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ABSTRACT
Today’s rapidly growing document volumes pose pressing chal-
lenges to modern document analytics frameworks, in both space
usage and processing time. Recently, a promising method, called
text analytics directly on compressed data (TADOC), was proposed
for improving both the time and space efficiency of text analytics.
The main idea of the technique is to enable direct document analyt-
ics on compressed data. This paper focuses on the programming
challenges for developing efficient TADOC programs. It presents
Zwift, the first programming framework for TADOC, which con-
sists of a Domain Specific Language, a compiler and runtime, and a
utility library. Experiments show that Zwift significantly improves
programming productivity, while effectively unleashing the power
of TADOC, producing code that reduces storage usage by 90.8%
and execution time by 41.0% on six text analytics problems.

CCS CONCEPTS
• Software and its engineering → Compilers; Domain spe-
cific languages; • Information systems → Data analytics;

KEYWORDS
Compilers, Domain Specific Languages, Text Analytics

1 INTRODUCTION
As data analytics becomes an increasingly important workload
running on today’s high-performance computing systems, how to
improve the performance of high-performance data analytics is
already an important topic in HPC [11, 21, 34]. Text analytics is
an important class of high-performance data analytics problems,
specializing on deriving statistics, insights, or knowledge from
textual documents, such as system log files, textual content of web
pages, phone or email records. It is essential for many domains,
ranging from HPC system diagnosis, to health, security, and more.
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This paper explores a recently-proposed approach to improving
both the time and space efficiency of text analytics, called text
analytics directly on compressed data (TADOC) [33]. The basic idea
of TADOC is to conduct text analytics directly on compressed data,
without recovering the original uncompressed data.

Even though data compression is commonly used in text analyt-
ics, all existing practices need to first decompress the data before
processing them, which does not reduce but lengthen the process-
ing time. An exception is Succinct [2]. Although Succinct processes
compressed data directly, it is specific to the database domain, and
it is designed mainly for the search and random access of arbi-
trary strings, rather than supporting general text analytics (more
in Section 8).

By leveraging a compression algorithm called Sequitur [20], TA-
DOC is feasible for general text analytics. Sequitur compresses a
sequence of symbols into a Context-Free Grammar (CFG), which
can be represented with a Directed Acyclic Graph (DAG). Text ana-
lytics can then be performed directly on the DAG. Compression by
Sequitur takes time. Fortunately, many datasets (e.g., Wikipedia [1],
UCI Machine Learning Repository [16]) are used for various ana-
lytics tasks by many users repeatedly. For them, compression time
is well justified by the repeated usage of the compression results.

Directly working on compressed data, TADOC can save both
time and space. Space-wise, its reduced data size saves not only
the storage space, but also the amount of memory needed for pro-
cessing the data. Time-wise, because it processes the compressed
data where multiple duplications of an entry in the original dataset
are already folded into one copy, TADOC can avoid repeatedly
processing those duplications, and hence achieve speedup.

Unfortunately, developing programs to effectively apply TADOC
to a given text analytics problem is challenging, especially for gen-
eral programmers. The key to TADOC’s time benefits is its reuse of
processing results across multiple appearances of the same string
in the original input. Such reuse helps avoid repeated processing.
However, such reuse also requires the computation results to be
saved and frequently propagated through the DAG. It is hence both
important and tricky to strike a good tradeoff between the reuse
and the overhead required to exploit it.

The problem is further complicated by the differences between
the various analytics problems (e.g., some care about the boundaries
of different files in the input dataset, some care about the order of
words), the attributes of input datasets (e.g., sizes, numbers of files,
unique words), and the demands for scalable performance. As a re-
sult, suitable ways (data structures, DAG traversal order, processing
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algorithms) to implement TADOC differ across analytics problems
as well as across input datasets. Although TADOC converts docu-
ment analytics to graph problems, using general graph processing
frameworks (e.g., Ligra [26]) does not solve these problems as these
complexities are specific to text analytics; programmers would still
need to deal with these complexities in their own code. A previous
study [33] discusses the complexities and provides some guidelines
for programmers to follow. However, developing efficient TADOC
remains a difficult task for general programmers.

The objective of this work is to remove the major barriers to
practical adoption of TADOC through the development of a pro-
gramming system support. Specifically, we present Zwift, the first
programming framework for TADOC. Zwift consists of an embed-
ded domain-specific language (DSL), called the Zwift Language, a
compiler and runtime, and a utility library.

Using the Zwift Language, programmers can easily express the
basic elements of the text analytics of interest. These elements in-
clude data representation, domain of values, operators, direction,
and are described in Section 5. The language also offers program-
mers the flexibility to write multiple (optional) ways to process the
data if they are uncertain about which one works best. With the
Zwift Language, programmers can concentrate on the functionality
aspect of the data analytics solution without having to consider the
many sophisticated performance factors.

The Zwift compiler automatically assembles the basic elements
into an efficient program for TADOC. A major challenge is how to
enable the produced code to employ the data structures and algo-
rithms that best fit the specific analytics problems. Zwift addresses
this challenge via a hybrid method that combines rules with offline
profiling. Users have the option to provide multiple versions of
code and some training inputs. The Zwift compiler generates an
executable file for each version, measures the time on the training
input, and selects the suitable version.

Zwift relieves programmers from most of the efficiency concerns
and complexities for implementing TADOC. Our experiments on
six text analytics problems demonstrate that Zwift significantly
improves programming productivity: it reduces the number of lines
of source code by 84.3%, and the program development time by
80%. At the same time, Zwift-produced code has performance that
is comparable to or even better than that of manually-developed
code. Overall, Zwift is effective in unleashing the power of TADOC:
it reduces storage usage by 90.8% and execution time by 41.0%,
compared to data analytics on uncompressed data.

2 BACKGROUND
This section provides background on TADOC, including the com-
pression algorithm it builds on, and its basic idea.

2.1 Sequitur
The underlying compression algorithm of TADOC is Sequitur. Se-
quitur [20] is an algorithm for inferring a hierarchical structure
from a sequence of discrete symbols. For a given sequence of sym-
bols, it derives a context-free grammar (CFG), with each rule in
the CFG reducing a repeatedly-appearing string into a single rule
ID. As it references all occurrences of the original string with the

corresponding rule ID, the resulting CFG is usually more compact
than the original input.

Figure 1 provides an illustration of Sequitur. Figure 1(a) shows
the original input. Figure 1(b) shows the output of Sequitur in
the form of a CFG. The CFG uncovers the repetitions in the input
string as well as the hierarchical structure of the string. It uses R0 to
represent the entire string, which consists of substrings represented
by R1 and R2. The two instances of R2 in R0 reflect the repetition of
“a b c a b d” in the input string. Similarly, the two instances of R1 in
R2 reflect the repetition of “a b” in the substring of R2. The output
of Sequitur is often visualized with a directed acyclic graph (DAG),
as Figure 1(c) shows. The edges indicate the hierarchical relations
among the rules. For efficiency, in Sequitur compression results, we
represent each word with a unique non-negative integer, and each
rule ID with a unique integer greater than N , where N is the total
number of unique words contained in the dataset. Figure 1(d) gives
the numeric representations of the words and rules in Figures 1(a,
b), while Figure 1(e) shows the CFG in numerical form.

R1:

R2:

R0:

R0 → R1  a   R2   R2
R1 → a    b
R2 → R1 c    R1 d

a b a a b c a b d a b c 
a b d

Input: Rules:

(a) Original data (b) Sequitur compressed data (c) DAG Representation

R2

R1 c R1 d

a b

a: 0 b: 1 c: 2 d: 3
R0: 4    R1: 5    R2: 6

(d) Numerical representation

4 → 5  0 6 6
5 → 0 1
6 → 5 2 5 3

(e) Compressed data in numerical form

R1 R2a

Figure 1: Illustration of Sequitur for compression.

Sequitur has several properties that make it appealing for our use.
First, the CFG structure in its outputmakes it easy to find repetitions
in input strings. Second, its output consists of the direct (sequences
of) input symbols rather than other indirect coding of the input
(e.g., the distance used in LZ77 [36] and suffix array [19]). These
properties make Sequitur a relatively easy fit for materializing the
idea of compression-based document analytics. Note that we do
not rule out the possible use of other compression algorithms for
TADOC. The insights attained in this work hopefully could apply
to other compression algorithms. A limitation of Sequitur is that its
compression is relatively slow. However, as TADOC is designed for
data with heavily repeated usage, compression time is not a major
concern.

2.2 Basic Idea of TADOC
We take word count as an example to explain the basic idea of
TADOC.

Word count [3, 7, 22] is a basic algorithmwidely used in document
classification, clustering, and theme identification. It counts the total
appearances of every word in a given dataset which often consists
of a number of files. Its inputs and outputs are as follows:

• Input: {file1, file2, file3, file4, file5, ...}
• Output: <word1, count1>, <word2, count2>, ...
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Figure 2 shows a possible implementation for word count with
TADOC. We use the DAG that Sequitur generates on the string
shown in Figure 1 (a) as the example. The processing consists of
two main steps. The first step calculates the frequency with which
each rule appears in the entire dataset ( 1 to 3 in Figure 2).
This step is performed via a preorder traversal of the graph: parent
nodes pass their frequencies to their children, from which, the
child nodes can calculate their frequencies. With this step done,
the second step ( 4 in Figure 2) just needs to go through each of
the rules once (with no need for another graph traversal). When it
goes through a rule, it can use the total frequencies of the rule to
calculate the local frequencies of a word. Here, the local frequency
of a word is the directly-observable frequency of the word in the
right-hand side of the rule (i.e., local word table, without considering
its subrules), multiplied with the frequency of that rule (weight).
By summing up the local frequencies across all rules for each word,
this step provides the final results. For example, the local frequency
of word a is 1 in R0 (weight: 1, local word table: <a,1>, 1×1), and 5
in R1 (weight: 5, local word table: <a,1>, 5×1), so the word a’s total
frequency is 6. Similarly, the word b has a total frequency of 5.

Weight of R1: 5
Local word table in R1: <a,1>, <b,1>

Weight of R2: 2
Local word table in R2: <c,1>, <d,1>
Local rule table in R2: <R1, 2>

Weight of R0: 1
Local word table in R0: <a,1>
Local rule table in R0: 
<R1,1>, <R2, 2>

4

2

R1 calculates its weight, which is 5 
(4+1).

R0 propagates the frequency of R1 (which is 1) to R1, 
and the frequency of R2 (which is 2) to R2.

R2 calculates its weight (which 
is 2), and propagates the frequency 
of R1 multiplied by R2’s weight to R1.

1

We integrate the local word table in each 
node multiplied by its weight as the final result.

1

2

3

4

R0: R1 a R2 R2

R2: R1 c R1 d

R1: a b

Figure 2: Illustration of a preorder traversal algorithm for
word count on the same string as Figure 1 deals with. The
weights on an edge between two nodes (say, nodex to nodey )
indicate the total appearances of nodey ’s rule incurred due
to all appearances of nodex ’s rule.

Note that there are other possible implementations. For example,
we can traverse the graph in postorder (children before parents):
Each node counts local word frequency (i.e., the word counts imme-
diately contained in this node’s rule without considering subrules)
and then adds the word counts from its children nodes to its own
word counts. The word counts obtained in the root node give the
final results.

3 PROGRAMMING CHALLENGES
Developing an efficient program for effectively applying TADOC to
a given text analytics problem is challenging, especially for general
programmers. It fundamentally faces a cost-benefit tradeoff that
is determined by many factors, ranging from what data structures
to use for saving and propagating information across the DAG,
to the traversal order of the DAG, the different properties and
requirements of different text analytics problems, the attributes of
the input datasets, and so on. The seminal study of TADOC [33]
describes complexities in three main dimensions, which we list as
follows.

(1) Problem dimension. Different analytics problems have differ-
ent requirements and complexities. We use two other analytics
problems to explain.

Inverted index [3, 9, 29] builds word-to-file indices for a document
dataset. It is widely used in search engines. The input of inverted
index is a set of files, and the output is the mappings between words
and files. So unlikeword count, which treats inputs as a bag of words,
inverted index distinguishes one file from another.

Sequence count [3, 15, 31] is another example problem. It counts
the number of appearances of every l-word (e.g., l=3) sequence
in each file. Sequence count is very useful in semantic, expression,
and sequence analysis. Compared to word count and inverted index,
sequence count needs to not only distinguish between different files,
but also discern the order of consecutive words.

Due to these special requirements, the algorithm in Figure 1 can-
not work for these two problems. The programmer must redesign
the algorithm to somehow identify and carefully handle the file
boundaries. For sequence count, the algorithm must, in addition,
be aware of the order of appearance of words in the DAG. As an
l-word sequence may span the boundaries of multiple nodes in the
DAG, the algorithm must treat the boundaries and order of nodes
with caution.

(2) Implementation dimension. As shown in the word count exam-
ple in Section 2.2, there are multiple ways to implement TADOC for
a given data analytics problem. These different implementations
may use different orders for graph traversal, and employ different
data structures to store and pass intermediate data across the DAG.
As a result, they may save different amounts of processing time and
also incur different amounts of overhead. The best decision may be
hard to determine as it may depend on the attributes of the input
datasets (as discussed next). In addition, there are different types
of execution platforms, ranging from parallel to distributed envi-
ronments. Writing parallel or distributed code is often difficult for
general programmers; requiring a version for each type of platform
adds more difficulty for both code development and maintenance.

(3) Dataset dimension. The attributes of input datasets may some-
times substantially affect the overhead and benefits of a TADOC
implementation. For instance, when solving inverted index, one
method is to propagate the list of files in which a word appears
through the graph. This approach could work efficiently if there are
a modest number of files, but would incur substantial propagation
overhead when the number of files is large as the list to propa-
gate could get very large. So, datasets of different properties could
demand a different design in what to propagate and the overall
traversal algorithm.

These complexities make it challenging for general programmers
to adopt TADOC. Our experience shows that a poorly written
TADOC program could easily cause the overheads that outweigh
the benefits. These difficulties motivate our development of Zwift.

4 A CONCEPTUAL FRAMEWORK
To create a programming framework for TADOC, we need to first
get a unified view of the various TADOC problems. Doing so could
allow us tomap themany different problems to the same abstraction,
and hence offer a unified programming framework.
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The view we get is inspired by the classic data flow framework
in compilers, which unifies the treatment of various data flow prob-
lems. Through examination of various text analytics problems, we
create a unified conceptual framework for TADOC (unified frame-
work in short). It captures the common operations and workflows
of TADOC through a six-element tuple (G, V , F ,

∨
, D,

∧
), defined

as follows:
(1) A graphG , which is the DAG representation of the compres-

sion results of Sequitur on a dataset.
(2) A domain of values V , which defines the possible values as

the outputs of the document analytics of interest.
(3) A domain of values F , which defines the possible values to

be propagated across G.
(4) A meet operator

∨
, which defines how to transform values

in F at one step of the traversal of G.
(5) A direction of the value flowD, which is FORWARD (parents

before children) or BACKWARD (children after parents) or
DEPTHFIRST (in the order of the original files).

(6) A gleaning operator
∧
, which defines how to transform

values in V in the final stage of the analytics.
The solutions to the various document analytics problems listed

in the previous sections can all be mapped to this abstract model.
Each can be regarded as an instance of the unified framework, with
the six components instantiated using values specific to the analyt-
ics problem.

Take word count as an example. For that problem, G is the DAG
of the Sequitur compression results on the dataset of interest, and
V is the set of < w,n >, wherew is a possible word, and n is a non-
negative integer. The two algorithms described in Section 2.2 for
solving the word count problem are essentially different instances
of the unified framework with different definitions of F , D,

∨
, and∧

. The solutions to the other two analytics problems outlined in
Section 3 can be mapped to the unified framework in a similar
manner. For sequence counting, for instance, G is the DAG of Se-
quitur results, V is < s,n > (s represents a l-long word sequence,
n a non-negative integer), F contains empty operation, D can be
DEPTHFIRST,

∨
increases counts in some global or local tables to

record intermediate results,
∧

calculates frequencies of rules and
combines recorded results when necessary.

High-Level Algorithms for Solving Sequitur-Based Document Ana-
lytics Problems. After abstracting various concrete analytics prob-
lems into our unified framework, we can examine the solutions to
various Sequitur-based document analytics problems in a single
view. Despite their differences, all the solutions to these problems
are essentially variants of the following high-level algorithm.

High-level algorithm for Sequitur-based document
analytics:

(1) Loading: Load Sequitur grammar, build G (or its vari-
ants), and initialize the data structures local to each
node or global to the algorithm.

(2) Propagation: Propagate information with the meet
operator

∨
while traversing G in direction D.

(3) Gleaning: Glean information through the gleaning
operator

∧
and output the final results.

We find that this high-level algorithm suits all document analyt-
ics problems we have encountered. The main differences among the
different solutions to a problem are mostly about the information
they propagate, the meet and glean operators they use, the direc-
tion of the traversal, and the assisting data structures they employ.
These aspects together cover the set of most important factors that
determine the efficiency of the constructed solutions, and lay the
basis of our design of the Zwift programming framework.

5 THE ZWIFT LANGUAGE
Based on the conceptual framework in the previous section, we
develop a DSL, called Zwift, for programming text analytics to make
use of TADOC with ease. To ease understanding, we explain the
Zwift DSL through informal intuitive descriptions and examples
rather than formal language semantic definitions. Listing 1 shows
the main constructs in Zwift.

Listing 1: Zwift DSL template.
1 ELEMENT = LETTER / WORD / SENTENCE
2 USING_FILE = true / f a l s e
3 NodeStructure = {
4 / / da ta s t r u c t u r e s i n each node
5 }
6 Init = {
7 / / i n i t i a l i z a t i o n s f o r each node i n ZwiftDAG
8 }
9 Direction = FORWARD / BACKWARD / DEPTHFIRST
10 Action = {
11 / / a c t i o n s t ak en a t each node du r i n g a t r a v e r s a l
12 }
13 Result = {
14 / / r e s u l t s t r u c t u r e
15 }
16 FinalStage = {
17 / / f i n a l o p e r a t i o n s t o p r o du c e t h e r e s u l t s
18 }

These constructs correspond to the elements in the unified frame-
work presented in the previous section.

(1) ZwiftDAG represents the DAG from Sequitur, corresponding
to G in the unified framework.

(2) Result represents the structure of the analytics result, which
corresponds to V in the unified framework.

(3) NodeStructure represents the user-defined data structures
in each node (F in the unified framework). The construct
Init is for programmers to define the initialization of the
data structures in each node.

(4) Action represents the operations to take in each node during
the traversal of the DAG (

∨
in the unified framework).

(5) Direction represents the direction of data propagation (D
in the unified framework).

(6) FinalStage defines how to get the final result (the gleaning
operator

∧
in the unified framework). Zwift has an optional

section, FinalMerging, which is about how to merge the
results from FinalStage when the inputs are partitioned into
multiple chunks.

Currently, Zwift is implemented as a DSL embedded in C/C++.
It allows only C/C++ code inside the Zwift code constructs (e.g.,
Init, Action, FinalStage). Adding support of Python or other
programming languages is our future work.

In addition, Zwift has some reserved keywords, shown in Table 1.
These keywords are in four categories. The first category is for
indicators. Users set these keywords to indicate certain attributes
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Table 1: Some reserved keywords in Zwift.

Type KeyWord Description
indicators ELEMENT granularity of input: LETTER/WORD/SENTENCE. ELEMENT is also a data type

USING_FILE whether the DAG needs to include file information; default: false
ZwiftNodesExceptRoot if true, the root node shall not perform the code in Action; default: false
NODE_COARSENING node coarsening threshold; default: 0 for no coarsening
EDGE_COARSENING whether Zwift performs edge coarsening; default: false
INPUT_PATH the directory path of the compressed data; default: the first command-line parameter

data type RULEID data type of rule ID
FILEID data type of file ID
ZwiftMap Zwift map data structure
ZwiftVec Zwift vector data structure
ZwiftSet Zwift set data structure

replacement ROOT the root rule ID
NODE the node itself; this will be replaced by the compiler
CHILD child node; this keyword will be replaced by the compiler
PARENT parent node; this will be replaced by the compiler

built-in variables ZwiftDAG the DAG representation of the compression results
FILES number of files
RULES number of rules
WORDS number of words
ruleID the ID of the rule, use NODE.ruleID to get it

of the analytics problem (e.g., whether the analytics discerns file
boundaries). The second category is data types. Some of these are
abstract data structures, which get instantiated by the compiler and
runtime based on the attributes of the analytics problem and the
uncovered properties of the input datasets. An example is ZwiftVec,
which could be substantiated with a regular C++ vector, a one-
level bit vector, or a two-level bit vector as Section 6.2 elaborates.
The third category is for the keywords for replacement. The Zwift
compiler replaces these keywords during compilation. The fourth
category consists of some built-in variables, such as the number of
files, rules, and so on. User code can use these structures without
defining them; the compiler inserts code to define their values at
runtime.

We take word count as an example and show its Zwift code
in Listing 2. Our code first indicates that the application works
at the word level and does not need to discern file boundaries. It
then gives the compiler the permission to optimize the DAG by
coarsening its edges (explained later in this section). It defines
NodeStructure as a structure consisting of a wordCount table, a
ruleCount table, and an integer field named “weight”. Note that
during compilation, the Zwift compiler automatically adds some
extra fields into NodeStructure, including an integer field ruleID
corresponding to the rule ID of the node, and several other fields
to assist the runtime traversal order of the nodes in the DAG, as
the next section will explain. NodeStructure is initialized through
the Init block, where the keyword NODE indicates the node itself
and will be replaced by the compiler with actual variables, such
as “ZwiftDAG.Nodes[i_zwift]”. Zwift_IsWord() checks whether
an element in a rule is a word or a rule. The code sets the DAG
traversal direction to FORWARD. Zwift has three predefined traversal
directions; FORWARD means a preorder (parents before children),
BACKWARDmeans a postorder (children before parents), DEPTHFIRST
means a depth-first traversal of the DAG. The Action block specifies
the actions to take for each node during the DAG traversal. The

Listing 2: Word Count using Zwift.
1 ELEMENT = WORD
2 USING_FILE = f a l s e
3 EDGE_COARSENING = true
4 NodeStructure = {
5 ZwiftMap <ELEMENT , int > wordCount ;
6 ZwiftMap <RULEID , int > ruleCount ;
7 in t weight ;
8 }
9 Init = {
10 i f ( NODE . ruleID == ROOT ) {
11 NODE . weight = 1 ;
12 } e l se {
13 NODE . weight = 0
14 }
15 for ( vector < int > : : iterator i=NODE . input . begin ( ) ;
16 i != NODE . input . end ( ) ;
17 i++) {
18 i f ( Zwift_IsWord ( ∗ i ) )
19 NODE . wordCount [ ∗ i ] ++ ;
20 e l se
21 NODE . ruleCount [ ∗ i ] ++ ;
22 }
23 }
24 Direction = FORWARD
25 Action = {
26 CHILD . weight +=
27 PARENT . weight ∗ PARENT . ruleCount [ CHILD . ruleID ] ;
28 }
29 Result = {
30 ZwiftMap <ELEMENT , int > result ;
31 }
32 FinalStage = {
33 for ( in t i =0 ; i<RULES ; i ++ ) {
34 for ( ZwiftMap <ELEMENT , int > : : iterator
35 j = ZwiftDAG . Nodes [ i ] . wordCount . begin ( ) ;
36 j != ZwiftDAG . Nodes [ i ] . wordCount . end ( ) ;
37 j++)
38 result [ j−>first ]+= ( j−>second ) ∗ ZwiftDAG . Nodes [ i ] . weight ;
39 }
40 }

construct Result defines the structure of the final output. The
construct FinalStage specifies the actions to take at the end of the
DAG traversal.
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Zwift has an optional section of GlobalVariables for program-
mers to define some global variables, and a related section of
GlobalVariableInit for initializing those variables.

When a programmer does not know the optimal implementation
(the optimal may be input dependent), he/she can provide several
versions of Zwift code for constructs Init, Direction, Action, and
FinalStage. The version numbers are expressed as subscripts of
the constructs (e.g., Action[0] and Action[1]). The next section
explains how the Zwift framework selects the appropriate version
on the fly.

6 ZWIFT COMPILER AND RUNTIME
The Zwift compiler and runtime play a critical role in creating
efficient sequential, parallel, or distributed system code for applying
TADOC based on the Zwift code. This section first gives an overview
of the compiler and explains its basic functionality of assembling
the Zwift code. It then elaborates on the important optimizations
conducted by the compiler and runtime through data abstraction,
coarse-grained partitioning, and version selection.

6.1 Overall Structure and Basic Functionality
The Zwift compiler takes in code written in the Zwift Language and
generates the corresponding C/C++ code. It uses the code skeletons
we have constructed based on the common patterns seen in TADOC
programs. Listing 3 outlines the simplified code skeleton for the
sequential version. There are also code skeletons for parallel and
distributed code in Pthreads and Spark, respectively. At a high level,
the compilation goes through the following four main steps: (1) The
compiler reads in the Zwift code and performs static analysis; it
replaces some of the keywords (e.g., ROOT, NODE), instantiates the
abstract data structures (e.g., ZwiftVec, ZwiftMap), and completes
the data structures and code blocks in the Zwift code (e.g., by adding
some counters into NodeStructure for dependence tracking, as
explained later); (2) The compiler inserts the completed code blocks
into the code skeleton that conforms to the traversal direction
specified in the Zwift code; (3) The compiler converts the code to
parallel and distributed versions by leveraging the corresponding
code skeletons. When there are multiple choices of the Action code
blocks, the compiler generates multiple versions of the program
with each version corresponding to one of the choices. (4) The
programmers can do profiling runs on the multiple versions and
create a version selector for runtime adaptation.

Some of the operations are worth further explanation, in particu-
lar: the treatment of different traversal orders in the code generation
process, the instantiation of the abstract data structures, version se-
lection, and the creation of the parallel and distributed versions. We
explain the traversal order construction first and then use separate
subsections to elaborate on the other aspects.

Zwift currently has three predefined traversal directions of
DAG, forward, backward, and depth-first. The compiler generates
respective code to materialize each of them.

Forward traversal requires a preorder (parents before children).
The Zwift compiler inserts extra fields into NodeStructure and
employs a ready queue to efficiently ensure the correct visiting
order of nodes. Specifically, it adds a field INEDGES and a field CNT
into NodeStructure. At graph loading time, the INEDGES of each

Listing 3: Sequential code skeleton used by Zwift compiler.
1 # include " Zwi f t . h "
2 . . .
3 s t ruc t NodeStructure {
4 / / <− i n s e r t t h e N o d e S t r u c t u r e i n Zw i f t c od e h e r e
5 . . .
6 }
7 void init ( ) {
8 . . .
9 for ( vector < int > : : iterator i_zwift = ZwiftNodes . begin ( ) ;
10 i_zwift != ZwiftNodes . end ( ) ;
11 i_zwift ++) {
12 / / <− i n s e r t t h e I n i t b l o c k o f Zw i f t c od e h e r e
13 }
14 . . .
15 }
16 / / Zw i f t p r o v i d e s d i f f e r e n t f u n c t i o n s f o r a c t i o n ,
17 / / which r e l a t e s t o d i r e c t i o n , su ch as
18 / / F o rwa rdAc t i on ( ) , BackwardAc t i on ( ) . We t a k e
19 / / F o rwa rdAc t i on ( ) a s an example
20 void ForwardAction ( ) {
21 . . .
22 / / c o n s t r u c t f o r − l o op , u s i n g L i s t i n g 2 as example
23 for ( ZwiftMap < int , int > : : iterator i_zwift
24 = ZwiftNodes [ head ] . ruleCount . begin ( ) ;
25 i_zwift=ZwiftNodes [ head ] . ruleCount . end ( ) ;
26 i_zwift ++ ) {
27 / / <− i n s e r t t h e a c t i o n i n t h e Zw i f t c od e h e r e
28 . . .
29 }
30 . . .
31 }
32 void FinalStage ( ) {
33 / / <− i n s e r t t h e F i n a l S t a g e i n Zw i f t c od e h e r e
34 }
35 in t main ( ) {
36 . . .
37 init ( ) ;
38 ForwardAction ( ) ;
39 FinalStage ( ) ;
40 . . .
41 }

node is set to the total number of incoming edges (i.e., parents) of
the node. During graph traversal, the CNT field of a node tracks
the number of nodes’ parents that have been processed. Once CNT
equals INEDGES, this node is put into the ready queue. Only nodes
in the ready queue can get processed. Initially, only the root node is
in the queue. A node is removed from the queue after it is processed.
When the queue is empty, the traversal is done.

In the Zwift DAG, a parent node knows which nodes are its
children, but a child node has no knowledge about its parents.
Backward traversal is, therefore, implemented with recursive calls.
The calls start from the root node and recursively reach the leaves
where the actual processing gets started. Because a node can be the
child of multiple parent nodes, the Zwift compiler inserts code to
track the status of a node at runtime to avoid processing a node
repeatedly.

Depth-first traversal is particularly useful for analytics (e.g., se-
quence count) that are sensitive to the original appearance order
of words in the input. It ensures that the traversal order is in the
same order of appearance of the words in the original input, to
facilitate the treatment of sequences spanning node boundaries.
Depth-first traversal is implemented by recursively processing each
item in each rule. Reuse of intermediate results across nodes is still
possible. For example, in sequence count, the frequency of the word
sequences within a node are stored in a local data structure for later
reuse.

As Zwift takes care of all such implementation details, it allows
programmers to focus only on the primary functionality aspects
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and the goals of the analytics problem and solution. We next de-
scribe some key optimizations performed by the Zwift compiler
and runtime for a high computational efficiency.

6.2 Data Abstractions
One feature of Zwift is its use of abstract data structures for compile-
time and run-time optimizations. Programmers use these abstract
data structures in their Zwift code, without worrying about their
efficiency. The compiler instantiates them with one of several op-
tional concrete data structure implementations during code trans-
formations. It makes the selection based on the attributes of the
analytics problem. It inserts code such that, at runtime, based on
the properties of the input datasets, the code automatically config-
ures the use of these concrete data structure implementations to
maximize performance. We explain the optimization through two
of the abstract data structures, ZwiftVec and ZwiftDAG.

ZwiftVec. A ZwiftVec can be instantiated as a regular vector, a
one-level bit vector (regular bit vector), or a two-level bit vector.
The compiler makes the decision based on the problem attributes
specified in the given Zwift code for high efficiency. It uses the bit
vectors when a large set is needed to record Boolean information.
For example, for file-sensitive problems such as inverted indexing,
the algorithm needs to propagate across the DAG the set of files
that contain each word. One possible design is that each node uses
a set structure to store the IDs of the files containing a certain
word. Frequent queries and insertions to the set could cause large
overheads to the processing. An alternative design is that each
node uses a bit vector, with each bit corresponding to a file: 1 for
file presence, 0 otherwise. Such representation can help replace
the slow set operations with fast bit operations. However, it does
not work for all cases. When the number of files is very large, this
design could incur large space overhead, as every node needs such
a vector, and the length of each of the vectors needs to be the same
as the total number of files.

Zwift addresses the problem by adopting a two-level bit vector,
illustrated in Figure 3. Level Two contains a number ofN -bit vectors
(where N is a configurable parameter). Level One contains a pointer
array and a level-1 bit vector. The pointer array stores the starting
address of the level-2 bit vectors, while the level-1 bit vector is used
for fast checks to determine which bit vector in level 2 contains the
bit corresponding to the file that is queried. If a rule is contained in
only a few files, then most elements in its pointer array would be
null. For the level-1 bit vector, only the elements corresponding to
that rule have starting address. For level-2 bit vectors, only the bits
associated with files have values. The two-level bit vector requires
more indirect references than a one-level vector does. But, it uses
much less space. The number of elements in the first-level arrays
and vectors of the two-level bitmap is only 1/N of the number of
files.

Zwift includes all three kinds of implementations for ZwiftVec.
At compile time, it decides whether a regular vector is going to
be used based on whether the vector is used as a set for Boolean
information. If that is the case, it postpones the decision of using
one-level or two-level bit vector to the Zwift runtime. It does that
by creating multiple versions of the code, each using a different bit
vector implementation for a ZwiftVec. At runtime, after the graph
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Figure 3: An illustration of the two-level bit vector for both
memory footprint minimization and access efficiency.

is loaded, the runtime calculates the space cost of using a one-level
bit vector based on the graph size. If the cost is over a threshold
(e.g., half of the available memory), it selects the two-level bit vector
version of the code.

ZwiftDAG. ZwiftDAG, the abstract data structure for the loaded
DAG, features an optimization, coarsening, which includes edge
merging and node coarsening.

As an abstract data structure that programmers use in their Zwift
code, ZwiftDAG is a data structure to hold the loaded DAG. It gets
materialized at compile time. The structure of its node is determined
by NodeStructure in Zwift code (after the compiler adds extra
fields). User code can use ZwiftDAG.Nodes and ZwiftDAG.Edges
to represent all the nodes and edges in the DAG. For example,
Listing 2 uses ZwiftDAG.Nodes to summarize the word counts in
FinalStage.

Coarsening is an optimization that happens during the graph
loading time. Through it, the nodes or edges in the Zwift DAG can
represent the aggregated information of a set of nodes or edges. The
two coarsening methods, edge merging and node coarsening, can
be used together by Zwift runtime. Edge merging merges multiple
edges between two nodes into one, and the weight of the edge may
be used to indicate the number of original edges in the Zwift code.
Edge merging loses the order of words, but helps reduce the size
of the graph and hence the number of memory accesses during
graph traversal. It is helpful for analytics tasks that are insensitive
to word order (e.g., word count and inverted index but not sequence
count). Node coarsening inlines the content of some small rules
(which represent short strings) into their parent rules; those small
nodes can then be removed from the graph.Node coarsening reduces
the size of the graph, and at the same time, reduces the number
of substrings spanning across nodes, which is a benefit especially
important for analytics on word sequences (e.g., sequence count).

Coarsening adds some extra operations, but the time overhead is
negligible if it is performed during the loading process of the DAG.
On the other hand, it can reduce memory space usage and graph
traversal time.

The Zwift Language provides constructs, NODE_COARSENING and
EDGE_COARSENING, to allow users to indicate their preferences for
coarsening, as shown in Table 1. Our compiler automatically gener-
ates code to load user’s data files to instantiate ZwiftDAG, and does
the coarsening at loading time based on user’s specifications. To
enable edge coarsening, the user sets EDGE_COARSENING to true;
to enable node coarsening, the user sets NODE_COARSENING to a
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positive number, which serves as the threshold of the minimum
size of a node (i.e., the total size of all its elements). For nodes below
that threshold, their contents are folded into their parent nodes at
the graph loading process, starting from leaf nodes.

6.3 Parallel and Distributed Code Generation
To obtain scalable performance, Zwift generates parallel and dis-
tributed code versions to leverage parallel and distributed comput-
ing resources. We have explored two methods for parallelism via
Zwift. The first method is a fine-grained method to distribute rules
to different threads, which mainly parallelizes the Action part in
the Zwift code. For instance, for forward processing, the compiler
could generate code to allow multiple threads to simultaneously
process the nodes in the ready queue. This method does not give us
significant parallel performance, due to the synchronization over-
head and the limited amount of parallelism. Some sophisticated
parallel graph processing techniques [33] may potentially help; we
leave in-depth exploration to future work.

The second method explores coarse-grained parallelism, which
provides much better results. The parallelism is at the data level.
When users use the Zwift utility library (described in Section 6.5)
to compress data, by setting some parameters of the call, they can
let the compression API to first partition the input data into smaller
partitions of similar sizes, which can then be processed by different
threads or processes in parallel. To take advantage of this feature,
programmers need to add one extra construct, FinalMerging, into
the Zwift program. This construct specifies how to merge the pro-
cessing results of the partitions into the final output.

The coarse-grained method may lose some opportunities for
reusing results as reuse now happens only within each partition.
However, it avoids the frequent synchronization the fine-grained
method suffers from. Because typical text analytics problems use
large datasets, our experiments show that the coarse-grainedmethod
usually provides better and more scalable performance. On word
count, for instance, the fine-grained parallel version runs 50% slower
than the coarse-grained version even on a small dataset (dataset A
in Table 4).

The coarse-grained method also simplifies the conversion from
sequential code to parallel and distributed versions of the code.
Because there is no communication needed between the processing
of different partitions, the compiler only needs to let each thread or
process run the same sequential code on one partition, and call the
merging block to conduct the final merging. Our implementation
uses a skeleton in Pthreads for the parallel version and a skeleton
in Spark for the distributed version. For the Spark version, Zwift
uses Spark pipe() [30] to directly call the sequential version.

We note that a side benefit of the coarse-grained method is that
it also allows parallel compression of the partitions of the input
data, which helps shorten the compression process.

6.4 Version Selection
As explained in Section 5, for a given application, programmers
may provide multiple Zwift ACTION code versions with different
DAG traversal orders and implementations for a text analytics
problem. Based on the source code, it can be hard to choose the best

implementation, because the performance of many applications
depends on the input dataset.

The solution currently employed in Zwift is a hybrid method
that combines rules with offline profiling. The primary rule is that if
the problem is an order-sensitive problem, then DEPTHFIRST should
be the only choice, because BACKWARD and FORWARD do not traverse
the DAG in the original file order. This rule comes from our earlier
discussions on the special needs of such problems. Other cases are
addressed currently through a synergy between Zwift and program-
mers. By offering the support for automatically generating multiple
versions of the program (as aforementioned), Zwift allows program-
mers to easily run the different versions on some representative
inputs. After observing the performance of the different versions,
the programmer may either settle on one of the versions or write a
wrapper to check certain conditions of the given input dataset to
select the appropriate version to run.

A potential improvement is to automate the version selection
process by deriving an analytical performance model for various
versions of ACTION on DAGs, and then, at runtime determining the
best version to use by plugging into the analytical performance
model the actual features of the current input datasets. We leave a
thorough exploration of this direction to future work.

6.5 Extra Optimization
An extra optimization we find helpful is to perform further com-
pression (e.g., using Gzip) of the compressed results from Sequitur.
Doing so adds some time overhead for data processing as the Se-
quitur results need to be first restored before TADOC starts. How-
ever, we find that the time overhead is orders of magnitude smaller
than restoring the original data because Sequitur results are much
more compact than the original data. This optimization significantly
saves storage space, as Section 7 shows.

7 EVALUATION
In this section, we use six benchmarks and five datasets to evaluate
the performance of TADOC and the effectiveness of Zwift in sup-
porting TADOC, in terms of both programming productivity and
code performance.

7.1 Benchmarks
We use text analytics benchmarks from two publicly-available
benchmark suites, HiBench [13] and Puma [3].

Word Count. This program counts word frequencies, as Sec-
tion 2.2 already describes. Its Zwift code is shown in Listing 2 and
discussed in Section 5.

Inverted Index. This program identifies, for each word, the set
of files containing it, as Section 3 describes. We show its Zwift
code in Listing 4. It contains two implementations, Action[0]
and Action[1], and there are two FinalStages related to these
two different traversals. The Zwift code, equipped with a version
selection module created through offline profiling, automatically
selects one of the versions to use for a given input dataset.

Sequence Count. This program counts, for each file, the fre-
quencies of every distinct three-word sequence it contains. It is
explained in Section 3. The graph traversal order is DEPTHFIRST.
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Ranked Inverted Index. This program produces a list of three-
word sequences in decreasing order of their occurrences in each
document. Similar to sequence count, it is also order-sensitive. Its
direction is hence set to DEPTHFIRST. Its FinalStage contains a
step to rank all sequences based on their counts.

Listing 4: Inverted Index using Zwift.
1 ELEMENT = WORD
2 USING_FILE = true
3 EDGE_COARSENING = true
4 NodeStructure = {
5 ZwiftSet <ELEMENT > wordSet ;
6 ZwiftSet <RULEID > ruleSet ;
7 ZwiftVec <FILEID , ZwiftBit > file ;
8 }
9 Init = {
10 i f ( RULEID ==ROOT ) {
11 for ( in t i =0 ; i<FILES ; i ++ ) {
12 in t start=getPartition ( i ) ;
13 in t end=getPartition ( i + 1 ) ;
14 for ( in t j=start ; j<end ; j ++ ) {
15 i f ( Zwift_IsWord ( ZwiftDAG . Nodes [ 0 ] . input [ j ] ) )
16 result [ ZwiftDAG . Nodes [ 0 ] . input [ j ] ] . insert ( i ) ;
17 e l se
18 ZwiftDAG . Nodes [ j ] . file [ i ] = 1 ;
19 }
20 }
21 }
22 e l se {
23 for ( vector < int > : : iterator i=NODE . input . begin ( ) ;
24 i != NODE . input . end ( ) ; i++) {
25 i f ( Zwift_IsWord ( ∗ i ) )
26 NODE . wordSet . insert ( ∗ i ) ;
27 e l se
28 NODE . ruleSet . insert ( ∗ i ) ;
29 }
30 }
31 }
32 ZwiftNodesExceptRoot = true
33 Direction [ 0 ] = FORWARD
34 Direction [ 1 ] = BACKWARD
35 Action [ 0 ] = {
36 for ( ZwiftVec <FILEID , ZwiftBit > : : iterator i=
37 PARENT . file . begin ( ) ;
38 i != PARENT . file . end ( ) ; i ++ ) {
39 CHILD . file [ ∗ i ] = 1 ;
40 }
41 }
42 Action [ 1 ] = {
43 for ( ZwiftSet <ELEMENT > : : iterator i=
44 CHILD . wordSet . begin ( ) ;
45 i != CHILD . wordSet . end ( ) ; i ++ ) {
46 PARENT . wordSet . insert ( ∗ i ) ;
47 }
48 }
49 Result = {
50 ZwiftMap <ELEMENT , ZwiftSet <FILEID > > result ;
51 }
52 FinalStage [ 0 ] = {
53 for ( in t i =1 ; i<RULES ; i ++ ) {
54 for ( ZwiftSet <ELEMENT > : : iterator j=
55 ZwiftDAG . Nodes [ i ] . wordSet . begin ( ) ;
56 j != ZwiftDAG . Nodes [ i ] . wordSet . end ( ) ; j ++ ) {
57 for ( ZwiftVec <FILEID , ZwiftBit > : : iterator k=
58 ZwiftDAG . Nodes [ i ] . file . begin ( ) ;
59 k != ZwiftDAG . Nodes [ i ] . file . end ( ) ; k++)
60 i f ( ZwiftDAG . Nodes [ i ] . file [ ∗ k ]==1 )
61 result [ ∗ j ] . insert ( ∗ k ) ;
62 }
63 }
64 }
65 FinalStage [ 1 ] = {
66 for ( in t i =0 ; i<FILES ; i ++ ) {
67 in t start=getPartition ( i ) ;
68 in t end=getPartition ( i + 1 ) ;
69 for ( in t j=start ; j<end ; j ++ ) {
70 i f ( ! Zwift_IsWord ( ZwiftDAG . Nodes [ 0 ] . input [ j ] ) )
71 for ( ZwiftSet <RULEID > : : iterator k=
72 ZwiftDAG . Nodes [ j ] . wordSet . begin ( ) ;
73 k != ZwiftDAG . Nodes [ j ] . wordSet . end ( ) ;
74 k++)
75 result [ ∗ k ] . insert ( i ) ;
76 }
77 }
78 }

Sort. This program sorts words in alphabetical order. In Zwift
code, the words are stored in the abstract data structure ZwiftVec.
Its FinalStage calls a sorting function on the vector.

Term Vector. This program outputs the most frequent words
in each file. It needs to keep the file information, so one strategy
is to make ZwiftDAG transmit the file information from the root
to the other nodes first, and then perform word count on the files.
However, this strategy needs to maintain a copy of the word count
of each file in each node, which is costly when there are many files.
An alternative strategy is to transmit word counts from children
to parents in a backward order but not include the root node by
using ZwiftNodesExceptRoot. After all nodes finish the "Action",
the word frequencies of other nodes (all nodes except the root) are
stored in the root’s direct children. Because the root node contains
file information, using the root node and its direct children can eas-
ily calculate the word count of each file and then generate the most
frequent words. The code for this version shares some similarity
with the backward version of inverted index. It can contain both a
backward and a forward version.

7.2 Programming Productivity
Table 2 shows the number of lines of code needed in C++ and in
Zwift. The “C++” column shows the length of the code written for
TADOC without using the Zwift framework; it employs existing
libraries (e.g., the C++11 Library) that may help shorten the code.
The “Zwift DSL” column shows the length of the equivalent Zwift
code. On average, the Zwift code is 84.3% shorter than the equiva-
lent C++ code. Such a comparison is based only on the sequential
code. If we count the parallel and distributed versions, the savings
are even greater, because the sequential version of Zwift code is
sufficient for the Zwift compiler to generate the parallel and dis-
tributed versions, while without Zwift, users would need to write
all three versions separately. In addition, as the Zwift programmer
does not need to worry about the graph traversal implementation
and the various optimizations related to efficiency, our experience is
that the average time per line of code for Zwift is shorter than that
for the C++ code. Therefore, we expect that Zwift’s time savings
for code development would be even greater than the reduction in
lines of code.

Table 2: Lines of code in C++ vs. Zwift.

Programs C++ Zwift DSL
Word Count 267 70
Sort 279 84
Inverted Index 616 78
Term Vector 719 87
Sequence Count 451 28
Ranked Inverted Index 440 31

7.3 Performance
We measure the performance of Zwift on two platforms. One is a
single node machine, and the other is a ten-node cluster on Amazon
EC2 [4], as shown in Table 3. We test small datasets on the single-
node machine with the sequential version of code produced by
Zwift. For large datasets, we use the ten-node Spark cluster with
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the HDFS storage system [8], and run the distributed code produced
by Zwift.

Table 3: Platform configurations.

Platform Single Node Spark Cluster
Operating System Ubuntu 14.04.2 Ubuntu 16.04.1
Compiler GCC 4.8.2 GCC 5.4.0
Number of Nodes 1 10
CPU Intel i7-4790 Intel E5-2676v3
Cores/Machine 4 2
Frequency 3.60GHz 2.40GHz
MemorySize/Machine 16GB 8GB

Table 4 describes the datasets we use in our experiments. Dataset
A is NSF Research Award Abstracts (NSFRAA) from the UCI Ma-
chine Learning Repository [16]. This dataset consists of a large
number of small files (134,631), and we use this dataset to measure
Zwift’s ability to utilize duplicated information among small files.
Dataset B to E are collections of web documents from theWikipedia
database [1]. These datasets consist of large files.

Table 4: Tested datasets. Size is for the original datasets.

Dataset File # Size Rule # VocabularySize
A 134,631 580MB 2,771,880 1,864,902
B 4 2.1GB 2,095,573 6,370,437
C 109 50GB 57,394,616 99,239,057
D 309 150GB 160,891,324 102,552,660
E 618 300GB 321,935,239 102,552,660

We measure the space and time benefits in the following two sec-
tions. We test the performance of datasets A and B on a single node
and datasets C, D and E on the cluster. We have implemented four
versions: (1)manual-direct, which is the baseline text analytics tech-
nique on uncompressed data; (2) manual-gzip, which is the baseline
text analytics technique that uses Gzip to compress data for space
savings and decompress the compressed data during processing
time; (3) manual-opt, which is the version we manually developed
to apply TADOC on our Sequitur-compressed data with all the
optimizations we described in the paper except version selection; in
case of multiple possible directions to implement, manual-opt just
uses the one that works best for most of our testing datasets; (4)
Zwift, which is the code using our DSL with all the optimizations,
including version selection. We use manual-direct as the common
baseline for comparison.

7.3.1 Storage Benefits. Table 5 reports the storage savings of
manual-gzip and Zwift. Compared to the original uncompressed
datasets, Zwift reduces storage usage by 90.8%, even more than
manual-gzip does. This is because the Sequitur-based algorithm
provides the first round compression, which makes the data smaller
than the original size, and then the second-round compression by
Gzip makes the data even more compact. Table 5 also shows that
larger datasets can be compressed better with Zwift.

Table 5: Storage savings.

Dataset manual-gzip (%) Zwift (%)
A 82.93 84.67
B 88.75 91.61
C 89.20 92.90
D 88.71 92.47
E 88.23 92.38

7.3.2 Time Benefits. We use speedup over Timeoriginal (i.e., exe-
cution time ofmanual-direct) as the metric to quantify time benefits.
The manual-gzip version suffers from decompression time. Even
if decompression is done by a separate thread that runs in parallel
with the processing threads, we find that manual-gzip cannot run
faster than manual-direct, since it adds extra operations while sav-
ing none. Therefore, we focus our discussion on the comparisons
between other versions.

We show the time benefits of manual-opt and Zwift in Figure 4.
Zwift yields 2X speedup, on average, over manual-direct, thanks
to its reuse of processing results throughout the DAG. Some appli-
cations on large datasets, such as term vector on dataset C, show
more than 70% performance benefit. The reason is that the resilient
distributed dataset (RDD), which is the basic storage unit in Spark1,
has a size limit. Some of the original files exceed the RDD limit
and have to be split into separate RDDs. For programs that need
file information, such as inverted index and term vector, additional
data structures are needed to be created and maintained to record
file information, which adds significant execution time cost. Zwift
compression decreases the file sizes, enabling most of these large
files to fit into the size of RDD after compression, and hence avoids
the large execution time cost.

From Figure 4, we can see that the time benefits of Zwift are
nearly the same as whatmanual-opt gives in almost all cases, which
indicates that Zwift successfully unleashes most of the power of
TADOC, while avoiding the manual programming and optimization
burden. The only exceptions are dataset B on inverted index and term
vector, in which case, the benefits from Zwift are even larger than
what manual-opt provides. There two reasons for Zwift’s larger
benefits. First, Zwift successfully applies all the optimizations that
manual-opt does without adding noticeable extra overhead. Second,
version selection by Zwift exhibits additional performance benefit,
making Zwift outperform manual-opt. Recall that manual-opt does
not perform version selection. Instead, it implements backward
traversal for inverted index and term vector, as backward traversal
works the best on them on most datasets. Dataset B is an exception
as it contains only four large files. The forward version has a lower
cost for both benchmarks. Zwift’s version selection mechanism
helps it select the right version to run, improving performance.

The offline profiling of version selection in Zwift costs negligible
overhead. On dataset B on inverted index, for instance, the over-
head is less than one millisecond, while the program runs for 13.2
seconds.

Zwift data abstractions turn out to be quite helpful. ZwiftVec
provides significant space benefits. For example, in dataset A, Zwift
saves 99.4% memory space through the use of two-level bit vector
for instantiating ZwiftVec, compared to the use of regular vector
1Recall that the experiments on the large datasets use the Spark version on clusters.
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Figure 4: Execution time benefits of speedup over manual-direct.

data structure. The reduced memory footprint contributes to bet-
ter cache and TLB performance. The coarsening of ZwiftDAG at
loading time also provides benefits. Edge coarsening is enabled for
all benchmarks except sequence count and ranked inverted index
due to their order sensitivity. Node coarsening is enabled for se-
quence count and ranked inverted index benchmarks. On dataset B,
for instance, node coarsening (with a threshold of 100) helps save
5% time over runs without node coarsening.

7.4 Discussion
We discuss the time taken to compress the datasets, its implications,
and other aspects of the applicability of Zwift.

In our experiments, a dataset takes Sequitur 10 minutes to 20
hours to compress, depending on the dataset size. The current
version of Zwift is designed for datasets that are repeatedly used
without being frequently updated. In such usage scenarios, the com-
pressed result of a dataset can be usedmany times by different users
for various tasks, and the one-time compression time is not a major
concern. However, if needed, to shorten the compression time, one
can employ more efficient parallel or distributed implementations
of Sequitur. How to extend Zwift to handle datasets with frequent
updates is left for future exploration.

Zwift mainly focuses on applications that normally require scan-
ning the entire dataset. Another type of common task involves
queries that require random accesses to some locations in a dataset.
Such queries are much simpler to support; adding an appropriate
index to the Sequitur results could provide benefits. Such tasks can
already be supported by other recent techniques (e.g., Succinct [2]),
and are hence not included in this paper.

8 RELATEDWORK
To our knowledge, Zwift is the first framework and domain spe-
cific language designed for text analytics directly on compressed
data. There are many other frameworks or languages for specific do-
mains [5, 6, 10, 14, 23, 28, 32, 35]. Some examples include PetaBricks [5]
designed for algorithmic tuning, OpenTuner [6] for building pro-
gram autotuners, Halide [23] for image processing pipeline, HPTA [28]
for high-performance text analytics, and TCS [14] for model-to-text
and text-to-model transformations.

Deduplication is a topic actively studied in storage systems.
Hernández et al. [12] demonstrate the data merge and purge prob-
lem. String matching [18] and file matching [17] have been studied
for deduplication. Sarawagi et al. [25] develop a learning-based
deduplication system that focuses on multiple sources. Raman et
al. [24] develop an interactive data cleaning system that enables
users to build transformations to clean data. As an OS-level tech-
nique [27], data deduplication does not save processing time in text
analytics as TADOC does. If two files contain duplicated content,
even if deduplication manages to completely eliminate one copy
of the content in storage space, a text analytics application still
processes the content repeatedly for the two files.

Succinct [2] enables efficient queries on databases with data
compression. It is designed mainly for the search and random access
of arbitrary strings, rather than supporting general text analytics.
TADOC supportsmuchmore complex document analytics tasks. For
example, none of the six analytics problems used in our experiments
are amenable to be efficiently supported by Succinct, as they involve
complex algorithms and operations beyond search or random access.
Moreover, they use different compression methods and internal
storage structures. Succinct uses a flat structure, suffix array [19],
while Zwift uses Sequitur to create a DAG structure, allowing it to
perform complex computations for a wide variety of items.

9 CONCLUSION
This paper introduces Zwift, a new programming framework to
enable general programmers to take advantage of TADOC (text an-
alytics directly on compressed data) to save both storage space and
processing time in high-performance text analytics. By relieving
programmers frommost of the efficiency concerns and complexities
of implementing text analytics on compressed data, Zwift signifi-
cantly reduces the effort required by general programmers to apply
TADOC while still unleashing TADOC’s full power for efficient
text analytics. We conclude that Zwift is an effective framework
for general-purpose text analytics directly on compressed data, and
hope that future research builds on Zwift to demonstrate benefits
on even larger data analytics problems.
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