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ABSTRACT

Citation KNN is an important but compute-intensive algorithm for
multiple instance learning (MIL). This paper presents FALCON, a
fast replacement of Citation KNN. FALCON accelerates Citation
KNN by removing unnecessary distance calculations through two
novel optimizations, multi-level triangle inequality-based distance fil-
tering and heap optimization. The careful design allows it to produce
the same results as the original Citation KNN does while avoiding
84-99.8% distance calculations. On seven datasets of various sizes
and dimensions, FALCON consistently outperforms Citation KNN
by one or two orders of magnitude, making it a promising drop-in
replacement of Citation KNN for multiple instance learning.
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1 INTRODUCTION

Different from the traditional supervised learning problems where
an object is represented by an instance, in multiple-instance learn-
ing (MIL), an object is represented by a set of instances which is
defined as a bag. Labels are assigned to bags rather than individ-
ual instances. Based on a collection of labeled bags, MIL classifier
attempts to classify unknown bags. MIL is an important way es-
pecially for modeling many complicated learning problems in the
real world. For example, a whole image can be represented by a
bag while small patches of the image are described as instances; an
article could be represented as a bag while paragraphs or sentences
are described as instances. In the most common case of MIL binary

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

CIKM ’18, October 22-26, 2018, Torino, Italy

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-6014-2/18/10...$15.00
https://doi.org/10.1145/3269206.3271787

67

Xipeng Shen
North Carolina State University
Raleigh, North Carolina
xshen5@ncsu.edu

classification, a bag is labeled positive if there is at least one positive
instance, otherwise, the bag is labeled negative.

MIL is originally proposed by Dietterich et al. [7] to solve musky
molecule prediction task. Since then, the idea of MIL has rapidly
spread out to other fields. Maron and others [16] have applied
MIL on image classification for natural scene. An image is divided
into subimages (instances) and labeled based on the contents of
subimages. For example, the image is labeled as waterfall only if
there is at least one subimage is waterfall. If an image is labeled as
non-waterfall, none of these subimages contains a waterfall. Yang
and others [30] have explored the application of MIL on image
retrieval in a similar approach. MIL has also been introduced to
document categorization [2, 21], web mining [34], computer aided
diagnosis [8, 9, 22], spam detection [10], stock selection [15], remote
sensing imagery data mining [25], object tracking [5, 32], human
action recognition [1], and so on.

A number of MIL algorithms have been developed throughout
the years [2, 4, 15, 19, 27, 31]. For instance, Citation KNN [27] pre-
dicts the label of a new bag by examining both its nearest neighbors
and citers (explained later); MI-DD tries to find a concept point
that is close to at least one instance of every positive bag and no
instances from any negative bag and then use distances to the con-
cept point for classification [15]; and MI-SVM [2] extends SVM
in the MIL settings to maximize the margin around a hyperplane
which separates positive from negative instances/bags. There are
many other work on MIL that we cannot include here for sake of
space; readers may see a prior reference [18] for a comprehensive
survey. Recently, DNN is also introduced into MIL [28, 29].

One of the most important barriers for the use of MIL algorithms
is their long running time. As the nature of MIL requires the con-
siderations of the relations among many bags of instances, these
algorithms are compute-intensive, taking lots of time to run.

This work aims to address the main barrier for MIL. Particularly,
it concentrates on Citation KNN, for three reasons.

(1) First, Citation KNN is one of the most effective algorithms
for MIL. Since its introduction [27], Citation KNN has repeatedly
shown superior performance over alternative MIL algorithms. For
instance, Nguyen and others [18] compared the performance of
21 MIL algorithms on 26 datasets, and Citation KNN consistently
remains in the most competitive list in terms of both accuracy
and speed. A similar observation has been made in some earlier
work [33] as well as in the later many applications of Citation KNN
in various fields [14, 24, 26].

(2) Second, Citation KNN is robust and generally applicable.
Unlike some other MIL algorithms which are based on certain
assumptions on data distributions and other properties of the prob-
lem [25], or designed for specific applications [7], Citation KNN
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is not subject to any of those assumptions and is general-purpose.
Experiments have shown its effectiveness on various kinds of data
and problems [14, 18, 24, 26, 27].

(3) Third, Citation KNN is easy to use and intuitive to interpret.
As a non-parametric method, Citation KNN is easy to deploy and
the results are intuitively interpretable. In comparison, DNN-based
methods require a long training process on a large amount of well-
labeled data, and the results are often difficult to interpret.

For these reasons, despite the proposals of many other methods
throughout the years, Citation KNN remains one of the most im-
portant and popular MIL algorithms. A dramatic improvement of
its efficiency could hence help advance the practical adoptions of
MIL in a broader range of machine learning problems.

Citation KNN is based on Hausdorff distance, and is time-consuming

due to the many costly high-dimensional distance calculations. Even
if we avoid repetitive calculations, the number of distance calcu-
lations is still quadratic to the number of instances which could
be large in many MIL datasets. Moreover, the distance calculation
is usually between high-dimensional vectors. In most MIL appli-
cations, an instance is often characterized by a high-dimensional
vector of over 100 dimensions [11, 12, 34]. These factors make Cita-
tion KNN computationally expensive. Two previous proposals tried
to alleviate the issue by replacing Hausdorff distance with other
similarity measures. Vatsavai [25] modeled each bag as a Gauss-
ian distribution, thus Hausdorff distance calculation is replaced
by measuring difference between probability distributions. Li and
others [13] treated each bag as a graph and then replaced Hausdorft
distance with graph similarity. These proposals unfortunately are
unable to maintain the same results as Citation KNN gives.

This paper tries to solve the problem at a different level, aiming to
speed up Citation KNN without altering its results at all. By strictly
preserving its semantic, the method ensures that the optimized
algorithm can serve as a safe drop-in replacement of the popular
algorithm in all scenarios.

Specifically, this paper introduces a fast multi-level optimization
algorithm for citation KNN named FALCON, which accelerates Ci-
tation KNN by avoiding most distance calculations without chang-
ing the final results. FALCON employs two novel optimizations.
The first is multi-level triangle inequality-based distance filtering. It
efficiently maintains a series of lower bounds and upper bounds of
distances at both bag and instance levels. Equipped with a sequence
of carefully designed computation filters, it avoids unnecessary dis-
tance calculation by examining the two kinds of bounds against the
filtering conditions. The second is heap optimization, which helps
avoid even more distance calculations by controlling the examina-
tion order of instances. Neither optimization alters the semantics
or results of Citation KNN.

Experiments on seven datasets of various sizes and dimensions
confirm that the FALCON algorithm produces the same results
as the original Citation KNN does. At the same time, FALCON
avoids 84-99.8% distance calculations, and consistently outperforms
Citation KNN by one or two orders of magnitude in terms of speed,
making it a promising drop-in replacement of Citation KNN for
MIL studies and applications.

We organize the rest of this paper as following, in section 2 we
give a brief introduction about key ideas in Citation KNN. Section 3
describes the optimization approaches in detail. Section 4 presents
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Figure 1: Maximal Hausdorff distance

the experimental results and comparison with Citation KNN. The
last section summarizes the work.

2 BACKGROUND ON CITATION KNN

The scenarios in MIL problems differ from those in the classic KNN.
In classic KNN, each instance corresponds a single point, but in a
MIL problem, the distance is measured between bags which each
contains a set of instances. Hausdorff distance is used to characterize
the distance between two sets of instances.

2.1 Hausdorff Distance

In Citation KNN, two kinds of Hausdorff distance have been used [27]:
minimal Hausdorff distance and maximal Hausdorff distance. They
have a slight difference in definition, which leads to quite different
optimization strategies in FALCON as we will show later.

Definition 2.1. Given two sets of points A = {aj,...,am} and
B = {by,..., by}, the minimal Hausdorff distance is defined as:

Hmin(A, B) = max{hmin(A, B), hmin(B, A)} (1)

where
hmin(A,B) = min mjin lla; — bjll (2
Definition 2.2. Given two sets of points A = {aj,...,am} and
B = {by, ..., by}, the maximal Hausdorff distance is defined as:

Hmax(A, B) = max{hmax(A, B), hmax(B, A)} (3)

where
hmax(A, B) = max mjin llai — bjl| (4)

Although in the definition, Hy,ip (A, B) equals to the larger one
between hp,in (A, B) and hy,ipn (B, A), they actually always have the
same value as hp,;n is symmetric. Both of them equal to the dis-
tance between two closest instances in two bags. Therefore, we
only need to calculate one of them to get the minimal Hausdorff
distance between two bags. However, this is not the case for maxi-
mal Hausdorff distance in which hpqx (A, B) and hpax (B, A) may
differ.

Let d(a;, bj) represent the Euclidean distance between instance
a; and b;j and d(a;, B) is the smallest distance from instance a; to bag
B. As shown in Figure 1, hyax(A, B) = max; d(a;, B) = d(a1,b1)
while hpax (B, A) = max; d(bj, A) = d(az, bz). Clearly, d(ay, by) is
not necessarily the same as d(ag, b2). To get maximal Hausdorff
distance, we have to calculate both Ay, 4y (A, B) and hpax (B, A).
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Figure 2: R-nearest references and C-nearest citers of an un-
known bag A

2.2 Reference and Citer

Besides Hausdorff distance, the other important concepts in Citation
KNN are reference and citer. Citation KNN borrows the notion of
citation from library and information science: if a paper cites a
previously published paper, the paper is deemed to be related to the
reference. Similarly, if a paper is cited by a subsequent paper, the
citer is also regarded relevant to the paper. When this idea comes
to the context of MIL, it suggests that when labeling a bag, the
algorithm should take into account not only its neighbors but also
the bags that count the concerned bag as a neighbor. For example, as
shown in Figure 2, we have an unknown bag A to label. Firstly, we
find its R-nearest neighbors. Subsequently, we probe each bag other
than bag A to see whether it has bag A in its C-nearest neighbors.
If it does, that bag is a citer of bag A. In this example, it is easy to
see that references of bag A are bags B and C while citers of bag A
are bags B, C, D. Both references and citers will vote to determine
the label of bag A. It is worth noting that bags B and C are both
references and citers of bag A. They thereby each have two votes. In
our example, bag B and bag D are positive while bag C is negative.
Bag A is labeled positive due to 3 positive votes over 2 negative
votes.

2.3 Citation KNN Algorithm

In Citation KNN, for a given unknown bag, the key step is to find
its references and citers. References are the nearest neighbors of
the concerned bag, while for a bag to be a citer of the concerned
bag, its nearest neighbors must include the concerned bag. These
two notions are closely related. If we have an algorithm that finds
K nearest bags for a specific bag, the algorithm can be applied not
only on the concerned bag to find out its references but also on
other bags to find their K nearest bags to see whether the concerned

69

CIKM’18, October 22-26, 2018, Torino, Italy

bag is one of them. This is the essential idea underlying the de facto
implementation of Citation KNN.

Algorithm 1 gives the pseudo code. It works for either min Haus-
dorff or max Hausdorff. It first calculates the distance between each
pair of bags. Since Hausdorff distance is symmetric, for each pair
of bags, the distance only needs to be computed once. For the con-
cerned bag, the algorithm finds its R-nearest bags as its references
and put them into the voter list. For any other bag, if the concerned
bag is one of its C-nearest bags, it is considered as a citer of the
concerned bag; it is also put into the voter list. Finally, all the bags
in the voter list vote to determine the label of the concerned bag.
Most time is taken by the calculations of the distances between
bags. As Hausdorff distance of two bags is based on the distances
between all instances in the two bags, the complexity is quadratic
to the total number of instances.

Citation KNN

input :Bags from input dataset, bag A is the query bag to be
labeled,the number of bags is N

output:Label for bag A

fori— 1toN—-1do

forj«— i+ 1to N do

H(bag;, bagj) = HausdorftDist(bag; ,bag;);

H(bagj, bag;) = H(bag;, bag;) ;

end

if i == A then

find R smallest values in H(bag;, bag;) (t=1,2,...,.N);

Insert the R bag;s into VoterList;

else

find C smallest values in H(bag;, bag;) (t=1,2,....N);

if bag A is one of the C bag; s then

‘ Insert bag; into VoterList;
end

end
end

return the majority bag label in VoterList;
Algorithm 1: Original Citation KNN algorithm

3 OPTIMIZATION APPROACHES

FALCON speeds up Citation KNN by avoiding most of the distance
calculations. It has two key ideas, multi-level triangle inequality-
based distance filtering and heap optimization.

3.1 Multi-Level Filtering

The first key idea tries to avoid unnecessary distance calculations
through bounds-based filtering. FALCON does it at both bag level
and instance level.

In the subsequent sections, we introduce filtering conditions
and bounds of distances used by FALCON. To make used notations
easily accessible, they are organized in Table 1.

Our optimization is based on the well-known triangle inequality
and its definition is given as follows:

THEOREM 3.1. The sum of the lengths of any two sides of a triangle
must be greater than or equal to the length of the remaining side.



Session 1B: Top-K

Table 1: Notations Used in the Paper

Notations Definitions
Euclidean distance between instance a; and in-
d(ai. bj) stance b;
d(ai B The smallest Euclidean distance between in-
(ai. B) stance a; and bag B, d(a;, B) = min; d(a;, bj)
dowr(as, B) The currently smallest Euclidean distance be-
curidi, tween instance a; and bag B
honin(A. B) The smallest Euclidean distance from bag A to
e bag B, hmin(A, B) = min; d(a;, B)
The largest one of all smallest Euclidean
hmax (A, B) distances between instance a; and bag B,

hmax (A, B) = max; d(a;, B)

The currently smallest Euclidean distance from

hcurfmin(A’ B) bag A to bag B

The currently largest one of all smallest Eu-
clidean distances between instance a; and bag
B

hcur—max(As B)

Minimal Hausdorff distance, Hpin(A,B) =

HminB) " tnax(hmin(A. B). hmin (B.4))
Hypax (A B) Maximal Hausdorfl distance, Hyp,qx(A,B) =
| max(hmax (4, B), hmax (B, A))
H(A. B) Hausdorff distance between bag A and bag B,
’ representing both Hp,in(A, B) and Hp,gx (A, B)
Upper/ Lower bound of Hausdorff distance be-
UB/LB(A,B)  tween bag A and bag B, can represent both min-

imal and maximal Hausdorff distance

Upper/ Lower bound of Euclidean distance be-

UB/LB(ai. b)) tween a; and b;

In the context of Citation KNN, let d(x, y) represent the Euclidean
distances between instance x and y. For any three instances a, b, c,
we have:

|d(a,b) — d(b,c)| < d(a,c) < d(a,b)+d(b,c) (5)

As long as d(a, b) and d(b, ¢) are known, triangle inequality pro-
vides a lower bound and an upper bound for d(a, c). These bounds
will be further used to avoid unnecessary calculations. For example,
we want to find the nearest neighbor for instance a, if the lower
bound of d(a, c) is larger than current shortest distance, there is
no need to calculate the exact value of d(a, ¢). This theorem can be
easily extended to include four instances which form a quadrilateral
(or skew quadrilateral if instances are not on the same plane) as
shown in Figure 3. Similarly, the sum of lengths of any three edges
of this quadrilateral/skew quadrilateral must be greater than or
equal to the length of the remaining edge. Therefore, for instance
a,b,c, d, we have:

max{d(a, b)-d(b,c)—d(c,d),0} < d(a,d) < d(a,b)+d(b,c)+d(c,d)

(6)
3.1.1  Bag-level Filtering. FALCON has two levels of filtering. Firstly,
bag-level filtering is applied. If the filtering condition is satisfied,
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Bag A Bag B

Figure 3: The extension of triangle inequality to quadrilat-
eral / skew quadrilateral

the whole bag is filtered out and won’t be considered further. If it
fails, FALCON needs to go inside the bag and calculate distances
between instances. Then instance-level filtering applies.

Due to the difference between minimal Hausdorff distance and
maximal Hausdorff distance, we derive different bounds.

LEMMA 3.2. Va1 € A,b; € B,

Hmin(A,B) > d(a1,by) - max d(ay,a;) — maxd(by,by)  (7)
u

Proor. According to Definition 2.1, Hpin(A, B) equals to the
distance between two closest instances in bag A and bag B. Let a;
and b; be the two closest instances. Using the Formula (6), we have:

Hmin(A, B) = d(aj, bj) > d(a1, b1) — d(a1, a;) — d(b1, bj)

Although the values of i and j are unknown, the distance between
aj and a; must be less than or equal to the longest distance from a;
to all other instances in bag A: d(ay, a;) < max; d(ay, a;). Similarly,
d(b1,b;) < maxy d(b1, by), thus:

Hmin(A, B) = d(aj, bj) > d(a1, b1) — d(a1, a;) — d(b1, bj)

> d(a1,b1) - max d(a1,ar) — maxd(by, by)
u

LEMMA 3.3. Va1 € A,b; € B,
Hmax(A, B) > d(a1,b1) - min(mtax d(ai,ar),maxd(by,by,)) (8)
u

PrROOF. Assume Hpmqx (A, B) equals d(a;, bj) and the closest in-
stance in bag B to aj is by. Thus, d(a;, bj) > d(ay, by). Instances
ai, b, by form a triangle, as shown in Figure 4. Using Formula 5,
we have:

Hmax(A, B) = d(a,-, bj) > d(al, bk) > d((ll, bl) — d(b], bk)
> d(ay,b1) — maxd(by,by)
u
Assume the closest instance in bag A to b; is aj. Using the same
strategy to get another lower bound:
Hmax(A, B) = d(a;, bj) > d(ap, by) > d(a1,b1) — d(a1, ap)
> d(a1, b1) - max d(ay, ar)

Since bounds are supposed to be tight, we always use the larger
one of the lower bounds, which is shown as Formula (8). O



Session 1B: Top-K

Bag A

Figure 4: Bag-level filtering for maximal Hausdorff distance

Lemma 3.2 and 3.3 give the lower bounds of the Hausdorff dis-
tance between bag A and bag B. These lower bounds are used in
filtering conditions.

Filtering condition 1: Assume currently, bag T is the farthest
bag among bag A’s current K nearest neighbors in terms of Haus-
dorff distance (either min or max). If LB(A, B) > H(A,T), bag B
is not one of K nearest neighbors of bag A. (H(A, T) is defined in
Table 1)

Because we know bag B is not in bag A’s K nearest neighbors, it’s
unnecessary to calculate the exact Hausdorff distance between bag
A and bag B. This bag-level filtering brings benefits but also incurs
overhead, because the distances from the chosen instance (a; or
b1) to all other instances in the same bag need to be calculated. For
each bag, the incurred calculations are O(t + 1), ¢ is the number of
instances in the bag, 1 represents the distance calculation between
a; and by. If one bag is skipped, the avoided calculations are O(¢?).
Even though the overhead is much smaller than the benefits, it
is always good to minimize the overhead. FALCON avoids the
overhead by using landmarks as a; and b;. A landmark is just a
point in the data space that is used to form triangles with the points
in the space. There could be multiple landmarks; each instance
is often associated with the landmark that is closest to it. In our
design, the landmarks are chosen such that the distances between
them and other instances in the same bag are already known before
we do this filtering; that helps minimize the overhead. More details
are given in Section 3.1.3.

3.1.2  Instance-level Filtering. If bag-level filtering fails, we have to
calculate the distance between two bags. Instance-level filtering is
used to avoid unnecessary distance calculations for instances.

Instance-level filtering leverages landmarks to construct trian-
gles. The landmarks and the instances form many triangles, based
on which, the bounds of instance distances can be attained. The
distance between a landmark and an instance can be reused for all
the triangles involving that edge.

This part presents three instance-level filters used in FALCON.
In the following discussion, we use a. and b, to represent the
landmarks that a; and b; are associated with, respectively.

LEMMA 3.4.
d(a;, bj) > max(|d(ac, b;j) — d(a;, ac)l,|d(ai, be) — d(bj, be)l) (9)
d(ai, bj) < min(d(ac, bj) + d(a;, ac), d(a;, be) + d(bj, be))  (10)
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Bag A

Bag B

Figure 5: Instance-level filtering

PROOF. a; and b; are any two instances in bag A and bag B. Let
ac and b. be landmarks of a; and b;, respectively. As shown in
Figure 5, there are two triangles: Aa;bjac and Aa;jbcb;. For each
of them, using Formula 5, we can get a lower bound and an upper
bound for d(a;, b;):

Aajbjac - |d(ac, bj) — d(a;, ac)l
Aajbebj : |d(ai, be) — d(bj, be)l

d(a;, bj)
d(a;, bj)

d(ac, bj) + d(ai, ac)
d(ai, be) + d(bj, be)

NN
NN

Since bounds are supposed to be tight, we use the larger one of
lower bounds and the smaller one of upper bounds which lead to
Formula (9) and (10). O

A series of filtering conditions have been carefully designed to
leverage these bounds.

Filtering condition 2: If LB(a;,bj) > dcyur(ai, B), there is no
need to calculate d(a;, bj).

This idea is straightforward. To calculate Hausdorff distance, the
first step is to find out shortest distances from every instance in
one bag to another bag. Since LB(a;, b;) > dcur(ai, B), d(a;, bj) will
not be the shortest distance. Therefore, we do not need to know its
exact value.

Filtering condition 3: For minimal Hausdorff distance calcula-
tion, if LB(a;j, bj) > hcur—min(A, B), there is no need to calculate
d(ai, bj).

The filtering condition works for minimal Hausdorff distance
calculation. Since the goal is to find the shortest distance between
bag A and bag B and there is already a distance h¢yr—min(A, B) less
than or equal to d(a;, bj), we know d(a;, bj) cannot be the shortest
distance. Therefore we can skip the calculation.

Filtering condition 4: For maximal Hausdorff distance, if we
have UB(a;j, bj) < hcur-max(A, B), then we can skip a;. Also, if
UB(ai, bj) > hcur—max(A, B) but d(ai, bj) < heur—max, we still
can skip subsequent calculations for a;.

Maximal Hausdorft distance is the largest one of all shortest
distances from instances in bag A to bag B. If UB(a;, bj) or d(a;, bj)
is less than or equal to hcyr—max(A, B), for both cases, we have
d(a;, B) < d(aj, bj) < heyr—max(A, B). It means d(a;, B) will not be
the largest one among all shortest distances from instances in bag
A to bag B. Thus, it’s not necessary to calculate the exact value of
d(ai, B).

3.1.3  Selecting Landmarks. In previous sections, we have men-
tioned how to capitalize on landmarks to construct triangles so as
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Figure 6: Dividing instances into groups

to apply filtering conditions. This part explains our strategies in
setting these landmarks.

Good landmarks are essential for the tightness of the bounds.
There are three criteria in setting landmarks: (1) They should be
close to instances: Landmarks close to instances are helpful for
constructing tighter bounds per triangle inequality; (2) Landmarks
ideally should be sharable among multiple instances: Landmarks
introduce extra calculations and the sharing lowers the overhead;
(3) Landmarks should be fast to compute.

We draw on the ideas of clustering (e.g. KMeans) for selecting
landmarks. Instances are divided into groups based on distances to
group centers. Instances in one group share the group center as the
landmark. As shown in Figure 6, instances inside one dot line cycle
form a group. They all use the group center, shown as yellow star,
as their landmark.

To compute the group center, classic KMeans runs for many
iterations until convergence. That is often too costly for our usage.
Though more iterations tend to give tighter bounds, it also incurs
more overhead. We have analyzed cost-benefit trade-offs of different
numbers of iterations. We find that using the initial centers chosen
by KMeans++ [3] works well for us. What it does is: (1) choosing
the first center randomly from all the instances; (2) After that,
each subsequent center is chosen from remaining instances with
probability proportional to its distance to the closest centers. The
centers are directly taken as our landmarks. Another benefit this
method brings is that since no further iterations are executed, all
the centers are instances. The distance calculations, during instance-
level filtering, between centers and instances are actual distances
between instances. Therefore these results can be reused when
calculating distance between instances.

It is easy to see that the filtering conditions described so far can
be applied to the calculations of both references and citers. There
are some filtering conditions specific to the calculations of citers.
As they are related with heap optimization, we explain them in the
next part.

3.2 Heap Optimization and Citer-Specific
Filtering
Recall that the basic Citation KNN computes the K nearest neigh-

bors of all bags. The second key optimization in FALCON is named
heap optimization, which is based on the following observation:

To get the references of a bag A, it is necessary to
get the K nearest neighbors of A, but to determine
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whether a bag B is the citer of bag A, we do not have
to compute all the K nearest neighbors of bag B; we
only need to know whether bag A is one of the K
nearest neighbors of bag B.

Based on this observation, we design a strategy which keeps
track of the concerned bag in other bags’ K nearest neighbor lists.

3.2.1 Heap Optimization. Let’s assume the concerned bag is bag
A and we would like to know whether bag B is A’s citer. For bag
B, we maintain a list of its current K nearest neighbors. Every
time when the distance between bag B and another bag has been
calculated, that bag is compared with the largest distance of the
current list of K nearest neighbors; the list is updated accordingly.
In our strategy, the distance between bag B and the concerned bag
(i.e.,A) is calculated first such that the concerned bag is put into
that list first. Then distances between bag B and other bags are
calculated and bags are inserted into that list one by one. The bag
with the largest distance will be removed when the list has more
than K bags. If the bag removed is bag A, we can stop and skip all
the subsequent calculations of nearest neighbors of bag B. Because
it is certain that A cannot be in that list again, which means that
bag B is not a citer of bag A.

We find that the idea can be effectively materialized through
the use of heap data structure. Since we need to find the bag with
largest distance and remove it from the list when there are more
than K bags in that list, iterating through the whole list is inefficient.
Maintaining a sorted list can help but is still not the optimal choice
either. Because we are only interested in the one with the largest
distance, keeping other bags in order causes unnecessary overhead.
Max-heap has some properties that make it a desirable choice. On
max-heap, finding the bag with the largest distance takes O(1) time
while inserting and deleting a bag take O(log(K)) time. Figure 7
gives an example to show the process of checking whether bag B is
a citer of bag A. Let K = 3. Concerned bag is calculated first, then
distances to every other bag are calculated and bags are inserted
into the max-heap. We get an early stop when bag A is removed.

3.2.2  Citer-specific Filtering. Based on heap optimization, we iden-
tify more opportunities of distance filtering for citer calculations.

According to heap optimization, during the process of finding
citers, what we care about is whether the concerned bag is one of
the K nearest neighbors of other bags. For example, we check bag
B to see whether it’s a citer of bag A. Due to heap optimization,
bag A is the first one to be added to bag B’s K nearest neighbor list.
Thus, what interests us is whether bag A is removed from that list.
Because if bag A is removed from that list, we know bag B is not
the citer and thereby skip subsequent calculations for bag B.

Distance calculations fall into two categories: those that have no
influence on the position of bag A in the K nearest neighbor list,
and those that do. Distance calculations in the first category can be
avoided, since it makes no difference on the position of bag A. We
design some special filters for the second category.

Filtering condition 5: Assume the concerned bag is bag A and
we want to find out whether bag B is a citer of bag A. For minimal
Hausdorff distance, if LB(b;,cj) > Hmin(A, B), we can skip the
calculation of d(b;, cj), where, c; is an instance in another bag C.
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Figure 7: Process of inserting bags to max-heap for determin-
ing whether bag B is a 3-citer of bag A (concerned bag).

The correctness can be proved by examining all scenarios of
d(bi,cj). (1) If d(b;, cj) # d(b;, C), we do not need to calculate it,
since what we are interested in is d(b;, C). (2) If d(b;, ¢j) = d(b;, C),
then there are still two possible cases: (2.1) d(b;, cj) = d(b;,C) #
Hpmin(B,C). Because what we are looking for is Hpin(B,C) and
d(b;,C) # Hpmin(B,C), it’s unnecessary to calculate d(b;, C); (2.2)
d(bi,cj) = d(bi, C) = Hpin(B, C).In this case, we have Hyin (B, C) =
d(b;,C) = d(bi, cj) > Hmin(A, B). Thus, the position of bag A will
not be affected, and the calculation of d(b;, ¢j) can be avoided.

Filtering condition 6: Assume the concerned bag is bag A and
we want to find out whether bag B is a citer of bag A. For mini-
mal Hausdorft distance, if UB(b;, ¢j) < Hmin(A, B) or d(bi,cj) <
Hpin(A, B), we can skip all subsequent distance calculations be-
tween bag B and bag C and continue to the next bag (cj is an
instance in bag C).

This is because Hyin(B, C) < d(b;,C) < d(bj, cj) < UB(bj, cj) <
Hpmin(A, B). We can infer Hy,in(B,C) is smaller than Hy,i, (A, B)
without calculating its exact value. This time the position of bag A
will be changed. Since what we care about is the position change of
bag A and whether bag A is still in the list, we do not need to know
the exact value of Hy,ipn (B, C): Aslong as Hpy,in(B, C) is smaller than
Humin(A, B), the influence it brings to the position change of bag A
is the same. The implementation can either explicitly change the
position of bag A or implicitly change it by assigning Hp,in(B,C) a
very small distance value (e.g. 0) without calculating its exact value.

Filtering condition 7: Assume the concerned bag is bag A and
we want to find out whether bag B is a citer of bag A. For maximal
Hausdorft distance, if hcyr—max(B, C) = Hmax(A, B), we can skip
all subsequent distance calculations for bag C.

This filtering condition is straightforward. Since Hpgx(B, C) >
hmax(B,C) > heur—max(B,C) 2 Hmax(A, B), therefore, the posi-
tion of bag A will not be affected. Calculating the exact distance of
Hnax(B, C) is not necessary. It’s worth noting that if Hy,4x(B, C)
is calculated, it may be reused in the future for labeling other bags.

that B is not a 3-citer of A;
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Table 2: Datasets Used in Experiments

Dataset Type #bag  #inst #dim
Musk2 mole. prediction 102 6598 166
Sival Apple img. retrieval 1500 47414 30
Breast Cancer img. classification 60 2002 708
Web Recom. 2 txt. classification 75 2219 6519
Harddrive fail. prediction 369 68411 61
Protein pro. prediction 193 26611 8
Corel African  img. classification 2000 7947 9

FALCON calculates Hy, qx(B, C) at that time only when it turns out
to be necessary.

The two optimizations, multi-level filtering and heap optimization,
together form a synergy that drastically reduces the amount of
distance calculations needed in the original Citation KNN. They
form the core of the FALCON algorithm.

4 EXPERIMENTS

We evaluate the efficacy of FALCON on a variety of MIL benchmark
datasets as shown in Table 2. Musk2 [7] is for musky molecule pre-
diction. Each bag is a molecule and each instance is a conformation
of that molecule. SIVAL [20] is a dataset for image retrieval. Each
image is a bag and every segment is an instance. UCSB breast can-
cer [12] is a medical image dataset in which bags represent images
while instances are patches. Dataset of Web recommendation [34]
is used for text classification. Webpages are considered as bags
and links in the webpage are instances. Harddrive dataset [17] is
used for hard drive failure prediction, in which every instance is
measurements of harddrive at one time point. A Bag contains all
instances in a period of time. In Protein dataset [23], a bag is a pro-
tein and an instance corresponds to the amino acid sequence. The
goal is to predict whether a protein is a TrX-fold protein. Corel [6]
is for image classification. Like other image classification datasets,
bags represent images and instances correspond to patches.

The datasets are chosen to be diverse. The numbers of bags range
from 60 to 2000, instances range from 2002 to 68411, and dimensions
range from 8 to 6519.

Our experiments measure the efficacy of FALCON based on
the number of distance calculations avoided as well as speedups
it achieves. All the experiments are conducted in the following
experimental environment: PowerEdge R620 equipped with 2 Xeon
E5-2670 CPUs, 128GB memory, Ubuntu 14.04.

Experiments are conducted on original Citation KNN, Citation
KNN + Heap Optimization and FALCON can be considered as
Citation KNN + Heap Optimization + Multi-level Filtering. R and C
are set to 2 and 4 in our experiments, which is the setting used by
Wang et al. in their original Citation KNN paper [27]. In FALCON,
the number of landmarks computed and used for each bagis | Z/10]
where Z is the number of instances in a bag. We explored a spectrum
of values, and found that that setting gave the best overall results.
In all experiments, the optimized algorithms produce exactly the
same results as the original Citation KNN does. We hence focus
the following discussions on speedups. The times reported in this
section include all runtime overhead.
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Table 3: Distance Calculations and the Reductions by Proposed Optimizations

dataset distance type Distance Calculations Avoided Calculations
Citation KNN Citation FALCON* Citation KNN + | FALCON
KNN + Heap Heap Optimiza-
Optimization® tion
Musk2 min HD 19995014 5252878 (26.27%) | 1622628 (1.7%) 73.8% 91.9%
max HD 19995014 9462090 (47.32%) | 857137 (1.09%) 52.7% 95.7%
Sival Apple min HD 1123294157 78164942 (6.96%) | 15178458 (0.1%) | 93.0% 98.6%
max HD 1123294157 37995169 (3.38%) | 10156332 (0.41%) | 96.6% 99.1%
Breast Cancer min HD 1968726 569047 (28.9%) 119847 (1.61%) 71.1% 93.9%
max HD 1968726 1104097 (56.08%) | 301751 (7.15%) 43.9% 84.7%
Web recom.2 min HD 2400819 577808 (24.07%) | 256519 (6.44%) 75.9% 89.3%
max HD 2400819 782251 (32.58%) | 180961 (3.58%) 67.4% 92.5%
Harddrive min HD 2330996059 126960690(5.45%) | 3919790 (0.01%) | 94.6% 99.8%
max HD 2330996059 87705823 (3.76%) | 3649975 (0.03%) | 96.2% 99.8%
Protein min HD 352014663 72952148 (20.7%) | 3537020 (0.03%) | 79.3% 99.0%
max HD 352014663 68280722 (19.4%) | 2506547 (0.17%) | 80.6% 99.3%
Corel African min HD 31557751 1190722 (3.77%) | 587124 (0.3%) 96.2% 98.1%
max HD 31557751 1837272 (5.82%) | 802156 (1.02%) 94.2% 97.5%

*: the distance calculations in columns 4 and 5 include both those left from original Citation KNN and those newly introduced for optimizations. The percentages in parentheses
show the numbers of distance calculations left from original Citation KNN divided by column 3.

Table 4: Running Time Comparison For Different Algorithms

dataset distance type Running time (ms) Speedups (X) over Citation KNN
Citation KNN Citation KNN + | FALCON Citation KNN + | FALCON
Heap Optimiza- Heap Optimiza-
tion tion
Musk?2 min HD 53882 14075 6011 3.8 9.0
max HD 64839 25937 2965 2.5 21.9
Sival Apple min HD 674207 46865 31070 14.4 21.7
max HD 760075 25593 10379 29.7 73.2
Breast Cancer min HD 22571 6415 1622 3.5 14.0
max HD 22878 12963 3755 1.8 6.1
Web recom.2 min HD 248650 61088 28329 4.1 8.8
max HD 253788 82795 21164 3.1 12.0
Harddrive min HD 2336980 127052 19741 18.4 118.4
max HD 2416732 91120 7225 26.5 334.5
Protein min HD 62669 12627 10765 5.0 5.8
max HD 73666 13861 2169 5.3 34.0
Corel African min HD 28238 943 1494 29.9 18.9
max HD 38769 1739 1453 22.3 26.7

4.1 Avoided Calculations

Table 3 reports the numbers of distance calculations each of versions
has on every dataset to label an unknown bag. For all datasets,
the first bag is treated as the test bag, all other bags are used as
training bags. Except for the numbers in the parentheses, all the
numbers are based on the total distance calculations. For FALCON,
it includes both the ones left from the original Citation KNN and
those introduced by our optimizations. The percentages shown in
parentheses of columns four and five show the fractions of distance
calculations left from the original citation CNN.

According to column six, on average, 80% distance calculations
are avoided by Heap Optimization. The benefits vary on these

datasets. For example, when we use maximal Hausdorff distance
(maxHD) in Breast Cancer dataset, it only reduces less than 50%
distance calculations. But for Sival Apple dataset, more than 90%
distance calculations can be avoided by this approach. FALCON
manifests consistent superior performance. On average, FALCON
avoids more than 94% distance calculations compared with the orig-
inal Citation KNN. It shows significant improvements, especially
on datasets where Heap Optimization does not perform very well.
For the Breast Cancer dataset with maxHD, FALCON attains 84.7%
reduction which is about 2 time more than what Heap Optimization
gets. On Musk2 dataset with maxHD, FALCON improves the result
from 52.7% to 95.7%. For some other datasets, the improvement is
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Figure 8: Breakdown of distance calculations of FALCON.

not that large. One important reason is that Heap Optimization has
done a good job on those datasets. There is not much space left for
multiple-level filtering to improve. It is worth noting that according
to Table 3, the best results are on dataset Harddrive, Protein, and
Sival Apple which happen to have the most bags and instances
among all datasets. This is consistent with our intuition that more
bags and instances lead to more space for improvement. With the
growing size of dataset, FALCON is expected to have even better
performance.

4.2 Overall Speedups

Table 4 reports the run times and the overall speedups that the heap
optimization and FALCON bring. In the calculations of the speedups,
the run times of FALCON include all the overhead incurred by all
the filters and optimizations it uses. (We report a detailed analysis
of the overhead in the next subsection.)

FALCON brings one or two orders magnitude speedups for al-
most all the datasets. On average, Heap Optimization achieves 11
times speedups over Citation KNN. Based on that, multi-level opti-
mization further brings another four times speedups. One of results
we would like to highlight is that FALCON attains 334.5X speedups
in Harddrive dataset with maxHD. This attributes to FALCON’s
outstanding performance in reducing calculations. According to Ta-
ble 3, FALCON successfully avoids 99.8% calculations on Harddrive
dataset with maxHD.

Heap optimization alone leads to some substantial speedups (1.8
29.9X), upon which, multi-level filtering adds significantly more on
most datasets. An exception is Corel African dataset with minHD,
heap optimization excels in this case. From our understanding, this
is because Corel African dataset has limited number of instances
per bag. Many bags only has two instances. There is not enough
space for multi-level filtering to take effect and extra calculations
associated with filtering make FALCON more expensive choice.

On average, FALCON gives more speedups on maxHD than on
minHD. It is due to Filtering condition 4, which helps remove a
large number of calculations in the maxHD case. Another reason is
that maxHD gets a much tighter bound at bag-level filtering. The
cost for filtering a distance calculation at bag-level is much cheaper
than that at instance level. That also explains why maxHD is faster
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than minHD even if the avoided amounts of calculations are almost
the same.

Comparisons with Alternatives. Based on the relative speeds of
Citation KNN and other MIL algorithms reported in previous lit-
eratures [18], the significant speedups over Citation KNN make
FALCON the fastest MIL. For instance, on Musk2, one of the most
popular datasets used in almost every MIL literature, the speedup
from FALCON over Citation KNN (9X) makes it substantially outper-
form all the 10 MIL algorithms measured in the previous study [18]
(e.g., 22X over mi-DS, 114X over mi-DD, and 55X over mi-EMDD).
It is worth noting that the speedup of FALCON on Musk2 is actually
one of the most modest ones; it shows much larger speedups over
Citation KNN on other datasets as reported in Table 4.

4.3 Detailed Analysis

This part provides a breakdown of the distance calculations in FAL-
CON. They fall into four categories: (1) Calculations for grouping;
(2) Calculations for bag-level bounds; (3) Calculation for instance-
level bounds; (4) Unavoided calculations in Citation KNN.

Calculations for grouping: When FALCON divides each instances
into a group by KMeans++, the distance calculations take place
between instances and group centers in the same bag. This is an
extra overhead when compared with the original Citation KNN in
which distances between instances in the same bag need not to be
calculated. The amount of this type of calculations depends on the
size of the bag. Since we use k = | Z/10], where k is the number of
groups in the bag and Z is the number of instance in the bag, it’s
easy to see this overhead is O(Z?) for one bag. As Figure 8 shows,
as only one iteration of KMeans++ take places, this category does
not weigh heavily for most cases. On dataset Harddrive, grouping
calculations weight relatively a large portion. That is because it has
a much larger bag size than other datasets according to Table 2.

Calculations for bag-level bounds: This type of calculation is for
bag-level filtering. For each pair of bags, only the distance between
the first instances in two bags is calculated. In addition, distances
between the first instance and all other instances in the same bag
are calculated to find the longest one which is required by Formulas
8 and 9. The overhead is O(N + M?), where N is the total number
of instances and M is the number of bags. It is negligible when
compared with other types of distance calculations as shown in
Figure 8.

Calculations for instance-level bounds: This part is the heaviest
for most datasets in our experiments. When bag-level filtering fails,
calculations come to the instance level. Instances-level bounds are
much tighter than those at bag-level, but it also requires much more
calculations to build. One group center needs to have distance to
all instances in the other group so that the distance can be reused
by its group members to construct triangles. In the worst case, the
overhead is O(Z?) for each bag. Fortunately, FALCON sees a much
smaller overhead than that: Since all the group centers are instances,
all of these distance are reusable in the subsequent steps.

Unavoided calculations in Citation KNN: This part of distance
calculations can not be avoided with any of the filters. Their exact
values must be calculated. As shown in Figure 8, the percentage of
remaining calculations in dataset Web Recom.2 is relatively large



Session 1B: Top-K

because the large ratio between its dimensionality and its number
of bags makes distance filtering relatively more challenging.

Overall, the experiments indicate that FALCON is effective across
the numbers of dimensions or dataset sizes. The benefits are the
greatest when the dataset is large (with many data instances and
bags), as the large number of distance calculations in such settings
provide a large room for the filters to take effects.

5 CONCLUSIONS

This work studies Citation KNN and proposes FALCON as a practi-
cal replacement of Citation KNN with one or two orders of mag-
nitude speedups. FALCON detects and avoids unnecessary calcu-
lations via carefully designed multi-level filtering and heap opti-
mization. Experiment shows that, FALCON reduces 84-99.8% dis-
tance calculations and achieves 6-334X speedups without affect-
ing the results of Citation KNN. FALCON shows the promise as
a drop-in replacement of Citation KNN for practical MIL stud-
ies and applications. (The source code of FALCON is available in
https://www.github.com/PICTureRG/FALCON)
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