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Few level quantum systems driven by nf incommensurate fundamental frequencies exhibit tem-
poral analogues of non-interacting phenomena in nf spatial dimensions, a consequence of the gen-
eralisation of Floquet theory in frequency space. We organise the fundamental solutions of the
frequency lattice model for nf = 2 into a quasi-energy band structure and show that every band
is classified by an integer Chern number. In the trivial class, all bands have zero Chern number
and the quasi-periodic dynamics is qualitatively similar to Floquet dynamics. The topological class
with non-zero Chern bands has dramatic dynamical signatures, including the pumping of energy
from one drive to the other, chaotic sensitivity to initial conditions, and aperiodic time dynamics
of expectation values. The topological class is however unstable to generic perturbations due to
exact level crossings in the quasi-energy spectrum. Nevertheless, using the case study of a spin in
a quasi-periodically varying magnetic field, we show that topological class can be realised at low
frequencies as a pre-thermal phase, and at finite frequencies using counter-diabatic tools.

PACS numbers:

I. INTRODUCTION

External time-dependent drives are indispensable to
a quantum mechanic. At weak amplitude, they probe
linear response [1], while at strong amplitude, they enable
Hamiltonian engineering [2–27]

The frequency content of the drive determines the na-
ture of the steady state in a few level quantum system.
When the drive has a single fundamental frequency, the
Floquet theorem guarantees that observables vary quasi-
periodically in time [28, 29], while a stochastic drive leads
to stochastic behaviour.

Recent advances in the construction and control of
long-lived coherent qubits in a variety of condensed mat-
ter and quantum optical systems allow access to the in-
teresting intermediate regime where the drive has a finite
number nf of incommensurate frequencies [30–37]. De-
spite the lack of periodicity, the Floquet formalism can be
generalized by treating the phase angle associated with
each incommensurate frequency as an independent vari-
able. The fundamental solutions of the Schrödinger equa-
tion, the so-called quasi-energy states, then follow from
the solutions of a tight-binding model in nf independent
synthetic dimensions in frequency space [38–40].

Martin et al. [40] recently exploited the synthetic di-
mensions to engineer energy pumping in the adiabatic
regime. Specifically, Ref. [40] studied a spin-1/2 in a mag-
netic field composed of two incommensurate frequencies
~Ω = (Ω1,Ω2):

HCI(t) = ~B(t) · ~σ (1)
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where

~B(t) =





sin(Ω1t+ θ01)
sin(Ω2t+ θ02)

m− cos(Ω1t+ θ01)− cos(Ω2t+ θ02)





Interpreting Ω1t and Ω2t as momenta, HCI is the
momentum-space Hamiltonian of a two-dimensional
Chern insulator (CI) for 0 < |m| < 2 [41, 42]. The
Hall response of the Chern insulator at weak electric field
translates to the quantized pumping of energy between
the drives in the spin problem. In contrast, when |m| > 2,
the insulator has no Hall response and the spin dynamics
qualitatively resemble that of the one tone case.

Could a different choice of driving Hamiltonian pro-
duce more exotic dynamics of the driven spin? We
present an exhaustive classification of the quasi-energy
states of a d-level quantum system (qudit) driven by
nf = 2 incommensurate frequencies. The generalized
Floquet formalism (Sec. III) produces d fundamental so-
lutions of the Schrödinger equation:

|ψj(t)〉 = e−iεj(~θ0)t|φj(~Ωt+ ~θ0)〉 (2)

where j = 1 · · · d, εj(~θ0) is a quasi-energy and |φj(~Ωt +
~θ0)〉 is the associated quasi-energy state, which is peri-
odic in both of its arguments. The initial drive phases,
~θ0 ∈ [0, 2π)2, define the Floquet zone. The quasi-energies
and states can be organized into a two-dimensional quasi-

energy band structure with d bands over the Floquet
zone. The dynamical classes of the driven qudit are in-
dexed by the d integer Chern numbers Cj associated to
the bands. We refer to the class with all Cj = 0 as trivial
and any other class as topological.

Remarkably, the dispersion of band j is fixed by its
Chern number:

∇~θ0
εj =

Cj
2π

(−Ω2,Ω1). (3)
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Integrating by parts gives

∆εj = −
1

2πq

∫

FZ

d2θ
[

〈∂θ2φ
j(~θ)|H(~θ)|φj(~θ)〉+ h.c.

]

.

(32)

Next we use the relation

i~Ω · |∇~θ0
φj(~θ0)〉 =

[

H(~θ0)− εj(~θ0)
]

|φj(~θ0)〉, (33)

obtained by substituting (20) into the Schrödinger equa-
tion (10). Substituting (33) into (32) yields the gauge
invariant result

∆εj =

∫ 2π/q

0

dθ02
∂εj
∂θ02

=
Ω1Cj
q

. (34)

where Cj is the Chern number:

Cj =
1

2πi

∫

FZ

d2θ
[

〈∂θ2φ
j |∂θ1φ

j〉 − 〈∂θ1φ
j |∂θ2φ

j〉
]

. (35)

For a two-level system Cj counts the integer num-
ber of topological solitons in the Bloch vector field

〈φj(~θ0)|~σ|φ
j(~θ0)〉. Examples are shown for the topologi-

cal and trivial cases in Fig. 3.
In the incommensurate limit, we require that the first

derivative of the quasi-energy exists. This allows for the
identification

∂εj
∂θ02

= lim
∆θ02→0

∆εj
∆θ02

= lim
q→∞

q∆εj
2π

=
Ω1Cj
2π

. (36)

Repeating the above derivation for an increase of θ01 by
2π/p yields the full relation (27).

When the Chern number of a band is non-zero, the
quasi-energy states are translated by a lattice vector ~m
on threading a flux of 2π through the frequency lattice
cylinder (see Fig. 5). The vector ~m can be uniquely de-
termined from the change in quasi-energy ∆εj . For ex-
ample, increasing θ02 by 2π increases the quasi-energy of
band j by Ω1Cj . Using (21), we equate this change to

~m · ~Ω to obtain ~m = (Cj , 0).

Finally, the quasi-energy states |φj(~θ0)〉 form a com-
plete basis. It follows that the sum of Chern numbers of
all the bands is zero at every q:

d
∑

j=1

Cj = 0 (37)

A. Relation of the Chern number to monodromy

Previous works [48, 49] have classified the quasi-energy
states of incommensurately driven systems by their mon-
odromy. As a trivial monodromy is equivalent to a triv-
ial Chern number Cj = 0 [59], the two classifications
are equivalent. For completeness, we briefly discuss the
equivalence below.

The quasi-energy states belonging to band j have triv-
ial monodromy if and only if there exists a smooth choice
of gauge |φjM(0, θ02)〉 ∼ |φj(0, θ02)〉 such that the follow-
ing relation holds:

U(T1, 0; 0, θ02)|φ
j
M(0, θ02)〉 = e−iλT1 |φjM(0, θ02 + 2πβ)〉.

(38)
Above, ∼ indicates equality up to a θ02 dependent phase,
λ is a constant independent of θ02, and U is the time
evolution operator:

U(t′, t; ~θ0) = T exp

[

−i

∫ t′

t

dsH(~Ωs+ ~θ0)

]

. (39)

Assume that (38) holds. We use time evolution to

smoothly extend the definition of |φjM〉 to the full Floquet
zone:

|φjM(Ω1t,Ω2t+ θ02)〉 = eiλtU(t, 0; 0, θ02)|φ
j
M(0, θ02)〉.

(40)
Using the definition (40) then (38) implies that

|φjM(2π,Ω2T1 + θ02)〉 = |φjM(0,Ω2T1 + θ02)〉. Thus, |φjM〉
is a smooth function of the Floquet zone. By Stokes
theorem, the integrated Berry curvature in (35) is zero.
Thus, Cj = 0.

If Cj = 0, then, εj is independent of ~θ0, and the quasi-
energy state gauge |φj(0, θ2)〉 in the gauge (25) satis-
fies (38) with λ = εj . We show in App. B that this
is a smooth gauge, and how to transform to it from any

initial smooth gauge |φjS(
~θ0)〉 which can be trivially con-

structed. Thus Cj = 0 implies monodromy.

V. DYNAMICAL SIGNATURES OF THE

TOPOLOGICAL CLASS

A quasi-energy band with a non-zero Chern number
has striking dynamical consequences. Qudits in the topo-
logical class pump energy between the drives, are sen-
sitive to the initial phases and have operator expecta-
tion values with dense Fourier spectra. Qudits in the
trivial class exhibit none of these properties; see Ta-
ble II. Below, we derive these dynamical consequences
and illustrate them with plots for the model discussed in
Sec. VI B.

A. Energy pumping

Ref. [40] used an analogy with lattice Chern insulators
to argue for quantized energy pumping in quasi-energy
states in the adiabatic limit. In the adiabatic limit, the

electric field ~Ω in the frequency lattice is weak (Table I).

Suppose the model on the frequency lattice at ~Ω = 0 is a
Chern insulator. At weak fields, the insulator exhibits the
quantum Hall effect, that is, each eigenstate of the fre-
quency lattice carries a quantised current perpendicular
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found to have a pure-point part, whereas only the topo-
logical case has a continuous part. The nascent continu-
ous part of the topological spectrum is visible in Fig. 9
where the lollipops appear to blur together into lines [76].

We further verify in App. E via scaling in the commen-
surate approximation that in the quasi-periodic limit, the
spectrum A(ω) becomes dense in the topological class
and remains sparse in the trivial class.

VII. SUMMARY AND DISCUSSION

We have classified the dynamical properties of a d-level
qudit driven by two tones with incommensurate frequen-
cies using d integer Chern numbers. The generalization of
Floquet theory to the two-tone setting identifies a two-
dimensional tight-binding model in frequency (Fourier)
space, the Hamiltonian of this model is the quasi-energy
operator K. We organized the eigenstates of K with dis-
tinct time dependences into a quasi-energy band struc-
ture on the torus of initial drive phases, with integer
Chern number Cj associated to each band j.

Starting from a generic initial qudit state, we observe
(1) the pumping of energy between the drives, (2) sensi-
tivity to the drive phases at t = 0 and (3) aperiodic dy-
namics of observables, only in the topological class (with
at least one Cj 6= 0). In contrast, the phenomenology
of the trivial class (with all Cj = 0) is the same as the
one-tone driven case.

Although the topological class does not extend to
a phase with a finite volume in the parameter space,
it leads to an exponentially long pre-thermal regime
in the near-adiabatic limit. For finite drive frequen-
cies (non-adiabatic regime), we constructed (fine-tuned)
models that belong to the topological class using counter-
diabatic methods. These correspond to introducing an
infinite number of extra hopping elements on the fre-
quency lattice, with magnitude decaying exponentially
with the hopping distance.

More generally, the band crossing required to realize
the topological class can be accomplished by introduc-
ing extra tuning parameters in the Hamiltonian. In the
case of counter-diabatic driving the extra parameters are
the higher harmonics (which correspond to long range
hops on the frequency lattice). Based on the general
theory [64], two band touching requires tuning of three
parameters for a general unitary evolution operators or
fewer in the presence of extra symmetry. The number of
needed tuning parameters defines the codimension of the
band touching manifold in the full parameter space. Note
that if the codimension is greater than one (e.g. point in
2D, or a line in 3D, both corresponding to codimension
two), the manifold cannot split the parameter space into
disjoint subspaces, and the band-touching points cannot
demarcate the boundaries of distinct trivial phases.

One may also access additional tuning parameters
by considering more than two incommensurate drives,
nf > 2. In this case, there are nf − 1 independent rela-

tive phases, and the quasi-energy εj(~θ0) is a non-trivial
function of nf − 1 variables, facilitating the quasi-energy
level crossings. The physical significance of such models
and possible manifestations of topological phases in this
case (analogous to frequency pumping for nf = 2) are
open and interesting questions.

Furthermore, in future research it will be interesting to
investigate how extra symmetries and extra parameters
can be used to access the topological classes. For in-
stance, an analogue of time reversal symmetry at special
points in the Floquet zone can lead to Kramers doublets
in the quasi-energy spectrum, and therefore exact level
crossings in the quasi-energy band structure. The role
of symmetry and its effects on the dynamical classifica-
tion can be investigated in driven qudit models inspired
by the momentum space representation of the Kane-Mele
model [65] or models with a Zak phase [66, 67].

Dissipative forces provide another route to stabilize the
topological class, as noted in Ref. [40]. If the relaxation
time of the qudit is much smaller than the Landau-Zener
mixing time (59), then the qudit remains close to the
instantaneous ground state indefinitely. The qudit will
therefore pump energy between the drives at a nearly
quantized rate even at finite drive frequencies if the quasi-
energy band associated with the instantaneous ground
state has a non-zero Chern number. However, such in-
herently quantum effects as the sensitivity to initial drive
phases which rely on phase coherence will be lost. Under-
standing the effects of different types of dissipative forces
on the properties of the topological class is crucial for the
experimental observation of the topological class.

Finally, the combination of spatial and synthetic di-
mensions may result in new dynamical classes with no
equilibrium counterpart. Rudner et al. [19] followed by
Refs. [68–72] developed classifications for the Floquet
unitaries of extended systems and showed new topolog-
ical orders of robust edge modes in periodically driven
trivial insulators.

It would be very interesting to extend that framework
for incommensurately driven insulators.

Acknowledgments

We are grateful to C. Baldwin, E. Berg, J. Chalker, S.
Gopalakrishnan, S. Kourtis, C. Laumann, P. Mehta, F.
Nathan, A. Polkovnikov, G. Refael, and D. Sels for many
useful discussions.

We thank the Kavli Institute for Theoretical Physics
(KITP) in Santa Barbara for their hospitality during the
early stages of this work, the National Science Founda-
tion (NSF) under Grant No. NSF PHY-1748958 for sup-
porting KITP, and the BU shared computing cluster for
computational facilities.

AC acknowledges support from the NSF through grant
No. DMR-1752759. IM was supported by the Depart-
ment of Energy, Office of Science, Materials Science and
Engineering Division.



15

[1] D. Forster, Hydrodynamic fluctuations, broken symmetry,

and correlation functions (CRC Press, 2018).
[2] M. Bukov, L. D’Alessio, and A. Polkovnikov, Advances

in Physics 64, 139 (2015).
[3] F. Meinert, M. J. Mark, K. Lauber, A. J. Daley, and H.-

C. Nägerl, Physical review letters 116, 205301 (2016).
[4] M. Holthaus, Journal of Physics B: Atomic, Molecular

and Optical Physics 49, 013001 (2015).
[5] K. I. Seetharam, C.-E. Bardyn, N. H. Lindner, M. S.

Rudner, and G. Refael, arXiv preprint arXiv:1806.10620
(2018).

[6] W. Yao, A. MacDonald, and Q. Niu, Physical review
letters 99, 047401 (2007).

[7] T. Oka and H. Aoki, Physical Review B 79, 081406
(2009).

[8] J.-i. Inoue and A. Tanaka, Physical review letters 105,
017401 (2010).

[9] T. Kitagawa, E. Berg, M. Rudner, and E. Demler, Phys-
ical Review B 82, 235114 (2010).

[10] Z. Gu, H. Fertig, D. P. Arovas, and A. Auerbach, Physical
review letters 107, 216601 (2011).

[11] N. H. Lindner, G. Refael, and V. Galitski, Nature Physics
7, 490 (2011).

[12] T. Kitagawa, T. Oka, A. Brataas, L. Fu, and E. Demler,
Physical Review B 84, 235108 (2011).

[13] L. Jiang, T. Kitagawa, J. Alicea, A. Akhmerov,
D. Pekker, G. Refael, J. I. Cirac, E. Demler, M. D. Lukin,
and P. Zoller, Physical review letters 106, 220402 (2011).

[14] B. Dóra, J. Cayssol, F. Simon, and R. Moessner, Physical
review letters 108, 056602 (2012).

[15] N. H. Lindner, D. L. Bergman, G. Refael, and V. Galitski,
Physical Review B 87, 235131 (2013).

[16] P. Delplace, Á. Gómez-León, and G. Platero, Physical
Review B 88, 245422 (2013).

[17] Y. T. Katan and D. Podolsky, Physical review letters
110, 016802 (2013).

[18] T. Iadecola, D. Campbell, C. Chamon, C.-Y. Hou,
R. Jackiw, S.-Y. Pi, and S. V. Kusminskiy, Physical re-
view letters 110, 176603 (2013).

[19] M. S. Rudner, N. H. Lindner, E. Berg, and M. Levin,
Physical Review X 3, 031005 (2013).

[20] J. Cayssol, B. Dóra, F. Simon, and R. Moessner, phys-
ica status solidi (RRL)-Rapid Research Letters 7, 101
(2013).

[21] M. Lababidi, I. I. Satija, and E. Zhao, Physical review
letters 112, 026805 (2014).

[22] N. Goldman and J. Dalibard, Physical review X 4,
031027 (2014).

[23] A. G. Grushin, Á. Gómez-León, and T. Neupert, Physical
review letters 112, 156801 (2014).

[24] A. Kundu, H. Fertig, and B. Seradjeh, Physical review
letters 113, 236803 (2014).

[25] J. K. Asbóth, B. Tarasinski, and P. Delplace, Physical
Review B 90, 125143 (2014).

[26] D. Carpentier, P. Delplace, M. Fruchart, and
K. Gawędzki, Physical review letters 114, 106806
(2015).

[27] L. Wang, X. Li, and C. Li, Physical Review B 95, 104308
(2017).

[28] J. H. Shirley, Physical Review 138, B979 (1965).
[29] H. Sambe, Physical Review A 7, 2203 (1973).

[30] J. I. Cirac and P. Zoller (2004).
[31] F. Jelezko, T. Gaebel, I. Popa, M. Domhan, A. Gruber,

and J. Wrachtrup, Physical Review Letters 93, 130501
(2004).

[32] M. H. Devoret, A. Wallraff, and J. M. Martinis, arXiv
preprint cond-mat/0411174 (2004).

[33] J. Taylor, H.-A. Engel, W. Dür, A. Yacoby, C. Marcus,
P. Zoller, and M. Lukin, Nature Physics 1, 177 (2005).

[34] B. Trauzettel, D. V. Bulaev, D. Loss, and G. Burkard,
Nature Physics 3, 192 (2007).

[35] A. Gali, Physical Review B 79, 235210 (2009).
[36] R. Blatt and C. F. Roos, Nature Physics 8, 277 (2012).
[37] G. Wendin, Reports on Progress in Physics 80, 106001

(2017).
[38] T.-S. Ho, S.-I. Chu, and J. V. Tietz, Chemical Physics

Letters 96, 464 (1983).
[39] A. Verdeny, J. Puig, and F. Mintert, Zeitschrift für

Naturforschung A 71, 897 (2016).
[40] I. Martin, G. Refael, and B. Halperin, Physical Review

X 7, 041008 (2017).
[41] X.-L. Qi, Y.-S. Wu, and S.-C. Zhang, Physical Review B

74, 085308 (2006).
[42] B. A. Bernevig, T. L. Hughes, and S.-C. Zhang, Science

314, 1757 (2006).
[43] A. del Campo, Physical review letters 111, 100502

(2013).
[44] D. Sels and A. Polkovnikov, Proceedings of the National

Academy of Sciences p. 201619826 (2017).
[45] G. Casati, I. Guarneri, and D. Shepelyansky, Physical

review letters 62, 345 (1989).
[46] J. Wang and A. M. Garcia-Garcia, Physical Review E

79, 036206 (2009).
[47] J. Luck, H. Orland, and U. Smilansky, Journal of statis-

tical physics 53, 551 (1988).
[48] H. Jauslin and J. Lebowitz, Chaos: An Interdisciplinary

Journal of Nonlinear Science 1, 114 (1991).
[49] P. Blekher, H. Jauslin, and J. Lebowitz, Journal of sta-

tistical physics 68, 271 (1992).
[50] H. Jauslin and J. Lebowitz, in Mathematical Physics X

(Springer, 1992), pp. 313–316.
[51] J. C. Barata, Reviews in Mathematical Physics 12, 25

(2000).
[52] G. Gentile, Journal of statistical physics 115, 1605

(2004).
[53] J. W. S. Cassels, An introduction to Diophantine approx-

imation (Cambridge University Press Cambridge, 1957).
[54] M. Hindry and J. H. Silverman, Diophantine geometry:

an introduction, vol. 201 (Springer Science & Business
Media, 2013).

[55] D. J. Thouless, M. Kohmoto, M. P. Nightingale, and
M. den Nijs, Physical Review Letters 49, 405 (1982).

[56] B. A. Bernevig and T. L. Hughes, Topological insula-

tors and topological superconductors (Princeton univer-
sity press, 2013).

[57] T. Neupert, L. Santos, C. Chamon, and C. Mudry, Phys.
Rev. Lett. 106, 236804 (2011).

[58] J. McGreevy, B. Swingle, and K.-A. Tran, Physical Re-
view B 85, 125105 (2012).

[59] M. Stone and P. Goldbart, Mathematics for physics: a

guided tour for graduate students (Cambridge University
Press, 2009).



16

[60] L. D. Landau, Z. Sowjetunion 2, 46 (1932).
[61] C. Zener, Proc. R. Soc. Lond. A 137, 696 (1932).
[62] E. K. G. Stueckelberg, Theorie der unelastischen Stösse

zwischen Atomen (Birkhäuser, 1933).
[63] E. Majorana, Il Nuovo Cimento (1924-1942) 9, 43 (1932).
[64] J. von Neumann and E. Wigner, Zeitschrift für Physik

30, 467 (1929).
[65] C. L. Kane and E. J. Mele, Physical review letters 95,

226801 (2005).
[66] J. Zak, Physical review letters 62, 2747 (1989).
[67] P. Delplace, D. Ullmo, and G. Montambaux, Physical

Review B 84, 195452 (2011).
[68] F. Nathan and M. S. Rudner, New Journal of Physics

17, 125014 (2015).
[69] R. Roy and F. Harper, Physical Review B 94, 125105

(2016).
[70] D. V. Else and C. Nayak, Physical Review B 93, 201103

(2016).
[71] A. C. Potter, T. Morimoto, and A. Vishwanath, Physical

Review X 6, 041001 (2016).
[72] R. Roy and F. Harper, Physical Review B 96, 155118

(2017).
[73] We note that A = sinα|~Ω|| ~δθ|t is the area in the Floquet

zone enclosed by the two perturbed trajectories between

the initial perturbation and measurement at time t. Gen-
eralising the argument here one finds that the phase dif-
ference between two perturbed quasi-energy state trajec-
tories is given by η =

ACj

2π

[74] Formally this measure is a statistical distance. This en-
tails that the Bures angle has the properties: non-
negativity DB(ψ,ψ

′) > 0; symmetry DB(ψ,ψ
′) =

DB(ψ
′, ψ); identity of indiscernibles and DB(ψ,ψ) = 0;

and the triangle inequality DB(ψ,ψ
′) ≤ DB(ψ,ψ

′′) +
DB(ψ

′′, ψ′).
[75] Note that the quasi-energy band-structure described in

Sec. IV is different from the usual band-structure of the
model (58) as we have included the non-perturbative ef-
fects of the field ~Ω as opposed to the usual Kubo-formula
calculation where the effect of the electric field is ac-
counted for perturbatively.

[76] We note that the topological power spectra is seen here
to be comprised of three lines, corresponding to the fre-
quencies ~Ω · ~n and ~Ω · ~n ± ωjj′ where ωjj′ = εj − εj′ is
the difference between consecutive quasi-energies. In the
quasi-periodic limit the separation between the points
making up these curves tends to zero, and they cannot
be resolved.

Appendix A: Derivation of Eq. (30)

In this appendix we show a derivation of the result

〈φ̃j(~θ0)|∂θ02K(~θ0)|φ̃
j(~θ0)〉 = lim

t→∞

1

t

∫ t

0

ds〈φj(~θs)|∂θ02H(~θs)|φ
j(~θs)〉. (A1)

First using the relation (25) we can write

〈φj(~θs)|∂θ02H(~θs)|φ
j(~θs)〉 = 〈φj(s; ~θ0)|∂θ02H(~θs)|φ

j(s; ~θ0)〉. (A2)

Then substituting for the Fourier representations we find

〈φj(s; ~θ0)|∂θ02H(~θs)|φ
j(s; ~θ0)〉 =

∑

~n,~m,~k

ei(~n−~m−~k)·~Ωs〈φ̃j~n(
~θ0)|(−ik2)H~ke

−i~k·~θ0 |φ̃j~m(~θ0)〉. (A3)

The time integral then selects the terms ~n− ~m = ~k and we find

lim
t→∞

1

t

∫ t

0

ds〈φj(~θs)|∂θ02H(~θs)|φ
j(~θs)〉 =

∑

~n,~m

〈φ̃j~n(
~θ0)|(−i(n2 −m2))H~n−~me−i(~n−~m)·~θ0 |φ̃j~m(~θ0)〉. (A4)

Recognising the term in the middle from (16) it is easily shown that

∂θ02K =
∑

~n~m

[

(−i(n2 −m2))H~n−~me−i(~n−~m)·~θ0
]

⊗ |~n〉〈~m|. (A5)

By substitution we then see that

lim
t→∞

1

t

∫ t

0

ds〈φj(~θs)|∂θ02H(~θs)|φ
j(~θs)〉 =

(

∑

~n

〈φ̃j~n(
~θ0)| ⊗ 〈~n|

)

∂θ02K

(

∑

~m

|φ̃j~m(~θ0)〉 ⊗ |~m〉

)

= 〈φ̃j(~θ0)|∂θ02K(~θ0)|φ̃
j(~θ0)〉

(A6)

which shows the proposition.
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Appendix B: Cj = 0 implies monodromy

In this appendix we show that (i) given a quasi-energy state |φjS(0, θ2)〉, defined over the line θ1 = 0, in smooth
gauge; (ii) if Cj = 0, then it is possible to construct a gauge in which the monodromy relation (38) is satisfied.

It is always possible to define a smooth gauge |φjS(0, θ2)〉 over the line θ1 = 0. For example, given any gauge
|φj(0, θ2)〉 a smooth gauge may be constructed by multiplying by a θ2 dependent phase such that the phase the

projection onto an arbitrary reference state |r〉 to be real 〈r|φjS(0, θ2)〉 ∈ R. For a smooth gauge we can use a
construction analogous to (40) to define

|φjS(Ω1t,Ω2t+ θ2)〉 = eiεjtU(t, 0; 0, θ2)|φ
j
S(0, θ2)〉 (B1)

where we have used that for Cj = 0 that εj is independent of ~θ. The gauge is smooth in interior of the Floquet zone

by construction. The gauge is then globally smooth if |φjS(2π, θ2)〉 = |φjS(0, θ2)〉. However in general there is a phase
difference

z(θ2) = 〈φjS(0, θ2 + 2πβ)|φjS(2π, θ2 + 2πβ)〉

= 〈φjS(0, θ2 + 2πβ)|U(T1, 0; 0, θ2)|φ
j
S(0, θ2)〉.

(B2)

For for Cj = 0 the quasi-energy εj is independent of θ2 and this phase is given by

z(θ2) = e−iεjT1u∗(θ2 + 2πβ)u(θ2) (B3)

where u(θ2) = 〈φj(0, θ2)|φ
j
S(0, θ2)〉 is the phase difference between the smooth gauge |φjS(2π, θ2)〉 and |φj(0, θ2)〉, the

gauge of Sec. III 4. The phase z(θ2) is smooth by construction, and for Cj = 0 has no winding number

w =
1

2πi

∫ 2π

0

dθ2z(θ2)
dz∗(θ2)

dθ2

=

∫ 2π

0

dθ2
2πi

[

u∗(θ2 + 2πβ)
du(θ2 + 2πβ)

dθ2
+ u(θ2)

du∗(θ2)

dθ2

]

=

∫ 2π

0

dθ2
2πi

[

u∗(θ2)
du(θ2)

dθ2
− u∗(θ2)

du(θ2)

dθ2

]

= 0.

(B4)

A consequence of w = 0 is that log z(θ2) is a smooth single valued imaginary function, from which we can (i) determine
u(θ2) and (ii) show u(θ2) to be smooth. We find

u(θ2) = exp





∑

n 6=0

fne
inθ2

1− e2πiβn



 , (B5)

fn =
1

2π

∫ 2π

0

dθ′e−inθ′ log z(θ′) (B6)

which is verified to satisfy (B3) by substitution. The smoothness of u(θ2) follows as: (i) log z(θ2) is smooth, thus fn
is exponentially small in n; (ii) the small values of the denominator of the summand are power law small in n [54],

|1− e2πiβn| & |F (βn)| > n−(µ−1+ε). (B7)

Here an & bn indicates an > cbn for some finite constant c and sufficiently large n, F (x) = x−nint(x) is the fractional
part of x, nint(x) is the nearest integer to x, ε is any arbitrarily small positive constant, and µ is the irrationality

measure of β. For the golden ratio, and almost all irrational numbers µ = 2. The exponential smallness of fn beats
the power law smallness of the denominator, and the terms of the sum in (B5) are exponentially small in n, and hence
u(θ2) is smooth.

As a result the state

|φjM(0, θ2)〉 = u∗(θ2)|φ
j
S(0, θ2)〉 (B8)
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We find however that (C3) is generically not satisfied in the topological case. To see this we note that the LHS
of (C3) corresponds to the angular evolution

(

θt1
θt2

)

=

(

Ω1

Ω1pi/qi

)

t+

(

θ01
θ02

)

(C4)

whereas the RHS corresponds to the trajectory ~θ′t =
~θt + ~δθt

(

δθt1
δθt2

)

=

{
(

Ω1

Ω1(pi−2/qi−2−pi/qi)

)

t for t < Ti−2
(

Ω1

Ω1(pi−1/qi−1−pi/qi)

)

t+
(

0
Ω1(pi−2/qi−2−pi−1/qi−1)

)

Ti−2 for Ti−2 < t < Ti
(C5)

where Ti = 2πqi/Ω1. It is easily verified geometrically that the two trajectories define a triangle in the extended
Floquet zone of area

A =
1

2

∣

∣

∣

∣

(

Ω1Ti
Ω1Tipi/qi

)

×

(

Ω1Ti−2

Ω1Ti−2pi−2/qi−2

)∣

∣

∣

∣

=
1

2

∣

∣

∣

∣

(

2πqi
2πpi

)

×

(

2πqi−2

2πpi−2

)∣

∣

∣

∣

= 2π2ai

∣

∣

∣

∣

(

qi−1

pi−1

)

×

(

qi−2

pi−2

)∣

∣

∣

∣

= 2π2ai|pi−1qi−2 − pi−2qi−1|

= 2π2ai

(C6)

where |pi−1qi−2 − pi−2qi−1| = 1 is a standard result from the theory of Diophantine approximation.
Using the of Sec. V B that two quasi-energy state trajectories corresponding to slightly different trajectories through

the Floquet zone separated by a small perturbation, accrue a phase difference eiη where η = ACj/2π where Cj is
the Chern number of the quasi-energy state, and A the area enclosed by the trajectories (in the case of Sec. VB

A = |~Ω|| ~δθ|t sinα). In this case we thus find eiη = eiπaiCj = (−1)aiCj . In general, in addition to the correction to the
phase, there is also a correction to the final state, however this correction goes to zero in the incommensurate limit
i→ ∞ so we focus on the correction to phase. This implies the relation

Ui|φ
j(~θ0)〉 → (−1)aiCj (Ui−1)

ai Ui−2|φ
j(~θ0)〉, (C7)

where the phase term constitutes a topological correction to the relation (C3). Eq. (C7) corresponds to (57) in the
main text. In the special case where r = aiCj mod 2 is the same for all the partial quotients ai, and the Chern
numbers Cj of all the quasi-energy-states, then the extra phase becomes a topological correction to (C3)

Ui → (−1)rUaii−1Ui−2. (C8)

this is verified numerically in Fig. 14.

Appendix D: Divergence of trajectories

In this appendix we derive the relation (52). This gives the coefficient of linear divergence of trajectories following
a perturbation to the phases of the drives. This coefficient is zero in the trivial case, in which the trajectories do not
diverge.

We begin by considering the states (49). These two trajectories define a parallelogram patch on the Floquet zone

with vertices at ~θ0, ~θ0 + ~δθ, ~θ0 + ~Ωt, ~θ0 + ~Ωt+ ~δθ. We use (25) to fix the gauge choices between states related by shifts

in the ~Ω direction, and choose a gauge such that |φj(~θ)〉 and εj(~θ) are continuous in the perpendicular direction. As

the quasi-energy state |φj(~θ)〉 define a smooth basis over the patch of interest the we can then resolve |ψ1〉 in this
basis. This yields

|ψ1(t)〉 =
∑

j

e−iεj(~θ0)t|φj(~θt)〉〈φ
j(~θ0)|ψ0〉. (D1)
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Doing the same for |ψ2(t)〉 and expanding in ~δθ yields

|ψ2(t)〉 = |ψ1(t)〉+
∑

j

e−iεj(~θ0)t
[

|∂δ~θ0φ
j(~θt)〉〈φ

j(~θ0)|+ |φj(~θt)〉〈∂δ~θ0φ
j(~θ0)| − it∂δ~θ0εj(

~θ0)|φ
j(~θt)〉〈φ

j(~θ0)|
]

|ψ0〉+O(δ~θ0)
2

(D2)

where ∂ ~δθ0 = ~δθ · ∇~θ0
.

In order to evaluate the distance between the states we use the infinitesimal form of the Bures angle

D2
B(ψ, ψ + δψ) = 〈δψ|δψ〉 − 〈δψ|ψ〉〈ψ|δψ〉 (D3)

which can be verified by expansion of (50). We then see that if we evaluate the limit

lim
t→∞

lim
δθ→0

1

t2| ~δθ|2
D2

B(ψ1, ψ2) (D4)

we will pick out the terms proportional to (∂δ~θ0εj(
~θ0))

2 only, as this term is O(t2| ~δθ|2), and all other terms are higher

order in ~δθ or lower order in t. Hence from (D2) and (D3)

lim
t→∞

lim
δθ→0

1

t2| ~δθ|2
D2

B(ψ1, ψ2) =
∑

j

[

∂~uεj(~θ0)
]2

|〈φj(~θ0)|ψ0〉|
2 −





∑

j

∂~uεj(~θ0)|〈φ
j(~θ0)|ψ0〉|

2





2

, (D5)

where ~u = ~δθ/| ~δθ| is the unit vector parallel to ~δθ and ∂~u = ~u · ∇~θ0
.

From (27) it follows that

∂δ~θ0εj(
~θ0) =

Cj
2π

(−Ω2,Ω1) · (u1, u2) =
Cj
2π

(Ω1,Ω2)× (u1, u2) =
Cj |Ω| sinα

2π
(D6)

where Cj is the Chern number of the quasi-energy state |φj(~θ)〉, (Ω1,Ω2) × (u1, u2) = u2Ω1 − u1Ω2 = |~Ω||~u| sinα

is the antisymmetric product of a pair of two-element vectors, and α is the angle between ~Ω and ~δθ. By defining

pj = |〈φj(~θ0)|ψ0〉|
2 this becomes

lim
t→∞

lim
δθ→0

1

t2| ~δθ|2
D2

B(ψ1, ψ2) =

[

|~Ω| sinα

2π

]2






∑

j

C2
j pj −





∑

j

Cjpj





2





. (D7)

Thus as DB is defined to be positive we can invert the square on both sides without ambiguity.

lim
t→∞

lim
δθ→0

1

t| ~δθ|
DB(ψ1, ψ2) =

|~Ω|| sinα|

2π
σ(C) (D8)

yielding the form (52) in the main text where σ(C) is given by (53).

Appendix E: Scaling analysis of the topological and trivial regimes

In this appendix we numerically quantitatively verify two qualitative observations made in the main text: that, in
the topological regime, the model (67) gives rise to (1) quasi-energy states which are delocalised on the frequency
lattice, (2) Fourier spectra of observables which are dense. These two properties are expected per Sec. VC. Here
these properties are numerically verified using the scaling of the inverse participation ratio and the power spectral
entropy (both statistics are defined below).

1. Delocalisation on the frequency lattice

Delocalisation can be verified quantitatively via the scaling of the inverse participation ratio (IPR)

I =
∑

~n

〈φ̃j~n(
~θ0)|φ̃

j
~n(
~θ0)〉

2, (E1)
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motion) as follows

〈φj(~θt)|A|φ
j′(~θt)〉 =

∑

~n~m

〈φj~m|A|φj
′

~n+~m〉e−i~Ω·~nt =
∑

~n

Aj,j
′

~n e−i~Ω·~nt (F2)

Using this, and Eqn. (68), we find this quantity is related to the Fourier spectrum by

A(ω) =











|αj |
2Aj,j~n + |αj′ |

2Aj
′,j′

~n for ω = ~Ω · ~n

α∗
jαj′A

j,j′

~n for ω = ~Ω · ~n+ εj′ − εj

α∗
j′αjA

j′,j
~n for ω = ~Ω · ~n+ εj − εj′

(F3)

where we have assumed j 6= j and the non-degeneracy of the quasi-energies εj 6= εj′ . Integrating over the Bloch
sphere we find there are four non-zero contributions from the sum over the quasi-energies: two from

[

|αj |
4
]

|ψ0〉
=

[

|αj′ |
4
]

|ψ0〉
= 2/3; and two from

[

|αj |
2|αj′ |

2
]

|ψ0〉
= 1/3. This yields

[S(ω)]|ψ0〉
=















2
3

(

|Aj,j~n |2 + |Aj
′,j′

~n |2 + |Aj,j~n ||Aj
′,j′

~n |
)

for ω = ~Ω · ~n

1
3 |A

j,j′

~n |2 for ω = ~Ω · ~n+ εj′ − εj
1
3 |A

j′,j
~n |2 for ω = ~Ω · ~n+ εj − εj′ .

(F4)

The integration over A = ~a · ~σ is realised using the relation [aαaβ ]A = 1
3δα,β where the [·]A denotes the uniform

integration
∫

S2 ·d
2~a over the unit sphere |a| = 1. This yields

[S(ω)]|ψ0〉,A
=















2
9

∑

A∈~σ

(

|Aj,j~n |2 + |Aj
′,j′

~n |2 + |Aj,j~n ||Aj
′,j′

~n |
)

for ω = ~Ω · ~n

1
9

∑

A∈~σ |A
j,j′

~n |2 for ω = ~Ω · ~n+ εj′ − εj
1
9

∑

A∈~σ |A
j′,j
~n |2 for ω = ~Ω · ~n+ εj − εj′

(F5)

where ~σ is the usual vector of Pauli matrices. This is the equation used to obtain the Figures used in the main text
and App. E.


