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Few level quantum systems driven by nfs incommensurate fundamental frequencies exhibit tem-
poral analogues of non-interacting phenomena in ns spatial dimensions, a consequence of the gen-
eralisation of Floquet theory in frequency space. We organise the fundamental solutions of the
frequency lattice model for ny = 2 into a quasi-energy band structure and show that every band
is classified by an integer Chern number. In the trivial class, all bands have zero Chern number
and the quasi-periodic dynamics is qualitatively similar to Floquet dynamics. The topological class
with non-zero Chern bands has dramatic dynamical signatures, including the pumping of energy
from one drive to the other, chaotic sensitivity to initial conditions, and aperiodic time dynamics
of expectation values. The topological class is however unstable to generic perturbations due to
exact level crossings in the quasi-energy spectrum. Nevertheless, using the case study of a spin in
a quasi-periodically varying magnetic field, we show that topological class can be realised at low

frequencies as a pre-thermal phase, and at finite frequencies using counter-diabatic tools.

PACS numbers:
I. INTRODUCTION

External time-dependent drives are indispensable to
a quantum mechanic. At weak amplitude, they probe
linear response [1], while at strong amplitude, they enable
Hamiltonian engineering [2-27]

The frequency content of the drive determines the na-
ture of the steady state in a few level quantum system.
When the drive has a single fundamental frequency, the
Floquet theorem guarantees that observables vary quasi-
periodically in time |28, 29|, while a stochastic drive leads
to stochastic behaviour.

Recent advances in the construction and control of
long-lived coherent qubits in a variety of condensed mat-
ter and quantum optical systems allow access to the in-
teresting intermediate regime where the drive has a finite
number ng of incommensurate frequencies [30-37|. De-
spite the lack of periodicity, the Floquet formalism can be
generalized by treating the phase angle associated with
each incommensurate frequency as an independent vari-
able. The fundamental solutions of the Schrédinger equa-
tion, the so-called quasi-energy states, then follow from
the solutions of a tight-binding model in n¢ independent
synthetic dimensions in frequency space [38—40].

Martin et al. [40] recently exploited the synthetic di-
mensions to engineer energy pumping in the adiabatic
regime. Specifically, Ref. [40] studied a spin-1/2 in a mag-
netic field composed of two incommensurate frequencies
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Interpreting 4t and 9t as momenta, Hcyp is the
momentum-space Hamiltonian of a two-dimensional
Chern insulator (CI) for 0 < |m| < 2 [41, 42]. The
Hall response of the Chern insulator at weak electric field
translates to the quantized pumping of energy between
the drives in the spin problem. In contrast, when |m| > 2,
the insulator has no Hall response and the spin dynamics
qualitatively resemble that of the one tone case.

Could a different choice of driving Hamiltonian pro-
duce more exotic dynamics of the driven spin? We
present an exhaustive classification of the quasi-energy
states of a d-level quantum system (qudit) driven by
ng = 2 incommensurate frequencies. The generalized
Floquet formalism (Sec. III) produces d fundamental so-
lutions of the Schrédinger equation:

95 (t))

where j = 1---d, ¢;(f) is a quasi-energy and |¢/ (Ot +
o)) is the associated quasi-energy state, which is peri-
odic in both of its arguments. The initial drive phases,

— e*ifj(f;o)twj(ﬁt + §O)> (2)

by € [0,27)2, define the Floguet zone. The quasi-energies
and states can be organized into a two-dimensional quasi-
energy band structure with d bands over the Floquet
zone. The dynamical classes of the driven qudit are in-
dexed by the d integer Chern numbers C; associated to
the bands. We refer to the class with all C'; = 0 as trivial
and any other class as topological.

Remarkably, the dispersion of band j is fixed by its
Chern number:

O
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FIG. 1: Two-tone driven quantum systems: A d-level quan-
tum system with Hamiltonian H (6;) is driven by two classical
cavity modes with frequencies €1 and .

We derive this result in Sec. IV. Heuristically, in the
frequency space tight-binding model 9] plays the role of
an electric field which Stark localizes the quasi-energy
states in the € direction. In the perpendicular direction
P = (—=9,,Q;), the states are localized if C; =0 and
delocalized otherwise. Varying 50 twists the phase in the
P direction; only the delocalized eigenstates respond and
move along the electric field direction. Eq. (3) quantifies
the change in the quasi-energy due to the component of
the translation in the direction of the electric field.

Eq. (3) leads to stark differences in the dynamics start-
ing from generic initial states for the topological and
trivial dynamical classes (Sec. V). The topological class
is characterized by the pumping of energy between the
drives, strong sensitivity to the initial phases of the drives
and aperiodic dynamics of expectation values. The latter
two properties are properties of a quantum chaotic qudit.
In contrast, the trivial class exhibits the same qualita-
tive features as the periodically driven qudit: quasiperi-
odic dynamics with no energy pumping or chaos. The
sensitivity to the initial phase 50 is due to dephasing be-
tween the quasi-energy states which produces a linear in
time divergence of expectation values. We believe that
the distance diverges exponentially with a well-defined
Lyapunov exponent if the external drive amplitudes are
treated as dynamical variables.

In the topological class, the quasi-energy band struc-
tures contain exact level crossings. In the strict adia-
batic limit the Chern indices are stable to Hamiltonian
perturbations as they are inherited from a band insu-
lator. At finite frequency, however, the level crossings
are unstable to generic perturbations. Using the Chern
insulator model in (1) as an example, we demonstrate
that the topological class nevertheless controls (i) the
pre-thermal dynamics in the vicinity of the adiabatic
limit, and (ii) the dynamics for finite frequency drives
with counter-diabatic terms (Sec. VI). We explicitly con-
struct a counter-diabatic term V' (¢) with finite spectral

bandwidth that ensures that the quasi-energy states of
Hep(t) = He(t) + V(1) (4)

are given by the instantaneous eigenstates of Hcp(t).
Counter-diabatic (CD) terms stabilize the dynamical
class of any adiabatic Hamiltonian H (¢) at finite drive
frequency, and offer a route to realizing the topological
class in the laboratory [43, 44].

Incommensurate external drives have been previously
used to engineer the Anderson metal-insulator transition
in kicked rotors [45, 46]. Previous studies have also dis-
covered quasi-periodic and chaotic dynamical regimes in
qudits driven by quasi-periodic sequences [47-52], and
classified the quasi-energy states in terms of their mon-
odromy [48, 49]. Our classification in terms of band
structures demonstrates completeness, generalizes to any
number of tones, connects the dispersion to the Chern
number and derives new dynamical properties of the dy-
namical classes. Using the counter-diabatic prescription,
we also derive the first finite frequency quasi-periodically
driven spin models in the topological class.

II. SETUP AND HAMILTONIAN

Consider a d-level quantum system driven by two ideal
classical drives with fundamental frequencies €2; and €29
(Fig. 1). Each drive is a 2m-periodic function of its phase
angle. The phase angle 6;; of drive i increases linearly in
time:

Ori = Qit + 0o;, 1=1,2, (5)
or more succinctly, Jt = Ot + 50. The vector 50 sets the
initial drive phases at t = 0.

The Hamiltonian of the two-tone driven system is a 27-
periodic function of each component of 0; It is therefore
conveniently represented in Fourier series:

H(0) =Y Hye ™", (6)

with 7 = (n1,n9) € Z2.

The drive is quasi-periodic (or equivalently the fre-
quencies ©; and Qs are incommensurate) if and only if
Q; and Q5 are rationally independent:

Q/U=B¢Q (7)
In what follows, we use the terms quasi-periodic and in-

commensurate interchangeably and fix 8 = (1 + /5)/2
to be the golden ratio.

1. Rational Approximation

Determining whether two drive frequencies are quasi-
periodically related requires infinite precision. We expect



the finite time dynamics of the qudit to be insensitive to
this property. The quasi-periodic case can therefore be
approached through a limiting sequence of rationally (or
commensurately) related drives:

P& = ¢fds. (8)

Here p,q are co-prime integers determined by the best
rational approximations to 5. The theory of Diophan-
tine approximation defines the series of best rational ap-
prozimations p/q to the irrational § as the co-prime in-
tegers p,q such that |8 — p/q| cannot be made smaller
without increasing ¢. In the incommensurate limit, in
which ¢ is allowed to be arbitrarily large, one then finds
p/q — B [53, 54]. The commensurate system is periodic
with period T' = ¢Ty = pTs where T; = 27 /€;. On time-
scales t < T, we expect all observables to be the same
as in the incommensurate limit, whereas on time-scales
t 2 T, the periodicity of the system becomes important
and the dynamics are described by Floquet theory.
Elementary results in the theory of Diophantine ap-
proximation state that [53, 54]: (i) every irrational num-
ber has a unique infinite continued fraction expansion

B=a+——7—, 9)

and (ii) the best rational approximations p;/¢; to § are
given by truncating the continued fraction expansion at
the ith level. For example, the best rational approxima-
tions to the golden ratio 8 = (1 4 v/5)/2 are given by
pi/q = Fiyo/F;y1, where F; is the ith Fibonacci num-
ber.

III. GENERALIZED FLOQUET THEORY AND
THE QUASI-ENERGY BAND STRUCTURE

Let the state of the qudit at time ¢ be denoted by
[t(t;6p)). This state satisfies the Schrodinger equation:

101 (t;60)) = H (2t + 60) | (t; 6)). (10)

Below, we discuss the structure of the solutions to (10)
in the time and frequency domain by generalizing the
Floquet formalism (see [39, 40] for related treatments).
We show that Fourier transforming (10) yields a tight-
binding model in frequency space in two synthetic di-
mensions (one for each rationally independent drive fre-
quency). We use the spectrum of this tight-binding
model to define the quasi-energy band structure.

1. The quasi-energy operator and spectrum

Substituting the Fourier transform |¢(t;50)> =
[ dwe™4)(w; Bp)) into the Schrédinger equation (10),
we obtain

wlP(w; o)) = > Hae ™ P —ri- G dy)) (1)
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FIG. 2: The frequency lattice: In the incommensurate limit,
solutions to Eq. (10) are the solutions of a tight-binding model
on an infinite two-dimensional lattice with an electric field
Q (upper panel). The Fourier components Hjy couple sites
m and m + 7 for all m. When the drive frequencies are
commensurate, lattice sites separated by [ are identified, and
the shaded region compactifies into the cylinder shown in the
lower panel. This cylinder encloses magnetic flux ®.

Time domain Frequency domain
n Fourier index Site index
Time averaged . .
Hj Hamiltonian On-site potential
Fourier component of . .
Hy Hamiltonian Hopping by vector m
_ . Quasi-energy state
|47 (60)) Fourle'r component of projected onto lattice
n quasi-energy state .
site
9 Drive frequency vector Electric field
— /] i
0o Initial drive phase vector Magnetic Yector
potential
3 Ratio of drive arctan 3 is the angle
frequencies 8 = Q2/ between = and 2
d Hilbert space dimension | Number of orbitals per
of qudit lattice site

TABLE I: Dictionary relating quantities in the time and fre-
quency domains.
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FIG. 3: Visualizing the quasi-energy states: The first and third panels show the Bloch vector (¢7(6;)|#|¢7 (6)) of a two-level
system throughout the Floquet zone 6, € [0,2m)2 for j = 1. By (25), the time evolution of a state starting from bo corresponds
to a straight path through the Floquet zone in the direction ¢ (shown in grey for 0 < ¢ < 57%). The second and fourth
panels show the path of the Bloch vector on the Bloch sphere in the same interval. The color indicates the z-polarisation, from
blue when (o.) = —1 to red when (o.) = 1. The left (right) panels illustrate the topological (trivial) dynamical classes, and

correspond to quasi-energy bands with C; = 1(0). Data for Hep (67) with m = 1(3) on the left(right), 6o = (—7/2,0).

where the Fourier coefficients H,; are defined in (6).
Eq. (11) only couples the frequencies,

w=e+7-Q, (12)

for 7i € Z? and fixed e. We can therefore find the fun-
damental solutions |¢p(w;y)) to (11) which are non-zero
only for the frequencies (12). Using the rational inde-
pendence of Q1, s, we unambiguously label the Fourier
components by 77 instead of w:

|65(00)) = |d(e + 17 - 5 69)). (13)
There are multiple solutions of this form corresponding to
different values of the quasi-energy €(6y). Generic solu-
tions to (11) are linear combinations of the fundamental
solutions |¢z7(0p)) at different €(6y). Combining (11), (12)
and (13), we obtain the eigenvalue equation:
€(00)|7(00)) = > (Hﬁime—i(ﬁ—m).é‘o

—ii - 005 ) 16 (00)).  (14)

We interpret 71 as the lattice sites of a two-dimensional
hopping model in frequency space. Explicitly, we define:

[6(80)) = > 165 (00)) © |7i) (15)

n

K(fo) =Y [Hamme™ % — - (6| & ) i,

,m

with (7i|m) = dzm. Then, (14) becomes:
K (00)16(00)) = €(00)|(6o)).- (17)

In analogy to Floquet theory, we refer to e, K and |$(fy))
as the quasi-energy, the quasi-energy operator and the
quasi-energy state respectively. We also define the Flo-
quet zone to be the torus generated by the initial drive
phases 6 € [0, 2)2.

2. A tight-binding model in frequency space

We interpret the quasi-energy operator K as the
Hamiltonian of a two dimensional tight binding model
using the dictionary in Table I. K consists of: (i) an
on-site potential Hg; (ii) hopping terms Hjy which couple
sites 1 to sites m + 7; (iii) an electric field € in a non-
lattice vector direction (in the electrostatic gauge); and
(iv) a magnetic vector potential fo. The bulk magnetic
field is zero as fp is spatially uniform. However, fo en-
codes the twisted boundary conditions of the frequency
lattice, as is most easily seen in the commensurate case.
For commensurate drives the sites 7 and 7 + [ corre-
spond to the same frequency in (12), where I = (—p,q)
is a lattice vector perpendicular to Q. The sites @i and
ii 4 I should therefore be identified, which compactifies
the two-dimensional lattice into a cylinder with circum-
ference |I| (see Fig. 2). The cylinder encloses a magnetic
flux

@:7{50.@:50.17 (18)

3. The basis of quasi-energy states in the time domain

Each distinct solution to the Schrédinger equation (10)
in the time domain identifies an equivalence class of
quasi-energy states on the frequency lattice that are re-
lated by lattice translations. This observation resolves
the discrepancy between the infinite number of orthonor-
mal solutions on the frequency lattice and the d orthonor-
mal solutions in the time domain.

The quasi-energy states in the time domain are ob-
tained by inverse Fourier transform

67 (t:00)) = > e |1 (8,)), (19)
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FIG. 4: Band-structure of the quasi-energy operator: A one-
dimensional cut (6p1 = 0) of the two-dimensional band-
structure of the quasi-energy operator K for the topological
(left) and trivial (right) classes of dynamics in the commen-
surate approximation. The unbounded spectrum is truncated
to €;T1 € [—m,w]. The solid dark bands are the reduced zone
scheme: there is one band with constant positive gradient,
and one with constant negative gradient. The dashed dark
bands are in the extended zone scheme, while the light bands
only appear in the repeated zone scheme. Data from Hcp (67)
with (p,q) = (8,5), and m =1 (left), and m = 3 (right).

where j = 1,...d labels an orthonormal basis of solutions

and \(/3%(5@) is a representative element of the jth equiv-
alence class in the frequency lattice. The corresponding
solutions to the Schrédinger equation (10) are given by

|07 (£)) = 71900016 (1 Gy ). (20)

To see that quasi-energy states related by lattice trans-
lations on the frequency lattice correspond to the same
solution in the time domain, let S denote the transla-
tion by a frequency lattice vector m: Sz |f) = |7 + m).
On conjugation by Sy, K is shifted by a constant

SuKSL = K+ - Q. (21)
Hence for each quasi-energy state |4(fy)) with quasi-

energy €, |¢'(6)) = Sm|d(6h)) is a quasi-energy state
with ¢ = e+ m - Q. It follows that:

e—iet|¢(t; 50)) — et Ze—iﬁ.ﬁt|¢;ﬁ(§o)>

_ efi6't|¢l(t; 0_’0)>
Generic solutions [¢(t)) to the Schrédinger equa-

tion (10) are linear combinations of the quasi-energy
states with their corresponding phases

() = D age SO P hy)  (23)

for constant coefficients a;; € C.

4. Redundancy of time translations and phase shifts

—

The Hamiltonian H (0) is invariant under the transfor-
mation t — ¢ + 7, 0y — 6y — Q7. Thus, |¢7(¢:6,)) and
|7 (t+7; 69— 7)) are solutions to the Schrédinger equa-
tion at the same quasi-energy €;. Choosing 7 = —t we
see that

|67 (t;00)) ~ |7 (0; 0y + G3t)). (24)

Above ~ indicates equality up to multiplication by a
phase. Eq. (24) implies the information encoded by time
evolution is also captured by a phase shift.

As the overall phase of a quasi-energy state is a
gauge choice, i.e. physical observables evaluated in a
quasi-energy state areﬂinvariant under the transforma-
tion |7 (£;60)) — €25(80)|pd (t: 6,)), we are free to fix the
phase in (24) such that

|67 (t;00)) = |7 (0; 0y + G3t)). (25)

Due to the equivalence of time evolution and phase shifts
it is then not necessary to keep track of ¢ and 6, sepa-
rately. Henceforth we set ¢ = 0:

67(00)) = |67 (0;60)) = Z |6%(60)) (26)

|7 (6)) is thus a periodic state defined over the toroidal
Floquet zone.

Though this gauge choice may not be smooth, the
gauge invariant properties of |¢j(§o)) are smooth. For
a two-level system, the gauge invariant properties of
the state |¢/(f)) are captured by the Bloch vector:
(¢7(60)|3|#7 (6o)), where & is the vector of Pauli matri-
ces. These Bloch vector fields are shown in Fig. 3 for the
model HCI (1)

5. Quasi-energy bands

We promote the index j from labelling the unique so-
lutions at a specific values of 50 to a band index which
labels a state for all 50.

In the commensurate case with overall period T =
qTy = pTy the symmetry (21) implies the band struc-
ture €(fp) is invariant under the shift e(fy) — €' (6p) =
€(fy) + 27/T. By choosing the gauge (25) we work in
the reduced zone scheme. The reduced zone scheme
(pale solid lines in Fig. 4) corresponds to choosing the
states with quasi-energies (fy) € [—7/T,7/T]. These
states lie within first ‘Brillouin zone’ (between the hori-
zontal dashed black lines in Fig. 4). In this scheme the
quasi-energy band structure is invariant under shifts in
the time direction e(ﬁt + 50) = 6(50), in the 0g; = 0
cut shown in Fig. 4 this invariance leads to the corre-
sponding invariance of the quasi-energies under the shift



Bo2 — 0(5 = Bo2 + 27 /q. Note however, this symmetry of
the quasi-energies is not a symmetry of the quasi-energy
states |¢7(fy)). In the incommensurate limit ¢ — oo the
reduced zone scheme is not well defined as the Brillouin
zone € € [—n /T, w/T] collapses, however we will see that
properties such as the quasi-energy gradient Vgoé(go) re-
main well defined.

The reduced zone scheme is related to the alternative
‘extended zone scheme’ by unfolding (dashed dark lines
in Fig. 4), this scheme leads to quasi-energies €; (670) that
are well defined in the quasi-periodic limit, but lacks the
useful property e(€3t + 6) = €(6y). In addition, the re-
peated zone scheme corresponds to considering the full
set of bands (pale solid lines in Fig. 4),

Note that quasi-energies ¢; (50) are not ordered by band
index in general due to the possibility of exact band cross-
ings (Fig. 4).

IV. TOPOLOGICAL CLASSIFICATION OF
QUASI-ENERGY STATES

The identification of a quasi-energy band structure al-
lows us to use the familiar tools of momentum-space band
theory to classify the bands. Treating the Floquet zone
as the momentum-space Brillouin zone, we immediately
see that each band should be characterized by an integer
Chern number [55, 56]. The Chern number C; of band j
is defined by equating 2wC; to the Berry curvature of the

quasi-energy states |¢/ (50)> integrated over the Floquet
zone.

In static electronic systems, the dispersion is generally
not constrained by the Chern number and researchers
frequently work with modified Hamiltonians with com-
pletely flat energy dispersions [56-58]. Here, we derive
the remarkable result that the gradient of the quasi-
energy dispersion is fixed by the Chern number:

e
Vé*oéj(eo) = %(_92791). (27)

The origin of (27) lies in the response of quasi-energy
states on the frequency lattice to flux threading. Con-
sider varying 50 along the line 6p; = 0; Fig. 4 shows band
structures along this path in the commensurate case. An
increase of fpa by 27w /q corresponds to a 27-increase of

the magnetic flux ¢ = o -1 threading the frequency lat-
tice. As a flux of 27 is gauge equivalent to a flux of
zero, the quasi-energy spectrum at po and 6pa + 27/q
are identical. However, if we follow quasi-energy states
as we increase 6yo, we find that states may exchange po-
sitions with one another. Fig. 4 shows the two qualita-
tively distinct possibilities for d = 2,¢ = 5. In the left
panel, half of the states in the spectrum (pale solid lines)
are shifted up on increasing p2 by 27/q, while the other
half are shifted down. Thus, Ae; = £27/¢T1 = £04/q.
In contrast, the spectrum is invariant under arbitrary
changes of 6o in the right panel. As the bands in
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FIG. 5: Shift of quasi-energy states on the frequency lattice
with fluz threading: Amplitudes | (7i|1)) | of quasi-energy states
belonging to a band with Chern number C' = 1 versus the
electric potential energy Q-7 of the frequency lattice site
n. Threading a 27 flux through the frequency lattice cylin-
der increases the potential energy of the states and trans-
lates them along the electric field. The highlighted states
separated by Arni = (1,0),(2,0) are related by flux changes
of Abps = 2m, 47 respectively. Data from Hep (67) with
(p,q) = (34,21), 1 =27/20 and m = 1.

the left (right) panel have C; = +£1(0), we see that
Ae; = Ci/q = CjQ1AOp2/2n. In the incommensu-
rate limit, ¢ — oo and we obtain the gradient form in
Eq. (27).

Mathematically, the total change in quasi-energy of a
band on increasing 0o by 27/q is given by:

2m/q .
Aﬁj = / deog (96] . (28)
0

We pick a band labelling scheme such that |¢7(6p)) and

€ (50) are continuous functions of y. From the eigenvalue
equation (17), we obtain:

Vi, (00) = (& @) (Vi KO0)) 16/ @), (29)

As derived in App. A, elementary Fourier analysis yields

596;; = (& (80)| (90, K (90) ) 167 (B0)
= Jim 5 [ as(@/ (@) (90 () 167821 (30)

The double integral obtained from (30) and (28) provides
a uniformly weighted integration over the Floquet zone
0< 91,(92 < 27. Thus

1

Aer — —
“ 27q Jpz

@667 (0)] (90, H(B)) 17(B)).  (31)



Integrating by parts gives
1

Aej— —
“ 27q Juy

&0 | (90,07 (6) | H (6)] ¢/ () + h.c.]
(32)

Next we use the relation
i V5,6 (0) = [H(00) = ;0)| 167(@0)),  (33)
obtained by substituting (20) into the Schrodinger equa-

tion (10). Substituting (33) into (32) yields the gauge
invariant result

where C; is the Chern number:

1
C:= —
J 2mi F7

420 [(De, ¢ |09, ¢") — (D6, " |06,¢")] . (35)

For a two-level system () counts the integer num-
ber of topological solitons in the Bloch vector field
(¢7(Ay)|| ¢ (6y)). Examples are shown for the topologi-
cal and trivial cases in Fig. 3.

In the incommensurate limit, we require that the first
derivative of the quasi-energy exists. This allows for the
identification

an - 1 AGj
6002 - Abgo—0 Aeog

(36)

Repeating the above derivation for an increase of 6y; by
27 /p yields the full relation (27).

When the Chern number of a band is non-zero, the
quasi-energy states are translated by a lattice vector m
on threading a flux of 27 through the frequency lattice
cylinder (see Fig. 5). The vector 7 can be uniquely de-
termined from the change in quasi-energy Ae;. For ex-
ample, increasing 6o by 27 increases the quasi-energy of
band j by Q1C;. Using (21), we equate this change to
m - § to obtain m = (C;,0).

Finally, the quasi-energy states |¢j(§0)> form a com-
plete basis. It follows that the sum of Chern numbers of
all the bands is zero at every ¢:

> ci=0 (37)

A. Relation of the Chern number to monodromy

Previous works [48, 49] have classified the quasi-energy
states of incommensurately driven systems by their mon-
odromy. As a trivial monodromy is equivalent to a triv-
ial Chern number C; = 0 [59], the two classifications
are equivalent. For completeness, we briefly discuss the
equivalence below.

The quasi-energy states belonging to band j have triv-
ial monodromy if and only if there exists a smooth choice
of gauge |¢1,(0,002)) ~ |¢7(0,6002)) such that the follow-
ing relation holds:

U(T1,0;0,002)[#34(0, 002)) = e~ *T[$3,4(0, oz + 276)).
(38)
Above, ~ indicates equality up to a 6y dependent phase,
A is a constant independent of 6y, and U is the time
evolution operator:

t/
Ut t;60) = T exp l—i/ dsH ($s + 6p) (39)
t

Assume that (38) holds. We use time evolution to
smoothly extend the definition of |¢3;) to the full Floquet
zone:

|¢{\/I(Qlt, Qgt + 002» = e“\tU(t, 0; 0, 002)|¢{\/I(0’ 002)(>. )

40

Using the definition (40) then (38) implies that

|¢){\/I(27T, QT + 002)) = |¢{\/I(O’ QT + 002». Thus, ‘¢{\4>

is a smooth function of the Floquet zone. By Stokes

theorem, the integrated Berry curvature in (35) is zero.
Thus, C; = 0.

If C; = 0, then, ¢; is independent of 50, and the quasi-
energy state gauge |¢7/(0,02)) in the gauge (25) satis-
fies (38) with A = ¢;. We show in App. B that this
is a smooth gauge, and how to transform to it from any
initial smooth gauge |¢% (6)) which can be trivially con-
structed. Thus C; = 0 implies monodromy.

V. DYNAMICAL SIGNATURES OF THE
TOPOLOGICAL CLASS

A quasi-energy band with a non-zero Chern number
has striking dynamical consequences. Qudits in the topo-
logical class pump energy between the drives, are sen-
sitive to the initial phases and have operator expecta-
tion values with dense Fourier spectra. Qudits in the
trivial class exhibit none of these properties; see Ta-
ble II. Below, we derive these dynamical consequences
and illustrate them with plots for the model discussed in
Sec. VIB.

A. Energy pumping

Ref. [40] used an analogy with lattice Chern insulators
to argue for quantized energy pumping in quasi-energy
states in the adiabatic limit. In the adiabatic limit, the
electric field § in the frequency lattice is weak (Table I).
Suppose the model on the frequency lattice at O=0isa
Chern insulator. At weak fields, the insulator exhibits the
quantum Hall effect, that is, each eigenstate of the fre-
quency lattice carries a quantised current perpendicular



Topological (atleast one
C; #0)
C
V%Ej = E(_Q%Ql).

Trivial (all C; = 0)

Gradient of dispersion Vi, €& = (0,0)

Trajectories almost re-phase

Sensitivity to perturbation of 8 quasi-periodically

Trajectories diverge linearly

Quasi-energy states in frequency domain

Quasi-energy states in time domain
Frequency lattice response to flux threading

Pump power of band j

Floquet operator converges as U; — U(T5; 50)

Floquet Hamiltonian Exists

Time evolution of operator expectation values

Sparse Fourier spectra

Quasi-energy states unchanged

Quasi-periodic evolution

Localised Delocalised
Dense Fourier spectra

Quasi-energy states shift
parallel to the electric field

C.

P, =0 P = ﬁQIQQ
Yes No
Yes No

Aperiodic evolution

TABLE II: Properties of the two classes of dynamics for a quasi-periodically driven quantum system
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FIG. 6: Energy pumping in quasi-energy states: The scaled
energy transfer between the two drives as a function of time
in the topological (red) and trivial (blue) case for a two-level
system prepared in a quasi-energy state. Asymptotically, the
numerical curves are described by the relation: AE = Pjt
(black lines). Data from Hcp (67) with m = 1 (red) and
m = 3 (blue).

to . As the components of the site label 7 = (ny, n2) on
the frequency lattice equal the number of photons in the
two drives (up to some arbitrary offset), the Hall effect
leads to a quantized rate of transfer of energy between
the two drives.

Below, we generalize the argument in Ref. [40] to finite
Q) and show that quantized energy pumping is a dynam-
ical signature of quasi-energy states in the topological
class of dynamics (see Fig. 6).

The work done by the second drive up to a time ¢ on
a system initially prepared in the quasi-energy-state is

given by

ABP(0) = [ as@ (01000, HENS @) (@)

The mean rate of work done by the second drive is then:

(2)
P® — 1im AET®) (42)
J t—00 t

As the qudit can only contain a finite amount of energy,
the rate of work done by each of the two drives on the

system must be equal and opposite at long times P;l) =

—P]@). The system therefore behaves as an energy pump

with power Pj(l).
Using Eq. (30), we find that the pump power is set by
the gradient of the quasi-energy dispersion:

8ej

PP -0 .
7 % 960,

(43)
Eq. (27) then provides our result of quantized pumping
in the topological class:

C

PP = —pM = Zig,q,. 44
J A 1952 ( )

J

Generic initial states (23) also pump energy between
the drives. Assuming the quasi-energy spectrum is non-
degenerate, the contribution of cross terms averages to
zero, and the pump power is:

P =" lay PP,

J

n=1,2. (45)

We see that 0 < |P1§)”)| < max; |Pj(n)|. Although the
pump power is generically not quantized, it is non-zero
except for a measure zero set of states.
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FIG. 7: Divergence of trajectories: In the topological dy-
namical class, trajectories diverge (red), while the trajecto-
ries in the trivial class do not (blue). The asymptotic be-
haviour in Eq. (52) is shown in black. Data from Hcp (67)
with m = 1 (red) and m = 3 (blue) for an initial state with

la| = |as| =1/V2.

In the Chern insulator analogy, the transverse Hall
current evaluated in quasi-energy states is the photon
flux between the drives 9; (f). Using the results derived
above:

C
i (_QQ; Ql )7

(46)
We thus recover the quantum Hall effect o,, =
10/ ()] = C;/2m in natural units (e =1,h=1).

=

() =0 (i) = (P 1, PP /0s) =

B. Divergence of trajectories

Consider two time evolutions starting from the same
initial state |t¢) but slightly different initial drive phases,

50 and 50 +66. We show the trajectories of the perturbed
and unperturbed system asymptotically diverge only in
the topological case (see Fig 7).

The origin of the divergence between trajectories is
dephasing in the quasi-energy basis. A quasi-energy state
prepared with initial drive phase vector 50 evolves as

U (t,0;00)|¢7 () = e 4|57 (8)) (47)

where U is the time evolution operator (39). If we choose
a smooth gauge for the states |¢7/(6p)) over the patch
0 c §0+sﬁ+r5§for 0<s<t 0<r<1,wecanexpand
the time evolution starting from 50 +60 to leading order
in 60. At leading order, the contribution from expanding
|7 (6, + 66)) is O(t°36), while the term from expanding
the phasor e (Go-+0)t i O(t1660). In the limit of small
56 and large t, therefore we need only consider the second
contribution.

After a time t, the phase difference €l between the
states with initial phase vector difference 96 is

n= (ej(e} +50) — ej((io)) t+ O(662)
=160 - v506j + 0(59_2) (48)

- thﬂ +0(56%),

2w
where « is the angle between O and 5@, and we have
used (27) [73].

The global phase in (48) is unobservable in pure quasi-
energy states. Asn depends on the band index, (48) leads
to dephasing in the quasi-energy state basis for generic
starting states. To see how the dephasing leads to the
divergence of trajectories, consider the evolution from the
initial state |1g) with and without the perturbation:

) = U(t, 0;00)|v),

, o (49)

[v7) = U(t,0;60 + 00)|v0).
For concreteness we characterise the distance between the
two states using the Bures angle

Dg(1),¥') = arccos [([¢')], (50)

The Bures angle is a distance measure on quantum
states [74] and bounds the discriminability of the two
states using any operator A via the bound

[(WIAN) — (@'|Al')| < 2|Alsin [Dp(¢,4")]  (51)

where the operator norm |A] is the magnitude of the lead-
ing eigenvalue of A.

For the trivial class of dynamics, the distance
Dg ()¢, ) varies quasi-periodically in time and does not
grow asymptotically. In contrast, for the topological
class, Dy generically grows linearly in time, before satu-
rating at long times to its maximal value max D = 7/2.
These results follow from the relation:

Ds(y,¢') Q] 0(C) sina
(06 2 '

lim lim
100 |56]—0

(52)

Appendix D contains the derivation. Above o(C) is the
standard deviation of the Chern number in the initial
state (23):

2

o (C) =Y Cloy | = | Y Cjlas* | (53)
j j

1. Convergence of Floquet unitaries

We have shown that a perturbation to the initial condi-
tions leads to a separation of trajectories for topological
dynamics. A perturbation to the drive frequencies €, Q9



can be interpreted as many infinitesimal perturbations to
the drive phases. Thus, using the same approach one can
show an additional technical consequence of topology: in
the trivial class of dynamics this leads to a convergence
of the commensurate Floquet unitaries to the incommen-
surate time evolution operator

lim |U(q;Ty, 0;60) — U;| = 0 (54)
1—> 00

whereas in the topological case it does not. Here
U(q;Th,0; 50) is the time evolution operator (39) in the
incommensurate limit (22/Q; = B), and whereas U; is
the Floquet unitary of the commensurate approximation,
foun(i by integrating over the same period with frequen-
cies Q; = (Ql, lez/Qz)

qi'Th . N
U; =T exp l—i/ dsH(Qs + 60p) (55)
0

This can be understood as a perturbation to the second
frequency AQy = (p/q — )1 ~ 1/¢> to the second fre-
quency. For trivial dynamics this convergence can be
seen numerically via the corollary of (54)

hm |U'Z — (Ui_l)ai Ui—2| =0 (56)
i—»00

where a; are the partial quotients defined via the contin-
ued fraction expansion of 8 (9). Eq. (56) follows compos-
ing the unitaries corresponding to smaller commensurate
periods to approximate one of a larger commensurate
period and uses the result of Diophantine approximation
that ¢; = a;¢;—1+¢;—2. The two terms in (56) correspond
to two different closed paths through the Floquet zone,
the limit converges if the small difference to the phase
angles 0—; between the two paths are inconsequential.

In contrast when accounting for topology we find that
due to the effects discussed in Sec. V B the two trajecto-
ries accrue phase differently and there is a correction to
the phase

lim |(U; = (=) (Ui-1)" i) [0/ (80) | = 0. (57)
1—> 00

The convergence relation has an additional sign (—1)%¢s
which depends on the Chern number C; of each quasi-
energy states subspace. This topological correction to
the composition rule of the Floquet unitaries is derived
in Appendix C.

C. Delocalisation on the frequency lattice and
aperiodicity of observables

A quasi-energy state |q~57 (50)> belonging to a band with
C; # 0 is delocalised on the frequency lattice in the direc-
tion perpendicular to the electric field Q. Indeed, in order
for the state to be sensitive to flux threading through the
cylinder or to pump energy indefinitely, it has to be de-
localised. See Fig. 8.
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FIG. 8: Localisation and delocalisation on the frequency lat-
tice: The support of the quasi-energy states on the frequency
lattice in the commensurate approximation (pink region in
Fig. 2). Each red/blue disk is centred on a lattice site 77
and has an area o< log (7, (§O)|¢;%(50)> The topological states
(red) are delocalised and encircle the cylinder, whereas the
trivial states (blue) are localised. Data from Hcp (67) with
(p,q) = (8,5), and m =1 (left) and m = 3 (right).

0.05 o .
ol AUl i
0.00 - = FTIMMPEN o o000 2N

T-15-10 -5 0 5 10 15-15-10 =5 0 5 10 15
w

w

FIG. 9: Spectral properties of expectation values: Square root
of the mean power spectrum for topological (left) and trivial
(right) classes of dynamics in the commensurate approxima-
tion, showing a nascent region of dense spectrum only in the
topological case. The power spectrum is averaged over initial
states and polarisation axes @ of operators A = @-& for |a| = 1.
Data from Hcp (67) with (p,q) = (89,55), and m = 1 (red)
and m = 3 (blue).

As |<Z>]ﬁ(§0)) are the Fourier components of |¢7(6;)) with
frequency w = €; + 7 - Q, the state |¢7(6;)) has a dense
Fourier spectrum for C; # 0. Expectation values are
therefore aperiodic in the topological class. If C; = 0,
then the quasi-energy states are localized on the fre-
quency lattice and the state |¢’ (5;)> has a sparse Fourier
spectrum that can be approximated to any desired accu-
racy with a finite number of components. Expectation
values are quasi-periodic in time in this case. See Fig. 9.



VI. STABILITY OF THE TOPOLOGICAL
CLASS

The topological class does not extend to a phase be-
cause of need of an exact level crossings in the quasi-
energy band structure. Recall that the Chern numbers
satisfy the sum rule }°, C; = 0. If there is a band j with
C; # 0 in the spectrum, then there must be another band
4" with a Chern number of the opposite sign by the sum
rule. As the Chern number sets the gradient of the dis-
persion, the bands j and ;7' must cross. These crossings
are visible in Fig. 4. The topological class of dynamics
is thus realised only if the quasi-energy operator K (50)
has exact degeneracies at some 670. We expect that the
exact degeneracy splits on perturbing K (50). Thus, the
topological case is finely tuned, and only the trivial class
with all C; = 0 is stable to perturbation.

Despite this generic instability, in this section we study
two constructions which realise the topological dynamics
in settings amenable to experiment. We start from a
model (introduced in Ref. [40]) which realises the topo-
logical phase exactly in the adiabatic limit. Firstly, we
show that at finite drive rate this immediately yields a
long pre-thermal period for which the dynamics of the
topological class is observed; secondly, we use a counter-
diabatic correction to produce an explicit, finely tuned
model, which realises the topological class of dynamics
indefinitely, at any finite drive rate, and which is expo-
nentially dominated by a finite bandwidth of drive fre-
quencies.

We first consider the Chern insulator (CI) model

sin 9151
sin 02 e (58)
m — cos 01 — cos 09

Hei(6;) =

previously introduced in (1), here ¢ = (ox, oy, 0,), and
9_; = 50 + (. We are motivated to study this model by
the analogy to Hall physics (see Sec. VA): Eq. (58) is a
well-known Chern insulator [41, 42] where we have made
the replacement (ky,ky) — (641,6:2) [75]. It follows that
for, 0 < |m| < 2 the instantaneous eigenstates of Hcy
form bands with non-trivial Chern numbers: (C1,Cs) =
(1,—1) for 0 < m < 2 which switch signs to (Cy,Cs) =
(—1,1) for -2 <m < 0.

In the precise limit 7,9 — 0 it follows from the
adiabatic theorem that the quasi-energy-states are given
by the instantaneous eigenstates of Hcy, and thus inherit
the non trivial Chern numbers of the Hall problem. These
non-trivial Chern numbers constitute a realisation of the
topological class of dynamics.

A. Pre-thermal topological dynamics

At finite drive frequencies 2; and 25, the dynamical
states of the CI model fail to follow the adiabatic eigen-
states, and the system heats by Landau-Zener excitation.
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FIG. 10: Quasi-energy band-structure of Hcr (58) as the

quasi-periodic limit is approached: Plots of quasi-energy e;
versus the initial phase 0p2 — 0., where 0p2 = 0. is the point
of minimum gap. As ¢ increases toward the incommensurate
limit, the quasi-energy bands flatten. Note the rescaling by ¢
vs. Fig 4. Parameters: Q; = 27/15, m = 1.

In the low frequency limit, the Landau-Zener rate of
excitation 1/7 is exponentially small in the rate of change
of the Hamiltonian [60—63]

log T ~ Q]! ~ 11, Tb. (59)

In the pre-thermal regime, 0 < ¢t < 7, this rate is negli-
gible and the deviation from the adiabatic limit is small.
A qudit prepared in an instantaneous eigenstate remains
close to one, and the dynamics are controlled by the
topological class of the strict adiabatic limit. This pre-
thermal regime is exponentially long in the drive period
T1,T5, making the regime accessible to experiment.

In the commensurate case the total period, T' = ¢T; =
pT5, provides an additional time scale. In the adiabatic
limit the Floquet states of the commensurate problem
also have non-zero quasi-energy gradient (see (34) and
Fig. 4), and so exhibit the properties of the topologi-
cal class of dynamics. At finite drive rate, if the period
T < 7 then the effect of Landau-Zener excitation within
a period is small, the Floquet states are only weakly per-
turbed, the quasi-energies are close to the quantised val-
ues, and the system continues to exhibit the topological
dynamics, though the average pumping is no longer quan-
tised. The topological dynamics are exhibited for generic
initial conditions except for an exponentially small set of
initial conditions close to the avoided crossing of quasi-
energy bands. For initial conditions close to the avoided
crossing the Floquet states are strongly altered, and a
state prepared in an instantaneous eigenstate will scat-
ter into other eigenstates on the timescale 7.

The band-structure of the commensurate system is de-
picted in Fig. 10. For ¢T7 < 7 (left panel) the avoided
crossing is small, and for much of the Floquet zone the
quasi-energy gradient is close to the quantised value (27),
from this the dynamical properties of the topological
class of dynamics follow. As ¢ is increased, lengthen-
ing the period, and bringing the system closer to the in-
commensurate limit, the avoided crossing begins to dom-
inate the band-structure, and the quasi-energy levels ap-
proach their flat (topologically trivial) limiting form. For
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FIG. 11: Decay of quantised pumping in Hcr (58): (Up-
per panel) The normalised deviation A® (1) (see Eq. (62))
of the time averaged pump power, maximised over initial
states [¢o), from the quantised value. At 71 < oo (i.e.
Q1,92 > 0) the pumping is found to decay at an initially
linear rate which we estimate by fit to each series over the
range 1072 < A®)(t) < 0.4. (Lower panel) This decay rate is
exponentially small in the drive rate. Each data point in the
upper plot is averaged over N = 4000 trajectories with ran-
dom 6. Data for model Her (58) with m = 1 and 6, drawn
uniformly from the Floquet zone.

qTy > 7 the signatures of the topological dynamics are
lost on the shorter timescale 7.

1. Energy pumping in the pre-thermal regime

The Landau-Zener scaling of the loss of the dynam-
ical signatures of the topological class is confirmed by
analysing the energy pumped by the system.

In the Heisenberg picture the instantaneous power of
the 2nd drive is given by the operator (see (42), (41))

PO () = QU (t,0:0,)09,, H(0)U (t,0:65).  (60)

The mean power over an interval [0,t] maximised over
initial states is then given by

PEM® = maxtonl |1 [ atPO )| o). (o)

)
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FIG. 12: Quasi-energy band-structure of Hep (67) as a func-
tion of q: The quasi-energy €; versus the initial phase o2 — 6.
where 0p2 = 0. is the point of minimum gap in the extended
zone scheme. The counter-diabatic term in (66) protects the
linearly dispersing bands and exact level crossings at all g.
The dynamical class is topological as ¢ — oo. Parameters
Qi =27/15, m =1 as in Fig. 10.

By using this measure we avoid the question of which ini-
tial states exhibit pumping most clearly over finite times.

We compare this with the theoretical value for a topo-
logical model with Chern number C = 1 of P = Q15 /27
given by (44). Deviation from the topological value is
captured by the normalised deviation of the pump power

pj(") from the theoretically maximal value P

(n)

(n)(4) — 1 — 2 max
A () =1 2 (62)
In the upper panel of Fig. 11 we plot A () vs Oyt
for various values of Th = 27/ with fixed Qo/Q; =
(14+/5)/2. The eventual decay of pumping to zero results
in the system converging to asymptotic value A" = 1

in all cases.
For small times one finds the decay is linear,

AM () =t/7 + O(t?/7?). (63)

The values of 7 are extracted by a linear fit to the data
from the upper panel of Fig. 11 in the region A < 0.6,
i.e. before the curves begin to flatten into their asymp-
totic values A(™) = 1. These extracted values are plotted
versus T} in the lower panel. We see that the decay time
T is exponentially long in the inverse drive rate,

log T ~ T], TQ (64)

consistent with Landau-Zener excitation.

B. Finite rate counter diabatic driving

Adding a counter-diabatic correction term to the
Hamiltonian prevents the Landau-Zener processes that
destroy the dynamical signatures of the topological class
on time-scales t 2 7 [43, 44]. Using this method we
obtain, to our knowledge, the first analytic Hamilto-
nian which realises topological dynamics in a quasi-
periodically driven system indefinitely. This model has
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FIG. 13: Fourier spectrum of Hcp (67): The Frobenius norm
of the largest 265 Fourier components Hep,z of the Hamil-
tonian Hep (defined via Hep(6:) = > Hep,ze %) for
m = 1. These are plotted versus their corresponding fre-
quency w = 7 - ). The spectrum is exponentially decaying
away from w = 0 due to the analyticity of Hcp.

finite frequency bandwidth and finite drive rate, making
it amenable to experimental study.

The counter-diabatic correction V' precisely cancels the
matrix elements coupling the instantaneous eigenstates.
For any time-dependent Hamiltonian H(t), the condition
for the cancellation is:

io.H + [H,V],H]=0. (65)
For a spin-1/2 traceless Hamiltonian (65) has the solution

i [0.H, H
=3 wi +uH + vl (66)

v
for free parameters u,v. Without loss of generality, we
take u =v = 0.

The quasi-energy-states of the corrected model

HCD :HCI'l‘V (67)

are the instantaneous eigenstates of Hc¢r (58). Thus,
if H is in the topological class in the strictly adiabatic
limit, then Hgp is in the topological class for any drive
frequency. The resulting topological quasi-energy band-
structure is verified in Fig. 12 (using the same parameters
as in Fig. 10).

The norm of the Fourier amplitudes of Hep for the
Chern insulator model is shown in Fig. 13. We see
that the norm decays exponentially away from zero fre-
quency. Thus, the corresponding frequency lattice model
has exponentially decaying hopping terms. Approximat-
ing Hcp by truncating to the N largest Fourier ampli-
tudes leads to an exponentially small in N error term
in Hop(t). This truncation leads to hybridization of
the instantaneous eigenstates, as in the previous section.
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The dynamics of the topological class are then lost af-
ter an exponentially long pre-thermal regime t < 7 with
logT ~ N.

1. Numerical observation of the topological class with Hcp
in the Chern insulator model

We numerically verify that Hep(t) = Her(t) + V (¢)
realizes the topological class of dynamics for 0 < |m| < 2
and the trivial class of dynamics for |m| > 2.

a. Stable topological band-structure: Fig. 4 shows
the quasi-energy band structure of Hep(t) at ¢ = 5.
Without the counter-diabatic correction, the bands flat-
ten with increasing ¢ for any m, as shown in Fig. 10.
V() protects the exact level crossings for 0 < |m| < 2 as
q — oo in Fig. 12, so that the dynamical class is topo-
logical in the incommensurate limit.

b. Net energy pumping: The total energy pumped
as a function of time is shown in Fig. 6 for the topologi-
cal (red) and trivial (blue) classes. Asymptotically, both
curves follow the theoretical prediction in (44).

c. Divergence of trajectories: Fig. 6 shows the dy-
namics of the Bures Angle (50) for nearby initial states
for topological (red) and trivial (blue) dynamics. Asymp-
totically, both curves follow the theoretical prediction
in (52).

d. Delocalisation on the frequency lattice: In the
topological class, the quasi-energy states are delocalised
on the frequency lattice (Sec. VC). Fig. 8 qualitatively
shows this. In App. E, we show quantitatively that the
scaling in the commensurate limit is consistent with fre-
quency lattice quasi-energy states that are delocalised in
the topological class and localised in the trivial class.

e. Dense Fourier spectra of observables: The
Fourier amplitude A(w) of an expectation value (A(t))
is given by

<1/}(t)|A|1/}(t)> = Z Z OZ;Oéj/ <¢%|A|¢‘Z_{+m>e—i(ﬁ‘ﬁ+€]/—ej)t

J,j" n,m

_ Z A(w)e—iwt7

(68)
for some observable A and a generic initial state (23). We
characterise the Fourier amplitude by the mean power
spectrum

S(w) = [lA(w)|2] A,Jo) (69)

where the right-hand side is averaged over operators of
the form A = @- & with @ drawn uniformly from the unit
sphere, and initial states drawn uniformly from the Bloch
sphere. For details of this calculation see App. F.

S(w) is the root-mean-square magnitude of the
Fourier coefficients of (i(t)|AJ(t)). The values of
/' S(w) are plotted as lollipops for the trivial and topo-
logical cases in Fig. 9 using the commensurate approxi-
mation. Spectra for the topological and trivial cases are



found to have a pure-point part, whereas only the topo-
logical case has a continuous part. The nascent continu-
ous part of the topological spectrum is visible in Fig. 9
where the lollipops appear to blur together into lines [76].

We further verify in App. E via scaling in the commen-
surate approximation that in the quasi-periodic limit, the
spectrum A(w) becomes dense in the topological class
and remains sparse in the trivial class.

VII. SUMMARY AND DISCUSSION

We have classified the dynamical properties of a d-level
qudit driven by two tones with incommensurate frequen-
cies using d integer Chern numbers. The generalization of
Floquet theory to the two-tone setting identifies a two-
dimensional tight-binding model in frequency (Fourier)
space, the Hamiltonian of this model is the quasi-energy
operator K. We organized the eigenstates of K with dis-
tinct time dependences into a quasi-energy band struc-
ture on the torus of initial drive phases, with integer
Chern number C; associated to each band j.

Starting from a generic initial qudit state, we observe
(1) the pumping of energy between the drives, (2) sensi-
tivity to the drive phases at ¢ = 0 and (3) aperiodic dy-
namics of observables, only in the topological class (with
at least one C; # 0). In contrast, the phenomenology
of the trivial class (with all C; = 0) is the same as the
one-tone driven case.

Although the topological class does not extend to
a phase with a finite volume in the parameter space,
it leads to an exponentially long pre-thermal regime
in the near-adiabatic limit. For finite drive frequen-
cies (non-adiabatic regime), we constructed (fine-tuned)
models that belong to the topological class using counter-
diabatic methods. These correspond to introducing an
infinite number of extra hopping elements on the fre-
quency lattice, with magnitude decaying exponentially
with the hopping distance.

More generally, the band crossing required to realize
the topological class can be accomplished by introduc-
ing extra tuning parameters in the Hamiltonian. In the
case of counter-diabatic driving the extra parameters are
the higher harmonics (which correspond to long range
hops on the frequency lattice). Based on the general
theory [64], two band touching requires tuning of three
parameters for a general unitary evolution operators or
fewer in the presence of extra symmetry. The number of
needed tuning parameters defines the codimension of the
band touching manifold in the full parameter space. Note
that if the codimension is greater than one (e.g. point in
2D, or a line in 3D, both corresponding to codimension
two), the manifold cannot split the parameter space into
disjoint subspaces, and the band-touching points cannot
demarcate the boundaries of distinct trivial phases.

One may also access additional tuning parameters
by considering more than two incommensurate drives,
ng > 2. In this case, there are ny — 1 independent rela-

14

tive phases, and the quasi-energy e; (50) is a non-trivial
function of ngy — 1 variables, facilitating the quasi-energy
level crossings. The physical significance of such models
and possible manifestations of topological phases in this
case (analogous to frequency pumping for ny = 2) are
open and interesting questions.

Furthermore, in future research it will be interesting to
investigate how extra symmetries and extra parameters
can be used to access the topological classes. For in-
stance, an analogue of time reversal symmetry at special
points in the Floquet zone can lead to Kramers doublets
in the quasi-energy spectrum, and therefore exact level
crossings in the quasi-energy band structure. The role
of symmetry and its effects on the dynamical classifica-
tion can be investigated in driven qudit models inspired
by the momentum space representation of the Kane-Mele
model [65] or models with a Zak phase [66, 67].

Dissipative forces provide another route to stabilize the
topological class, as noted in Ref. [40]. If the relaxation
time of the qudit is much smaller than the Landau-Zener
mixing time (59), then the qudit remains close to the
instantaneous ground state indefinitely. The qudit will
therefore pump energy between the drives at a nearly
quantized rate even at finite drive frequencies if the quasi-
energy band associated with the instantaneous ground
state has a non-zero Chern number. However, such in-
herently quantum effects as the sensitivity to initial drive
phases which rely on phase coherence will be lost. Under-
standing the effects of different types of dissipative forces
on the properties of the topological class is crucial for the
experimental observation of the topological class.

Finally, the combination of spatial and synthetic di-
mensions may result in new dynamical classes with no
equilibrium counterpart. Rudner et al. [19] followed by
Refs. [68-72] developed classifications for the Floquet
unitaries of extended systems and showed new topolog-
ical orders of robust edge modes in periodically driven
trivial insulators.

It would be very interesting to extend that framework
for incommensurately driven insulators.
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the initial perturbation and measurement at time ¢t. Gen-
eralising the argument here one finds that the phase dif-
ference between two perturbed quasi-energy state trajec-
tories is given by n = A;j

Formally this measure is a statistical distance. This en-
tails that the Bures angle has the properties: non-
negativity Dg(v,v’) > 0; symmetry Dg(y,v') =
Dg(v',); identity of indiscernibles and Dg(v,v) = 0;
and the triangle inequality Dg(,v’') < Dg(v,v"”) +
Da(w”, ).

Note that the quasi-energy band-structure described in
Sec. 1V is different from the usual band-structure of the
model (58) as we have included the non-perturbative ef-

fects of the field  as opposed to the usual Kubo-formula
calculation where the effect of the electric field is ac-
counted for perturbatively.

We note that the topological power spectra is seen here
to be comprlsed of three lines, corresponding to the fre-
quencies ) - 7 and Q- 7 + wj,+ where wjjr = € = € is
the difference between consecutive quasi-energies. In the
quasi-periodic limit the separation between the points
making up these curves tends to zero, and they cannot
be resolved.

Appendix A: Derivation of Eq. (30)

In this appendix we show a derivation of the result

t

o I 1 L
(¢ (60)|060, K (60) ¢ (o)) = lim ), ds(¢7 (0,18, H(85) |6 (05)). (A1)
First using the relation (25) we can write
(& (8:)1000, H(85)|67 (8)) = (¢ (5 00) 05, H (85)|¢ (s; 60)). (A2)
Then substituting for the Fourier representations we find
(7 (5300|005 H (0,)|¢7 (3 00)) = > T =R10(GL(0)| (~iko) Hye ™ |7 (60))- (A3)
A,k
The time integral then selects the terms 7 — m = k and we find
1 [t - . - T
Jim [ ds(6 (6100, H(E)|& (02)) = S (G500 (~ins —mo)) Ha e TOBIG @) (Ad)
=t i,
Recognising the term in the middle from (16) it is easily shown that
O = |(=i(na = m2)) H_ e =™ | @ |77) (7. (A5)
By substitution we then see that
t
im — (0. IV (6.)) = J J
Jim & [ ds(e? (8100, H (@)1 (0)) = <Z<¢ @) ® n|> Ons K (Z 162,(,)) >> "

= (¥’

which shows the proposition.

0) |a902

(60)|¢” (Bo))
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Appendix B: C; = 0 implies monodromy

In this appendix we show that (i) given a quasi-energy state \(ﬁ]SA(O7 02)), defined over the line #; = 0, in smooth
gauge; (ii) if C; = 0, then it is possible to construct a gauge in which the monodromy relation (38) is satisfied.

It is always possible to define a smooth gauge |¢%(0,602)) over the line 6; = 0. For example, given any gauge
|#7(0,62)) a smooth gauge may be constructed by multiplying by a 62 dependent phase such that the phase the
projection onto an arbitrary reference state |r) to be real (r|¢%(0,62)) € R. For a smooth gauge we can use a
construction analogous to (40) to define

|64 (Qut, Qat + 02)) = U (t,0;0,65)|6(0, 62)) (B1)

where we have used that for C; = 0 that ¢; is independent of g. The gauge is smooth in interior of the Floquet zone

by construction. The gauge is then globally smooth if \¢%(2ﬂ', 02)) = \qi)% (0,02)). However in general there is a phase
difference

2(62) = <¢]S(O 0y + 27rﬁ)\¢J (27,02 + 273)) (B2)

= (¢4(0, 62 + 27 B)|U(T1,0;0,62)|¢4(0,65)).

For for C'; = 0 the quasi-energy ¢; is independent of 63 and this phase is given by
2(62) = e (6 + 2mB)u(6e) (B3)

where u(62) = (¢7(0,02)|¢%(0,62)) is the phase difference between the smooth gauge |¢4(27,62)) and |¢7(0,62)), the
gauge of Sec. IIT 4. The phase z(2) is smooth by construction, and for C; = 0 has no winding number

27 *
w= % d02z(92)d dgf”
I du(fy + 275) du* ()
B /0 2771[ (02 2m8) —— - +ul2) d6, ] (B4)
Al [, du(6) du(6s)
_/0 2m[u (02) =5, — v (02) =g, ]
= 0.

A consequence of w = 0 is that log z(6) is a smooth single valued imaginary function, from which we can (i) determine
u(f2) and (ii) show u(f3) to be smooth. We find

f infs
92 = &Xp Z 6271'1577, ’ <B5)
n;éO
1 2 o,
fn= df’e "% log (") (B6)

2

which is verified to satisfy (B3) by substitution. The smoothness of u(f3) follows as: (i) log z(f2) is smooth, thus f,
is exponentially small in n; (ii) the small values of the denominator of the summand are power law small in n [54],

1= 2 |F(Bn)] > n~ (710, (B7)

Here ay, 2 by, indicates a,, > cby, for some finite constant ¢ and sufficiently large n, F/(x) = x — nint(z) is the fractional
part of x, nint(z) is the nearest integer to z, € is any arbitrarily small positive constant, and p is the irrationality
measure of B. For the golden ratio, and almost all irrational numbers p = 2. The exponential smallness of f,, beats
the power law smallness of the denominator, and the terms of the sum in (B5) are exponentially small in n, and hence
u(62) is smooth.

As a result the state

|624(0,602)) = u” (62)[64(0, 62)) (B8)
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FIG. 14: Convergence relation for Flogquet unitaries: The relation (C8) is verified for the Floquet unitaries of Hep in the
topological and trivial cases. In the trivial phase, C'= 0 and the unitaries obey the relation U; — U;_2U;"*,. In the topological
case C' = £1 and the unitaries obey the relation U; — (—1)% Ui72Uiﬂj1‘ In both cases the converging series is truncated when
its value drops below numerical precision. Model Hep (67) with parameters Th = 4, T> = T1q:/pi, pi/¢ = Fit2/Fit1, m = 1(3)

for topological(trivial), 6 = (0, 0).

defines a smooth gauge which has a constant phase difference on the boundary 6; = 0:

2(02) = (#3,(0, 02 + 273)|U (11, 0; 0, 62) |63, (0, 02))
=e

7i6jT1
Y

(B9)

thus |¢1,(0,62)) satisfies the monodromy relation (38).

As a final note we discuss the case of the topological class. In this analysis we used that C; = 0 implies w = 0 (B4).
In general one finds that the winding number w = C;. When w # 0 no construction exists for a smooth u(62), and no
smooth gauge exists for which the monodromy relation is satisfied. However, instead, there is a smooth gauge that
satisfies the generalised relation

U(T1,0;0,0)|¢4(0,02)) = e {OT+C82) |0 (0, 0 + 271)). (B10)

Appendix C: Non-convergence of Floquet unitaries

In the main text we noted that in the trivial class of dynamics there is convergence of the Floquet unitaries of
the dynamics in the commensurate approximnation to the time evolution operator of the incommensurate dynamics,
whereas in the topological phase there is not (54). A numerically accessible consequence of this non-convergence is
the convergence relation (57) which relates successive Floquet unitaries calculated within the comensurate dynamics.
In this appendix we derive the relation (57).

We first recall some properties of Diophantine approximation. For any irrational number [ the best rational
approximations p;/q; are given by truncating the continued fraction (9), or, equivalently, by the recursion relation

Di = aiPi—1 + Pi—2
¢ = aiGi—1 + ¢i—2- (C1)

with initial values p_; = q¢_2 =1, p_o = g—1 = 0. It is tempting to suggest that the Floquet unitaries may then
satisfy the corresponding relation to (C1) given by

Uil (B0)) = (Ui—1)™ Us_a|¢? (60)).- (C2)

If the relation (C3) holds for all quasi-energy states it would imply that Floquet unitaries obey the following conver-
gence

Ui — (Uigl)ai Uigg. (03)

We find that in the trivial case such a relation is satisfied, (C3) is verified numerically in the left Panel of Fig. 14.
However non-trivial topology presents an obstruction to this convergence.
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We find however that (C3) is generically not satisfied in the topological case. To see this we note that the LHS
of (C3) corresponds to the angular evolution

= t+ C4
<9t2 Qpi/qi 6o2 (1)
whereas the RHS corresponds to the trajectory 6_’1 = 0 + 60,

Q1 i
<69t1> _ {(91(Pi—2/%—2pi/qi))t 0 for t <Ty-2 (05)
0012 (&21(?1‘-1/‘11'1_1*Pi/qi))t + (521( )Ti72 for iz <t <1y

Pi—2/qi—2—Pi—1/qi—1)

where T; = 2mq; /. It is easily verified geometrically that the two trajectories define a triangle in the extended

Floquet zone of area
3| (tinsae) * (uroamaracs)
A=— X
2 |\ Tpi/q; N Tiopi—2/qi—2
1|27 o 2mq; 2
2|\ 2mp; 2Tpi—_o
. , (C6)
(QZl) « ((122)‘
Di-1 Di—2
= 21%a;|pi—1Gi—2 — Pi—2Gi—1|

= 271'20,1‘

= 27r2ai

where [p;—1¢i—2 — pi—2qi—1| = 1 is a standard result from the theory of Diophantine approximation.

Using the of Sec. V B that two quasi-energy state trajectories corresponding to slightly different trajectories through
the Floquet zone separated by a small perturbation, accrue a phase difference e where n = AC;/2r where Cj is
the Chern number of the quasi-energy state, and A the area enclosed by the trajectories (in the case of Sec. VB
A = |€}]|66]t sin o). In this case we thus find e = ¢74i¥ = (—1)% In general, in addition to the correction to the
phase, there is also a correction to the final state, however this correction goes to zero in the incommensurate limit
1 — 00 so we focus on the correction to phase. This implies the relation

Uild? (00)) — (—=1)%C7 (Us—1)™ Us—a|¢? (60)), (C7)

where the phase term constitutes a topological correction to the relation (C3). Eq. (C7) corresponds to (57) in the
main text. In the special case where r = a;C; mod 2 is the same for all the partial quotients a;, and the Chern
numbers C; of all the quasi-energy-states, then the extra phase becomes a topological correction to (C3)

Uz' — (—l)rU,?ilUi_Q. (08)

this is verified numerically in Fig. 14.

Appendix D: Divergence of trajectories

In this appendix we derive the relation (52). This gives the coefficient of linear divergence of trajectories following
a perturbation to the phases of the drives. This coefficient is zero in the trivial case, in which the trajectories do not
diverge.

We begin by considering the states (49). These two trajectories define a parallelogram patch on the Floquet zone
with vertices at 50, 50 + 6@, 50 + Qt 50 + (Ot 4+ 60. We use (25) to fix the gauge choices between states related by shifts
in the § direction, and choose a gauge such that |¢/ (§)> and ¢; (5) are continuous in the perpendicular direction. As

the quasi-energy state |¢7(6)) define a smooth basis over the patch of interest the we can then resolve |11) in this
basis. This yields

[a(0)) = D2 79 P07 (B)) (6 (Bo) o). (1)
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Doing the same for |1)5(t)) and expanding in 50 yields

92(0) = a0+ 32 7O [13,5,69 )6 Go)| + 167 ) 0u 8 )] — 35,64 o) |67 G} 2 () o) +O50)?
’ (D2)

where 05, = 60 - V.-
In order to evaluate the distance between the states we use the infinitesimal form of the Bures angle

DE(¢,9 + 8¢) = (69]6v) — (5¢|v) (¥|0v) (D3)

which can be verified by expansion of (50). We then see that if we evaluate the limit

Dg (1, ¢2) (D4)

lim lim ———
t—00 §0—0 t2|59|2

we will pick out the terms proportional to (Jz4 €; (6))? only, as this term is O(£2]60]2), and all other terms are higher
order in 66 or lower order in ¢. Hence from (D2) and (D3)

2

5 12 - - -
Jim. 5gg1()mDé<wl,w2>:Z[aaejwo)} (67 (B0) [wo0) [* — ;aﬁqwonwﬂwonw : (D5)

J

where @ = 00/|06] is the unit vector parallel to 66 and 9z = i - Vg, -
From (27) it follows that
- C; C;
9sg.€5(00) = 52 (=Q2, ) - (u1,u) = ﬁ(Qth) X (u1,uz) =

:27r

C;|9 sin

o (D6)

where C; is the Chern number of the quasi-energy state |¢’ 0)), (Q1,0) x (ug,uz) = usl — w1y = |G| sin
is the antisymmetric product of a pair of two-element vectors, and « is the angle between O and 0. By defining
p; = [{(#?(60)|tbo)|? this becomes

2

= 2
.
D%wl,wz):l' ;jr““] S - [ | (D7)
J J

lim lim ———
=00 600 12|56)|2

Thus as Dy is defined to be positive we can invert the square on both sides without ambiguity.

. . 1 B |ﬁ|| sin a
Jim lim 160 Dy(t1,12) = o o(C) (D8)

yielding the form (52) in the main text where o(C) is given by (53).

Appendix E: Scaling analysis of the topological and trivial regimes

In this appendix we numerically quantitatively verify two qualitative observations made in the main text: that, in
the topological regime, the model (67) gives rise to (1) quasi-energy states which are delocalised on the frequency
lattice, (2) Fourier spectra of observables which are dense. These two properties are expected per Sec. V C. Here
these properties are numerically verified using the scaling of the inverse participation ratio and the power spectral
entropy (both statistics are defined below).

1. Delocalisation on the frequency lattice

Delocalisation can be verified quantitatively via the scaling of the inverse participation ratio (IPR)

I=" (&54(00)|65(00))°, (E1)

n
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FIG. 15: Localisation-delocalisation transition in frequency space of quasi-energy states and observables: In the upper panel
the inverse participation ratio I (see (E1)) of the quasi-energy-state is plotted versus q for rational approximations (8). Data
from Hamiltonian (67) which has a topological-trivial transition at m = 2. (Lower panel) the emergence of a region of dense
spectrum in Fig. 9 of topological origin is quantitatively verified. This is seen by the change in scaling with q of H(S) between
the topological (m < 2) and trivial (m > 2) cases where H(S) ~ logq and H(S) ~ cons. respectively. Model Hcp (67) with

parameters 71 = 4, To = T1qi /s, pi/qi = Fiy2/Fit1 for ¢ = F5 to Fia, bo = (0,0).

where |&]ﬁ(§o)) are the Fourier components of the quasi-energy state |¢7(6)) define in (19). In the commensurate
approximation, for delocalised states, I ~ ¢!, as each state is delocalised along a quasi-one-dimensional strip per-
pendicular to the electric field (). Whereas in the localised case each state is restricted to a patch whose size is
independent of the size of the lattice, and so I does not scale with q.

This is shown for the quasi-energy-states of Hop in Fig. 15 left panel. For the topological case m < 2 (data points
n) we see the delocalised behaviour I ~ ¢! (guide line shown black dotted), whereas for m > 2 we see I ~ ¢° (data
points V) consistent with localised states. Data is shown for three values of m in each of the topological and trivial
case.

2. Dense spectral entropy

To establish the formation of a continuous part we investigate the behaviour power spectral entropy

H(S) == s(w)logs(w). (E2)

w

where s(w) = S(w)/ >, S(w')] is the normalised spectral density, and S(w) is defined in (69).

Data for H(S) calculated within the commensurate approximation is shown in the right panel of Fig. 15. For a
pure point spectrum we expect there are finitely many contributions to the sum in H(S) as ¢ — oo and we expect
H(S) ~ cons., this is seen for data from the trivial case (data points V). Whereas, in the topological case (data points

A), there are infinitely many contributions to the sum coming from the formation of the dense part of the spectrum,
and H(S) ~ loggq.

Appendix F: Averaged power spectrum

Here we give the form of the averaged power spectrum used to make Fig 9, which is obtained by analytically
performing the averages of (69). From (68) we have that the Fourier spectrum A(w) of the expectation value of a
generic operator is given by

S S oGy 0|40k, ) for w=G -7
Aw) = N oz;aj/<¢%|A|¢]ﬁ+m> for w= g} Tt ey — € (F1)
m 00 (O | Al ) for w=0-7+e— e

Here, j # j', and we define the Af;l’j = meﬁﬁ |A|¢j / ) which can be obtained numerically by Fourier transform of

T4
A sandwiched between quasi-energy states (which are in turn obtained from numerical integration of the equations of
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motion) as follows

(¢ (8)| Alp7 (8)) = D (00| Al ahe M = 3 AZT omicht (F2)

nm n

Using this, and Eqn. (68), we find this quantity is related to the Fourier spectrum by

. Ay —
lo; |2 AL + | |PALY for w=Q- 7
Y —
Alw) = { ofa; ALY for w=Q f+ey—e¢ (F3)
. —
* AT s — .n . €
ozj,onAﬁ for w=Q -7+¢€ —¢j

where we have assumed j # j and the non-degeneracy of the quasi-energies €; # ¢;/. Integrating over the Bloch
sphere we find there are four non-zero contributions from the sum over the quasi-energies: two from [|o;|*] o) =

[laj[*] o) = 2/3; and two from [|a;[*|ay|?] o) = 1/3. This yields

(145 P + 1407 P+ 4P| ALT ) for w=0ei
[S(w)]WO) = %|A%j/,|2 for w=0 -7+ €jr — € (F4)
AL |2 for w=Q -7MT+¢; —¢j.

The integration over A = @ - & is realised using the relation [aqag], = 84,3 where the [], denotes the uniform
integration [g, -d%@ over the unit sphere |a| = 1. This yields

2 ¥ aes (14512 + 1457 2 + 14511457 ) for w=G-7
S ipoy.a = %ZAGE |A{7’j’|2 for w=0 7+ € — € (F5)
%ZAe&’|Ag’j|2 for w:ﬁ~ﬁ+ej — &

where & is the usual vector of Pauli matrices. This is the equation used to obtain the Figures used in the main text
and App. E.
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