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Purpose: Dynamic positron emission tomography (PET) is known for its ability to extract spa-
tiotemporal information of a radio tracer in living tissue. Information of different functional regions
based on an accurate reconstruction of the activity images and kinetic parametric images has been
widely studied and can be useful in research and clinical setting for diagnosis and other quantitative
tasks. In this paper, our purpose is to present a novel framework for estimating the kinetic parametric
images directly from the raw measurement data together with a simultaneous segmentation accom-
plished through kinetic parameters clustering.

Method: An iterative framework is proposed to estimate the kinetic parameter image, activity map
and do the segmentation simultaneously from the complete dynamic PET projection data. The clus-
tering process is applied to the kinetic parameter variable rather than to the traditional activity distri-
bution so as to achieve accurate discrimination between different functional areas. Prior information
such as total variation regularization is incorporated to reduce the noise in the PET images and a
sparseness constraint is integrated to guarantee the solution for kinetic parameters due to the over
complete dictionary. Alternating direction method of multipliers (ADMM) method is used to solve
the optimization problem. The proposed algorithm was validated with experiments on Monte Carlo-
simulated phantoms and real patient data. Symbol error rate (SER) was defined to evaluate the per-
formance of clustering. Bias and variance of the reconstruction activity images were calculated based
on ground truth. Relative mean square error (MSE) was used to evaluate parametric results quantita-
tively.

Result: In brain phantom experiment, when counting rate is 1 x 10°, the bias (variance) of our
method is 0.1270 (0.0281), which is lower than maximum likelihood expectation maximization
(MLEM) 0.1637 (0.0410) and direct estimation without segmentation (DE) 0.1511 (0.0326). In the
Zubal phantom experiment, our method has the lowest bias (variance) 0.1559 (0.0354) with 1 x 10°
counting rate, compared with DE 0.1820 (0.0435) and MLEM 0.3043 (0.0644). As for classification,
the SER of our method is 18.87% which is the lowest among MLEM + k-means, DE + k-means,
and kinetic spectral clustering (KSC). Brain data with MR reference and real patient results also show
that the proposed method can get images with clear structure by visual inspection.

Conclusion: In this paper, we presented a joint reconstruction framework for simultaneously estimat-
ing the activity distribution, parametric images, and parameter-based segmentation of the ROIs into
different functional areas. Total variation regularization is performed on the activity distribution
domain to suppress noise and preserve the edges between ROIs. An over complete dictionary for time
activity curve basis is constructed. SER, bias, variance, and MSE were calculated to show the effec-
tiveness of the proposed method. © 2018 American Association of Physicists in Medicine [https://
doi.org/10.1002/mp.13364]
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1. INTRODUCTION of dynamic PET has made it possible to track temporal

changes in activity distribution and to provide an estimation
Compared with static PET, which only deals with the value of tracer kinetics." With the additional temporal information,
of concentration within a fixed period of time, the emergence the underlying biological and physiological process in a
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living tissue can be collected noninvasively and evaluated
quantitatively, which has long been proved useful in various
areas of medical and clinical research,>™ such as tumor diag-
nosis and therapy monitoring, that utilize the predictability of
the kinetic values.>

Conventionally, estimation and segmentation for paramet-
ric images are performed individually. An accurate estima-
tion is required as a primary step for segmentation. In
traditional approaches, kinetic parameters are estimated by
mathematically modeling the tracer in the living tissue and
solving the inverse problem with or without prior knowledge
of the radio activity distribution. In the case of direct estima-
tion®~1°, the tracer kinetics can be estimated directly from the
raw projection data, allowing better modeling of the noise
and hence achieving a more accurate image result compared
to that obtained via indirect methods, in which the activity
images are first reconstructed and then the estimation prob-
lem based on the preceding result of the PET images is
solved. Because of the low signal-to-noise ratio (SNR) at
each measurement, failing to incorporate the information
from multiple time frames may lead to enhanced noise in the
dynamic activity images which is expected to further propa-
gate to the parametric image estimates in the indirect recon-
struction scheme. There has been a significant amount of
research focused on the estimation of tracer kinetics from
both direct and indirect methods.'""'? Right after the applica-
tion of MLEM was introduced into the static PET reconstruc-
tion problem, Snyder et al. first estimated the compartmental
parameters in 1984 directly from the raw measurement data
using the MLEM method."? Kamasak et al. in 2005 described
a penalized likelihood estimation algorithm of parametric
images that incorporated the two-tissue compartment
model.'* In 2008, Yan et al. proposed a MLEM-based recon-
struction algorithm for kinetic parameters by applying the
one-tissue compartment model.'”” Note that both Kamasak
and Yan have chosen the compartmental model to fit the tra-
cer kinetics. Since the model fitting is an essential step for
the estimation of kinetic parameters, Wang and Qi summa-
rized a generalized algorithm to directly reconstruct the para-
metric images that can be implemented with linear or
nonlinear kinetic models.>'®

In PET image processing, delineating the outline of the
functional regions for PET data is a complicated and time-
consuming problem. The boundary information of each func-
tional region can be used to suppress the noise corruption,
which is a key feature for the indirect methods that treat the
PET reconstruction and segmentation as two individual meth-
ods. In direct reconstruction, most work has focused on incor-
porating spatial smoothing priors into a MAP reconstruction
framework.'”'® With prior knowledge of the region of interest
(ROI), noise corruption in the imaging field can be reduced,
thus enhancing the quality of the reconstruction results.'” >

Recently, the underlying connection between reconstruc-
tion and segmentation has been widely recognized. In 2006,
Reader et al. presented a reconstruction scheme for joint esti-
mation of the activity distributions and temporal basis
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functions of the tracer kinetics scheme, solving the problem
through a MLEM-based scheme in conjunction with a
model-fitting process.”> Saad et al. in 2007 published their
algorithm that can simultaneously export the delineation
result and kinetic parameter estimation in Ref. [24]. Later, in
2008, Krestyannikov et al. achieved ROI segmentation and
estimated the corresponding time activity curves within each
function area at the same time through a statistical
approach.” Sungwon et al. proposed an iterative algorithm
that can simultaneously segment and reconstruct for tomo-
graphic images.”® The basic strategy of the proposal algo-
rithms is to solve the problem with multiple underdetermined
variables, by either alternating the unknown estimates, or by
using mathematical methods to reduce the number of
unknowns.

In this paper, we proposed a direct estimation scheme
for parametric images with simultaneous segmentation and
reconstruction of the activity distribution. Unlike either
direct or indirect approaches, in this work, PET activity
images were achieved jointly during the estimation of
kinetic parameters, therefore an additional regularization of
temporal information based on the tracer kinetics could be
included to improve the image accuracy. For PET images,
total variation regularization was incorporated to increase
the accuracy of activity distribution. For direct estimation
of kinetic parameters, based on the compartmental model
theory, a dictionary containing possible time activity curves
(TACs) basis was defined and an extra sparse constraint
was added to confirm the solution of the problem, which
has been used in Ref. [8]. The cluster-based within-class
scatter matrix and initial knowledge of the ROIs were
given by the Dirichlet process clustering algorithm.>” The
whole simultaneous reconstruction and segmentation
framework was solved by the ADMM method using an
alternating iterative scheme. The performance and clinical
value of the proposed method were evaluated using Monte
Carlo-simulated phantom data, MRI registration data, and
real patient data.

2. PROBLEM STATEMENT
2.A. Image Reconstruction

During an emission PET scan, the process in which two
photons generated through the annihilation of positrons emit-
ted from the tracer are detected by an opposite probe pair is
called a coincidence event. In PET imaging, however, the true
coincidence events are often contaminated with random coin-
cidence (RC) events and scattered coincidence (SC) events.
The raw projection data of dynamic PET (called a sinogram)
Y € RI™M is organized as an array of coincidence events y,,,
collected by all the I detector pairs indexed by i = 1,...,/
from the first time frame till the last Mth time frame, noted as
m = 1,...,M. Within the measurement sinogram, single pro-
jection data can be well modeled by a linear Poisson model:

Yim ~ Poisson{¥y,,, } (D
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Expectation y;,, is connected to the unknown tracer distribu-
tion {x;,,} at time frame m through the affine transform:

J
Vim = zgijxjm + Fim =+ Sim, 2
=1
in which J is the number of discrete pixels in the activity dis-
tribution field. g; is the (i,j)th entry of the system matrix
G € R'™/ representing the average probability that the pho-
ton emitted from pixel j interacted detector pair i. x;, is the
concentration value at jth pixel in time frame m. r;, and s,
account for the presence of random and scatter coincidence
in the ith detector pair. Given that the detection at each probe
can be considered as an independent process, the dynamic
PET data can also be well modeled as a collection of inde-
pendent Poisson random variables:

I :
Prob(Y|X) = H H i y;m)lm ©)

A well-known procedure would be maximizing the likeli-
hood function.?’ However, in this study, we chose to take the
negative logarithm function, and the reconstruction of
X:X € R7”*M s therefore achieved when minimizing the
problem:

M I
[:temp Z Z(ylm — Yim log yim) “)

m=1 i=1

Additionally, total variation (TV) regularization30 is com-

posed on the solution for X

!

M
X)+ Y > (Fin — Yin 10g Fi) )

m=1 i=1

L(X) =

in which o is the weighting parameter for the negative Pois-
son log-likelihood function and TV(X) refers to the total vari-
ation regularization. By using the dual form of total variation,
the term 7V(X) can be calculated through

J

ZZH Dxm

m=1 j=1,

(©6)

where x,, € R’ is the component of X referring to the activ-
ity distribution for the mth time frame and (Dx,,); € R? is
defined as the discrete gradient of x,, at the jth pixel.

2.B. Kinetic modeling

The tracer kinetics can be well modeled by the compart-
mental model since it is easy to implement and closely
related to the underlying metabolism.>’ A typical tracer-
exchange process of the two-tissue compartment model is
shown in Fig. 1, where Cp, Cr, and Cp denote the concentra-
tion of the plasma, the tracer that has not been involved in
metabolism, and the labeled metabolite, respectively. Cr is
the sum of the concentration in the target tissue correspond-
ing to the input function Cp. A general equation for Cycan be
expressed as
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Cp K, ks Cr

Cr Cs
k, k,

A 4
N

N
)

Fic. 1. Two-tissue compartment models characterized by two differential
equations: C{(1):dCH(t)/dt = K,Cp(t) — kyCr(t) — kzCr(t) + ksCp(t); Cp(t):
dCp(t)ldt = ksCi(t) — ksCp(t), with Ki,kpks,ks being the exchange rate
constants.

o
Cr(t) = lﬁf’oé(f) + Y e M| @ Cal1), @)
g=1

where ® is the convolution operator, ¢ is the time interval, ¢,
and 0, are the coefficients in the function of Cy(f) represent-
ing the weighting parameter and the exponent parameter for
each tissue compartment g =1,. . .,Q in the target tissue, and 0
(1) is defined as the delta function for the part of labeled tra-
cer that is not involved in any of those two compartments. In
this case, the unknown parameters that characterize kinetic
modeling system have been transformed from exchange rate
constants K,k ,k3,k, into two set of parameters ¢, and 0,. To
further simplify the equation, the expression for Cy(7) is
expanded as

CT(I) - quqwq(t)
q=0 c () 0 (8)
rlt ’ g="
st y(t) = { é 0= Cp(t)dt, q=1,...,0,

Since dynamic PET measurement data are generated through
continuous detection with a certain time interval for each time
frame, the value of the jth pixel in the activity map for the
mth time frame can be calculated as an integration of the total
concentration from the starting time #}, to the ending time 7,
which is given by

1 b .
Xjm = T / Cy(1)dt, )

m

where C’T(t) is specifically defined as the concentration of
the target tissue for the jth pixel. By substituting Eq. (8), the
data-fitting process for the kinetic modeling and the activity
distribution can be expressed as

. T2
min [|X — (FO)7|%, (10)

T refers to the transpose of the matrix
RM % (N+1)

where the superscript
and |-l denotes the Euclidean norm. W €
defined as the kinetic dictionary, is the matrix composed of
the integration of kinetic basis functions with different com-
partmental parameter 0.c = 1,...,N) corresponding to the
data-sampling process. @ € RWV+D* s the coefficient
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matrix of the kinetic dictionary. ¥ € RM* N+1) can be writ-
ten as follows:

WIO lpll T l,blN
L IR an
lpMO lle T lpMN

Each component in matrix ¥ is precalculated through

1
L

lpmc -

f c=0,
fmf’ ‘9”>Cp (t)dt, ¢=1,...,N.

12)

Usually, the number N should be large enough to cover
the essential kinetic spectrums; a large value of N will yield
an over complete matrix ¥ and hence leave the problem with
a number of underdetermined equations. The collection of
0= 1{0,...0....0y} are discrete values within a physiologi-
cally plausible range (will be changed when the tracer is dif-
ferent) and the interval between two elements is set to be in a
logarithmic manner covering a suitable range of the kinetic
spectrum. Inspired by the underlying process described by
the compartmental model in which only a few compartments
are involved in describing the activity distribution in the field,
an extra sparse constraint on the underdetermined coefficient
@ is introduced and further reformulating the minimizing
problem for the kinetic model as

)1+ ||, (13)

where u is a relative weighting parameter for the sparse con-
straint and ||-|l; refers to the standard #; norm.

The rate constant, K; € R’ can be computed from the
estimation value of ® according to Ref. [31]

N
Ki);=> ¢, (14)
c=1

where (K)); is the jth component of K. In some cases, V, can
also calculated from the estimation value of ®.

S(X,®) = |X — (PO

2.C. Kinetic parameter clustering

Segmentation in PET imaging can be achieved both
on the domain of activity distribution™ and using TAC
clustering.®* In a two-step segmentation procedure, recon-
struction quality is essential to the accuracy of the fol-
lowing delineation. Unlike other advanced methods that
focus on either primary image reconstruction or the sub-
sequent region delineation, our method proposes a simul-
taneous clustering framework in the estimation problem.
Due to the fact that the sparse coefficients of the TAC
have been demonstrated as a more discriminative and
robust feature than raw data,>> we propose incorporating
the within-class scatter matrix @ from the Fisher discrim-

1ation criterion 6
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H
D) = Z Z (b — o) () — Ph)T
h=1 ¢, €C, (15)
o= Y 9,
¢h€ch

where ¢, € RV represents a subset of the coefficient
matrix @ that is related to the pixels within the Ath cluster C),
ny, is the number of pixels in the Ath cluster, p, represents the
matrix composed of the average values of @ for the Ath clus-
ter, and H is the number of clusters. The initial values of p,
and H are predetermined by the clustering algorithm with a
Dirichlet process®”*® and will be updated with respect to ®
during the optimizing process.

3. METHODS FOR JOINT RECONSTRUCTION
3.A. Objective function

By taking into consideration the kinetic modeling and
incorporating the within-class scatter matrix @ kinetic param-
eter clustering, our final objective function can be expressed
as follows:

M 1
‘7:(X7 CD) = + O(ZZ Vim — Yim 10g yim)
m=1 i=1
Y
+§(||X—(‘P(D) 1>+ ul@f,
H
+€Z Z (on = Pu)(Pr— Pi)")
h=1 ¢, €Cy
J
s.t. Pn = Z ¢h? yzm Zgijlena
(i’hech J=1

(16)

where ¢ is set as the relative weighting parameter for the clus-
tering term of .

3.B. Optimization framework

Basically, the main strategy of the proposal joint recon-
struction and segmentation framework is to minimize the
problem (14) by alternating between the update of variable X
and @ at every iteration. The subproblem for minimizing X
while @ is fixed is rewritten with the components that contain

X as follows:
M1
X)) > (Fin — Yin10g Fi)

m=1 i=1

Fx(X,0) =1V

i
+ 5 ”X (\P(I)) | s.t. ylm Zgljxjm
a7
The alternating direction method of multipliers

(ADMM)**° is applied to estimate X by introducing a set of
auxiliary variables w;,, to replace (DX,,);, and the subproblem
can be further transformed to
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M J M I
(D) :ZZHWW’H + O(ZZ ytm — Yim IOg yim)
m=1 j=1, m=1 i=1
Zgl]xjm

(18)

The corresponding augmented Lagrangian function for Eq.

(18) can be expressed as
J

1
+2IX = (PO s 5, =

LA(WjWX) = ||WJmH ((Dxm) W.im)
ﬂ]m 2
B D, ) .

M 1
+a Z Z(ylm — Yim lOg yim)

m=1 i=1

+ 1) - (v

in which v;,, € R2*! denotes the Lagrange multipliers, Bim
is the penalty parameters, and w;,, can be acquired from the
two-dimensional (2D) shrinkage formula

W

(DXZ)j_[ﬁ
/3 Ky _ g
o o),

(20)

With the newly updated Jknf !, X minimizes the following
function:

Wi = max{||(Dx,,); — ﬁ,m

J
X ﬁm
Ly = 2 (Dx) + S (D% = )
=
Sy 7 T2
+ aZZ(yim = Yim IOg yim) + E HX - (\PCD) || )
m=1 i=1
where @21
J
Vin = > &iXjm- (22)
=1

Therefore, updating X can be achieved through

X = x* — pd (X)X, (23)

where pf; is the corresponding descent step length and is cho-
sen to be the deepest step length computed by back-tracking
the nonmonotonic line search scheme® that begins with the
Barzilai-Borwein (BB) step length.*?d“(X) is defined as the
gradient of Eq. (21) as

J
= > (=D + BuD" ((Dx); = whi")

j=1
J p
Mol y,mZJ (24)
L ONWED DI
i=1 j= m=1 i=I im
+(X — (o)),
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After each update of w;,, and X, the multipliers need to be
modified as well. Based on the latest value of other variables,
V;m Will be revised through

Jjm Jjm jm

it =k, = (A, ). @s)

The process will end when the solution for both variables
meets a prescribed tolerance. Before proceeding to the @ sub-
problem, clustering with Dirichlet processes is first per-
formed on the current estimation of ®* to renew the ROI
information. Then the update of @ is achieved through the
following minimization problem composed of the ®-relevant
terms from Eq. (16):

Fo(X,®) =2 (X -

H

+EZ Z (dn

h=1 ¢h6ch

s.t. Z -

¢/x €Cn

2
(FPD)"||* + pll@],

— o) (b4 = p1)) (26)

Notice that the minimization problem (26) can be simplified
and decomposed as follows:

H
FolX,0) = 2>~ Fiv. )
h=1

st FhCo ) = o — (P 1P + ullball, @7
€ Z (¢h - Ph)T(¢h - Ph)7

‘7)h €y

where x;, and ¢, are, respectively, defined as the collection of
all the rows (in the case of X) or columns (in the case of @)
that belong to the hth cluster. Labels for each column of @
are determined using spectral clustering upon the current esti-
mate of ®>* To further simplify (27), assume Ej, is a
matrix of size n;,xn; with all entries being 1, where n, is the
number of voxels in the hth cluster, 1, refers to the unitary
matrix of the same size with Ej, and N, = I;,—E,/n;,. There-
fore, we get the equivalent expression

Fioxns dn) = wlldnlly + Qnxn, di)

(28)
st Qs dp) = [ — (Pp)" I + el duVal

By linearizing the two terms in Q(xy, ¢,) at ¢, adding the
proximal term 5-|[|¢;, — 4)’,‘,H2, and then iteratively using the
shrinkage operator we can get

1
i+1 =8,/0 (¢IZ - %Vgh(xﬁ, ¢h))7 (29)

where S, is the soft shrinkage operator**
is given by
VQi(xh, ) = =297 (0 — (Yeby)") + 2¢(¢ NN} -
(30)

and V Oy (xy, ¢p,)
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An overview of the whole joint reconstruction framework
is demonstrated in Algorithm 1.

Algorithm 1 Iterative optimization scheme of the
proposed model

Require Sinogram Y, system matrix G, dictionary ¥, and input weighting
parameters, o, ), U, .

1: Initialize Iteration number k = 1

2: repeat

3: whi! — argmin L/&w””) with X¥, V8

4 X — argmin LY with whit vk
R a8t ko k1Y kel

500 Vi < Vi B((DxF )j Wim )

6:  Cluster ®

7: Update ®**" with soft thresholding operator S o
8: until Relative changes of both X, ® <10~ are satisfied
9: Return @, X, and the segmentation results.

4. EXPERIMENTS AND RESULTS

In the following sections, the proposed joint reconstruc-
tion framework will be tested on Monte Carlo-simulated
Zubal, brain phantom data, and a set of measurement data
provided from a local hospital. The proposed method is per-
formed in a desktop computer with i7 Intel Core CPU and
8 GB RAM.

Experimental results are presented both visually and quan-
titatively. Other than intuitive visual images, we use following
criteria to further illuminate the improvements in the recon-
struction accuracy.

1S = — — -4 5
M Jj:l Xjm ’

m=1

ariance = IZM: ! ZJ: Y =5
' TM\T-1 < ’

m=1 j=1 Xjm

€1V

where x;,,, Xj,, and X;, denote the true value, reconstructed
value, and the mean value within the same cluster for pixel
site j at time frame m. For the parametric image of K, a rela-
tive mean square error (MSE) is calculated for comparison.
In addition, inspired by the symbol error rate (SER) in digital
communications, we define the assessment standard for the
clustering procedure as the cluster error rate

SER = % x 100% (32)

in which N, is the number of pixels that have been clustered
into the wrong area.

Results achieved by the proposal method are presented
under the abbreviation SDES, short for simultaneous direct
estimation and segmentation. To test the improvement of
the clustering term in Eq. (15), an inferior version of the
proposed framework which excluded the clustering part has

Medical Physics, 46 (3), March 2019

1250

also been conducted for the comparison of PET images and
kinetic parameters under the abbreviation of DE, short for
direct estimation. In addition, maximum likelihood expecta-
tion maximization (MLEM) method is incorporated for the
comparison of PET activity distribution. Based on the
results of MLEM reconstruction images, an indirect estima-
tion approach of kinetic parameters, known as data-driven
estimation of parametric images based on compartmental
theory (DEPICT),** is introduced for comparison. As for
the clustering part, a well-known k-means clustering
method*® is applied on MLEM reconstruction images for
the comparison of segmentation results, shortened as KMC
in this paper. Also, a kinetic spectral clustering method
(KSC)** which carries out segmentation based on TAC is
used as comparison.

4.A. Implementation of tunable parameters

In this joint reconstruction scheme, there are four tunable
parameters («, y, 1 and &) that need to be predetermined man-
ually. The values for these parameters are determined basi-
cally by evaluating the performance of the proposed
framework. The principle of the tuning process is while the
underdetermined parameter is being tuned, other three are
fixed as a relatively suitable value based on the existing
research.

The o is a relative weighting parameter for the negative
log-likelihood term which is closely related to the noise level
and should be smaller if the noise corruption in the measure-
ment data is strong. Based on the default value of o in Li,»
experiments under different values of « € {2326 265,
27,28} have been firstly conducted to find a relatively suit-
able value of o. From the image profiles shown in Supple-
mental Fig. S1, we found that the optimal reconstruction
result is yielded when « is settled as 2°°. Secondly, a set of
experiments is designed for parameter ). Since we cannot
find an analogue of the proposed framework, the results of
eight sets of reconstruction experiments with respect to
y € {0.1,0.33,0.66,1,1.33,1.66,2.33} have been assessed.
Supplemental Fig. S2(a) and S2(b) present the curves of rela-
tive bias and variance (for PET images) and the curve of
MSE (for parametric images) with respect to the value of 7y,
respectively. In consequence, the value of y is fixed at the
potentially lowest position on the curve, that is, y = 0.6.
Next, similar experiments have been performed relating to
the parameters y and ¢. According to the research in Ref. [32]
and the range of relative MSE, over the experiments with
w € {0.01,0.03,0.06,0.10}, the value of u that we used in
all experiments is 0.06. Lastly the choice of ¢ is within the
range of {0.5,1,2,3} and is settled with 0.5. Experiments
regarding u and ¢ can be found in Supplemental Fig. S3 and
S4.

4.B. Monte Carlo-simulated data

Monte Carlo simulation is able to replicate the physical
process of PET imaging and produce the realistic
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measurement sinogram data for evaluating PET reconstruc-
tion algorithms. With ground truth being known, the recon-
struction results of Monte Carlo-simulated data can be
compared with highly reliable criteria. In this case, the simu-
lation is performed on two sets of data sequences generated
from brain and the Zubal thorax phantom.

4.B.1 Hoffman brain phantom

First, we conduct the experiments on Hoffman brain phan-
tom to testify the robustness of the proposed framework
under different counting rates. The Monte Carlo simulation
was designed to model the detector geometry and perfor-
mance of the Hamamatsu SHR-22000 PET system.*® The
simulated template is a brain phantom with a size of 64 pix-
els x 64 pixels. The radio tracer is set to be '*F-FDG and the
total simulation time is 90 min divided into 30 time frames:
4 x 20s,4 x 40,4 x 60s,4 x 180 s, 14 x 300 s. The
generated 2D sinogram has 64 x 64 projections at each time
frame. The time-activity curves, as shown in Fig. 2(b), are
generated based on the two-tissue compartment model with
kinetic parameters K, k», k3, and ky (minfl) set as in Ref.
[47]. Four sets of sinogram under different counting rates of
5 x 104, 1 x 105, 5 x 105, 1 x 10° have been created in
total.

Shown in Figs. 3 and 4 are the visual results for the
9th and 13th frames of the image sequences from brain
phantom data, respectively. From the top to the bottom,
activity maps are achieved by MLEM, DE, and SDES,
respectively. It is obvious that the MLEM image is heav-
ily corrupted with noise when the counting rate is rela-
tively small, whereas the SDES method maintains the
image characteristics according to the ground truth. Also,
when we compared the second and third lines of the
images, the improvement in the quality can be visually
recognized since the sharpness of the boundary is clearly
improved. The improvements in image quality can be fur-
ther confirmed in Table I, from which the efficiency of
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the clustering component in reducing noise corruption in
the reconstructed PET image can be told from the
decreased variance value.

Supplemental Fig. S5 is the estimation of parametric
images under different counting rates through DE and SDES
method. It can be speculated from the images that when the
counting rates become lower, as in most dynamic PET com-
pared to static PET scans, the noise corruption in the parame-
ter estimation can still be tolerable when the counting rates
are higher than 5 x 10* compared to the DE approach.
Table II demonstrates the mean square error (MSE) of the
parametric image of K;. It can be noticed that within the
range of counting rates that we have initialized, even the most
corrupted data can achieve a better estimated parametric
result through the SDES method.

Figure 5 represents the comparison of clustering results of
SDES under different counting rates. To assess the cluster
accuracy, we defined an evaluation criteria of symbol error
rate (SER) representing the percentage of wrongly clustered
pixels in the imaging field; the quantitative results are shown
in Table III. Figure 5 shows that the results of clustering are
highly influenced by the low counts. The result with 5 x 10°
counting rate has the lowest SER (18.05%). When the count-
ing rates are 5 x 10* and 1 x 10°, one functional region in
their images has disappeared even if their SERs are 20.34%
and 19.21%, respectively.

4.B.2 Zubal thorax phantom

For the Zubal phantom data, as shown in Fig. 6(a), the size
of the PET image sequence is 128 pixels x 128 pixels for all
18 time frames during the 60 min scanning. The time interval
between each time frames is set as: 4 x 30's, 4 x 120 s,
10 x 300s and the time-activity curves, as shown in Fig. 6(b),
is generated based on the theory of two-tissue compartment
model with the same set of kinetic parameters in Ref. [48]. The
detector geometry and performance in the MonteCarlo simula-
tion is the same as the brain phantom while the size of

——— ROI
ROR
— ROI3

1 Il L Il L ! ! 1

Time(min)

(b) Time activity curves

Fic. 2. Template and time-activity curves for the dataset of brain phantom. [Color figure can be viewed at wileyonlinelibrary.com]
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groundtruth

@5 x 10% () 1 x 10° (€ 5 x 10° @1 x 10°

FiG. 3. Reconstruction of the 9th frame from PET image sequences for brain phantom data, from top to the bottom: MLEM, DE, and SDES methods.

(@) 5 x 104 (b) 1 x 10° (c) 5 x 10° (d) 1 x 106

FiG. 4. Reconstruction of the 13th frame from PET image sequences for brain phantom data, from top to the bottom: MLEM, DE, and SDES methods.
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TasLE 1. Brain phantom: bias and variance results for each ROI (The minimum value for each ROI is in bold)
Bias Variance
Counting Rate Method Whole ROI1 ROI2 ROI3 Whole ROII1 ROI2 ROI3
5 x 10* SDES 0.3909 0.2551 0.4452 0.3191 0.0809 0.1033 0.0735 0.0511
DE 0.4752 0.2914 0.5511 0.3150 0.1356 0.0937 0.1529 0.1055
MLEM 0.5220 0.5736 0.5062 0.4212 0.1626 0.1136 0.1836 0.0982
1 x 10° SDES 0.3162 0.2035 0.3626 0.2218 0.0576 0.0613 0.0570 0.0349
DE 0.3773 0.2219 0.4394 0.2989 0.0874 0.0570 0.1005 0.0478
MLEM 0.4772 0.5246 0.4624 0.3916 0.1367 0.1001 0.1527 0.0824
5 x 10° SDES 0.2312 0.1445 0.2651 0.2051 0.0393 0.0318 0.0432 0.0118
DE 0.2422 0.1886 0.2625 0.2452 0.0685 0.0487 0.0774 0.0335
MLEM 0.2494 0.3057 0.2269 0.2767 0.0761 0.0986 0.0689 0.0418
1 x 10° SDES 0.1270 0.1093 0.1323 0.1684 0.0281 0.0192 0.0323 0.0068
DE 0.1511 0.1161 0.1639 0.1662 0.0326 0.0292 0.0347 0.0119
MLEM 0.1637 0.2255 0.1383 0.2151 0.0410 0.0546 0.0359 0.0402

TaBLE II. Relative MSE for the reconstructed K; from Monte Carlo-simu-
lated data (The minimum value for each ROI is in bold)

Zubal phantom Brain phantom
Method 5 x 10* 1 x10° 5 x 10 1 x10° 5 x 10° 1 x 10°
SDES 0.0394 0.0367 0.0424 0.0396 0.0369 0.0343
DE 0.0636 0.0453 0.0546 0.0539 0.0436 0.0392
DEPICT 0.1248 0.0879 0.0663 0.0603 0.0481 0.0432

projection is 64 x 64 x 18 time frames. In Zubal phantom
case, there are only two different numbers of coincidence
events (5 x 1041 x 105) that are simulated for comparison.
In Fig. 7, a comparison of 10th activity image frame
between the SDES, DE, and the MLEM method is presented
for different counting rates. According to the results, the noise
levels and the associated resolution degradation in MLEM
images are quite obvious, compared with the other two
approaches, regardless of the counting rate levels. A specific
difference in accuracy between SDES and DE can be found in
quantitative results presented in Table IV. Compared with
ground truth, the SDES method under higher counting rates
achieves the most accurate results. The improvements in the
variance between DE and SDES verify that the additional

groundtruth @5 x 104
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)1 x 10°

cluster part in the objective function can make the system less
sensitive to the noise corruption. In the Table IV, the DE
results of 5 x 10* counting rate are consistently superior to
SDES at ROI 1. The reason might be that with the lower count-
ing rates in ROI 1, the clustering is not effective thereby influ-
encing the accuracy of reconstruction results. As for the
parametric image of K, the visual profiles of horizontal and
vertical lines across the image field are extracted in Supple-
mentary Fig. 6 and the mathematical evaluation is presented in
Table II. Lastly, Fig. 8 demonstrated the segmented images
from different methods. Although compared with the other
three results there is some noise in the SDES result, it shows
the closest structure of ground truth, thus having the lowest
SER (Table III).

TasLE III. SER for Monte Carlo-simulated data (The minimum value for each
ROl is in bold)

Brain phantom (SDES)

5 x 10* 1 x 10° 5 % 10° 1 x 10°
20.34% 19.21% 18.05% 18.11%
Zubal phantom (1 X 10%)

SDES MLEM + KMC DE + KMC KSC
18.87% 23.81% 19.33% 22.38%

@1 x 10°

€ 5 x 10°

FiG. 5. Clustering results for the Hoffman brain phantom under different counting rates through the SDES method.
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(@) Zubal Phantom

Fi. 6. Template and time-activity curves for the data set of Zubal thorax phantom. [Color figure can be viewed at wileyonlinelibrary.com]

Ground truth

4.C. Brain data with MR reference

—

ML-EM

Fic. 7. Reconstruction of PET image sequences for Zubal phantom data: 10th frame. From top to the bottom: 5 x 10%,1 x 10°.

A set of FDG-PET brain image sequence with registered
MRI (magnetic resonance imaging) data has been used in
this experiment. The estimated parameter images of K is
shown in Supplemental Fig. S7. From these images, it is

08

07

06

05

04

03

(b) Time activity curves
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shown that the SDES result has a clearer structure than
DEPICT and DE. The reconstruction activity results of
MLEM, DE, and SDES are shown in Fig. 9. Figure 9(a)
shows a higher number of counts (5 x 107) in the PET
images reconstructed by MLEM for reference. From top to
bottom is the 14th frame and the 22nd frame. It can be seen

TaBLE IV. Zubal phantom: bias and variance results for each ROI (The minimum value for each ROI is in bold)

Bias Variance
Counting Rate Method Whole ROII ROI2 ROI3 Whole ROII1 ROI2 ROI3
5%10* SDES 0.1765 0.1737 0.1589 0.1864 0.0425 0.0447 0.0828 0.0386
DE 0.2778 0.1706 0.5556 0.3751 0.0620 0.0437 0.1192 0.0814
MLEM 0.5192 0.5249 0.4852 0.5198 0.2772 0.2837 0.2489 0.2750
1x10° SDES 0.1559 0.1492 0.1574 0.1667 0.0354 0.0368 0.0423 0.0310
DE 0.1820 0.1540 0.2290 0.2151 0.0435 0.0360 0.0663 0.0495
MLEM 0.3043 0.2992 0.3727 0.2925 0.0644 0.0365 0.1041 0.0997

Medical Physics, 46 (3), March 2019
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(a) groundtruth

(b) MLEM+KMC

that when counting rate is low in the 14th frame, the result of
MLEM is very noisy while the edges of SDES appear subtly.
Figure 10 shows the clustering results for MLEM + KMC,
DE + KMC, and SDES methods. It seems the brain structure
in the SDES result is close to reference image shown in Fig.
9(a), especially for paracele, which verifies its segmentation
ability.

4.D. Cardiac data

The tracer injected into the cardiac patient is '*F-FDG.
The whole scan lasted 60 min and the raw measurement data
were collected from 130 x 96 projections in 19 time frames.

Since the ground truth of the data cannot be defined, there
are only visual results for the real patient data to demonstrate.
Examples of reconstructed activity with blowup view at the
4th frame through SDES, DE, and MLEM method are given
in Fig. 11. The boundary of the ventricle is more distinct in

(b) MLEM

(a) High counts (MLEM)

(e) DE+KMC

FiG. 8. Clustering results for the Zubal thorax phantom under the counting rate of 1 x 10°.
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(d KSC (e) SDES

SDES than traditional MLEM method. Parametric images of
K, are shown in Supplemental Fig. S8 with an even stronger
contrast inside the ventricle. Figure 12 illuminated the func-
tional regions presented through a clustering process in which
KSC has specifically indicated the area of the ventricle while
the other two clustered the whole imaging area into three func-
tional regions.

5. DISCUSSION

Our current work is targeted at the joint PET image recon-
struction and kinetic segmentation. The data-driven estimation
of parametric images based on compartmental theory is
implemented in this approach. When it comes to clinical
practice, it should be noticed that the whole method is based
on compartmental model assumption. It is assumed that each
compartment is well mixed and the rate constants do not
change with time.”® Therefore, the results largely depend on

(c) DE (d) SDES

FiG. 9. (a) Higher number of counts (5 x 107) PET images reconstructed by MLEM for reference; (b—d) Reconstructed activity maps of MLEM, DE and SDES,

from top to bottom: 14th frame, 22nd frame.
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(@) MLEM+KMC (b) DE+KMC (c) KSC (d) SDES
Fic. 10. Clustering results for MLEM + KMC, DE + KMC, and SDES methods.

FiG. 11.  The 4th frame reconstructed PET images for real patient data. From top to bottom: SDES, DE, and MLEM. On the right is the zoom in area of ventricle.
[Color figure can be viewed at wileyonlinelibrary.com]

whether the compartmental model is similar to real case. In Another limitation of our method is that the segmentation
our method, the introduction of generalized compartmental of dynamic PET data is according to a clustering of kinetic
spectral makes the data-driven estimation much closer to real parameters on the strength of the assumption that physiologi-
situation. cal similarity of voxels in ROIs could be recognized by

Medical Physics, 46 (3), March 2019
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(@ MLEM+KMC

() DE+KMC

Fic. 12. Clustering results for the real patient data. Left to right: MLEM + KMC, DE + KMC, KSC, and SDES.

analyzing the similarity between their TACs. The work™
demonstrated that segmentation methods implicitly allow for
some clusters spreading away from their centroids. But when
kinetic profiles overlap too much, the quality of cluster would
be affected. This motivated us to choose a robust segmenta-
tion approach that can afford more spreading. In this paper,
the Dirichlet process clustering was applied for its advanced
performance. In addition, optimization of reconstruction
parameters and movement correction should be done to mini-
mize undesirable influences to the segmentation process.

There are certain limitations associated with our proposed
implementation of the SDES method. First, there is a rela-
tively large number of parameters to be tuned. For our study,
we limited the parameters to a suitable range suggested by
the current research approaches on the topics.”*** Although
at present the proposed set of parameters is effective enough
for a satisfied result, several experiments, during which the
four parameters are slightly tuned, still need to be conducted
before the validation of the SDES method. The other problem
falls into the high computation cost of the algorithm. First,
the problem is solved through an alternative optimizing
scheme with respect to two variables and one auxiliary vari-
able. When compared to MLEM method, the time complex-
ity for MLEM method is O(N) (M-step) and for SDES is
O(N?)(most time consuming process was in the update of
the X variable). And more importantly, the clustering algo-
rithm with a Dirichlet process applied for initialization is a
time-consuming task owing to the strategy of determining the
cluster labels pixel by pixel. Additionally, the number of clus-
ters H should be prechosen by experience in the Dirichlet
process.

For future work, we think it would be computationally
promising to perform the clustering process on reasonably
designed pixel patches, which would introduce spatial infor-
mation and make the clustered ROIs less sensitive to noise
corruption. And we would also try other advanced clustering
methods to see whether it would have better results.

6. CONCLUSION

In this paper, we presented a joint reconstruction frame-
work for simultaneously estimating the activity distribution,
parametric images, and segmentation of the ROIs into

Medical Physics, 46 (3), March 2019
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(c) KSC

(d) SDES

different functional areas. Total variation regularization is
performed on the activity distribution domain to suppress
noise and preserve the edges between ROIs. In addition, a
sparsity constraint for the coefficient matrix @ is incorporated
for the regression subproblem of selecting the most related
subset from the overcomplete dictionary based on compart-
mental model theory. Another important feature is that the
dictionary is data dependent since the time activity curve for
the tissue is related to the tracer and different sampling times
may lead to different concentration values. The experimental
results presented in the previous sections demonstrated that
the proposed method has lowest bias, variance, MSE, and
SER compared to the MLEM, DEPICT, kinetic spectral clus-
tering, and k-means methods.
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the Supporting Information section at the end of the article.

Figure S1. Profile of 44th column, 10th frame of PET image
under different choice of o € {2°,26 265 27 28},
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Figure S2. (a) and (b) are the relative bias, variance, and
MSE under different choices y € {0.1,0.33,0.66, 1, 1.33,
1.66,2.33}.

Figure S3. Profile of 44th column, 10th frame of PET image
under different choice of u € {0.01,0.03,0.06,0.10}.

Figure S4. Profile of 44th column, 10th frame of PET image
under different choice of € € {0.5,1,2,3}.

Figure S5. Reconstruction of parametric images K, for brain
phantom data under different counting rates. From top to bot-
tom: DE and SDES.
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Figure S6. Profiles of the estimated parametric images for
K 1-

Figure S7. Reconstructed parametric images of K. (a) Regis-
tration MRI image. (b) parametric images from DEPICT
method. (c) parametric images from DE method. (d) paramet-
ric images from SDES method.

Figure S8. Parametric images of K, for real patient data. (a)
MLEM; (b) DE and (c) SDES.
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