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ABSTRACT Notification Cloud

Remote health monitoring is a powerful tool to provide preven-
tive care and early intervention for populations-at-risk. Such mon-
itoring systems are becoming available nowadays due to recent
advancements in Internet-of-Things (IoT) paradigms, enabling ubiq-
uitous monitoring. These systems require a high level of quality
in attributes such as availability and accuracy due to patients criti-
cal conditions in the monitoring. Deep learning methods are very
promising in such health applications to obtain a satisfactory per-
formance, where a considerable amount of data is available. These
methods are perfectly positioned in the cloud servers in a cen-
tralized cloud-based IoT system. However, the response time and
availability of these systems highly depend on the quality of In-
ternet connection. On the other hand, smart gateway devices are
unable to implement deep learning methods (such as training mod-
els) due to their limited computational capacities. In our previous
work, we proposed a hierarchical computing architecture (HiCH),
where both edge and cloud computing resources were efficiently ex-
ploited, allocating heavy tasks of a conventional machine learning
method to the cloud servers and outsourcing the hypothesis func-
tion to the edge. Due to this local decision making, the availability
of the system was highly improved. In this paper, we investigate the
feasibility of deploying the Convolutional Neural Network (CNN)
based classification model as an example of deep learning methods
in this architecture. Therefore, the system benefits from the features
of the HiCH and the CNN, ensuring a high-level availability and
accuracy. We demonstrate a real-time health monitoring for a case
study on ECG classifications and evaluate the performance of the
system in terms of response time and accuracy.
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Figure 1: A three-tier IoT-based health monitoring system
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1 INTRODUCTION

Internet of Things (IoT) is increasingly growing in healthcare sys-
tems, where patients with acute diseases and at-risk populations
such as senior adults and pregnant women can be continuously
monitored. Such IoT-based applications are promising alternatives
to traditional health services, extending the boundaries of health-
care outside of hospital settings [3, 15]. They mostly target early-
detection and prevention of patients’ health deterioration as well
as allowing independent living of the patients [5].

These systems can be conventionally partitioned into three main
tiers in the context of IoT to deliver health monitoring applica-
tions [2]. The three tiers are illustrated in Figure 1. First, a wireless
body area network (WBAN) including wearable bio-sensors ac-
quires health data. In real-world applications, such data acquisition
is mostly performed 24/7 via heterogeneous sensors by which a
massive volume of data (i.e., big data) [6, 21] is generated over time.
Second, continuous connectivity is enabled via a gateway device
located in the vicinity of the WBAN (i.e., edge). The gateway device
traditionally operates as a relay between the WBAN and servers al-
though supplementary services can be allocated to the edge. Third,
a cloud server is responsible for continuous data analysis methods,
enabling real-time decision making.

A wide range of machine learning algorithms is utilized for
decision makings in healthcare applications [1, 25]. However, most



CHASE ’18, September 26-28, 2018, Washington, DC, USA

of the conventional methods such as traditional neural networks
and k-nearest neighbors are inapplicable when the scale of data
increases over time, and large amounts of data as big data are
generated [32]. In contrast, deep learning methods are promising
alternatives in this regard, using strategies in deep architectures
to learn hierarchical representations [27, 33]. Such methods can
manage large amounts of data while the accuracy improves with
the increase of training datasets. Convolutional neural networks
(CNN) is one example of the deep learning methods, considered in
this work for the IoT-based health monitoring.

In a cloud-based IoT architecture (Figure 1) [11, 12, 23], deep
learning methods are perfectly positioned in the cloud servers to
take advantages of high-end machines. These machines provide
a satisfactory performance with considerably low execution time.
However, the response time of the system heavily depends on the
availability and quality of Internet connection. Obviously, these
systems are unable to satisfy latency-critical applications (e.g. health
monitoring), as they have serious consequences for the patients in
emergency situations, to the detriment of a delay in establishing a
connection.

Moreover, exploiting smart gateway devices at the edge is re-
cently proposed for health monitoring [7, 28, 29]. In this regard,
the roles of the gateway devices are extended to implement data
processing, through which the collected data is analyzed locally
[8]. The gateway devices are equipped with limited computational
resources, so a smart task allocation is required to fulfill health
monitoring requirements. However, deep learning methods cannot
be fully performed on the edge devices, as they are highly expensive
in terms of computation time.

Another alternative is a hierarchical computing architecture,
in which both local and remote computing resources of the IoT-
based system are efficiently exploited. In our previous work [4], we
proposed such a hierarchical architecture for a health monitoring
system named as HiCH, partitioning a linear machine learning
method (i.e., support vector machine with a linear kernel) into
different computing components distributed in the three-layers IoT
system. The HiCH architecture could utilize the benefits of both
edge and cloud computing, where a high level of availability was
obtained due to local decision making as well as preserving the
performance of the learning algorithm.

In this paper, which is an extension of our previous work pre-
sented in [4], we investigate the feasibility of deploying deep learn-
ing as a nonlinear machine learning algorithm in the HiCH archi-
tecture. The successful integration of deep learning in the HiCH
architecture enables health monitoring systems to offer a high level
of availability and accuracy. In summary, our main contributions
in this work are as follow.

e We present that HiCH is capable of fully employing the Con-
volutional Neural Networks (CNN)-based machine learning
model [31] to perform a real-time heart-related disease de-
tection.

e We demonstrate a real-time health monitoring system imple-
mentation for a case study and evaluate the response time
of the system.
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Figure 2: The hierarchical IoT-based architecture

e We evaluate the accuracy of the classification and indicate
how the collected data throughout the monitoring can influ-
ence the accuracy.

The rest of the paper is organized as follow. In Section 2, we
outline a short background of deep learning. Section 3 presents the
hierarchical architecture. The demonstration and performance of
the proposed system are indicated in Section 4. Finally, Section 5
concludes the paper.

2 DEEP LEARNING

Deep learning is one subset of machine learning algorithms that are
being used recently in various fields. It has been demonstrated to
outperform traditional methods in speech recognition, visual object
recognition, and object detection. Deep learning models consist of
multiple processing layers that are capable of learning meaningful
features of the raw data without domain-level expertise. On the
contrary, conventional machine learning methods typically require
a considerable amount of domain-level expertise to first extract
features and then perform the classification [22].

Convolutional neural networks (CNN) are a class of deep neural
networks which are often used with two-dimensional signals such
as videos and images. They can learn thousands of objects using mil-
lions of images as input datasets. Learning capacity of the CNN can
be controlled by varying the depth and breadth of the model [20].
In addition to the two-dimensional signals, CNNs can be exploited
with one-dimensional signals such as electrocardiography (ECG)
or audio signals.

A typical architecture of CNN for image recognition is formed by
stacking multiple layers of computing units with different roles [30].
The main unit in CNN architecture is the convolutional layer that
contains learnable filter banks activating when specific features
are detected. Max pooling layers leverage CNN architecture to
reduce the amount of parameters and enable over-fitting. Fully
connected layers typically follow the series of convolutional and
max-pooling layers. Role of these layers acts as a classifier for the
learned features.
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3 HIERARCHICAL COMPUTING
ARCHITECTURE

In this section, we outline the HiCH as a hierarchical comput-
ing architecture enabled by the Convolutional Neural Networks
(CNN) to perform real-time heart-related diseases detection using
ECG signals. The HiCH exploits the capabilities of edge and cloud
computing paradigms, allocating heavy computation tasks of the
classification algorithm to the cloud and outsourcing the decision
making task (i.e., classifier) to the edge. Therefore, the availability
of the IoT-based application is significantly improved, due to local
decision making in the case of degraded Internet access or connec-
tion loss. Moreover, the performance (e.g., accuracy) of the learning
algorithm is preserved in this hierarchical architecture as well as
its performance in a fully-centralized computing core in the cloud.

The HiCH architecture employs an enhanced version of the
MAPE-K model introduced by IBM [17], distributing the computa-
tions in the three-layers IoT system. The model includes 5 different
computing components named as Monitor, Analyze, Plan, Execute
and System Management. In this following, we only exploit the
first 4 components of this model, as the System Management is
responsible for managing the system configurations and is out of
the scope of this paper. For more details see [4]. Figure 2 illustrates
the proposed architecture enabled by the computing components,
each of which shares the system knowledge.

3.1 Monitor

The monitor is a bridge between the sensors and other computing
components, located in the WBAN. It includes a local processing
unit for analog to digital conversion, pre-processing methods (e.g.,
data filtering and compression) and data aggregation in a local
data storage. The stored data are periodically transmitted to the
edge. The transmission time is determined according to the data
and application, which is 10 seconds of the ECG signal in our case
study.

3.2 Analyze

Heavy computation tasks including training the hypothesis func-
tion (i.e., classifier) are allocated to the Analyze that are fully posi-
tioned in the cloud machines. As indicated in Figure 3, the hypoth-
esis function is generated using collected data and feedback. The
Training Data performs required data processing methods before
feeding the data to the Classification Algorithm.

History Analyze "
Data an
N N A

W Hypothesis ~N Classification Final
Set Algorithm Hypothesis
Execute
System /!

\ * feedback
Health
Monitor ~ EeE————) Training lisertfeedbaeR Provider

Data

Figure 3: The Analyze component in the cloud
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Figure 4: Overall structure of CNN and MLP

In our case study, the Training Data is responsible for ECG cycles
(i.e., heartbeats) extraction from the incoming ECG signals. More-
over, a fully automatic deep neural network based classifier [31]
is employed as the Classification Algorithm to detect and classify
different abnormalities in ECG signals. In addition, a pre-trained
model (i.e., Hypothesis Set in the Figure 3) is exploited from ECG
datasets. At the beginning of the monitoring, this model acts as a
baseline in clinical trials although it is periodically updated over
time when new data and feedback are collected.

In the Classification Algorithm, first, the meaningful features are
automatically determined by leveraging a three-layers CNN. In this
method, 16, 32 and 64 neurons are selected as the first, second and
third CNN layers, respectively. Moreover, pool size of max pooling
is set as 4, and 20% dropout rate is determined to prevent overfitting.
The rectified linear unit (ReLU) is used as an activation function
[16] in convolutional layers.

Second, the Multilayer Perceptron (MLP) is utilized to implement
the classification, using the extracted features from the CNN layers.
In this method, one hidden layer with 128 neurons is selected with
a learning rate equals to 0.001. Moreover, Tanh and Adam [19]
functions are utilized as the activation function and optimization
algorithm, respectively. A High-level structure of the classification
algorithm including CNN and MLP is shown in Figure 4.

3.3 Plan

The classifier is periodically sent to the Plan located at the edge,
providing local decision making. Such periodical updates of the clas-
sifier enable personalization in the decision making, considering

Plan
H Test Decision =
YN Decision vecior gag
Monitor » Data * Making Decision vector Execute
e Hypothesis
H Function

Figure 5: The Plan component at the edge
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incoming data in re-training of the classifier (at the Analyze com-
ponent) throughout the monitoring. As illustrated in Figure 5, the
streaming data received from the Monitor component are classified,
and a decision vector is generated. Note that similar to the Analyze
component, required data processing methods (e.g., heartbeat ex-
traction from ECG signals, filtering, and normalization) are fulfilled
in the Test Data. The decision vector as the output contains the
decision class (e.g., patient’s health status). It is sent to the Execute
component for further actuation.

3.4 Execute

Execute is the second computing component at the edge, imple-
menting the actuation of the system. It sends notifications to the
users when an abnormality is detected in the Plan. Moreover, it
forwards system feedback to the Analyze, improving the classifier
in terms of accuracy. For example, the model is improved over time
by sending the estimated decision class and the true label of data
reported by the patient and health provider.

4 IMPLEMENTATION AND EVALUATION

We demonstrate the proposed architecture empowered by the CNN
via a health case study on ECG classification. In this regard, the
decision making is implemented at the edge, sending notifications
to the user in case of disease detection. We, first, evaluate response
time and availability of the HiCH in comparison with a conventional
IoT-based system where the computations are fully performed in the
cloud server. Then, we assess the accuracy of the HiCH, indicating
the accuracy of decision making at the beginning of the monitoring
and its improvement throughout the monitoring.

4.1 Setup

We emulate a sensor node and use the MIT arrhythmia database
available at [14, 24, 26] to train and test the classification algorithm.
The sensor node emulator is an ESP8266-12E WiFi module which
contains an 80MHz 32-Bits RISC microprocessor with 96KB RAM
and 4MB QSPI flash memory. The Wifi module connects to a local
WiFi network and the microprocessor is able to read a Micro SD
card via SPI communication. The ECG data is stored on the Micro
SD card. We program the sensor node to read 3600 ECG samples
from a file on Micro SD card during a 10-second period and send
them via an upload POST request to the edge device.

The MIT Arrhythmia database includes totally 48 separate ECG
recordings, and the length of each recording is 30 minutes. ECG
in this database is stored using a two-lead configuration using
360 Hz sampling rate and digitized with 11-bit resolution. Origi-
nally, heartbeats in the database are labeled by two cardiologists.
19 different labels have been used in classifying arrhythmias. How-
ever, AAMI [13] recommends that these classes can be divided into
five super-classes, namely normal (N), supraventricular ectopic
beat (SVEB), ventricular ectopic beat (VEB), fusion beat (F) and
unknown beat (Q). These types of arrhythmias are not immedi-
ately life-threatening, but still may demand further investigation.
Arrhythmias that belongs to this category can be detected from a
single heartbeat, which means that shape and other morphological
features define the type of the arrhythmia [18].
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Figure 6: Response time in the conventional IoT-based sys-
tem and the HiCH

The edge device is an Ubuntu Linux machine running Apache
web server, PHP, and Python interpreter services. A PHP script
receives the samples file from the sensor node and calls the Python
codes for signal processing and decision making. The reply to the
sensor node upload POST request contains the result of decision
making.

To perform the comparison between the HiCH and the conven-
tional IoT-based system, we implement a similar procedure on the
cloud machine which is a virtual private server (VPS) with the same
OS and services. The VPS runs on two E5-2680 v3 Intel Xeon CPUs
at 2.50GHz with 4GB RAM and 40Gbps network.

4.2 Response Time

In this section, we assess the performance of the HiCH focusing
on the system’s response time which is the time period between
recording data and notifying the patient in case of emergency. The
response time can be divided into different intervals as:

a =Data transmission time, WBAN to edge

b =Data transmission time, edge to cloud

¢ = Notification transmission time, cloud to edge

d = Notification transmission time, edge to WBAN (patient)
a

B

Execution time, in the cloud
=Execution time, at the edge

Table 1: Data transmission time using HiCH and the cloud-
based IoT with different networks

Data trans Trans. time Trans. time
rate " between WBAN  between edge
(Kbps) and edge (a+d)  and cloud (b+c)
P (ms) (ms)
T Local
O _
T Network 30000 10
4G 4000 10 41
. Fast 3G 1500 10 151
T3 = 3G 750 10 450
5 £ Fast2G 450 10 753
2G 250 10 1490
GPRS 50 10 5803
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Figure 7: Response time for different approaches using the Cloud-based IoT and HiCH architectures

As indicated in Figure 6, the HiCH response time includes a + f +d
while the response time of the cloud-based IoT system is a + b +
a+c+d.

To validate the experiments, we measure the intervals for the two
systems using different setups. In this regard, the transmission time
is measured via 4G, Fast 3G, 3G, Fast 2G, 2G and GPRS networks.
The average transmission time for the two system is represented in
Table 1. a+d as the local transmission equals to 10ms although b+ ¢
varies from 41ms to 5803ms depending on the Internet network.

We measure the execution time of the decision-making process
(i.e., @ and f) using different edge devices with different CPU per-
formance. In this regard, we utilize an HP Compagq 8200 Elite Linux
machine with a quad-core Intel Core i3 CPU at 3.10 GHz and an
NVIDIA Jetson-TK1 with a quad-core ARM Cortex A15 CPU at 2.33
GHz. Moreover, we use an Oracle Virtual Machine with a single-core
Intel Core i7 CPU at 3.4 GHz and allocate 100%, 90%, 80%, 70%, 60%, 50%
of its execution capacity to the computation in each experiment.
As the decision-making algorithm in this research is in Python, we
measure the CPU performance by counting the number of float-
ing point operations performed per second by Python interpreter
(FLOPS). Table 2 indicates the Python FLOPS and the average exe-
cution time for the two systems.

In conclusion, the response time of the two systems with dif-
ferent setups is illustrated in Figure 7. The response time of the
cloud-based IoT system highly depends on the Internet network.

Table 2: Execution time of the decision making process us-
ing HiCH and the cloud-based IoT with different devices

Execution Python

time (ms) FLOPS
VM* Core, 100% Exe. Capacity 2936 17.5
VM Core, 90% Exe. Capacity 3020 13.8
HP Compagq 8200 Elite 3049 13.4
5 VM Core, 80% Exe. Capacity 3074 13.1
o) VM Core, 70% Exe. Capacity 3985 11.1
VM Core, 60% Exe. Capacity 5617 7.9
VM Core, 50% Exe. Capacity 6643 7
Jetson TK1 12425 43
= % Cloud Server 2539 13
229
O 2
*Virtual Machine
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As indicated, the response time of this system with the 4G network
is the lowest although it increases when the Internet connection is
poor. On the other hand, the response time of the HiCH is deter-
mined by the processing power of the edge device. Therefore, by
selecting an appropriate edge device, HiCH ensures an acceptable
response time.

4.3 Accuracy Assessment

We evaluate the accuracy of the ECG arrhythmia classification
using the MIT Arrhythmia dataset. In this regard, we divide the
dataset into two different datasets (DS1 and DS2) using the divi-
sion method presented in [9]. Dataset division, where training and
testing dataset are generated from separate patients, is called inter-
patient paradigm. On the contrary, dataset division where testing
and training phase data contains heartbeats from the same patients
is called intra-patient paradigm. We ensure unbiased classification
accuracy by the inter-patient paradigm, considering patient-specific
variances in the data.

In the first step, the ECG classifier is trained by the DS1 dataset,
which contains 51020 ECG samples from different patients (i.e.,
inter-patient). We validate the performance of the classifier using
the DS2 dataset. The confusion matrix is specified as Table 3, using
the estimated decision for ECG samples and the true labels.

The correct estimates, highlighted in the confusion matrix, are
notably high in this initial phase. However, the accuracy might be
insufficient particularly for clinical applications as the classifier is
trained via general data and inter-patient variation of ECG mor-
phologies is considerably large [10]. Therefore, the model is not
specifically trained for the monitored patient.

To address this issue, the accuracy of the classifier is improved
over time in our proposed architecture by re-training the classifier
via incoming ECG samples from the patient along with labels from

Table 3: Confusion matrix of the classification algorithm

Estimated Decision

Normal SVEB VEB F Q

Normal 40671 905 2615 68 0

L5 SVEB 62 1148 47 0 0
S2Z VEB 339 2 2874 6 0
=g F 275 0 11 2 0
Q 2 0 5 0 0
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Figure 8: Accuracy improvement by retraining the model
with new samples

the health provider (i.e., patient-specific information from ECG
morphology). We test the performance of the classifier by randomly
selecting 50, 100, 150, 200, 250, 300 and 1000 samples from the DS2
dataset and re-training the initial classification model.

Figure 8 illustrates how the accuracy of the model improves
when the model is re-trained. The starting point represents the
initial pre-trained model with no knowledge about patient-specific
data. As indicated, the accuracy of the classifier at the starting point
is less than 0.9. In contrast, the accuracy significantly increases to
over 0.96 even if the classifier is re-trained with a small portion
(e.g., 50 samples) of the patient data (i.e., intra-patient) throughout
the monitoring.

5 CONCLUSION

IoT-based health monitoring systems enable at-risk patients to be
monitored outside of conventional clinical settings. Such systems
are demanded to deliver a high quality of experience as a defect
in the service may lead to fatal consequences for the patients. In
terms of decision making, deep learning can provide a satisfactory
performance as a massive amount of data can be fed to the classi-
fication algorithm. In the conventional cloud-based IoT systems,
these methods can be fully implemented in the cloud machines.
However, these systems are insufficient for a time-sensitive health
application due to the dependency of the service to the quality
of the Internet connection. Fully distributed edge-based systems
are other alternatives although they are incapable of implement-
ing deep learning methods due to the restricted processing power.
Another alternative, proposed in our previous work, is the hierar-
chical computing architecture to partition the learning method in
the cloud and edge. In this paper, we investigated the feasibility
of empowering the HiCH architecture with the CNN algorithm.
We compared the response time of the HiCH with a conventional
cloud-based IoT system and indicated that HiCH could ensure an
acceptable response time and improve the availability particularly
when the connection is poor. In addition, we assessed the accuracy
of the system and showed that the accuracy was improved through-
out the monitoring, feeding the streaming data to the classification
algorithm.

ACKNOWLEDGMENT

This work was partially supported by the US National Science
Foundation (NSF) WiFiUS grant CNS-1702950 and Academy of
Finland grants 311764 and 311765.

68

I. Azimi et al.

REFERENCES

[1] G. Acampora et al. 2013. A Survey on Ambient Intelligence in Healthcare. Proc.
IEEE 101, 12 (2013), 2470 — 94.

[2] A. Al-Fugaha et al. 2015. Internet of Things: A Survey on Enabling Technologies,
Protocols, and Applications. [EEE Commun. Surveys & Tuts 17, 4 (2015), 2347-76.

[3] L. Atzori et al. 2010. The Internet of Things: A survey. Computer Networks 54, 15
(2010), 2787-805.

[4] L Azimi et al. 2017. HiCH: Hierarchical Fog-Assisted Computing Architecture
for Healthcare IoT. ACM Trans. Embed. Comput. Syst. 16, 5s (2017), 174:1-174:20.

[5] I Azimi et al. 2017. Internet of things for remote elderly monitoring: a study
from user-centered perspective. Journal of Ambient Intelligence and Humanized
Computing 8, 2 (2017), 273-89.

[6] M. Beyer. 2017. Gartner Says Solving ’Big Data’ Challenge Involves More Than
Just Managing Volumes of Data. www.gartner.com/newsroom/id/1731916.

[7] F.Bonomi et al. 2012. Fog computing and its role in the internet of things. MCC’12
(2012), 13 - 16.

[8] D.Borthakur et al. 2017. Smart fog: Fog computing framework for unsupervised
clustering analytics in wearable internet of things. In GlobalSIP.

[9] P.de Chazal et al. 2004. Automatic classification of heartbeats using ECG morphol-

ogy and heartbeat interval features. IEEE Transactions on Biomedical Engineering

51,7 (2004), 1196-1206. https://doi.org/10.1109/TBME.2004.827359

P. de Chazal and R. B Reilly. 2006. A patient-adapting heartbeat classifier using

ECG morphology and heartbeat interval features. IEEE Transactions on Biomedical

Engineering 53, 12 (2006), 2535-43.

A. Dohr et al. 2010. The Internet of Things for Ambient Assisted Living. In ITNG.

M. Fazio et al. 2015. Exploiting the FFIWARE Cloud Platform to Develop a Remote

Patient Monitoring System. In ISCC.

Association for the Advancement of Medical Instrumentation and American

National Standards Institute. 1999. Testing and Reporting Performance Results

of Cardiac Rhythm and ST-segment Measurement Algorithms. The Association.

https://books.google.fi/books?id=gzPdtgAACAA]

AL. Goldberger et al. 2000. Components of a New Research Resource for Complex

Physiologic Signals. Circulation 101, 23 (2000), e215-€220.

J. Gubbi et al. 2013. Internet of Things (IoT): A vision, architectural elements,

and future directions. Future Generation Computer Systems 29, 7 (2013), 1645-60.

R. H. R. Hahnloser and H. S. Seung. 2001. Permitted and Forbidden Sets in Sym-

metric Threshold-Linear Networks. In Advances in Neural Information Processing

Systems. MIT Press, 217-223.

IBM Corporation. 2006. An architectural blueprint for autonomic computing.

White paper (2006).

S. Karimifard et al. 2006. Morphological Heart Arrhythmia Detection Using

Hermitian Basis Functions and kNN Classifier. In Int. Conf. of the IEEE Engineering

in Medicine and Biology Society. 1367-1370. https://doi.org/10.1109/IEMBS.2006.

U
o —

(13

(14

[15

[16]

[17

(18]

260182

[19] D.P.Kingma and J. Ba. 2014. Adam: A method for stochastic optimization. CoRR
abs/1412.6980 (2014).

[20] A. Krizhevsky et al. 2012. ImageNet Classification with Deep Convolutional

Neural Networks. In 25th Int. Conf. on Neural Information Processing Systems.
Curran Associates, Inc., 1097-1105.

D. Laney. 2001. 3D Data Management: Controlling Data Volume, Velocity, and
Variety. Technical Report. META Group Inc.

Y. LeCun et al. 2015. Deep learning. Nature 521, 7553 (2015), 436—44.

J. Mohammed et al. 2014. Internet of Things: Remote Patient Monitoring Using
Web Services and Cloud Computing. In CPSCom.

G. B. Moody and R. G. Mark. 2001. The impact of the MIT-BIH Arrhythmia
Database. IEEE Eng in Med and Biol 20, 3 (May 2001), 45-50. https://doi.org/10.
1109/51.932724

K. P. Murphy. 2012. Machine Learning: A Probabilistic Perspective. The MIT Press.
PhysioNet. 2018. MIT-BIH Arrhythmia Database. https://www.physionet.org/
physiobank/database/mitdb/.

J. Qiu et al. 2016. A survey of machine learning for big data processing. EURASIP
Journal on Advances in Signal Processing 2016, 1 (2016), 67.

A. M. Rahmani et al. 2017. Fog Computing in the Internet of Things Intelligence at
the Edge. Springer.

A. M. Rahmani et al. 2018. Exploiting smart e-health gateways at the edge of
healthcare internet-of-things: a fog computing approach. Future Generation
Computer Systems 78 (2018), 641-658.

K. Simonyan and A. Zisserman. 2014. Very deep convolutional networks for
large-scale image recognition. CoRR abs/1409.1556 (2014).

J. Takalo-Mattila et al. 2018. Inter-patient ECG Classification Using Deep Con-
volutional Neural Networks. In Euromicro Conference on Digital System Design,
special track on Applications, Architectures, Methods and Tools for Machine- and
Deep Learning. in press.

O. Y.Al-Jarrah et al. 2015. Efficient Machine Learning for Big Data: A Review.
Big Data Research 2, 3 (2015), 87-93.

Q. Zhang et al. 2018. A survey on deep learning for big data. Information Fusion
42 (2018), 146-157.

[32

[33



