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ARTICLE INFO ABSTRACT

Keywords: The optically stimulated luminescence (OSL) and thermoluminescence (TL) signals of an Al,03:C,Mg single
Al,03:C,Mg crystal were investigated as a function of the heating temperature and illumination time before readout, re-
OSL spectively. The TL and OSL results were analyzed in complementary ways, including the area under the curve,
Thermoluminescence

whole range and partial integration, and peak intensity. A correlation between the continuous decay of the main

TL peak intensity (at 185 °C at a heating rate of 1 °C/s) against blue light (470 nm) illumination times and the
decay of the OSL signal for higher temperatures was found. Both these results showed that the emptying of the
OSL active trap was closely related to the emptying of the trap related to the main TL peak, indicating a cor-

relation of both phenomena.

1. Introduction

Thermoluminescence (TL) corresponds to the light emission upon
heating of insulating or semiconducting materials previously exposed to
ionizing radiation, besides incandescence (blackbody radiation) [1].
These materials find application in radiation dosimetry, particularly in
medical physics (radiotherapy, radiation diagnosis and nuclear medi-
cine) [2]. Optically stimulated luminescence (OSL) is similar to TL but
in this case luminescence is stimulated by the absorption of optical
energy instead of thermal energy [3]. In recent years, OSL has estab-
lished itself in radiation dosimetry based on the development of dosi-
meters Al,O3:C and BeO [4], together with the search for new OSL
dosimetric materials [5-7]. In OSL, optical stimulation releases charge
carriers from the traps [3] and the material emits a light signal related
to the absorbed irradiation dose [4]. In order for TL and OSL to occur,
there must be at least one type of electronic trap that captures charge
carriers in a localized energy level within the band gap, and a re-
combination center from where light is emitted.

Al,03:C,Mg is well-known as a fluorescent nuclear track detector
(FNTD) that was originally introduced for optical data storage by
Akselrod et al. [8]. This material has been successfully used in dosi-
metry of neutrons, protons and heavy charged particles [9,10] with
superior sensitivity and functionality when compared to other FNTD
materials [11]. This material is sensitive to charged particles within a

broad linear energy transfer (LET) range requiring little or no post-ex-
posure chemical processing, and being reusable [11]. An additional
advantage of Al,03:C,Mg is that laser-induced fluorescence allows for
non-destructive fast readout using confocal scanning microscopy
[9,12]. This way, images can be processed automatically with tracks
appearing in the form of bright spots on a dark background that can be
counted with an image processing software [13,14].

Al,05:C,Mg single crystals contain high concentrations of F and F*
centers [8,10]. In contrast to the predecessor Al,03:C, whose F lumi-
nescence centers have a long lifetime of ~35ms, Al,03:C,Mg lumi-
nescence occurs due the presence of high concentrations of F* centers
with a considerably shorter lifetime < 7 ns. Such a short lifetime en-
ables its use as a radiation dosimeter in applications requiring fast lu-
minescence response like dose mapping and real-time optical fiber
dosimetry [15,16]. Also, Al,03:C,Mg crystals contain high concentra-
tions of F,>*(2Mg) [14] that form F,* (2Mg) due to an ionizing ra-
diation induced radiochromic transformation [12,17]. Since the trans-
formation rate is proportional to the absorbed dose, this material ends
up storing the cumulative radiation dose that can be read at 750 nm
[18].

Al,03:C,Mg has been investigated for TL and OSL applications
[11,19,20]. The TL glow curve of Al,03:C,Mg shows a main peak
around 170 °C (1 °C/s), that is a result of emissions at 325, 415, 520 and
750 nm likely corresponding to F*, F, F,>*(2Mg) and of F,* (2Mg)
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centers, respectively [16,21,22]. Recently, the luminescence of these
defects and their role as recombination centers in the TL process was
investigated as a function of temperature, from room temperature (RT)
up to 400 °C [21].

The goal of this work is to investigate the correlation between the
OSL and TL signals of Al,03:C,Mg through the following measurements:
(i) the TL signal emitted after partial readouts of the OSL signal, and (ii)
the OSL signal remaining after partial TL measurements.

2. Materials and methods

The sample investigated was an Al,053:C,Mg single crystal grown by
the Czochralski technique by Landauer, Inc., Crystal Growth Division,
Stillwater, OK, USA. The single crystal was cut into a
8 x 1.6 x 0.5 mm? rectangular parallelepiped with one polished side.
The sample mass was 48 mg.

OSL and TL measurements were carried out using a commercial
automated TL/OSL reader made by Risg National Laboratory (model
DA-20). TL glow curves were obtained using a heating rate of 1 or 5 °C/
s, from RT to 300 °C. OSL emission was stimulated using blue light
emitting diodes (470 nm, FWHM = 20 nm) delivering 80 mW/cm? at
the sample position in CW mode. Each OSL measurement was carried
out during 60 s with 90% of the maximum LED power. The TL and OSL
signals were detected with a bialkali photomultiplier tube behind an
UV-transmitting, visible-absorbing glass filter (Hoya U-340, 7.5 mm
thick) that blocked the stimulation light while transmitting part of the
OSL/TL signal, and a 5mm dia. mask. Irradiation was performed at
room temperature using the built-in °°Sr/°°Y beta source of the TL/ OSL
reader (dose rate of 10 mGy/s) with a total dose of 100 mGy (10 s total
exposure). Two protocols were used to investigate the TL-OSL corre-
lation, as follows:

2.1. Protocol A: partial OSL

1. Heating up to 300°C at 5°C/s (to empty the traps), followed by
cooling to RT

. Irradiation for 10s (100 mGy) at RT

. CW-OSL measurement during a time interval tgp

. TL up to 300°C at 1°C/s
Steps #1-4 were repeated with the illumination time (ty,p) in step
#3 increasing from 1 to 60s, in 1s steps. First of all, a measure
without any influence of illumination time (partial OSL) was per-
formed.

w

2.2. Protocol B: partial TL

1. Heating up to 300°C at 5°C/s (to empty the traps), followed by
cooling to RT

. Irradiation for 10s (100 mGy) at RT

. TL measurement at 1 °C/s until stop temperature Ty,

. CW-OSL measurement at RT for 60 s
Steps #1-4 were repeated with Ty, varying from 125° to 225 °C, in
5°C steps.
First of all, a measure without any influence of temperature (partial
TL) was performed.

w

The TL and OSL results were analyzed in complementary ways,
including the area under the curve (TL and OSL, whole range and
partial integration), and maximum intensity (TL main peak at 185 °C;
OSL initial signal). Since all measurements were carried out with the
same sample, results were not normalized by the sample mass.

3. Results and discussion

Fig. 1 shows the TL glow curves of Al,03:C,Mg single crystal ob-
tained with different illumination times, according to protocol A. The
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Fig. 1. TL glow curves of Al,03:C, Mg single crystal obtained under different
illumination times using protocol A. The TL signal without previous illumina-
tion (TLOs) time is included for comparison. The insertion shows the curve with
highlight for the sample without illumination and 1 s of illumination added. See
text for details.

glow curves were dominated by emission near 185 °C (TL main peak),
in addition to other low intensity peaks at lower temperatures. Previous
works showed that the shallow traps related to these peaks are due to
the presence of Mg in the lattice [16], and that the main peak followed
a first order kinetics TL mechanism with a trap activation energy of
1.36 eV and frequency factor in the range of 10'* s~1 [15].

In this work, we noted that the position of the main peak and the TL
intensity in the 60-125 °C range were not affected by the illumination
time, which possibly indicates that the traps related to these peaks are
not optically active. On the other hand, a significant decrease in the
intensity of the main peak even for short illumination times was ob-
served and assigned to optical bleaching due to the partial OSL read-
outs. The TL behavior as a function of the illumination time was further
investigated through the analysis of the area of the TL glow curve from
RT to 60 °C and of the main TL peak (125-225 °C), together with the
peak intensity value of the TL main peak at 185°C (Fig. 2). The in-
tensity of the main peak decreased continuously for the whole illumi-
nation time interval (from 1 to 60 s), while the intensity of the RT-60 °C
TL signal increased initially and only after about 3 s of illumination it
started to decrease. Further, the time decay of these two regions of the
TL glow curves was different, with the main peak decreasing with a
faster rate. The signal of the main TL peak essentially vanished after
about 30 s while that of the RT-60 °C TL region was still measurable up
to 60s. In order to better illustrate the different behavior of both re-
gions of the TL glow curve, the partial areas were normalized to the
respective area of the glow curve obtained with no illumination, as
shown in Fig. 2c. As an example, it was noted that after an illumination
time of 10 s the area of the TL main peak was reduced to 17% of the
initial value while 72% of the area of the RT-60 °C TL signal remained.
The increase of the intensity and slower decay rate observed in the RT-
60 °C TL signal was tentatively assigned to a photo-transference of
charge carriers from the deep traps to the shallower traps during illu-
mination (at RT) [23]. As reported by Kalita et al. [24], this material
presents TL peaks at temperatures higher than the maximum tem-
perature used in this work (300 °C), and the charge carriers trapped in
the centers related to these peaks may be released by the stimulation
light and be retrapped in the shallower traps, contributing to the aug-
ment of the low temperature part of the glow curve. At longer illumi-
nation times, the carriers trapped in the shallower traps related to the
TL peak depicted in the inset of Fig. 1 are also released.

The thermal cleaning of the OSL signal following protocol B is
presented in Fig. 3 for selected OSL curves (for visual clarity), where a
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Fig. 2. a) Peak intensity value of the TL main peak (at 185 °C); b) area of the TL
glow curve from RT to 60°C (open circles), and of the main TL peak
(125-225 °C; solid triangles); and c¢) TL area of the main TL peak (125-225 °C;
solid triangles) and of the glow curve from RT to 60 °C (open circles) normal-
ized to the respective area of the glow curve obtained with no illumination as a
function of illumitaion time.
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Fig. 3. OSL signal of Al,05:C, Mg single crystal obtained at room after heating
till selected temperatures (Tsp) using protocol B. The nomenclature OSL XXX
°C corresponds to the limit temperature at which the sample was heated before
the measurement at room temperature. The inset presents the same data in
semi-log scale to facilitate visual analysis. The OSL signal without previous
thermal treatment (OSL initial) is included for comparison. See text for details.

decrease of the OSL intensity can be seen for higher Ty, temperature
values. These curves were analyzed in terms of their maximum intensity
value (i.e., initial OSL signal value) and the total area under the curve,
as shown in Fig. 4 as a function of Tsp. The behavior of both quantities
was similar, with both exhibiting three distinct temperature regimes:
the first, from RT to 150 °C range where the OSL signal remained es-
sentially constant, followed by an intermediate temperature regime
(from 150° to 200°C) where there was a steep decrease in the OSL
signal, and a third regime (> 200 °C) where the OSL signal slowly de-
cayed to zero. The constancy of the integrated and the maximum OSL
signal with heating treatments up to about 150 °C (Fig. 4) showed that
the kinetics of the shallower traps (ie., TL signal from RT up to
~125°C) did not play a major role in the generation of the OSL signal.
Suporting that traps related to these TL peaks are probably not optically
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Fig. 4. a) The OSL maximum intensity (i.e., initial OSL signal value), and b)
total area under the OSL curve as a function of Tp.

active at this stimulation wavelength. On the other hand, the as Ty
temperature reaches the range corresponding to the TL main peak
(125-150 °C), a large decay of the OSL signal (integrated and maximum
values) is observed, corroborating the hypothesis that the traps related
to the main TL peak are also emptied by the blue stimulation light.
Moreover, the absence of TL signal above ~225 °C corresponded to the
absence of OSL signal. These results suggested the OSL signal to be
exclusively related to the trap related to the main TL peak.

Finally, Fig. 5 presents the integrated OSL and TL signals as a
function of the illumination time. In terms of the TL signal, both the
main peak intensity (integration interval: 125-225 °C), and whole glow
curve intensity are shown. As expected, the OSL signal increased with
illumination time, with a small trend to a higher values, while the TL
signal continuously decreased to zero. The behavior of TL and OSL
signals was complementary, suggesting that heat or light stimulation
were releasing charge carriers from the same traps. The photo trans-
ference from deep traps probably is the phenomenon responsible for the
observed small trend of OSL signal to higher values for longer illumi-
nation times.

4. Conclusions

In this work, the correlation between the TL and OSL signals of an
Al,03:C,Mg single crystal was investigated. The decay of the main TL
peak at 185°C (at a heating rate of 1°C/s) with blue light (470 nm)
illumination and the decay of the OSL signal with thermal treatments
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Fig. 5. Integrated partial OSL signal (solid circles) and integrated TL signal
after OSL illumination (whole glow curve (open squares), and main peak (solid
triangles)) as a function of the illumination time.
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show a correlation between both phenomena. These results showed that
the emptying of the OSL active trap was closely related to the emptying
of the trap related to the main TL peak. Moreover, while heating the
irratiated sample up to 150 °C did not affect the OSL signal significantly,
heating at higher temperatures rapidly exhausted OSL emission.
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