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Abstract—A new multi-input multi-output (MIMO) Observer-
driven Reduced Copy (ORC) i.e. MIMO-ORC architecture is
proposed for wide-area damping control using multiple doubly
fed induction generator-based wind farms to mitigate the issue
of intermittent observations with multiple feedback signals and
actuators. In this context, the concepts of cyber-physical self-
coupling and cross-coupling are introduced and their impact on
deterioration of closed-loop performance with data dropout is
quantified through an analytical derivation. A framework for
stability analysis of MIMO-ORC architecture is also proposed.
Finally, time-domain simulations show superiority of the pro-
posed approach over its single-input single-output (SISO) ORC
counterpart in a 16-machine New England-New York power
system.

Index Terms—DFIG, MIMO-ORC, PMU, Wide-Area Power
Oscillation Damping, Data-dropout, Wind Farm.

NOMENCLATURE

trdg—mod ~ DFIG RSC current modulation signals
Tyr1, Trro  DFIG RSC current controller states
Tgl,Tg2 DFIG GSC current controller states
G, reduced-order model of nominal (n) system
Cn1,Crs  rows of the matrix C,
B,1,Bpe  columns of the matrix B,
Gon reduced-order model of off-nominal (on) system
Con1,Cono rows of the matrix C,,
Bon1, Bone columns of the matrix B,
K state feedback gain matrix for MIMO-ORC
K; it" row of K
L; observer gain vector for i*"-loop MIMO-ORC
K 1/ K, state feedback gain vectors for SISO-ORC
L; observer gain vector for i*"-loop SISO-ORC
Tobi state vector estimated by ith-loop observer
Tni state vector estimated by i"-loop reduced copy
Tobi state vector received by ith—loop receiver
Ton state vector of the reduced power system

under off-nominal condition
u; /g control input to i*"-loop reduced

copy and observer/i" actuator
Ymmi feedback signal from i" PMU location
Wy binary diagonal random matrix
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Aoy state matrix of overall system dynamics during
the time interval ¢ € [t, tgt1)

&i(t)/&:(t) error between the reduced-order power system
state trajectory and that of reduced copy for
it"-loop of MIMO-ORC/SISO-ORC

R/u data receiving rate as % / p.u.

Aaq(q) state matrices of Jump Linear System

p (M) spectral radius of matrix M

AW state transition probability matrix of Markov
chain governing system’s mode switches

P{X} probability of event X

Il Euclidian norm of a vector or a matrix

X/® matrix multiplication/Kronecker product

L Laplace operator

T sampling period of communication channel

I initial state probability distribution of Markov
chain governing system’s mode switches

ORC Observer-driven Reduced Copy

NCS Networked Control Systems

CPS Cyber-Physical System

DFIG Doubly-Fed Induction Generator

POD Power Oscillation Damper

RSC Rotor-Side Converter

JLS Jump Linear System

PSS Power System Stabilizer

LQR Linear Quadratic Regulator

I. INTRODUCTION

N recent years, several power system researchers [1]—[5]

studied Doubly Fed Induction Generator (DFIG)-based
wind farms installed with power oscillation damper (POD) for
Wide-Area Damping Control (WADC). However, utilities with
years of experience in PMU proliferation are contemplating a
wider use of networked communication to utilize the available
bandwidth, partly for WADC usage, and partly for providing
other data intensive services like video-conference facility [6]—
[10], which brings challenges like latency and packet drop.
Most of the researchers [3]-[5] on the WADC using wind
farms have not adequately considered the packet drop issue
while latency in the cyber layer was taken into account.
In contrast, networked control system (NCS) literature on
model-based control [11]-[14] has studied the issue of packet
drop. However, it appears that [11]-[14], have traditionally
used the single-input single-output (SISO) ‘reduced copy’
or SISO Observer-driven Reduced Copy (ORC) i.e. SISO-
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Fig. 1. Overall architecture of the proposed MIMO-ORC approach. The it control loop is shown in detail. It can be noted that for the it loop at the
actuator location the it row of the controller gain matrix K is used. The two-state Gilbert-Elliott model is used to represent the stochastic data dropout in

the communication link.

ORC architecture to overcome this issue. Apparently, there
is no study on the multi-input multi-output (MIMO) ‘reduced
copy’ or MIMO-ORC architecture. It can be hypothesized that,
when multiple feedback signals are used along with multiple
actuators, a MIMO ‘reduced copy’ is likely to have a better
representation of the system dynamics as compared to multiple
SISO ‘reduced copy.

Thus motivated, in this paper, for the first time, a new
MIMO-ORC architecture is proposed in which each of the
multiple actuators uses a MIMO ‘reduced copy.” Moreover, in
this paper, the concepts of cyber-physical ‘self-coupling’ and
‘cross-coupling’ are introduced in the context of MIMO- and
SISO-ORC architectures. Then, the effect of these couplings
on the deterioration of closed-loop performance is quantified
using an analytical measure. Finally, a framework for stability
analysis of the MIMO-ORC architecture is also presented. The
proposed concepts are applied in a power grid to mitigate the
problem of wide-area power oscillation damping control under
data packet dropout. References [15] and [16] have considered
this issue when a single actuator is used. In contrast, we will
focus our attention on the scenario in which multiple inter-
area modes are damped using multiple actuators and feedback
signals in presence of data dropout.
In this context, our recent work [17] and [18] has taken into
account multiple wind farms as actuators and multiple PMU
signals for feedback. Inspired by the NCS literature on model-
based control [11]-[15], references [17] and [18] used an ORC
architecture where each actuator employs a SISO reduced-
order model as the ‘reduced copy.” In contrast to [15] and [17],
[18], in this paper:

e a new MIMO-ORC architecture is proposed, which uses

a MIMO ‘reduced copy’ at each actuator location.
o an analytical derivation is presented that takes into ac-

count the effect of data dropout in one link on the
performance of the MIMO/SISO ‘reduced copy,” which
uses another link.

« a framework for stability analysis of MIMO-ORC archi-
tecture is proposed.

« effectiveness of the MIMO-ORC is compared with SISO-
ORC using linear and nonlinear time-domain simulations
for WADC in a power grid.

II. PROPOSED MIMO-ORC ARCHITECTURE FOR POWER
OSCILLATION DAMPING

The overall architecture of the proposed MIMO-ORC ap-
proach is shown in Fig. 1. The ORC architecture presented
in [17] utilizes a SISO reduced-order model as the ‘reduced
copy’ for each control loop. In contrast, the MIMO-ORC
approach proposed in this paper utilizes MIMO reduced-order
model as the ‘reduced copy’ for each control loop, see Fig. 1.

A. Study System

The effectiveness of the proposed MIMO-ORC architecture
is tested using a 16-machine, 5-area dynamic equivalent of
the New England-New York system, see Fig. 2.

A nonlinear positive sequence fundamental frequency phasor
model is considered. All the synchronous generators (SGs)
are represented by sixth-order subtransient models and eight
of them (G1-G8) are equipped with the IEEE type DCIA
excitation system. SG G9 is equipped with a static exciter
and a power system stabilizer (PSS). The dynamic data of
the power system and the nominal power transfer through tie
lines can be found in [19].

In this study, two SGs (G9 and G15) are replaced with two



Fig. 2. 16-machine, 5-area equivalent representing New England - New York
power system. Wind farms are connected to bus-9 and bus-15.
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Fig. 3. Schematic of DFIG-based wind turbine with its overall control
architecture. The modulation signals 4,4 —mod OF %rq—mod are used to damp
the inter-area oscillation.

equivalent DFIG-based wind farms. The schematic of the
DFIG-based wind farms with its overal control architecture is
shown in Fig. 3, which is represented by an aggregated model
whose turbine-generator rotational dynamics is represented
by a two-mass model to include the torsional mode. The
generator is modeled using standard differential and algebraic
equations as given in [20]. The turbine is assumed to operate
in the zone of maximum power point extraction. Also, the
blade pitch angle and the wind speed is assumed to be
constant. The tie-reactors of the VSCs, DC-link dynamics and
the PLL dynamics are included in the model. In the standard
notation, the state-variables x of the DFIG-based wind farm
model are:

. . , , . . .
T = [qu lds eqs €is lgg ldg tms Wr_dfg Wt etw
2 ) -k T
Vge ZTrrl Trr2 Tgl Tg2 92 Tpii(2) qu mv]
) (1)
Here, 02 and x,,;(2) are the PLL states, and igy and x, are

the state-variables of the DC-link voltage controller. For more
details of DFIG model and controls used in this paper, the
readers are referred to [20], [21]. In this study, for each wind
farm either of the modulation signals i,q—mod OF %rg—moa are
used to damp the inter-area oscillation, see Fig. 3.

B. Proposed MIMO-ORC Approach

The linearized power system model around the nominal
operating point is reduced to the lowest possible order (in
this study a 15" —order model) such that the MIMO reduced-
order system (G,,) reasonably represents the dynamics of the
full-order system in the frequency range of electromechanical
modes. This reduced-order model is described by:
ATL Bn
=T } @
For simplicity, we restrict our case to two wind farms working
as actuators.

In this case, the reduced-order system G, is a 2-input - 2-
output system. Therefore, B,, and C),, can be decomposed as:

B, = [ B,1 Bpa ] ) CnT = [ Can Cn2T }
3
As shown in Fig. 1, an observer at the sensor location uses
a multi-input single-output (MISO) reduced-order linearized
model G,, of the system to estimate the states z.p;(t) given
by:

Tobi (t) = Anxobi(t) + Bhu; (t) + L; (qu (t) — Ymi (t))

Gn:|:

gmi(t) = Cnixabi(t)a for i=1,2

“4)
It is important to note here that the observer uses only one
feedback signal (y,,,1 or y.,,2) and the corresponding row of
the C matrix (C,,; or C,3). For the i control loop, estimates
of the dynamic states x;(¢) are sent over the communication
network to the wind farms. Control input signals u;(¢) at the
actuator locations and the sensor locations are calculated using
MIMO ‘reduced copy’ of the system at each place (see Fig. 1).
For each control loop the ‘reduced copy’ dynamics and the

control input signals u;(t) are described by:
T (t) = AnZni (t) + Bhu; (t),
'U,Z(t) = 7K1’7”'(t),

for i=1,2 (5
(6)

where K is the state-feedback controller gain vector, which
can be decomposed as follows:

KT =[ KI' KI ]

for i=1, 2

(7

When a new data-packet is available, it is used to reset the
dynamic states of the ‘reduced copy’ in both sending and
receiving ends at the same instant. Let the ‘reduced copy’ at
both locations be reset with the sample 20, at time sample
ti satisfying:

20 = Wiopin + (I — i) Tk, for i=1,2 (8)

where, x,;, are the dynamic states estimated by the ‘"
‘reduced copy’ when new data packets do not arrive. Data
dropout in the communication channels are represented by two
independent random variables ¥4y and W). When data drops
out and fails to reach the wind farm, the states of both the
‘reduced copy’ are allowed to evolve naturally. Otherwise, the
proposed architecture resets the states of both ‘reduced copy’
in a control loop.

In this paper, the transmitter and the receiver, see Fig. 1, are



represented by zero-order-hold (ZOH) and sample and hold
(S/H) circuits, respectively. The stochastic data dropout is
represented by the two-states (Good (G), Bad (B)) Gilbert-
Elliott model, see Fig. 1, where both states produce errors
with different probabilities. For more information regarding
the Gilbert-Elliott model, readers are referred to [17].

The variable Wy; = diag(pr;, Pi;, - L) is a binary diago-
nal random matrix and each gaém. follows a stochastic random
variation with the understanding that goém- = 1 (having a
probability of (1 — Pg)) signifies that the [*" element of the
vector ;1 reaches its destination and that <p§ﬂ- = 0 (having a
probability of Pgr) when it does not. In this study, <pf,ﬂ- =}
for [ # j is assumed since all the elements of the vector x,p;
is part of the same data packet.

In the following section, the concepts of cyber-physical ‘self-
coupling’ and ‘cross-coupling’ are introduced.

III. CONCEPTS OF CYBER-PHYSICAL SELF-COUPLING
AND CROSS-COUPLING

Cyber-Physical ‘Self-Coupling’: We define this as the
interaction between the communication channel used for it"
feedback signal with the physical plant, which influences
the closed-loop performance of the i** loop. For example
data-dropout in the i*" communication channel will affect the
performance of the i*" loop, see Fig. 1.

Cyber-Physical ‘Cross-Coupling’: We define this as the
interaction between the communication channel used for
a different feedback signal (e.g., in the j* loop) with the
physical plant, which influences the closed-loop performance
of the i*" loop, see Fig. 1.

Next, we will quantify the impact of these coupling
mechanisms on the closed-loop performance of MIMO-
and SISO-ORC architectures using analytical measures. For
simplicity, we restrict our case to two wind farms working as
actuators.

Cyber-Physical Coupling in MIMO-ORC Architecture:
Let us consider the reduced-order state-space model of the
power system under off-nominal operating condition (e.g.
higher loading), which is given by:

Ton(t) = AonZon(t) + Bont (t)

~ Aonton(®)+ [ Bt B ]| 510
(1) = { i) } = Conron(t) = { o }xan(t)

©))
where the subscript ‘on’ denotes the off-nominal system. The
control input to the plant (%), see Fig. 1, is given by:

R iy

—Kowpe
where, z,1 and x,o are the dynamic states estimated by
the ‘reduced copy’ at the actuator locations as given in
equation (5). Combining equations (4), (5), the reduced-order
power system dynamics under off-nominal condition from (9),
and the control input to the plant from (10); one can derive the

(10)

overall system dynamics during the time interval ¢ € [tg, tx+1),
tyr1 —tp =7 as:

Ton Ton
jjnl Tnl
Tpe | =Aci| Tn2 (1D
Top1 Lobl
z.obZ Tob2
where,
Aon *Boanl *Bon2K2 0 0
0 as2 0 0 0
ACl = 0 0 ass 0 0
LlConl —BnK 0 Q44 0
LQCO'rLQ 0 _BnK 0 as5
aze = azz3 = A, — B, K, agyy = Ap — L1Cpy
as55 = An - L2Cn2
(12)

Accuracy of the estimated states by the ‘reduced copy’ would
be affected when the system is under off-nominal conditions
and communication channels have low data receiving rates (R).
Therefore, it would be useful to estimate the state trajectories
of the reduced copies during the inter-sample interval.

From the dynamics of the combined nominal, off-nominal and
observer systems (11) during the inter-sample period [tg, tx+1),
it is observed that the responses of x,,(t), z,1(t), and
Zn2(t) are uncoupled with that of the observer states xp1 ()
and z,42(t). Hence, the left upper block can be considered
separately for analysis during ¢ € [tg, tx+1). Thus, neglecting
the observer dynamics without loss of generality, (11) can be
rewritten as:

:ton Aon *Boanl *Bon2K2 Lon
i'nl = 0 An — BnK 0 Tn1
Tpno 0 0 A, — B, K Tn2
(13)
Let,
Aon _Boanl _Bon2K2
Q= 0 A,-B,K 0 (14)
0 0 A, — B, K
and the initial condition be:
T T
[ @on (t) @1 () a1 () | = [ 200 20in 2pax |
(15)
Solution of (13) for ¢ € [tx, txt1) is given by:
Ton (t) xgnk:
Zn1(t) = SHt—tr) 5”9111@ (16)
Ta(t) 0o

Equation (16) represents the temporal evolution of the system
states of the reduced-order model and those of the reduced
copy. The state trajectory of reduced copies with initial states
(@0, for i=1 or 2) can be expressed for t € [tg,tx11) as:

Ti(t) = eAn =Bt (B 0o (T — By ) i) (17)

To find the expression for the state trajectory of the reduced-
order linearized power system, equation (16) can be trans-



formed into the Laplace domain as follows:

Xon(s) x(o)nk
Xn1(s) =A| 2%, (18)
Xna(s) w?ﬂk
where:
A= {emt = (s1 - )7 (19)
Using the Lemma (9.1.3) of [22] one can show that:
(SI — Aon)il Ay Ay
(s —Q) " = 0 = 0 (20)
0 0 =

where
Al = _(SI - Aon)_lBoanl(SI - (An - BnK>>_1

Ay = —(SI — Aon)ilBongKg(SI — (An — BHK))71

E= (sl — (4, — B,K)) !
(21)
The detailed derivation for arriving at (20) from (19) is given
in Appendix.

From (18) and (20), X,,(s) can be written as:
Xon(s) = (sI — Aon)_ley)nk + A x?zlk + Az x?ﬂk (22)

Using (22) and (5) one can derive the system states as:

Lon (t) = Tnl (t) + eAcm(titk)(Ignk - x?zlk)

t
4 A GA = S(BI) e Kl
k

¢
— [ eAnt=T) B,y KoeAn=BnE)T0 dr
123

23)
where 0A = A,, — Apn, 6(BK); = BoniK; — B, K for i=
1, 2 and z,,;(¢) are the reduced copies’ states given by:

L (1) = eAn=BalO=t) .0 0 por =1, 2 (24)

As mentioned earlier, accuracy of the estimated states by the
reduced copy would be affected when the system is under
off-nominal conditions and/or communication channels have
higher data dropout. The error between the reduced-order
linearized system state trajectory and that of each reduced
copies could be a measure of system performance, which can
be defined as:

&i(t) := xon(t) — xni(t), for i=1,2
From (23) and (24), & (¢) can be derived as:
&i(t) = ettt (20— 2 ))

t
thf eA""(t’T)((SA — 5(BK)1)6(A"73"K)Tx9LIde
k

(25)

t
— [ eAent=T B, s KpeAn=BakT30 ) dr
ti

(26)

using (8) equation (26) can be written as:

&i(t) = eton =) (@l — zop)
+ eAon (=t ([ — Wy3) X (Topt — Tn1k)

t
+ [ eAon(t=T)(§A — §(BK); )elAn=BnET
tr

27
X (¥1k(Tob1 — Znik) + Tnik)dT 7)
t
_ f eAO"(t_T)Bonnge(A"_B"K)T
tr
X (Wak(Topv2 — Tnak) + Tnok)dT

Similarly, £»(t) can also be derived. This reveals the impact
of the interaction between the cyber and the physical layer on
the MIMO-ORC performance.

Remark I: It can be seen from (27) that the error is dependent
on the cyber-physical ‘self-coupling’ determined by the first
two terms. The last term indicates the impact of the cyber-
physical ‘cross-coupling.” Under nominal operation of MIMO-

ORC:
Aon = An = 6(A) =0
Bon = By, = §(BK)1 = —BnaK»

Tnl = Tn2 = Tn

(28)

Assuming xgnk = Top1 = Top2 = T, l.e. that the observers
track the actual states perfectly, it can be seen from equation
(27) that & (t) = 0. In a similar manner it can be shown that
&(t) = 0.

Cyber-Physical Coupling in SISO-ORC Architecture:
One can also derive a similar expression corresponding to
(27) for SISO-ORC architecture with two actuators. Only the
final expression is given here, which is:

& (t) = eAon=t)(al \ —aly))
" etAon(titk)(I = Wai) X (T — )
+ f ern(t_T) (6A _ BlK])e(A"_Bnlkl)T
t

k 29
X (Wik(Top — Thp) + Tyqp)dT 9
¢

— eAon(t=T)B_ | Kye(Ana—BuaKa)r
tr
X (Wak(Tlpy — Thop) + Ty )dT

where, Kl and f{g are the controller gain vectors, Bl =
Bon1 — Bn1, and (A, By1) and (A2, By») are the parameter
associated with copy 1 and copy 2 of the SISO-ORC archi-
tecture. Note that the closed-loop system with the controller
designed for Loop 1 (see Section V-B) is given by:

R Anr _BnAlFf(lA Bor
Gar= | LiCup A, —BuKi —LiCry | O
Crar 0 I

(30)
where, ‘F” denotes the full-order system and f)l is observer
gain vector of copy 1. Matrices A,» and B, are the state
matrix and the input matrix of the reduced-model of G.
Similarly, £5(t) can also be derived.

Remark II: Equation (29) reveals the impact of cyber-physical
‘self coupling’ and ‘cross-coupling’ on the SISO-ORC perfor-
mance. Under nominal operation of SISO-ORC, assuming the
observers track the actual states perfectly, it can be shown



from equation (29) that & (¢) # 0. In a similar manner, it can
also be shown that &, (t) # 0.

The above analysis demonstrates the advantage of the MIMO-
ORC architecture over its SISO counterpart. The claims in
Remark I and Remark IT will be validated using linear time-
domain simulations in Section VI-B.

IV. STABILITY ANALYSIS FRAMEWORK FOR MIMO-ORC

The focus of this section is to develop the stability analysis
framework for the MIMO-ORC architecture proposed in this
paper. Starting from (13), one can write the following in
discrete domain:

ZTon(k+ 1) Zon (k)
to(k+1) | =T | zn1(k) (31)
l‘ng(k‘ + 1) l‘ng(kﬁ)

As mentioned earlier, the proposed architecture resets the

states of both ‘reduced copy’ in a control loop. Following
(15) and (8), equation (31) can be written as:
WikZobi (k) + (I — ¥1ik)xni (k)
Tn2(k + 1) WokZov2 (k) + (I — Wax)zna(k)
by assuming the observers track the system states accurately,
(31) can be written as:

( i:ﬁ%ii B ) _ 0T ( Ton (k)
(32)

zon(k + ]-) :Z?on(k)
o (k+1) | =MW (k) | xp(k) (33)
xng(k + 1) (Eng(k)
where,
I 0 0
W(k)=| Ty (I—Ty) 0 (34)
Wor 0 (I —Poy)
Let, )
Ay = T (k) (35)
Then (33) becomes:
xOﬂ(k + 1) xon(k)
Tp1(k+1) =A; | zn(k) (36)
l‘ng(k‘ + 1) S(Jng(k)

The existence of W1y and Woy in (36) makes the system under
MIMO-ORC architecture a jump linear system (JLS) [23]. In
our study, ¥y or Woy can be either I or 0. Therefore, the
JLS in (36) assumes four switching modes, which results in
four different matrices for Ay (= Ay4(q) for ¢ = 1,..,4).

The JLS given in (36) is mean square stable if and only if the
following holds [24]:

p (W' @ 1) diag (Aa(q) @ Aa(q))) <1|  (37)

where, ® denotes the Kronecker product, p (M) denotes the
spectral radius of M (i.e., the largest absolute value of the
eigenvalues of M), diag (A4(q) ® Aq(q)) denotes the block
diagonal matrix formed by using the matrices A4(q) ® A4(q)
for ¢ = 1,..,4, W denotes the state transition probability
matrix of the Markov chain governing the mode switches
of the system, and the dimension of the identity matrix [ is

determined by the sizes of A; and W.

It can be noted from (37) that the stability of the JLS described
in (36) depends on (a) the controller gain, (b) the accuracy
of the ‘reduced copy,” (c) sampling time Y, and (d) the
state transition probability matrix W. The following section
describes the state transition probability matrix.

A. State Transition Probability Matrix (W)

As mentioned earlier, in this study, independent stochastic
dropout is considered in the communication channels. Let us
represent the Markov chain governing the mode switches of
the system by {w,} for ¢ = 1,..,4 and the elements of W by
Di,j» which is defined by:

pij = P{wgr1 = jlwg = i} (38)

The four switching modes of the system are:

{wh={(Pn =1, ¥ =1),(¥1c = [, ¥, = 0),
(U1x =0, Pox =1),(P1x =0, Py =0)}
(39)
These modes have an initial state probability distribution
Mo = [papz, p1 (1= p2), (1= p) p2, (1—pa) (1= p2)]",
respectively. In our study, based-on the generated stochastic
independent binary data vectors Wy and Woy, the matrix W
is calculated. A code was developed to count the modes and
the mode switches in a binary vector, then the probabilities
were calculated accordingly. For example for a 75% data
dropout rate in the communication channels W can be written
as:

0.125 0.125 0375 0.375
0.059 0294 0.176 0.471

W=1 0173 0103 0241 0483 (40)
0.022 0.178 0.356 0.444

B. Dimensionality Issue for Power System Application

It is almost impractical to test the condition in (37) for a
large power system model. Due to the Kronecker products in
(37), the computational burden of the analysis increases with
the order of A, along with the number of switching modes of
the system. Let us assume that the size of Ay is N. Then:

wT o o0 o0
o wT o o

Wiel= _ (41)
0 0 . 0
0 0 o wr AN2x4N2
and:
diag (Aa(q) ® Aa(q)) =
A (1) ®Az(1) 0 0
0 0
0 0 Ad (4) (24 Ad (4) AN2 X AN?
42)

For example, if we consider a plant representing a 15" —order
model, it requires calculation of the eigenvalues of a 8100-
order matrix. To reduce this computational burden, in our
analysis, the reduced-order model is considered as the plant
to check (37) and then the result is validated on the nonlinear



TABLE I
INTER-AREA MODES OF THE SYSTEM WITHOUT POD, WITH
MIMO-ORC, AND WITH SISO-ORC

Case No POD MIMO-ORC SISO-ORC
Mode Ts,s f,Hz Ts,s f,Hz Ts,s f,Hz
#1 69.4 0.42 10.7  0.41 10.6 0.42
#2 28.3 0.51 14.7  0.52 14.5 0.52
#3 225  0.62 7.60 0.62 7.60 0.62
TABLE II
SELECTED PAIRS OF FEEDBACK SIGNALS AND CONTROL INPUT FOR
DFIG PODs

Loop No. POD  Feedback, y»(t) Control Input, u(t)
Loop 1 at Gy Pi7_13 Ird—mod
Loop 2 at Gis Pis_16 lrg—mod

model using time-domain simulations.

Note that the sampling period also plays a major role in
the stability of MIMO-ORC architecture. Another deciding
factor for the selection of sampling period is that it should
be adequate to retain the identity of the critical modes in the
feedback signal. In this paper, the sampling period of PMUs
and the data transmission are assumed to be 0.02 s and 0.1 s,
respectively.

V. WIDE-AREA DAMPING CONTROLLER DESIGN

After inclusion of wind farms at bus-9 and bus-15, the lin-
earized test system has three inter-area modes with frequencies
(f) in the range of 0.4 - 0.7 Hz, see Table 1. Poor settling
times (7s) for these modes show the need of POD at G9
and G15. Table II summarizes the control loops considered
in this study where the feedback and the control input are
selected based on observability and controllability of the inter-
area modes, respectively. The objective of the controller is to
damp these inter-area modes. The following sections highlight
the controller design for MIMO-ORC and SISO-ORC.

A. MIMO-ORC Design with Simultaneous Approach

In this case, the controllers and the observers for both the
loops (Loop 1 and Loop 2, see Table II) are designed si-
multaneously. The linearized system has three poorly damped
inter-area modes and the objective of the controller is to damp
these inter-area modes. A Linear Quadratic Regulator (LQR)-
based controller with Luenberger type observer is designed to
minimize the control effort while making sure the closed-loop
system is stable with reasonable settling time for these inter-
area modes. In this case, a 15t"-order reduced MIMO model
of the original system is used as the ‘reduced copy’. Table I
summarizes the closed loop poles for the case of MIMO-ORC
where a settling time of less than 15.0 s is achieved for all the
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Fig. 4. Nonlinear time-domain simulation to validate the findings of the
MIMO-ORC stability analysis framework.

modes. The controller gain is as follows:

0.21,-0.07,1.23,1.92, —0.46,0.24,0.94, —0.17,
—0.48,0.24, 0.34, 0.26, —0.32, 0.02, 0.17, —1.13,
1.02,—0.04, —0.58,0.19, —1.16, —1.29, —0.22

0.10, —0.26, —0.66, 0.91, 4.64, —1.29,1.17, 14.4 l

43)

K =

B. SISO-ORC Design with Sequential Approach

As mentioned in Section V-A an LQR-based controller is
designed here as well. The SISO controller for each wind farm
was designed using a sequential approach mentioned in [19].
The sequence is as follows.

« First the controller for Loop 1, see Table II, is designed
considering corresponding input-output pairs to damp the
selected modes (mode #1 and #3). In this case, the
reduced model of the original nominal system is used
for the ‘reduced copy.’

o Then the closed-loop system with the controller designed
for Loop 1 is considered as the plant for the Loop 2. In
this case, the controller is designed to damp mode #2.
For the ‘reduced copy, the reduced-model of the closed-
loop system with the controller for Loop 1 is used.

To have a fair comparison between the performance of MIMO-
ORC and SISO-ORC, the controller for SISO-ORC is designed
in such a way that the inter-area modes of the closed-loop
system will have the same settling times as of MIMO-ORC,
which are highlighted in Table I. Also, the SISO ‘reduced
copy’ considers a 15t"-order reduced model. The controller
gains for SISO-ORC are as follows:

K, = [0.05, 0.02, 1.64,1.97,—0.02, 0.41, 0.23,
0.01,0.04,—0.05, 0.12, 0.08,—-0.27, 0.63,0.04]
K, = [0.04,0.12,—-0.36,0.57,—0.17, —0.10, —0.07,
0.01,0.03,0.03,—0.10,0.14, —0.10, —0.01, —0.01]
(44
The reduced-order models for both MIMO-ORC (MIMO
model) and SISO-ORC (SISO model) architectures are ob-
tained by applying the Schur Balanced Truncation method [25].
The reduced-order models are derived while retaining the
identity of the inter-area modes and poorly-damped modes of
the system.
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Fig. 5. Maximum error norm of state trajectories in the inter-sample interval
of nominal reduced-order system for SISO-ORC from linear simulation
following simultaneous pulse disturbances in both the inputs (R=25%).

The following section provides the simulation results in
Matlab/Simulink platform.

VI. SIMULATION RESULTS AND DISCUSSION
A. Stability Analysis of MIMO-ORC

To examine the effectiveness of the proposed stability
analysis framework of MIMO-ORC, two test cases are
chosen (case 1 and case 2). A 15""-order linearized model
of the original system is used as the plant. Independent
communication models are assumed for the loops with a data
receiving rate of 25% and the corresponding W given in (40)
is used for the analysis. For both the cases, the condition in
(37) is evaluated and the spectral radius p is calculated. The
values for case 1 and case 2 are p = 0.96 and p = 1.80,
respectively. Therefore, it can be concluded that case 1 is
stable and case 2 is unstable. The findings of this analysis was
validated using nonlinear time-domain simulations, which are
shown in Fig. 4.
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Fig. 6. Performance of SISO-ORC versus MIMO-ORC for a self-clearing
fault near bus 60, see Fig. 2, under (a) ideal (R=100%) and (b) non-ideal
(R=25%) communication. (c) Zoomed view between t = 20.0s - 35.0s for the
case of non-ideal communication.
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Fig. 7. Comparison of control input signals of SISO-ORC versus MIMO-
ORC for a self-clearing fault near bus 60, see Fig. 2, under non-ideal (R=25%)
communication.
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Fig. 8. Performance of SISO-ORC versus MIMO-ORC following a pulse
change in the wind speed (V) at the wind farm G15, under (a) ideal
(R=100%) and (b) non-ideal (R=25%) communication.

B. MIMO-ORC vs SISO-ORC: Performance Evaluation

The performance of the proposed MIMO-ORC was
compared with the SISO-ORC using linear and nonlinear
simulation under different disturbances in the power system
along with different data receiving rates in the communication
links. For all the cases, independent stochastic dropout with
R=25% is considered in the two communication channels,
which are represented using Gilbert-Elliott model.

To validate the claims of Remark I and Remark II, linear
time-domain simulations are carried out using a 15%"-order
model of the nominal system, which neglects the observer
dynamics. It was observed that the MIMO-ORC produces
zero inter-sample error. On the other hand, the SISO-ORC
results in non-zero error. Figure 5 shows the maximum inter-
sample error norm calculated for the SISO-ORC case. It can
be observed from Fig. 5 that the maximum error norm of each
loop increases with non-ideality of the communication links
due to the cyber-physical ‘self-coupling’ and ‘cross-coupling’.

To compare the performance of the MIMO-ORC with the
SISO-ORC under nominal operating condition of the physical
layer, a three-phase self-clearing fault near bus 60, see Fig. 2,
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Fig. 10. Performance of SISO-ORC versus MIMO-ORC after a 100 MW step
increase in total system load, under ideal (R=100%) and non-ideal (R=25%)
communication.

is considered. For the non-ideal communication case, a 25%
data receiving rate in both the communication links are as-
sumed. Figures 6 and 7 show the dynamic performance of the
nonlinear system and control input signals, respectively. The
observations are:

¢ Under ideal communication, both SISO-ORC and MIMO-
ORC give satisfactory damping performance (Fig. 6.a).

o Low data receiving rate deteriorates the performance of
both MIMO-ORC and SISO-ORC. However, the deterio-
ration is less for MIMO-ORC (Fig. 6.b, and Fig. 6.c).

¢ Under non-ideal communication, the difference between
states of the reduced copies in MIMO-ORC and the states
estimated by the observer is smaller compared to SISO-
ORC. This produces larger jumps in the control input u(t)
during re-setting (Fig. 7).

o DFIG turbine-generator’s torsional stress is much less
in the case of MIMO-ORC since it captures the system
dynamics closely during data dropouts, which produces
less jumps in the control inputs %,q—mod OF trq—mod-

To study the effect of wind speed variation on the perfor-
mance of MIMO-ORC, a pulse change in the wind speed is

considered. Figure 8 shows the dynamic performance of the
system following a pulse change in the wind speed at the
wind farm G15. It can be observed from Fig. 8 that under
ideal communication both MIMO-ORC and SISO-ORC pro-
duces almost same damping performance. Figure 9 compares
the performance of MIMO-ORC versus SISO-ORC under
different data receiving rates, which reveals that under non-
ideal communication MIMO-ORC produces better damping
performance compared to that of SISO-ORC.

To study the effect of the operating condition on the MIMO-
ORC performance, dynamic performance of the system follow-
ing a 100 MW step increase in total system load is compared
against SISO-ORC, see Fig. 10 and Fig. 11, which reveal:

o Under ideal communication, satisfactory damping perfor-
mance can be observed for both architectures.

e Under low data reeving rates, MIMO-ORC performance
is slightly poorer than that of ideal communication sce-
nario.

e The performance of MIMO-ORC is better than that of
SISO-ORC under high data dropouts.
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Fig. 11. Performance of SISO-ORC versus MIMO-ORC after a 100 MW step
increase in total system load, under ideal (R=100%) and non-ideal (R=25%)
communication.

VII. CONCLUSION

In this paper, a new MIMO-ORC architecture is proposed
for wide-area damping control using multiple DFIG-based
wind farms to deal with data packet dropout. It was shown
that the proposed architecture is less sensitive to data dropout
compared to its SISO-ORC counterpart. Our ongoing research
is focused on the performance and stability analysis of MIMO-
ORC architecture under latency along with data dropout.

APPENDIX

To find the A in (19), let, Z
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