and quantized
reconstruction accuracy, the proposed LSD method was even
more superior. The spatial CC and RE at each time node during
the pacing rhythm were illustrated in Fig. 4. Spatial CC and
RE are the accuracy measures of reconstructed EEP spatial
distribution at a certain time.

2) EEP electrogram reconstruction: In Fig. 5, we selected
five representative locations to demonstrate the reconstruction
of electrograms of the anterior LV pacing. The numbers of
these five selected nodes and locations on the heart surface
are provided in the leftmost 3D heart model in Fig. 5. Among
them, node 162 is located near the pacing site at the anterior
LV, and node 256 is located at the inferior LV endocardium.
The remaining three nodes are located at RV, remote from the
pacing site. The color of the heart model in Fig. 5 indicates the
activation time, where the red represents the earliest activation
and the blue represents the latest activation. The first column
of electrograms in Fig. 5 displays the real electrograms of the
given mesh nodes, followed by the electrograms reconstructed
by means of the Tikhonov-0, Tikhonov-2, L1-norm, and LSD
methods. As can be observed from Fig. 5, Tikhonov-0 can only
roughly describe the electrogram trend, with a strong jitter.
The Tikhonov-2 and L1-norm methods significantly improve
the stability of reconstruction, but the LSD method can better
preserve the electrogram shape.

In Table I, the accuracy of the electrograms of the ventricu-
lar pacings at eight different sites is quantitatively summarized
according to the mean and standard deviation of the temporal
CC and RE. Here, temporal CC represents the morphological
similarity between the reconstructed and real electrograms,
while RE represents the overall error between the recon-

structed and true values over time. The average CC/RE in
Table I of each pacing case refers to the mean of the CC/RE
of electrograms at all 502 mesh nodes (In this experiment, 8
pacing cases share a ventricular geometric model with spatial
resolution of 502 mesh nodes).

3) Activation imaging: Here, we evaluate the accuracy of
the reconstructed activation time. In order to reduce the error
of deriving the activation time from the potentials, a smoothing
step has be carried out on the estimated activation times
before searching for earliest activation [16]. Fig. 6 illustrates
the true and reconstructive behavior of the activation time
for a single pace at ventricular septum. The leftmost column
in Fig. 6 indicates the real activation map, followed by the
reconstruction activation maps by means of Tikhonov-2, L1-
norm, and LSD methods, where the color red indicates the
earliest activation and the blue indicates the latest activation.

As illustrated in Fig. 6, the Tikhonov-2 method and L1-
norm method provide lower accuracy of activation times
compared to the proposed LSD method. This is in line with
expectation. The LSD method is based on the constraints of the
spatiotemporal characteristics of EEP dynamic, and exhibits
superior performance in reconstruction of the temporal EEP.
As indicated in Fig. 5, due to the lack of temporal constraint,
the electrogram revivification degrees of Tikhonov-2 and L1-
norm method are inferior to that of LSD method, which
negatively affects the calculation of the activation time. Table
II lists the localization errors of the pacing sites by finding the
earliest activation nodes. The proposed LSD method provides
relatively accurate localization in different pacing cases.

B. Real Ventricular Pacings

1) Interventional pacings: In this experiment, 33 cases of
real ventricular pacings were produced endocardially using
the tip of an ablation catheter. The data in this experiment
come from other published work [16], which are shared in the
online database EDGAR. A total of 33 ventricular pacing sites
were generated at different locations in the left/right ventricle
of a subject, and used to evaluate our method quantitatively.
The induced body surface potentials were measured by 120
electrodes with a sampling frequency of 2 kHz. The numbers
of beats for each pacing site of the subject are displayed in
the second column of Table IIl. The true coordinates of the
pacing sites were located by the CARTO XP electroanatomic
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Fig. 3. Reconstruction of spatial EEP at four instants (23ms, 52ms, 152ms, and 199ms) in process of ventricular pacing. Reconstruction accuracy CC and
RE are summarized in Fig. 4

09
08 A//\/h//\'—’\f\\
™ il Truth Tikhonov-0  Tikhonov-2 Ll1-norm LSD
06 i 6.5mv ) ) -
i e P | i ' |
g " 217ms | f'll / r} }Ji
o4 1 0 //jl Lot |y | Ll = | ——__ / & 187
=2 =l L / v — |~
03 7 15
¥ ——LSD A i i i
; — VNI
01 ——— Tikhonov-2 =, J w h va\ v“\')‘ i W | 162
, ‘ . ‘ Tikhonov-0 I \/ | \(‘rl /J 19 N/
0 50 100 150 200 250 - - —_— - W -
time node (ms) i ] i - | 3 .
: / i f}l fl \R
@ 0 /’l ‘ i il f‘ 310
— W =] — [
1 - " —
0 \, r "M‘ | ~ 4
0.9 vi ,{ﬂ v j /
| e IS H\f l i¥ i/ 1”’\ 256
08 1 R ‘ f
e
o 2 'L - — _
g 8 0———"I o el I N A |
£ 5 A~ L ~ )
o : 3 | |',/ W r,\; e ¢ | 130
@ | I
0s <5y B = —
LSD
— L1 norm
04 ———— Tikhonov-2 Site Tikhonove-0 Tikhonove-0 Ll-norm LSD
03 ‘ . ‘ —Tikhonov 0 cc RE cc  RE CC  RE cC  RE
0 50 100 150 200 250
time node (ms) 187 083 042 088 036 092 029 097 0.8
(b) 162 088 046 094 032 096 0.28 098 0.19
310 090 059 091 043 0904 039 099 0.16
Fig. 4. Comparison of CC and RE of reconstructed spatial EEP for pacing 256 087 038 080 037 091 038 002 034
at lateral LV.
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. Fig. 5. True and reconstructed electrograms of pacing at anterior LV. The
mapping system and matched to the 3D heart surface model leftmost side shows the real activation map of 271 ms, where the red

by the data contributors [16]. indicates the earliest activation and the blue indicates the latest activation.
Table III lists the localization error of the 33 different EEP electrograms at five selected mesh nodes (Node number: 187, 162, 310,
. . . 256, 130) are illustrated by blue curves. The table below lists the CC and RE
ventricular pacing sites by meaI}S of the proposed LSD and of the electrograms according to the selected nodes.
Ll-norm methods. By comparing the mean and standard
deviation of the 3D coordinate errors for each pacing site,
the proposed LSD method provides more accurate and stable
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Fig. 6. Reconstruction of activation map for the pacing at the interventricular septum. The top row is endocardial view and the bottom row is epicardial view.

location results than the L1-norm based method. [16] also
provided solutions for ventricular pacing sites for this dataset,
where spatial transmural gradient regularization and temporal
piecewise cubic spline interpolation were used to reconstruct
the EEPs. Compared to separate reconstruction at each knot
node, as reported in [16], the batch optimization method
proposed in this paper provides higher accuracy in terms of
localizing pacing sites, potentially owing to the use of the
entire ECG sequence instead of ECG data at the knot points
for localization.

2) Clinical PVCs: In this part, the localization experiments
of PVC focus were performed with 6 sets of clinical data. The
individual geometric and positional information of the heart
and torso were recorded by CT scan with a spatial resolution
of axial 0.6-1 mm. Fig. 7 explicitly illustrates the establishment
process of the heart-torso modeling. The heart model was
established by meshing the epicardial and endocardial contours
extracted from the CT slices (512*%512 pixels) of the ventricle
along the short axis. The torso model was constructed by
matching the coordinates of body-surface electrodes to a stan-
dard tank model with 235 triangles of Delaunay triangulation.
The positions of the 64 electrodes are recorded by CT scan,
and the distribution of the electrodes is illustrated in Fig.
8. 64-lead ECGs contain multiple consecutive cardiac cycles,
sampled at 2 kHz.

Most PVCs originate from the RV, especially the right
ventricular outflow tract (RVOT), with a small part of them
originating from the LV [43]. Therefore, this experiment
focused on a case of PVC originating from the LV apical free
wall, and five cases of PVC originating from different RVOT
locations (anterior, posterior, septum, and free wall). The
correctness of the reconstruction was evaluated by comparing
the PVC focus revealed by LSD-based electrophysiological
imaging to that obtained from the intraoperative Ensite3000
system.

Fig. 9(a) illustrates the intraoperative ECG fragment of the
25th electrode of a 52-year-old male PVC patient with a
ectopic pacing site located at the LV apex. The location of the
25th electrode is marked in Fig. 8. This ECG fragment exhibits
the following characteristics: 1) premature contractions and
sinus heartbeats appear alternately; and 2) the premature QRS

TABLE III
MEAN AND STANDARD DEVIATION OF LOCALIZATION ERRORS FOR
INTERVENTIONAL PACINGS.

Pa.cmg L1-norm LSD
site
LV beats | mean (mm) std (mm) | mean (mm) std (mm)
1 43 27 7 24 4
2 18 28 5 25 4
3 38 26 6 22 3
4 41 26 10 19 6
5 35 24 4 22 3
6 35 36 10 26 8
7 27 24 6 20 5
8 14 37 10 24 9
9 29 30 14 22 4
10 32 27 9 21 9
11 33 23 9 18 5
12 37 28 10 21 4
13 30 34 7 27 7
14 21 26 10 22 7
15 28 28 8 22 5
16 35 33 9 26 5
17 33 21 8 18 6
18 32 28 13 19 6
19 35 27 6 23 3
20 24 27 8 21 3
21 34 35 11 21 5
RV beats | mean (mm) std (mm) | mean (mm) std (mm)
1 17 25 6 20 4
2 12 27 12 23 8
3 30 26 8 20 6
4 35 31 11 23 5
5 34 30 7 26 2
6 34 23 5 20 2
7 31 23 6 20 4
8 7 25 8 22 4
9 33 23 6 21 5
10 13 20 4 18 2
11 27 28 11 22 7
12 17 25 10 16 4

wave is broader than the normal QRS wave; for example, the
first premature QRS wave in Fig. 9(a) begins at 15207 ms
and ends at 15347 ms, with a time span of 0.14 s, and is
broader than 0.12 s of the normal QRS wave. According to
the electrocardiogram morphology, this subject was diagnosed
with frequent ventricular premature beats. The precise PVC
focus is indicated by the activation map provided by the
Ensite3000 system in Fig. 9(b), which reveals ventricular
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Fig. 7. Establishment process of heart-torso model. The top line illustrates the heart modeling process, and the bottom line depicts the details of building the

torso geometric model.
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Fig. 8. Positions of 64-lead electrodes on body surface. The left side
represents the front view of the body surface, and the right side represents
the back view.

ectopic pacing at the left apical free wall.

The ECGs from 15000 ms to 16000 ms were used as the
input for the LSD method. Fig. 9(c) illustrates the spatial
distribution of the EEP at 15 ms after the onset of the QRS
wave, when a negative potential valley (blue) appears at the
LV apex with the positive potential wall (red) surrounds it,
implying the ectopic pacing site at the left apical free wall.
Fig. 9(d) illustrates the reconstructed activation mapping. The
activation from the earlier to later stage is expressed by colors
from red to blue, where earlist activation site is at the LV apex,
consistent with the invasive mapping data.

Fig. 10 presents five clinical PVCs originating from different
locations of RVOT. The first image in each row of Fig. 10 rep-
resents a 2500 ms fragment of an electrocardiogram measured
by the 25th electrode placed at the front center of each patient
body. During this period, the ECG fragment enclosed by the
red dashed box is a premature cardiac cycle used as input to the
ECG inverse problem. The second image of each row in Fig.
10 is the right ventricular outflow tract model and activation
map reconstructed by the invasive Ensite3000 system, which
serves as the gold standard for assessing the correctness of
computing the results using the proposed method, where the
red globule represents the ablation target; that is, the ectopic
pacing site location. The activation time is represented by a

o .

=
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(@
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“ 0

Fig. 9. Diagnosis of frequent PVC at LV apex free wall. (a) ECG fragment

measured by the 25th lead. The blue arrow refers to the start of the premature

excitation. (b) Intraoperative activation mapping of Ensite3000 system. (c)

Reconstruction of spatial EEP at 15 ms after onset of QRS wave. (d)
Reconstruction of activation map.

_—h

white to purple color bar at the bottom of the second column.
The last two images of each row in Fig. 10 is activation
maps obtained by performing a maximum negative gradient
operation on the cardiac electrocardiogram reconstructed by
the LSD method. The activation time begins from the onset
of the QRS wave of the input cardiac cycle, where the color
ranges from red to blue, indicating activation from earlier to
later. And the red color marks the earliest activation, which is
the position of the ectopic pacing site.

Case 1 is the diagnosis of a 58-year-old female patient
with PVC. The Ensite3000 intraoperative diagnosis revealed
that the origin of the premature beat was located below the
pulmonary valve in the anterior RVOT. The activation map
reconstructed by the LSD-based electrophysiological imaging
method also correctly indicates the earliest activation, located
at the anterior RVOT, which is consistent with the intra-
operative measurement, where the RVOT is an infundibular
extension of the right ventricular cavity in the 3D ventricular
model. In case 2, the diagnosis of the PVC originating from the
anterior RVOT was similar to that in case 1, but for frequent
ventricular premature beats. And it can be concluded from
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the electrocardiogram that the premature and normal pacing
appeared alternately. In this case, the proposed method can still
correctly prompt the earliest activation site, which is consistent
with the intraoperative diagnosis. In the following three cases,
the ectopic pacing sites were located at the front free wall
of the RVOT below the pulmonary valve, the RVOT septum
near the ventricular septal side, and the posterior RVOT. In the
reconstructed activation maps of these different PVC origins,
it is observed that the proposed LSD method can correctly
locate the earliest activation position, which is consistent with
the results constructed by means of an invasive method.

IV. DISCUSSION

This paper has introduced a dynamic EEP reconstruction
method based on low rank and sparsity constraints. Compared
to previous work on locating the PVC origin, the proposed
model provides dynamic constraints and a batch optimization
scheme, with no need for a tough assumption regarding the
form of the cardiac potential. Thereby, the method improves
the reconstruction accuracy by exploiting the underlying rela-
tionships of the dynamic EEP. Moreover, the dynamic EEPs
are batch calculated, avoiding the cumbersomeness of frame-
by-frame calculations in previous single-frame-based methods,
where the calculation time increases linearly with the sample
time. However, solving the low-rank problem requires per-
forming a singular value decomposition of a large matrix (for
example, in the experiment in section III-A-1, the dimension
of the EEP matrix U is 502X 272), which increases the compu-
tation time. Furthermore, the multi-constrained minimization
goal increases the number of balanced parameters. In this
section, we compare the computation times of the Tikhonov-
0, Tikhonov-2, L1-norm, and LSD methods. The influence of
the LSD parameter setting on the solution stability and the
limitations of this work are also discussed.

A. Parameter Setting

In this paper, the ADMM method was applied to solve
the LSD model. The three balance parameters \, 5, u were
used to balance the minimum objective function (8). For fixed
A, B, u, the difference between the value of the objective
function and constraint at the n-th iteration and optimal value
is O (1/n) [37]. We used CC and RE to quantitatively evaluate
the accuracy of the reconstruction. It is worth mentioning
that the LSD model uses low rank/sparsity as a condition
for optimization, but does not use a fixed rank or sparsity
as a criterion for decomposition. Therefore, the accuracy of
the decomposition itself cannot be quantitatively evaluated.
Here we only discuss the robustness of the accuracy of
reconstruction to the balance parameters.

Since A is fixed to 1/y/max(m,n) [36], where m and n
represent the number of rows and columns of the solution,
respectively. In order to explore the the LSD solution sta-
bility under different settings for the balance parameters, we
compare the CC and RE between the reconstruction quantity
(cardiac electrogram) and true value within a given parameter
range for $ and p, where p is set within [0.001, 1] when

TABLE IV
COMPARISON OF COMPUTING TIMES FOR EEP RECONSTRUCTION BY
MEANS OF DIFFERENT METHODS.

Site (frames) Tikhonov-O0  Tikhonov-2  Ll-norm  LSD
lateral (272) 91.7 s 922 s 568 s 293 s
anterior (217) 73 s 73s 510 s 282's
septum (200) 68 s 68 s 401 s 135 s

is fixed at 0.01, and g is tested from 0.0001 to 0.1 when p is
fixed at 0.5.

Fig. 11 illustrates the variation trend of the CC and RE
averages for spatial EEPs of an example of lateral LV pacing
under different g and g settings. Figures 11(a) and 11(b)
indicate that when p is between 0.001 and 1, the average
CC is between 0.8113 and 0.8118, and RE is between 0.4460
and 0.4464. The CC and RE values are relatively stable when
© > 0.2. As can be observed from Figs. 11(c) and 11(d), CC
and RE are more sensitive to 5 when [ is less than 0.01, and
tend to be stable when 5 > 0.01.

B. Computing Time

Table IV summarizes 3 examples of the time spent on EEP
reconstruction with different pacing sites (lateral LV, anterior
LV, and septum) from the experiment discussed in section
III-A by means of the four ECG inverse methods used in this
paper. The number of mesh nodes of the heart model is 502,
and the number of time nodes of the cardiac cycle for different
paced sites is indicated by the number in parentheses in the
first column of Table IV. All computations were processed by
MATLAB R2014a with a 3.4 GHz processor and 8 GB RAM.

The Tikhonov-0 and Tikhonov-2 methods, based on the
L2-norm, are single-frame non-iterative operations, and offer
additional advantages in terms of time cost than the latter
two iterative algorithms. The L1-norm method is a single-
frame iterative algorithm, which requires iterative calculations
for each frame of the entire cardiac cycle, thereby taking a
relatively long time. The proposed LSD algorithm treats multi-
frame vectorized EEPs as an image matrix, and spends most of
the time on singular value decomposition and matrix inversion.
There is a certain improvement in time spending compared
to the Ll-norm-based single-frame iterative algorithm, as
indicated in Table IV.

C. Limitations

In this paper, in order to reduce the complexity of the heart-
torso model, the unnecessary restriction of tissue anisotropy
or inhomogeneity were simplified to make the source/data
relationship subject to the electric field law inherent in Laplace
equation. At the same time, the heart model is simplified to a
double-layer “un-capped” surface consisting of endocardium
and epicardium of the ventricles, without the rest of the heart
tissues such as the atrium. Therefore, the proposed model
can not simultaneously perform electrophysiological imaging
of the atrial and ventricular surfaces close to atrium due to
modeling errors. If electrophysiological remodeling of the atria
is required, an independent atrium geometric model [44] is
needed.
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Fig. 10. Clinical diagnosis and LSD-based electrophysiological imaging diagnosis of five real PVC patients with ectopic pacing sites located at RVOT. The
leftmost column indicates the ECGs measured by the 25th electrode on the body surface. The second column displays the RVOT models and activation
maps reconstructed by the Ensite3000 system. The last two columns show the activation maps reconstructed by the proposed LSD method. Among them, the
third column shows the ventricular geometric models from the orientation close to that of Ensite images, with an opacity of 0.47 in order to fluoroscopy the
endocardium, and the last column is a top view.
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accuracy compared to conventional methods based on the L2-
norm and L1-norm. Experiments on real PVC subjects confirm
that the LSD algorithm can correctly expose the locations of
ectopic pacing sites.
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