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Abstract—In this study, we explore the use of low rank and
sparse constraints for the noninvasive estimation of epicardial
and endocardial extracellular potentials from body-surface elec-
trocardiographic data to locate the focus of premature ventric-
ular contractions (PVCs). The proposed strategy formulates the
dynamic spatiotemporal distribution of cardiac potentials by
means of low rank and sparse decomposition, where the low
rank term represents the smooth background and the anomalous
potentials are extracted in the sparse matrix. Compared to
the most previous potential-based approaches, the proposed low
rank and sparse constraints are batch spatiotemporal constraints
that capture the underlying relationship of dynamic potentials.
The resulting optimization problem is solved using alternating
direction method of multipliers . Three sets of simulation exper-
iments with eight different ventricular pacing sites demonstrate
that the proposed model outperforms the existing Tikhonov
regularization (zero-order, second-order) and L1-norm based
method at accurately reconstructing the potentials and locating
the ventricular pacing sites. Experiments on a total of 39 cases of
real PVC data also validate the ability of the proposed method
to correctly locate ectopic pacing sites.

Index Terms—Inverse problem of electrocardiography, low
rank, sparsity.

I. INTRODUCTION

NONINVASIVE electrophysiological imaging (ECGI), for

characterizing and localizing cardiac electrical events

from body surface electrocardiograms (ECGs), constitutes a

promising strategy for evaluating normal and abnormal cardiac

electrophysiology, offering the potential for great impact on

cardiac diseases such as ventricular fibrillation [1], premature

ventricular contraction (PVC) [2], or ventricular tachycardia

(VT) [3]. In particular, the ECGI technique is extensively

applied in the precise localization of the PVC origin, for the

purpose of facilitating the planning of, and thereby simplifying

and shortening, the electrophysiological procedure.
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In order to determine the focus of the origin of cardiac

electrical activity, various ECGI approaches have previously

been proposed within different scopes. A traditional approach

is the use of current dipoles. The concept of using a single

dipole to represent intracardiac electrical activity originated

in [4]. Subsequently, improved equivalent generators, such as

moving dipoles [5], [6] or multiple dipoles [7], [8], have been

developed. While these approaches specialize in localizing

electrical events in the heart, the solutions contain limited

information about the spatiotemporal pattern of the cardiac

electrical activity.

Alternatively, potential-based electrophysiological imaging

provides intracardiac potential estimates from the body sur-

face potentials. Various regularization techniques have been

performed at solving the illposed inverse problem of cardiac

potential imaging. In [9], Tikhonov regularization [10], [11]

and the generalized minimal residual (GMRes) iterative tech-

nique [12], [13] were used to reconstruct epicardial potential

sequences, from which the PVC origin was located by means

of the local negative potential minimum of early activa-

tion. However, L2-norm based methods inherently provide

smoothed solutions, and therefore offer compromised accuracy

in capturing the PVC origin site [2]. In order to overcome

the drawback of L2-norm methods, more recently, Ghosh

and Rudy [2] developed a sparse-based L1-norm scheme for

epicardial potential reconstruction and locating the epicardial

pacing sites, where the L1-norm method outperformed the

quadratic methods in terms of accuracy. Further works were

later presented to improve the stability and convergence of

this method [14], [15]. However, these methods limit the

positioning of the pacing site to the epicardium. Therefore, in

[16], transmural regularization combined with temporal spline

interpolation was used to estimate the potential on the inner

(endocardial) as well as outer (epicardial) ventricle surfaces in

order to locate the pacing sites. From the estimated potential

sequence, the activation time at each node was estimated by

the time with the most negative derivative, and the pacing

site was located at the earliest activation point. Recently,

much attention has been given to approaches that incorporate

temporal constraints, such as Kalman filter [17] and doubly

truncated singular value decomposition (TSVD) regularization

[18].

Typically, another type of ECGI work is activation imaging,

which involves estimating the activation times that generate a

QRS complex that best fits the recorded QRS on the body sur-

face [19]. Numerous endeavors have been made to reconstruct

the activation time on the heart surface [20]–[24] or throughout

3D ventricles [25]–[31]. The solution of activation time, which
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indicates the arrival time of the action potential depolarization

of the cardiomyocytes, has an explicit interpretation of the

“wavefront” behavior of cardiac activation [32] with a clear

physiological meaning and can be directly used in clinic.

While solution of potentials often needs a further deduction to

obtain useful parameters. Thus, activation imaging is very well

applied to provide valuable clinical information in simple or

complex activation patterns [25], [29]. One of the applications

is to find the focus of an arrhythmia (eg., PVC [25]), namely,

the site with the earliest activation. It is worthy to mention

that there are some new methods for activation imaging based

on the temporal (time/frequency) characteristics [25], [28],

[31] of equivalent current density, typically, the exploitation

of sparsity in the time domain [25], [28] and gradient sparsity

in frequency domain [29]. On the other hand, potential based

approach may has more versatility. It can not only recover

the information from the active band (QRS complex), but

also provide the information from the repolarization wave

(ST segment or T wave) [33]. Technically, it can estimate the

potential distribution on the myocardial surface or within the

myocardium tissue at any time during the cardiac cycle. In

addition, more parameters may be derived from the potential

based reconstruction [29].

In this paper, a new spatiotemporal low rank and sparse

decomposition (LSD) framework has been proposed to re-

construct dynamic extracellular endo- and epicardial potential

(EEP) and localize the PVC origin. Based on the electrophys-

iological property of myocardial tissue, when depolarization

occurs, a rapid change in ion permeability of the myocardial

cell membrane cause ions to rapidly cross the cell membrane,

which causes a shift of the extracellular potential, resulting in

potential spikes, as pointed in Fig. 1(a) (left). In the rest of the

cardiac cycle, myocardial tissue remains almost static. These

spikes (potential foreground) account for a relatively small

proportion of the space-time distribution of potentials, which

are sparse. The remainder (potential background) consists of

some of the lower amplitude, relatively flat potentials, which

can be low rank for its physical spatiotemporal correlation.

This property exists because of the EEP dynamic is spatially

smooth and temporally self-similar. That is, the background

potentials tend to lie within a low-rank subspace, as illustrated

in the empirical results provided in Fig. 1(b). Moreover, the

sparse outliers, namely potential spikes, are annotated by the

high potential peaks (red) and low potential valleys (blue) in

the spatial-temporal map in Fig.1(c).

The novelty of the potential-based LSD method proposed

in this study is twofold:

1) Low rank is a batch constraint that makes use of the

underlying spatiotemporal correlation of electrophysiological

dynamics to provide accurate reconstruction.

2) Compared to previous smooth/sparse assumption (spatial

or/and temporal), we do not mandate that the potential is

smooth or sparse, but the appropriate combination of the

two components. Therefore, the proposed method may be

applicable to extensive cardiac electrophysiological dynamics.

In addition, it is not necessary to make assumptions on

the explicit form of the potential to be evaluated, compared

to some state model based methods such as Kalman filter.

(a)

(b)

(c)

Fig. 1. Rank and sparsity statistics for decomposition of EEP spatiotemporal-
distribution matrix U of eight simulated ventricular pacing cases. The geomet-
ric model of the heart consists of 502 mesh nodes. Each case takes 250 frames
in time; that is, U ∈ R502×250 for each case. (a) Temporal distribution of
EEP for all heart nodes (left) and spatial-temporal EEP dynamic. (b) Low rank
part of EEP matrix U (x-axis: case number, y-axis: rank). The rank of the
background part for each case is approximately 50, which is significantly
smaller than the dimension 250 or 502 of the matrix. (c) Sparse part of
U (x-axis: case number, y-axis: non-zero elements). The number of non-
zero elements in the foreground part is approximately 5000, substantially less
than the total number of matrix elements 125500 (502*250). Therefore, the
spatiotemporal distribution matrix of the EEP can be decomposed into a low-
rank background and sparse foreground.
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Therefore, the approach can be applied to ventricles with

structural lesions.

In order to demonstrate the effectiveness of the proposed

method, we implemented a series of experiments on sim-

ulated data and real patient data. Firstly, to estimate the

accuracy of the proposed LSD method quantitatively in EEP

reconstruction, we performed simulation experiments consid-

ering eight different pacing sites. For each case, three EEP-

based quantities were quantitatively analyzed: EEP spatial

distribution, cardiac electrograms, and activation times. The

accuracy of the solutions of the zero-order and second-order

Tikhonov methods (uniformly abbreviated as Tikhonov-0 and

Tikhonov-2 in the following text) and an L1-norm based

method were used for comparison with the proposed method.

Furthermore, real data experiments were carried out on two

patient sets. The first set of experiments were performed on

ECG data corresponding to 33 different pacing sites paced

on the healthy ventricles of a subject. The second set of

experiments were carried out with clinical data of six PVC

patients. By comparing the location of the ventricular ectopic

pacing site captured by the LSD method to that detected by

Ensite3000 system (gold standard), the proposed method was

confirmed to locate the ectopic pacing site position correctly.

II. METHOD

In this section, we present the LSD framework to solve

the ill-posed inverse problem of dynamic cardiac electrophys-

iological imaging. Firstly, we introduce the forward model

of the ECG imaging problem. The boundary element model

(BEM) is adopted to model the relationship between the EEP

and BSP. Thereafter, the LSD framework is developed to

reconstruct the EEP from the body surface ECG. Finally, a

mathematical method for obtaining the optimal solution is

designed for the proposed LSD model, and the corresponding

iterative algorithm is introduced in detail.

A. Forward Model of Electrocardiography

In this part, we model the forward relationship between

the EEP and BSP. In particular, the heart surface model,

unlike the popular standard “capped” full-heart epicardial

model, is a union of the “uncapped” ventricular epicardium

and endocardium. For ease of description, Thereafter, the

“heart surface” refers to both the epicardium and endocardium.

According to existing work [16], the relationship between

the potentials of our equivalent electrical source and the

body surface can still be formulated by the standard Laplace

equation, based on the quasi-static and isotropic assumptions.

Thus, the cardiac electric field between the heart and body

surfaces can be expressed by:

σv∇
2ϕv (r) = 0 (1)

where σv is the torso conductivity scalar, and ϕv (r) represents

the potentials boundaried between the heart and body surfaces,

generated by cardiac electrophysiological activity.

We can solve the Laplace equation (1) by means of the

BEM [34]. Then, the forward relationship between the EEP

and BSP can be modeled as

φ = Hu (2)

φ ∈ RN×1
u ∈ RM×1

H ∈ RN×M

where φ is an N-dimensional column vector representing the

potentials measured by N-lead electrodes on the body surface;

u is a column vector of the M-dimensional cardiac EEP;

and H is a time-invariant transfer matrix that is specific to

the heart-torso geometric model of each subject. The heart-

torso model can be obtained from the patient’s individual pre-

procedural thoracic CT scan, which will be detailed in section

III.

B. Multi-frame EEP-BSP Model

As illustrated in Fig. 1(a), in order to consider

a time sequence of body surface potentials:

Φ = [φ1,φ2, · · ·,φf , · · · φF ], φ ∈ RN×1
Φ ∈ RN×F ,

where φf represents the f -th frame of the body surface

potentials, and the corresponding time sequence of the heart

surface potential matrix: U = [u1,u2, · · ·,uf , · · ·,uF ],
u ∈ RM×1

U ∈ RM×F , where uf is the f -th frame of the

heart epicardial and endocardial extracellular potentials, the

EEP-BSP model (2) of a single-frame ECG can be extended

to the multiple-frame form as

Φ = HU. (3)

C. Low Rank and Sparsity Formulation

As illustrated in Fig. 1, we analyze the dynamic ECG

inverse problem from the image perspective. Fig. 1(a) (left)

depicts the dynamic EEP signals over a fragment of ventricular

pacing rhythm. The data of single-frame EEPs can be rep-

resented by a column vector. Then, the vectored multi-frame

EEPs over the cardiac cycle can compose a spatiotemporal dis-

tribution image, as illustrated in Fig. 1(a) (right). Although the

electrophysiology of the heart exhibits complex spatiotemporal

changes, the spatiotemporal distribution of the EEP is locally

smooth in space and self-similar in time (certain mesh nodes

exhibit similar patterns of cardiac electrogram, as illustrated

in Fig. 1(a) (left)). Therefore, the underlying background of

the dynamic EEP may be low-rank, as indicated in Fig. 1(b),

while the remaining potential outliers are sparse, as depicted

in Fig. 1(c). Thus, the spatiotemporal EEP matrix U can be

expressed as

U = L+ S (4)

where the low-rank matrix L can be interpreted as the low-

level background of the spatiotemporal EEP, and the sparse

matrix S can be expressed as “unaligned” details, such as

the wavefront of the electrical activation propagating over the

heart surface.

Owing to the ill-posedness of the electrophysiological in-

verse problem, small noise will result in a large error in the

solution. By enforcing a low-rank background and sparse fea-

tures for the spatiotemporal EEP distribution, the disturbance

of noise in the reconstruction can be eliminated to a certain

extent. Eventually, the LSD framework can be expressed as a

constrained minimization problem:

min rank(L) + λ‖S‖
0

(5)
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s.t. Φ = HU U = L+ S

where rank(L) indicates the rank of L; ‖S‖
0

is the L0 norm

of S, namely the number of non-zero elements in S; and λ is

a parameter that balances between the two terms.

However, the minimization problem of the objective (5) is

NP hard, as both the matrix rank and L0 norm are non-convex

and discontinuous. Fortunately, the minimization of the nuclear

norm is a convex relaxation of the rank minimization problem

[35], and the L1 norm is a convex approximation of the L0

problem [36]. Therefore, we can solve the optimization target

approximately using the following objective function:

min ‖L‖
∗
+ λ‖S‖

1
(6)

s.t. Φ = HU U = L+ S

where ‖L‖
∗

is the nuclear norm of matrix L; that is, the sum

of the singular values of L; and ‖S‖
1
=
∑

ij |Sij | is the L1

norm of matrix S by treating matrix S(M × F ) as a long

vector in RM ·F .

Moreover, because of the disturbance of Gaussian noise in

the system, the forward constraint Φ = HU cannot be strictly

established. The error can only be minimized by optimization,

as follows:

min ‖L‖
∗
+ λ‖S‖

1
+
µ

2
‖HU−Φ‖

2

F (7)

s.t. U = L+ S

where the Frobenius norm ‖A‖F is defined for any matrix

A(m×n) as ‖A‖F=

√

m
∑

i=1

n
∑

j=1

|aij |
2

, and µ is another param-

eter controlling the contribution of the data fitting term to the

objective function.

D. Optimal Estimation Strategy

In this paper, the alternating direction method of multipliers

(ADMM [37]) is used to solve the LSD optimization problem

in formula (7). Thus, the augmented Lagrangian function for

the constrained minimization problem in (7) can be formulated

as an unconstrained equation:

L (L,S,U) = ‖L‖
∗
+ λ‖S‖

1
− 〈Z,U− (L+ S)〉

+
β

2
‖U− (L+ S)‖

2

F +
µ

2
‖HU−Φ‖

2

F

(8)

where Z is a Lagrangian multiplier, and λ, β, and µ are

weighting factors. It is difficult to solve all of the unknown

matrices L, S, and U directly. In this paper, we decompose

the augmented Lagrangian function (8) into two types of

sub-problems, and then solve each sub-problem by alternate

updating and successive iterations.

1) L, S Sub-problem: According to the theory mentioned

in [38], the minimization of the rank problem formulated as

the following form:

min ε‖X‖
∗
+

1

2
‖X − Y ‖

2

F (9)

can be solved directly by means of singular value thresholding

(SVT). We obtain the solution as

X = SV T (Y ) = UY Sε(Σ)V
T
Y (10)

where X and Y are matrices of the same dimension, and

UY ΣV
T
Y = Y is the singular value decomposition of Y .

Moreover, Σ = diag(γ1, · · · γi, · · · γn) is a diagonal matrix

with all singular values of Y as diagonal elements, and Sε(Σ)
is the soft shrinkage of Σ, which is defined for every element

of Σ as Sε (γ) = sgn(γ) ·max(|γ| − ε, 0).
We separate all of the terms related to L from the augmented

Lagrangian function (8) and provide the necessary constants to

construct a frame-like formula (9). Then, the L sub-problem

can be structured as

min ‖L‖
∗
+

β

2
‖L− (U− S+ Z/β)‖

2

F . (11)

According to the above theory, we can adopt SVT to solve

the minimum rank problem directly. The solution to the L

sub-problem can be formulated by the following equation and

subjection:

L = UYL
S1/β (ΣYL

)V T
YL

(12)

s.t. YL = U− S+ Z/β.

Similarly, the S sub-problem can be structured as

min λ‖S‖
1
+

β

2
‖S− (U− L+ Z/β)‖

2

F . (13)

Soft shrinkage [36] has been exploited to calculate the

optimal solution of the sparse (L1 norm) problem. The solution

can be obtained by one step as

S = Sλ/β (YS) (14)

YS = U− L+ Z/β

2) U Sub-problem: The U sub-problem is composed of two

F -norm fidelity terms and an inner product term containing a

Lagrange multiplier. It can be reformulated as

min
µ

2
‖HU−Φ‖

2

F +
β

2
‖U− (L+ S+ Z/β)‖

2

F . (15)

This is a convex minimization problem, and the solution

can be expressed directly as

U =
(

µHT
H+ β

)−1
[µHT

Φ+ β (L+ S+ Z/β)]. (16)

By solving the sub-problems alternately, we can obtain the

optimal solution to the LSD model. The complete algorithm

is summarized in Algorithm 1.

E. Algorithm Summary

Initialization: In order to overcome the mathematical ill-

posedness of the inverse problem, Tikhonov-0 regularization

is applied to initialize the EEPs prior to the first iteration as:

U
0 = (HT

H+ λ0I
T
I)−1

H
T
Φ, where I is an identity matrix.

The weighting coefficient λ0 can be estimated by means of the

L-curve method [39].

Parameters: λ, β, and µ are scalars to balance the min-

imization target. Among these, λ is weighting parameter

of the sparse matrix S. According to the theorem in [36],

1/
√

max(m,n) is an appropriate selection for λ, where the

dimension of S is m×n. Moreover, β is a Lagrangian penalty

parameter, which lies within [0.01, 0.1] in this study, and µ
is the coefficient of fidelity term, determined by the noise
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Algorithm 1 LSD Algorithm

Require: BSP matrix Φ, transfer matrix H, weighting coef-

ficients λ, β, µ
1: Initialize: U

0 = (HT
H+ λ0I

T
I)−1

H
T
Φ, L0 = S

0 =
0, Z0 = 0

2: repeat

3: Update L
k+1 by formula (12)

4: Update S
k+1 by formula (14)

5: Update U
k+1 by formula (16)

6: Update Z
k+1:

Z
k+1 = Z

k + δk
(

U
k+1 − L

k+1 − S
k+1

)

7: Update δ:

δk+1 =

{

ρδk if δk
∥

∥S
k+1 − S

k
∥

∥

F
/
∥

∥U
k+1

∥

∥

F
< ε

δk else
8: until L, S, U are all converged

Ensure: L, S, U

intensity. For the experiments presented in this paper, µ is

fixed at 0.5. Furthermore, τ, ρ, and ε affect the convergence

speed and are fixed at 0.1, 1.2, and 0.1, respectively.

III. EXPERIMENTS

In this section, the proposed method is evaluated by three

types of datasets: 1) simulated ventricular single pacing at

eight different pacing sites; 2) real ventricular pacing at 33

sites from the endocardial surface of the healthy ventricles of

a subject; 3) and six cases of clinical PVCs. We compared

the accuracy of the proposed LSD to that of the L2-norm-

based Tikhonov-0, Tikhonov-2 regularization, and L1-norm

method, which is formulated as: min ‖Hu− φ‖
2
+λ2‖Du‖

1

[2], where D indicates the normal derivative operator.

A. Simulation Experiments on Ventricular Pacings

In this section, we discuss the simulation experiments

performed considering eight different pacing sites. The endo-

and epicardial extracellular potential ground truths of the ven-

tricular pacings were obtained from the Internal database - Ex-

perimental Data and Geometric Analysis Repository (EDGAR,

http://edgar.sci.utah.edu/) [40], where the ventricular beats

were simulated on a voxel-based grid using cellular automaton

[41], and the extracellular potentials were extracted from

a tetrahedral mesh at 163 electrode positions [42]. In this

work, the body surface potentials were forward calculated by

Φ = HU+N, where N is a matrix of 25 dB white Gaussian

noise.

From the reconstructed potential, we examined the follow-

ing three reconstructed quantities: 1) the spatial distribution

map of EEP at a given time node during the pacing rhythm;

2) the electrogram, which illustrates the change of potential

at a given mesh node over time; and 3) the map of activation

time, which is defined when the negative derivative (−du/dt)
of the electrogram reaches a maximum. In order to analyze the

reconstruction accuracy quantitatively, the relative errors (RE)

and correlation coefficient (CC) between the reconstructed

quantities and ground truths were utilized:

Fig. 2. Reconstruction of EEP by LSD method with pacing site located
at lateral left ventricle (LV), where (a) represents a low-rank and sparse
reconstruction of a single pacing . Among these, (b) is the spatial distribution
of the EEP at approximately 20 ms following the onset of pacing rhythm.

RE =

√

√

√

√

√

√

√

√

M
∑

i=1

(xri − xti)
2

M
∑

i=1

(xti)
2

(17)

CC =
Cov(xr, xt)

√

D(xr)
√

D(xt)
(18)

where xr denotes a column vector of the reconstructed quan-

tity and xt is the corresponding ground truth. Moreover, M is

the number of mesh nodes of the heart surface, Cov(xr, xt)
is the covariance between the reconstructed quantity and the

truth, and D(·) represents the variance.

1) Spatial EEP mapping: Fig. 2(a) provides an example of

the dynamic EEP reconstruction over a fragment of cardiac

cycle of the lateral LV pacing. The first image, on the left in

Fig. 2(a), illustrates the ground truth of the color-scaled spatio-

temporal EEP map throughout the pacing rhythm. The two

middle maps, from top to bottom, are the low-rank background

and sparse foreground of the reconstructed EEP. The rightmost

image is the final solution of the EEP reconstruction. The

spatial distribution of the EEP at an instant of the initial time

(20 ms) was extracted and is illustrated in Fig. 2(b). From the

middle two maps, it can be seen that the low-rank component

of the EEP reconstruction mainly includes the smooth part of

the potential, while the sparse component contains the outlier

negative potential valley (blue) and the positive potential wall

(red).

Fig. 3 shows the spatial distribution of EEP at four instances

(23, 52, 152, and 199 ms) in the process of electrical ex-

citation during the lateral LV pacing, roughly demonstrating

the process of electrical activation spreading from the pacing

site at the lateral LV to the remote right ventricle (RV). The

solutions of Tikhonov-0, Tikhonov-2, and L1-norm methods

mentioned in the beginning of this section were used for

comparison with the LSD method. The leftmost column in Fig.
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TABLE I
MEAN AND STANDARD DEVIATION OF CC AND RE BETWEEN

RECONSTRUCTED AND TRUE ELECTROGRAMS OF EIGHT DIFFERENT

PACING SITES, WHERE THE ‘±’ INTERVAL REPRESENTS THE STANDARD

DEVIATION.

Pacing site
Tikhonov-2 L1-norm LSD

CC RE CC RE CC RE

LV

anterior 0.64±0.16 0.76±0.33 0.68±0.16 0.67±0.23 0.74±0.18 0.61±0.25

apex 0.61±0.20 0.80±0.28 0.62±0.18 0.79±0.19 0.71±0.20 0.67±0.22

lateral-endo 0.70±0.18 0.74±0.37 0.70±0.20 0.66±0.20 0.73±0.21 0.61±0.23

lateral-epi 0.63±0.16 0.79±0.26 0.68±0.17 0.69±0.19 0.68±0.21 0.66±0.60

lateral 0.67±0.19 0.74±0.25 0.69±0.18 0.66±0.17 0.77±0.17 0.58±0.21

septum 0.62±0.17 0.89±0.47 0.63±0.19 0.86±0.24 0.67±0.17 0.70±0.17

RV

anterior 0.65±0.17 0.76±0.31 0.67±0.18 0.69±0.19 0.73±0.19 0.62±0.22

posterior 0.63±0.20 0.76±0.31 0.64±0.19 0.72±0.22 0.73±0.20 0.58±0.22

3 illustrates the ground truth, followed by the solutions of the

Tikhonov-0, Tikhonov-2, L1 norm, and the proposed methods.

According to the comparison, Tikhonov-0 could only roughly

denote the position of the negative potential valley and positive

potential peak, but the potential pattern is seriously distorted.

The overall accuracy of the Tikhonov-2 was improved, but

the reconstruction was over-smooth, and the steep gradient

between the negative potential valley and positive potential

nearby could not be maintained effectively. Compared to the

previous two methods based on the L2-norm, the method based

on the L1 norm could better maintain steep potential mutation,

but in terms of the potential pattern fidelity and quantized

reconstruction accuracy, the proposed LSD method was even

more superior. The spatial CC and RE at each time node during

the pacing rhythm were illustrated in Fig. 4. Spatial CC and

RE are the accuracy measures of reconstructed EEP spatial

distribution at a certain time.

2) EEP electrogram reconstruction: In Fig. 5, we selected

five representative locations to demonstrate the reconstruction

of electrograms of the anterior LV pacing. The numbers of

these five selected nodes and locations on the heart surface

are provided in the leftmost 3D heart model in Fig. 5. Among

them, node 162 is located near the pacing site at the anterior

LV, and node 256 is located at the inferior LV endocardium.

The remaining three nodes are located at RV, remote from the

pacing site. The color of the heart model in Fig. 5 indicates the

activation time, where the red represents the earliest activation

and the blue represents the latest activation. The first column

of electrograms in Fig. 5 displays the real electrograms of the

given mesh nodes, followed by the electrograms reconstructed

by means of the Tikhonov-0, Tikhonov-2, L1-norm, and LSD

methods. As can be observed from Fig. 5, Tikhonov-0 can only

roughly describe the electrogram trend, with a strong jitter.

The Tikhonov-2 and L1-norm methods significantly improve

the stability of reconstruction, but the LSD method can better

preserve the electrogram shape.

In Table I, the accuracy of the electrograms of the ventricu-

lar pacings at eight different sites is quantitatively summarized

according to the mean and standard deviation of the temporal

CC and RE. Here, temporal CC represents the morphological

similarity between the reconstructed and real electrograms,

while RE represents the overall error between the recon-

TABLE II
LOCALIZATION ERRORS OF THE 8 SIMULATED VENTRICULAR PACINGS.

Pacing site Tikhonov-2 L1-norm LSD

LV localization error (mm)

anterior 31.65 28.34 14.35

apex 16.56 8.92 2.82

lateral-endo 10.68 7.81 4.88

lateral-epi 5.46 4.84 1.70

lateral 11.37 11.36 9.22

septum 35.21 29.45 18.14

RV

anterior 21.19 14.05 9.36

posterior 20.29 24.82 13.17

structed and true values over time. The average CC/RE in

Table I of each pacing case refers to the mean of the CC/RE

of electrograms at all 502 mesh nodes (In this experiment, 8

pacing cases share a ventricular geometric model with spatial

resolution of 502 mesh nodes).

3) Activation imaging: Here, we evaluate the accuracy of

the reconstructed activation time. In order to reduce the error

of deriving the activation time from the potentials, a smoothing

step has be carried out on the estimated activation times

before searching for earliest activation [16]. Fig. 6 illustrates

the true and reconstructive behavior of the activation time

for a single pace at ventricular septum. The leftmost column

in Fig. 6 indicates the real activation map, followed by the

reconstruction activation maps by means of Tikhonov-2, L1-

norm, and LSD methods, where the color red indicates the

earliest activation and the blue indicates the latest activation.

As illustrated in Fig. 6, the Tikhonov-2 method and L1-

norm method provide lower accuracy of activation times

compared to the proposed LSD method. This is in line with

expectation. The LSD method is based on the constraints of the

spatiotemporal characteristics of EEP dynamic, and exhibits

superior performance in reconstruction of the temporal EEP.

As indicated in Fig. 5, due to the lack of temporal constraint,

the electrogram revivification degrees of Tikhonov-2 and L1-

norm method are inferior to that of LSD method, which

negatively affects the calculation of the activation time. Table

II lists the localization errors of the pacing sites by finding the

earliest activation nodes. The proposed LSD method provides

relatively accurate localization in different pacing cases.

B. Real Ventricular Pacings

1) Interventional pacings: In this experiment, 33 cases of

real ventricular pacings were produced endocardially using

the tip of an ablation catheter. The data in this experiment

come from other published work [16], which are shared in the

online database EDGAR. A total of 33 ventricular pacing sites

were generated at different locations in the left/right ventricle

of a subject, and used to evaluate our method quantitatively.

The induced body surface potentials were measured by 120

electrodes with a sampling frequency of 2 kHz. The numbers

of beats for each pacing site of the subject are displayed in

the second column of Table III. The true coordinates of the

pacing sites were located by the CARTO XP electroanatomic
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Fig. 3. Reconstruction of spatial EEP at four instants (23ms, 52ms, 152ms, and 199ms) in process of ventricular pacing. Reconstruction accuracy CC and
RE are summarized in Fig. 4

(a)

(b)

Fig. 4. Comparison of CC and RE of reconstructed spatial EEP for pacing
at lateral LV.

mapping system and matched to the 3D heart surface model

by the data contributors [16].

Table III lists the localization error of the 33 different

ventricular pacing sites by means of the proposed LSD and

L1-norm methods. By comparing the mean and standard

deviation of the 3D coordinate errors for each pacing site,

the proposed LSD method provides more accurate and stable

Fig. 5. True and reconstructed electrograms of pacing at anterior LV. The
leftmost side shows the real activation map of 271 ms, where the red
indicates the earliest activation and the blue indicates the latest activation.
EEP electrograms at five selected mesh nodes (Node number: 187, 162, 310,
256, 130) are illustrated by blue curves. The table below lists the CC and RE
of the electrograms according to the selected nodes.
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Fig. 6. Reconstruction of activation map for the pacing at the interventricular septum. The top row is endocardial view and the bottom row is epicardial view.

location results than the L1-norm based method. [16] also

provided solutions for ventricular pacing sites for this dataset,

where spatial transmural gradient regularization and temporal

piecewise cubic spline interpolation were used to reconstruct

the EEPs. Compared to separate reconstruction at each knot

node, as reported in [16], the batch optimization method

proposed in this paper provides higher accuracy in terms of

localizing pacing sites, potentially owing to the use of the

entire ECG sequence instead of ECG data at the knot points

for localization.

2) Clinical PVCs: In this part, the localization experiments

of PVC focus were performed with 6 sets of clinical data. The

individual geometric and positional information of the heart

and torso were recorded by CT scan with a spatial resolution

of axial 0.6-1 mm. Fig. 7 explicitly illustrates the establishment

process of the heart-torso modeling. The heart model was

established by meshing the epicardial and endocardial contours

extracted from the CT slices (512*512 pixels) of the ventricle

along the short axis. The torso model was constructed by

matching the coordinates of body-surface electrodes to a stan-

dard tank model with 235 triangles of Delaunay triangulation.

The positions of the 64 electrodes are recorded by CT scan,

and the distribution of the electrodes is illustrated in Fig.

8. 64-lead ECGs contain multiple consecutive cardiac cycles,

sampled at 2 kHz.

Most PVCs originate from the RV, especially the right

ventricular outflow tract (RVOT), with a small part of them

originating from the LV [43]. Therefore, this experiment

focused on a case of PVC originating from the LV apical free

wall, and five cases of PVC originating from different RVOT

locations (anterior, posterior, septum, and free wall). The

correctness of the reconstruction was evaluated by comparing

the PVC focus revealed by LSD-based electrophysiological

imaging to that obtained from the intraoperative Ensite3000

system.

Fig. 9(a) illustrates the intraoperative ECG fragment of the

25th electrode of a 52-year-old male PVC patient with a

ectopic pacing site located at the LV apex. The location of the

25th electrode is marked in Fig. 8. This ECG fragment exhibits

the following characteristics: 1) premature contractions and

sinus heartbeats appear alternately; and 2) the premature QRS

TABLE III
MEAN AND STANDARD DEVIATION OF LOCALIZATION ERRORS FOR

INTERVENTIONAL PACINGS.

Pacing

site
L1-norm LSD

LV beats mean (mm) std (mm) mean (mm) std (mm)

1 43 27 7 24 4

2 18 28 5 25 4

3 38 26 6 22 3

4 41 26 10 19 6

5 35 24 4 22 3

6 35 36 10 26 8

7 27 24 6 20 5

8 14 37 10 24 9

9 29 30 14 22 4

10 32 27 9 21 9

11 33 23 9 18 5

12 37 28 10 21 4

13 30 34 7 27 7

14 21 26 10 22 7

15 28 28 8 22 5

16 35 33 9 26 5

17 33 21 8 18 6

18 32 28 13 19 6

19 35 27 6 23 3

20 24 27 8 21 3

21 34 35 11 21 5

RV beats mean (mm) std (mm) mean (mm) std (mm)

1 17 25 6 20 4

2 12 27 12 23 8

3 30 26 8 20 6

4 35 31 11 23 5

5 34 30 7 26 2

6 34 23 5 20 2

7 31 23 6 20 4

8 7 25 8 22 4

9 33 23 6 21 5

10 13 20 4 18 2

11 27 28 11 22 7

12 17 25 10 16 4

wave is broader than the normal QRS wave; for example, the

first premature QRS wave in Fig. 9(a) begins at 15207 ms

and ends at 15347 ms, with a time span of 0.14 s, and is

broader than 0.12 s of the normal QRS wave. According to

the electrocardiogram morphology, this subject was diagnosed

with frequent ventricular premature beats. The precise PVC

focus is indicated by the activation map provided by the

Ensite3000 system in Fig. 9(b), which reveals ventricular
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Fig. 7. Establishment process of heart-torso model. The top line illustrates the heart modeling process, and the bottom line depicts the details of building the
torso geometric model.

Fig. 8. Positions of 64-lead electrodes on body surface. The left side
represents the front view of the body surface, and the right side represents
the back view.

ectopic pacing at the left apical free wall.

The ECGs from 15000 ms to 16000 ms were used as the

input for the LSD method. Fig. 9(c) illustrates the spatial

distribution of the EEP at 15 ms after the onset of the QRS

wave, when a negative potential valley (blue) appears at the

LV apex with the positive potential wall (red) surrounds it,

implying the ectopic pacing site at the left apical free wall.

Fig. 9(d) illustrates the reconstructed activation mapping. The

activation from the earlier to later stage is expressed by colors

from red to blue, where earlist activation site is at the LV apex,

consistent with the invasive mapping data.

Fig. 10 presents five clinical PVCs originating from different

locations of RVOT. The first image in each row of Fig. 10 rep-

resents a 2500 ms fragment of an electrocardiogram measured

by the 25th electrode placed at the front center of each patient

body. During this period, the ECG fragment enclosed by the

red dashed box is a premature cardiac cycle used as input to the

ECG inverse problem. The second image of each row in Fig.

10 is the right ventricular outflow tract model and activation

map reconstructed by the invasive Ensite3000 system, which

serves as the gold standard for assessing the correctness of

computing the results using the proposed method, where the

red globule represents the ablation target; that is, the ectopic

pacing site location. The activation time is represented by a

Fig. 9. Diagnosis of frequent PVC at LV apex free wall. (a) ECG fragment
measured by the 25th lead. The blue arrow refers to the start of the premature
excitation. (b) Intraoperative activation mapping of Ensite3000 system. (c)
Reconstruction of spatial EEP at 15 ms after onset of QRS wave. (d)
Reconstruction of activation map.

white to purple color bar at the bottom of the second column.

The last two images of each row in Fig. 10 is activation

maps obtained by performing a maximum negative gradient

operation on the cardiac electrocardiogram reconstructed by

the LSD method. The activation time begins from the onset

of the QRS wave of the input cardiac cycle, where the color

ranges from red to blue, indicating activation from earlier to

later. And the red color marks the earliest activation, which is

the position of the ectopic pacing site.

Case 1 is the diagnosis of a 58-year-old female patient

with PVC. The Ensite3000 intraoperative diagnosis revealed

that the origin of the premature beat was located below the

pulmonary valve in the anterior RVOT. The activation map

reconstructed by the LSD-based electrophysiological imaging

method also correctly indicates the earliest activation, located

at the anterior RVOT, which is consistent with the intra-

operative measurement, where the RVOT is an infundibular

extension of the right ventricular cavity in the 3D ventricular

model. In case 2, the diagnosis of the PVC originating from the

anterior RVOT was similar to that in case 1, but for frequent

ventricular premature beats. And it can be concluded from
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the electrocardiogram that the premature and normal pacing

appeared alternately. In this case, the proposed method can still

correctly prompt the earliest activation site, which is consistent

with the intraoperative diagnosis. In the following three cases,

the ectopic pacing sites were located at the front free wall

of the RVOT below the pulmonary valve, the RVOT septum

near the ventricular septal side, and the posterior RVOT. In the

reconstructed activation maps of these different PVC origins,

it is observed that the proposed LSD method can correctly

locate the earliest activation position, which is consistent with

the results constructed by means of an invasive method.

IV. DISCUSSION

This paper has introduced a dynamic EEP reconstruction

method based on low rank and sparsity constraints. Compared

to previous work on locating the PVC origin, the proposed

model provides dynamic constraints and a batch optimization

scheme, with no need for a tough assumption regarding the

form of the cardiac potential. Thereby, the method improves

the reconstruction accuracy by exploiting the underlying rela-

tionships of the dynamic EEP. Moreover, the dynamic EEPs

are batch calculated, avoiding the cumbersomeness of frame-

by-frame calculations in previous single-frame-based methods,

where the calculation time increases linearly with the sample

time. However, solving the low-rank problem requires per-

forming a singular value decomposition of a large matrix (for

example, in the experiment in section III-A-1, the dimension

of the EEP matrix U is 502×272), which increases the compu-

tation time. Furthermore, the multi-constrained minimization

goal increases the number of balanced parameters. In this

section, we compare the computation times of the Tikhonov-

0, Tikhonov-2, L1-norm, and LSD methods. The influence of

the LSD parameter setting on the solution stability and the

limitations of this work are also discussed.

A. Parameter Setting

In this paper, the ADMM method was applied to solve

the LSD model. The three balance parameters λ, β, µ were

used to balance the minimum objective function (8). For fixed

λ, β, µ, the difference between the value of the objective

function and constraint at the n-th iteration and optimal value

is O (1/n) [37]. We used CC and RE to quantitatively evaluate

the accuracy of the reconstruction. It is worth mentioning

that the LSD model uses low rank/sparsity as a condition

for optimization, but does not use a fixed rank or sparsity

as a criterion for decomposition. Therefore, the accuracy of

the decomposition itself cannot be quantitatively evaluated.

Here we only discuss the robustness of the accuracy of

reconstruction to the balance parameters.

Since λ is fixed to 1/
√

max(m,n) [36], where m and n
represent the number of rows and columns of the solution,

respectively. In order to explore the the LSD solution sta-

bility under different settings for the balance parameters, we

compare the CC and RE between the reconstruction quantity

(cardiac electrogram) and true value within a given parameter

range for β and µ, where µ is set within [0.001, 1] when β

TABLE IV
COMPARISON OF COMPUTING TIMES FOR EEP RECONSTRUCTION BY

MEANS OF DIFFERENT METHODS.

Site (frames) Tikhonov-0 Tikhonov-2 L1-norm LSD

lateral (272) 91.7 s 92.2 s 568 s 293 s
anterior (217) 73 s 73 s 510 s 282 s
septum (200) 68 s 68 s 401 s 135 s

is fixed at 0.01, and β is tested from 0.0001 to 0.1 when µ is

fixed at 0.5.

Fig. 11 illustrates the variation trend of the CC and RE

averages for spatial EEPs of an example of lateral LV pacing

under different µ and β settings. Figures 11(a) and 11(b)

indicate that when µ is between 0.001 and 1, the average

CC is between 0.8113 and 0.8118, and RE is between 0.4460

and 0.4464. The CC and RE values are relatively stable when

µ > 0.2. As can be observed from Figs. 11(c) and 11(d), CC

and RE are more sensitive to β when β is less than 0.01, and

tend to be stable when β > 0.01.

B. Computing Time

Table IV summarizes 3 examples of the time spent on EEP

reconstruction with different pacing sites (lateral LV, anterior

LV, and septum) from the experiment discussed in section

III-A by means of the four ECG inverse methods used in this

paper. The number of mesh nodes of the heart model is 502,

and the number of time nodes of the cardiac cycle for different

paced sites is indicated by the number in parentheses in the

first column of Table IV. All computations were processed by

MATLAB R2014a with a 3.4 GHz processor and 8 GB RAM.

The Tikhonov-0 and Tikhonov-2 methods, based on the

L2-norm, are single-frame non-iterative operations, and offer

additional advantages in terms of time cost than the latter

two iterative algorithms. The L1-norm method is a single-

frame iterative algorithm, which requires iterative calculations

for each frame of the entire cardiac cycle, thereby taking a

relatively long time. The proposed LSD algorithm treats multi-

frame vectorized EEPs as an image matrix, and spends most of

the time on singular value decomposition and matrix inversion.

There is a certain improvement in time spending compared

to the L1-norm-based single-frame iterative algorithm, as

indicated in Table IV.

C. Limitations

In this paper, in order to reduce the complexity of the heart-

torso model, the unnecessary restriction of tissue anisotropy

or inhomogeneity were simplified to make the source/data

relationship subject to the electric field law inherent in Laplace

equation. At the same time, the heart model is simplified to a

double-layer ”un-capped” surface consisting of endocardium

and epicardium of the ventricles, without the rest of the heart

tissues such as the atrium. Therefore, the proposed model

can not simultaneously perform electrophysiological imaging

of the atrial and ventricular surfaces close to atrium due to

modeling errors. If electrophysiological remodeling of the atria

is required, an independent atrium geometric model [44] is

needed.
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Fig. 10. Clinical diagnosis and LSD-based electrophysiological imaging diagnosis of five real PVC patients with ectopic pacing sites located at RVOT. The
leftmost column indicates the ECGs measured by the 25th electrode on the body surface. The second column displays the RVOT models and activation
maps reconstructed by the Ensite3000 system. The last two columns show the activation maps reconstructed by the proposed LSD method. Among them, the
third column shows the ventricular geometric models from the orientation close to that of Ensite images, with an opacity of 0.47 in order to fluoroscopy the
endocardium, and the last column is a top view.

(a) (b)

(c) (d)

Fig. 11. CC and RE for different µ and β settings. (a), (b): µ is set within
[0.001, 1] when β is fixed at 0.01. (c), (d): β is tested from 0.0001 to 0.1
when µ is fixed at 0.5.

To validate the accuracy of the LSD model for reconstruct-

ing cardiac surface potentials and localizing pacing sites, ex-

periments were performed using simulated ventricular pacing,

clinical interventional pacing, and clinical PVC data. In this

paper, the test data belongs to clinical situation of single-site

pacing or single-focus PVC. Future efforts will explore the

performance of the LSD model in some complex heart rhythms

such as multi-site pacing or structural disease.

V. CONCLUSION

In this paper, the LSD method has been proposed to over-

come the ill-posed ECG inverse problem. Dynamic constraints

and batch optimization are provided to obtain accurate endo-

epi potential reconstruction and precise localization of ectopic

pacing sites. The proposed method combines multi-frame

vectorized EEPs into a spatiotemporal image, and exploits

the low-rank property of the background and detail sparseness

of the spatiotemporal distribution. The simulation experiments

on EEP reconstruction with different pacing sites demonstrate

that the proposed method can improve the EEP reconstruction
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accuracy compared to conventional methods based on the L2-

norm and L1-norm. Experiments on real PVC subjects confirm

that the LSD algorithm can correctly expose the locations of

ectopic pacing sites.
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