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ABSTRACT. We prove surjectivity of certain word maps on finite non-abelian simple
groups. More precisely, we prove the following: if IV is a product of two prime powers,

then the word map (z,y) — =™y is surjective on every finite non-abelian simple group;

if N is an odd integer, then the word map (z,y, z) — Ny 2V is surjective on every finite

quasisimple group. These generalize classical theorems of Burnside and Feit-Thompson.
We also prove asymptotic results about the surjectivity of the word map (z,y) — zNyN
that depend on the number of prime factors of the integer V.
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1. INTRODUCTION

The theory of word maps on finite non-abelian simple groups — that is, maps of the
form (z1,...,2) — w(x1,...,xx) for some word w in the free group Fj of rank k —
has attracted much attention. It was shown in [37, 1.6] that for a given nontrivial word
w, every element of every sufficiently large finite simple group G can be expressed as a
product of C(w) values of w in G, where C(w) depends only on w; this has been improved
to C(w) = 3 in [55] and to C(w) = 2 in [30, 31, 55]. Improving C(w) to 1 is not possible
in general, as is shown by power words z7, which cannot be surjective on any finite group
of order non-coprime to n.

Certain word maps are surjective on all groups — namely, those in cosets of the form
x{t ... xP ] where the e; are integers with ged(es,...,ep) = 1 (see [54, 3.1.1]). The
word maps for a small number of other words have been shown to be surjective on all
finite simple groups. These include the commutator word [z1, z2], whose surjectivity was
conjectured by Ore in 1951 and proved in 2010 (see [34] and the references therein).

The main result of this paper is the following.

Theorem 1. Let p,q be primes, let a,b be non-negative integers, and let N = p®q®. The
word map (z,y) — xNyN is surjective on all finite (non-abelian) simple groups.

This result generalizes various theorems.

First, it implies the classical Burnside p®q’-theorem [3], stating that groups of this order
are soluble. Indeed, if G is a non-soluble group of order N = p%q®, then G has a non-
abelian composition factor S whose order divides N. Thus S is a (non-abelian) finite
simple group satisfying the identity 2 = 1, so the word map =¥y on S has the trivial
image {1}, contradicting Theorem 1.

Theorem 1 also implies the surjectivity of 22y? and more generally of the words zP“yP"
(for a prime p), as established in [20, 35]. In [20, Corollary 1.5] it is shown that 2% %" is
surjective on all (non-abelian) finite simple groups, again a particular case of Theorem 1.

This theorem is best possible in the sense that it cannot be extended to the case where
N is a product of three or more prime powers, since such a number can be the exponent
of a simple group. Indeed, the smallest example is that of As.

If N1, Ny are positive integers such that Ni Ny is divisible by at most two primes, then
xN1yN2 is surjective on all (non-abelian) finite simple groups, since (xV2)Nt(yN1)N2 —
pN1N2y NiN2 g qurjective by Theorem 1. We also indicate the following consequence (in
fact an equivalent reformulation) of Theorem 1:

Corollary 2. Let w be a set of two primes. If G is a finite non-abelian simple group, then
every element of G is a product of two 7’-elements.
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To see this, let 7 := {p,q}. Let N = p®¢® where p® is the exponent of a Sylow p-
subgroup of G and similarly for ¢*. Since every Nth power in G is a 7’-element the result
follows by Theorem 1.

But some more general questions, including the following, have a negative answer. If N
is not divisible by the exponent of a finite simple group G, is Ny surjective on G? If N
is odd, is 2Ny surjective on all finite non-abelian simple groups? If N = p?¢® for some
primes p, g, is zVyV surjective on all finite quasisimple groups, or does it hit at least all
non-central elements of every quasisimple group? See Remark 8.9.

However, we prove the following result which generalizes the celebrated Feit-Thompson
theorem [13]:

Theorem 3. Let N be an odd positive integer. The word map (x,y,z) aNyN 2NV s

surjective on all finite quasisimple groups. In fact, every element of every finite quasisimple
group is a product of three 2-elements.

As mentioned above, this result is best possible in the sense that it does not hold for
Ny it also implies the surjectivity of x™V1y™V22V3 for odd numbers Ny, No, Ns.

A key ingredient of our proof of Theorem 3 is the construction of certain 2-elements in
simple groups G of Lie type in odd characteristic that are regular if G is classical (see §7.2)
and almost regular if G is exceptional (see §7.4). This construction may be useful in other
situations; in particular, it played a key role in the recent proof [33] of [25, Conjecture 6.2].
There are other results of the same flavor as the second statement of Theorem 3, such as
[24, Theorem 3.8] where p-elements are considered instead of 2-elements. There is also
considerable literature on the case of involutions, see e.g. [46] and the references therein.
These imply results like Theorem 3 with longer products a:{v xév ...z}, where N is not
divisible by the exponent of the simple group in question, see for example [24, Corollary
3.9]. However, the width of power maps can grow unbounded on finite simple groups; more
precisely, given any integer ¢ > 1, there exist a finite simple group G and an integer N
not divisible by the exponent of G such that the map (z1,...,7;) — Yz ... 2} is not
surjective on G, see e.g. [24, Example 3.2].

Recall that the main results of [30, 31] assert that, given two non-trivial words w; and
ws, the product wiws is surjective on all finite non-abelian simple groups of sufficiently
large order (depending on w; and we). In particular, once we fix a positive integer N, the
word 2Ny is surjective on all sufficiently large simple groups. Theorem 1 (and 3) shows
that, for all N of the prescribed form, the word map ¥y (respectively z™Vy™¥z") is in
fact surjective on all simple groups (respectively quasisimple groups).

As mentioned above, one cannot generalize Theorem 1 for products of more than two
prime powers. However, we prove results of that flavor by imposing asymptotic conditions
on the simple groups. If an integer N has the prime factorization N = [[;_, p;" (with
p1<...<prand ; >0), then w(N) :=r and Q(N) :=> ", .

Theorem 4. Given a positive integer k, there is an explicit positive integer f(k) such that
for all positive integers N with w(N) < k, the word map (z,y) — Ny is surjective on
all finite simple groups S, where S is either an alternating group A, with n > f(k), or a
simple Lie-type group of rank > f(k) but not of type A or ?A.

An explicit upper bound for f(k) in Theorem 4 can be read off from its proof.
For simple classical groups of type A we obtain a somewhat weaker result.

Theorem 5. Given a positive integer k, there is an explicit positive integer g(k) such that
the following statements hold.
(i) For all positive integers N with Q(N) < k, the word map (z,y) — zNy"V is
surjective on all finite simple groups S = PSL,(q), PSU,(q) with n > g(k).



4 GURALNICK, LIEBECK, O’'BRIEN, SHALEV, AND TIEP

(ii) For all positive integers N with w(N) < k, the word map (z,y) + zNy" is
surjective on all finite simple groups S = PSL,(q), PSU,(q), where n > g(k), and
q is any prime power such that either ¢ > g(k), or (¢ — 1)|n for S = PSL,(q), or
(g+1)In for S =PSU,(q).

Example 8.11 shows that there is no analogue of Theorems 1, 4, or 5 for quasisimple
groups. However, we prove the following asymptotic analogue of Theorem 3 for every N
with w(N) < k (cf. [32, Theorems 2.1, 3.1] for other results in this direction).

Theorem 6. Given a positive integer k, there is an explicit positive integer h(k) such that
for any positive integer N with w(N) < k, the word map (x,y, z) — xNyN 2N is surjective
on all finite quasisimple classical groups of rank at least h(k). Furthermore, there is some
integer W' (k) such that if w(N) < k and n > W (k) then the word map (x,y, z) — xNyN N

1s surjective on the double cover 2A,,.

We note that none of Theorems 4-6 holds for finite simple Lie-type groups of bounded
rank (over fields of sufficiently large size), cf. Example 8.10. It remains an open question
whether Theorem 4 holds for finite simple classical groups of type A of unbounded rank
over fields of bounded size.

We use the notation of [26] for finite groups of Lie type. For ¢ = £, the group SLf (q)
is SLy,(¢) when € = + and SU,(¢) when ¢ = —, and similarly for GL,(¢), PSL{,(¢). Also,
E§(q) is Es(q) if € = + and 2FEg(q) if € = —. We use the convention that if € = & then
expressions such as ¢ — € mean g — el.

2. PRELIMINARIES

The following result plays a key role in our proofs.

Theorem 2.1. [24, Theorem 1.1] Let G be a simple simply connected algebraic group
in characteristic p > 0 and let F : G — G be a Frobenius endomorphism such that
G := G is quasisimple. There exist (not necessarily distinct) primes r,s1, s2, all different
from p, and regular semisimple x,y € G such that |x| = r, y is an {s1, s2}-element, and
2% -y D G Z(G). In fact 51 = sy unless G is of type By, or Co,.

Throughout the paper, by a finite simple group of Lie type in characteristic p we mean
a simple non-abelian group S = G/Z(G) for some G = GI" as in Theorem 2.1. In this
notation, let ¢ = p/ denote the common absolute value of the eigenvalues of F acting on
the character group of an F-stable maximal torus (so that f is a half-integer if G is a
Suzuki-Ree group). For each group G and S = G/Z(G), we refer to the set {r,s1,s2}
specified in the proof of [24, Theorem 1.1] as R(G) and R(S5).

Corollary 2.2. In the notation of Theorem 2.1, let S = G/Z(G) be simple non-abelian.

(i) Theorem 1 holds for S, unless possibly N = p®t® with t € {r,s1, s2}.

(ii) Suppose N = pt® for some prime t and |X| < |G|/2, where X is the set of all
elements of G of order divisible by p or by t. The word map (z,y) — xNyY is
surjective on G.

Proof. (i) By [11, Corollary, p. 3661], every non-central element of G is a product of two
p-elements. Hence Theorem 1 holds for S if p{ N. On the other hand, if N = p®® with
t ¢ {r,s1,s2}, then the elements x and y in Theorem 2.1 are Nth powers, so Theorem 1
again holds for S.

(ii) Let g € G. By assumption, |G ~\ X| > |G]/2, so g(G ~ X) N (G \ X) # (. Hence
g = xy~ ! for some z,y € G~ X. Note that every element of G \ X is an Nth power,
whence the claim follows. [
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Recall that if @ > 2 and n > 3 are integers and (a,n) # (2,6), then a” — 1 has a

primitive prime divisor, i.e. a prime divisor that does not divide [];

n—1
=1

(a* —1), cf. [67]. In

what follows, we fix one such prime divisor for given (a,n) and denote it by ¢(a,n). Next
we record the primes r, s1, so mentioned in Theorem 2.1 in Table 1 (for larger groups G).
The third column of Table 1 contains one entry precisely when s; = so.

G r 81, 82 (n,q) #
Snla) (p.n) (. (n—1)f) (6,2),(7,2), (4,4)
SU.(q), lp,(n—1)f), n=1mod4

n >5 odd tp,2nf) l(p,(n—1)f/2), n=3mod4 (7.4)
SUL(q), Lp,nf), =0 mod 4
n>4 gven P, (2n =2)f) E(p, nf/2), Z =2 Egd 4 (4,2),(6,4)
Sp?n(Q)a
SpinQn—i—l (q)7 Z(pa 2nf) f(pv nf) (3> 4)
n > 3 odd
San(Q)a
Spin2n+1(Q)> g(p, 2nf) E(p, nf),f(p, nf/Q) (67 2)7 (1272)
n > 6 even
Spas(2) 241 13,7
Sp12(2) 13 3,7
Sping, (q), Lp,nf), n odd
n 22 4 {p, (2n = 2)f) lp,(n—1)f), neven (4,2)
P i, 20) (. (20~ 2)f) (1.2)
“By() 72.87) 2.8]) F>8
2G2(q2) 6(37 12f) Z(Ba 12f) q2 > 27
TR | (2.2A)) f2.12/) 7>
Ga(q) t(p,3f) £(p,3f) q# 2,4
*Da(q) (p,12f) t(p,12f)
Fa(q) (p,12f) t(p,8f)
Ee(q)sc (p,9f) (p,8f)
2E6(q)sc e(p, 18f) f(p, Sf)
E?(Q)sc f(p, 18f) f(p, 7f)
Eg(q) £(p,24f) £(p,20f)
TABLE 1. Special primes for simple groups of Lie type
Lemma 2.3. Let G be a finite group, fix g1,92 € G, and let g € G.
(i) Then g € g% - g§ if and only if
x(g1)x(g2)x(9)
Sogo i n e s £
Xe%%@ x(1)
In particular, g € glG : 92G if
x(g1)x(g2)x(9) x(g1)x(g2)x(9)
2 W || = RO

x€lrr(G), x(1)>1

x€lrr(G), x(1)=1




6 GURALNICK, LIEBECK, O’'BRIEN, SHALEV, AND TIEP

(ii) For D € N,

> MR < L0l (Colen) - Coto)) 2.
x€lrr(G), x(1)>D

Proof. The first statement is a well known result of Frobenius. For (ii), note that
IX(9)] < |Cqlg)|'/? for x € Trr(G) by the second orthogonality relation for complex
characters. By the Cauchy-Schwarz inequality,

1/2

S Ixtex(@l < | >0 Ix@)P - D> Ixte)l? | = (Calg)l - [Calg2))'?.

x€lrr(GQ) X€lrr(G) X€lrr(G)
|

Lemma 2.4. Theorem 1 holds for all alternating groups A,, 5 < n < 18, and for all 26
sporadic finite simple groups.

Proof. For each of these groups G and for every two primes p, ¢ dividing |G|, we verify
that each g € G can be written as a product of two {p, ¢}'-elements. We do this by applying
Lemma 2.3 to the character table of the relevant group. Some of these character tables
are available in the Character Table Library of GAP [14]; the remainder were constructed
directly using the MAGMA [4] implementation of the algorithm of Unger [65]. n

Proposition 2.5. Theorem 1 holds for S = A, if n > 19.

Proof. Since n > 19, there are at least 6 consecutive integers in the interval [|3n/4],n].
In particular, we can find an odd integer m such that |3n/4] < m < m+ 4 < n. Suppose
now that N = p®g®. Among m, m+2, and m+4, at most one integer is divisible by p, and
similarly for ¢q. Hence there is some ¢ € {m, m+2, m+4} that is coprime to N. According
to [2, Corollary 2.1], each g € A,, is a product of two ¢-cycles. Since every (-cycle is an
Nth power in S, we are done. ]

Proposition 2.6. Given a positive integer k, there is some explicit f(k) such that for all
n > f(k) and for all positive integers N with w(N) < k, the word map (z,y) — xVy" is
surjective on S = A,.

Proof. Choosing f(k) large enough, we see by an explicit form of the prime number
theorem, see e.g. [53], that for every n > f(k), the interval [3n/4,n] contains at least k+ 1
distinct primes pi,...,pr+1. Given a positive integer N with at most k distinct primes
factors, at least one of the p;’s, call it £, does not divide N, whence all /-cycles are Nth
powers. Hence the claim follows from [2, Corollary 2.1]. []

Lemma 2.7. If g is a real element of a finite group G, then g is a product of two 2-elements

of G.

1

Proof. By assumption, g~ = xzga! for some z € G. Replace z by z!*l2 to obtain a

2-element. Now
;(;gq;g:m-Z.x_lgm-.g:_ij.g_l.g:x27

so g is a 2-element as well. Since g = 27! - zg, the claim follows. ]

In particular, the following is an immediate consequence of Lemma 2.7:

Corollary 2.8. If G is a finite real group and N is an odd integer, then the word map
(z,y) — 2NyN is surjective on G.

Corollary 2.9. Let q be an odd prime power. Theorem 1 holds for the following simple
groups:
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(i) P n( ) and Qa,+1(q), where n > 3 and ¢ = 1(mod4);
(ii) P (q), where n >3 and ¢ = 1(mod4);
(iii) PQ4n( ), where n > 2;

(iv) PO (q), Qo(q), and *Da(q).

If N is an arbitrary odd integer, then the word map (x,y) — xNy" is surjective on each of
these groups. The same conclusion holds for G = Spiny, (q) with n > 2, and G = Q (q)
withn > 2 and ¢ = 1 mod 4, and G = Q7 (q).

Proof. By [64, Theorem 1.2], all of these groups G are real, whence the statement follows
from Corollary 2.8 when N is odd. If G is simple and N is even, then the statement
follows from Corollary 2.2(i). n

Corollary 2.9 implies that Theorem 1 holds for many simple symplectic or orthogonal
groups over F, when ¢ = 1(mod4). To handle the groups over F, with ¢ # 1(mod4), we
use the following result:

Proposition 2.10. Let S be a non-abelian simple group of Lie type in characteristic p.
Suppose N = pt® with t € R(S), where R(S) is defined after Theorem 2.1. The word
map (z,y) — 2Ny is surjective on G, where S = G/Z(G) and G is one of the following
groups:

(i) Spa,(q), where 2|qg > 8 and 2{n > 3;

(ii) Spay,(q), where 24q > 11 and 24 n > 3;
(lll) Q2n+1(Q); where 2 * q=>7,2 * n >3, and (n7Q) # (3a 7):
(iv) Q;En(q), wheren >4, ¢ > 5, and n # 5,7 when q = 5.

Proof. By Corollary 2.2(ii), it suffices to show that |X| < |G|/2 for X = &}, U &}, where
Xy is the set of all elements of G that have order divisible by s for s € {p,t}. We use [19,
Theorem 2.3] which states that |X,|/|G| < c¢(q), where

2/(q—1)+1/(g—1)* G =Spy,(q), 2|q
c(q) =13 3/(¢—1)+1/(g—1)*, G =Spy,(q), 21¢q
2/(¢—1)+2/(q—1)% G = Qant1(q) or O, (q).

(Note that this result applies to G since Z(G) is a p’-group.) To estimate |X;|, observe
that every nontrivial t-element x of G is regular semisimple, with C(z) being a conjugate
TY of a fixed maximal torus T" of G. Hence if y € A} has the t-part equal to « then y € T9.
It follows that
|X|/IG| < |T|/INa(T)|.

For cases (i)—(iii), N (7")/T contains a cyclic group of odd order n. Moreover, since the
central involution of the Weyl group of G inverts T', cf. [64, Proposition 3.1], |[Ng(T")/T|
is even. It follows that 2n divides |[Ng(T")/T|. If in addition G # Qz(7), then

X _ [

L e +()<0.49.

Gl Gl |G

In case (iv), we may by Corollary 2.9 assume that n > 5. Note that 7" is constructed

using two kinds of cyclic maximal tori. The first is

Ty = SO (¢™) NG < SO (q)
with m odd, where
NQ+ (T1)/T1

The second is

Ty =80, (¢™) NG < SOy, (9),
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where
Furthermore, m € {n — 1,n}. Hence, if ¢ > 7, or ¢ = 5 and n > 9, then
X _ [, A 1 1 2
= <=+ < + + <1/2,
G =1e el a1 te-1 - =Y
as desired. If ¢ =5 and n = 6,8 then we are done by Corollary 2.9. [ |

Lemma 2.11. Let G be a finite group and let g € G. If O is a Gal(Q/Q)-orbit on

{x € Irr(G) | x(g) # 0},
then
> x>0l
x€O0

In particular,

H{x € Irr(G) | x(9) # 0} < |Cc(g)l-

Proof. Note that [], .o X(g) is a nonzero algebraic integer fixed by Gal(Q/Q), whence
it is a nonzero integer. The Cauchy-Schwarz inequality implies that

S Ix@P =101 T x> o).

x€0 x€O

Let O1,...,0; denote all of the distinct Gal(Q/Q)-orbits on {x € Irr(G) | x(g) # 0}. The
first statement implies that

Calo)l = > KoP=> > Kgl=3 10

X€lrr(G), x(9)#0 i=1 x€0;

3. CENTRALIZERS OF UNBREAKABLE ELEMENTS

3.1. Symplectic and orthogonal groups.

Definition 3.1. Let CI(V') = Sp(V') or (V') be a finite symplectic or orthogonal group.
An element = of C1(V) is breakable if there is a proper, nonzero, non-degenerate subspace
U of V such that = 129 € CI(U) x CI(U™) (with 21 € CI(U), 29 € CI(U"')), and either

(i) CI(U) and CI(U1) are both perfect, or
(ii) CI(U?) is perfect and z; = +1p.
Otherwise, = is unbreakable.

Lemma 3.2. Let G = Spy,(q¢) = Sp(V) with n > 2, and assume that n > 4 if ¢ = 3 and
that n > 7 if g = 2. If x € G is unbreakable, then |Cq(z)| < N where N is as in Table 2.

Proof. Assume first that x is unipotent and ¢ is odd. By [39, 3.12], V' | z is an orthogonal
sum of non-degenerate subspaces of the form W (m) and V(2m), where z acts on W (m) as
J2,, the sum of two Jordan blocks of size m, and on V(2m) as Ja,,. Note that in general
there may be more than one G-conjugacy class of elements with a given Jordan structure.
However, if m is even then W (m) = V(m)? as z-modules. For ¢ > 3 the symplectic group
Sp(V(m)) is perfect for every m > 2, so the unbreakability of x implies that V' | z is either

W (n) with n odd, or V(2n). The corresponding orders of Cg(z) are given by [39, 7.1],
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n q N
odd |¢>3,qo0dd | ¢® 1(¢>-1)
q > 3,q even | 2¢°"(q+ 1)
q=3 24 . 32n—2
even | ¢ > 3,q odd | 2¢"
q>3,q even | ¢**(¢*> — 1)
g=3 48 . 32n+1
any | q=2 9.22n+9

TABLE 2. Upper bounds for symplectic groups

and the largest are those in Table 2 for ¢ > 3 odd. If ¢ = 3 then Sp,(3) is not perfect, so
there are more unbreakable possibilities for x:

Via [Cq(2)]
V(2n) 2. 3"
V(2n—2)+V(2) 4.3n+2
W(n) (n odd) 24 . 32n=2
W(n—1)+V(2) (n even) | 48 - 327 +1

Again, the values of |Cg(x)| are given by [39, 7.1], and the largest are those in Table 2.

Next assume z is unipotent and ¢ is even. Again, V | x is an orthogonal sum of non-
degenerate subspaces of the form W (m) and V(2m) (see [39, Chapter 6]). If ¢ > 4, the
unbreakability of z implies that V' | x is either W (n) or V(2n). The corresponding orders
of Cg(x) are given by [39, 7.3], and the largest are those in Table 2 for ¢ > 2 even. If ¢ = 2
then neither Spy(2) nor Spy(2) is perfect, so for n > 7, the possible V' | x for unbreakable
are of the form X +Y, where X = W (n—k) or V(2n—2k) and Y = W(k), V(2k) or V(2)*
for some k < 2. By [39, 7.3], the largest centralizer order occurs for W(n — 2) + W (2),
and is at most 9 - 22719 as in Table 2

Now suppose x is not unipotent and write x = su with semisimple part s and unipotent
part u. If s € Z(G) then the argument for the unipotent case above applies, so assume

s € Z(G). Then
Ca(s) = Spar(q) ) x [ GLE (¢")

where 27, 2t are the dimensions of the 1- and —1- eigenspaces of s (with t =0 for ¢ even),
and r+t+ 25 a;b; = n.

If ¢ > 3 then the unbreakability of x implies that r = ¢t = 0 and a1by = n; write
a = a1,b = by. Moreover, in Cg(s) = GLG( 5), v must be a single Jordan block J,. So
from [39, 7.1], |Cq(z)| = |Cey () (w)] = (¢° —€)¢?@™D) < ¢" + 1, giving the result in this
case.

X Spo(q

Now consider ¢ = 3. As z is unbreakable, either 2r or 2t is equal to 2n — 2, or
a1by € {n —1,n}. In the former case, u = ujus € Cg(s) = Spa,_2(3) x H with H =
Sp2(3) or GU;(3), and unbreakability forces Van,_2 | u1 to be W(n — 1) (n even) or
V(2n — 2). Now [39, 7.1] shows that |Cg(x)| is less than the bound in Table 2. In the
latter case u = ujuz € Cg(s) = GLE(q?) x H with either ab=n, H =1, or ab =n — 1,
H € {Spy(3),GU;(3)}. If ab = n, unbreakability forces u; to be J, or (Ja 1,J1); hkevvlse
if ab=n — 1, then u; = J,. In either case |Cg(z)| is less than the bound in Table 2

Finally, suppose ¢ = 2. Here unbreakability forces either r > n — 2 or a1b; > n — 2. If
r > n —2 then u = ujus € Cg(s) = Spy,(2) x H with H < Sp,,,_»,(2), and Vo, | u; is
V(2r), W(r),or V(2n—4)4+V(2) (r=n—1) or W(n—2)+V(2) (r =n—1). The largest
possible value of |Cg(z)] is less than the value 922"t in Table 2. If a1by = n—k >n—2
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then, writing @ = a1,b = by, we see that u = ujus € Spoy(2) x GLE(g?). The largest
value of |Cg(x)| occurs when a = n,b = 1,6 = —1 and u = uy = (J,_2,J?); here
Cq(r) = Cgu,(2)(u) again has order less than the bound in Table 2. ]

Lemma 3.3. Let G = Q(V) =Q5,(q) (n>4) or G = QV) = Qap41(q) (n > 3, q odd),

and assume further that dim'V > 13 if ¢ < 3. If x € G is unbreakable, then |Cg(z)| < M,
where M is as in Table 3.

q M

¢>3|¢" (g +1)

q= 213. 22n+6

q=3]20.32"" (dimV = 2n)
24,3203 (dimV = 2n + 1)

TABLE 3. Upper bounds for orthogonal groups

Proof. First consider the case where ¢ > 4 is even, so G = 5, (q).

Assume z is unipotent. By [39, Chapter 6], V | x is an orthogonal sum of non-
degenerate subspaces of the form V' (2k) (a single Jordan block Jo, € GOS;(q) ~ 25,.(q))
and W (k) (two singular Jordan blocks JZ € Q3 (q)). Since z is unbreakable, V | z is
W(n) or V(2n — 2k) + V(2k) for some k. The order of Cg(z) is given by [39, 7.1], and
the largest value occurs for W(n). Tt is ¢>*3|Spy(q)| for n even, and ¢**~2|SOZ (q)| for n
odd; the former is less than the bound in Table 3 for ¢ > 3.

If x = su is non-unipotent with semisimple part s and unipotent part u, then Cg(s) =
Q3,.(q) x HGLZ_(qbi) with 2k = dim Cy(s) and k + > a;b; = n. As each Giji(qbi) <
Q24,6,(q), the unbreakability of = implies that either £ > n — 1 or a;by > n — 1. In the
former case u = ujus € Cg(s) = Q5, 5(¢q) x GLY(q), and as in the previous paragraph
]Can_2(q) (u1)| is at most ¢®"~°|Spy(q)|, which gives the conclusion. In the latter case

u = ujug € Cg(s) = 03,.(q) x GLY(¢*) with k < 1 and ab = n—Fk, and unbreakability forces
uz € GLY(¢®) to be either J,, or (J,_1,J1) with a = n,b = 1. Then Cg(z) = Ccy(s)(w)
has smaller order than the bound in Table 3.

Now consider the case where ¢ > 5 is odd.

For x unipotent, V' | z is an orthogonal sum of non-degenerate spaces W (2k) (namely,
J3. € Qf (q)) and V(2k + 1) (namely, Jog41 € Qox11(¢)). The unbreakability of = implies
that V | z = W(n) or V(2n + 1), giving the conclusion by [39, 7.1].

For x = su non-unipotent, write
Ca(s) = (Qula) x Y(q) x [[ GLE(¢") NG,

where ¢ = dim Cy (s),b = dim Cy (—s) and a+b+) _ 2a;b; = dim V. As GL;.(q) < SO2,(q)
and s has determinant one, b is even. If a # 0 then V, | u is either W (2k) or V(2k + 1)
and x is breakable. Hence a = 0. Moreover, —1 € Q}, (q) (see [26, 2.5.13]), so if ug is a
unipotent element of type W (2k), then —ug € Qik(q). Hence by unbreakability, if b # 0
then either b = dimV and V;, | w = W (n), or V4 | u is a sum of an even number of spaces
V(2k; + 1). The former case satisfies the conclusion as above, so assume the latter holds.
If there are more than two of the spaces V(2k; 4+ 1), then there exist 4,j such that the
discriminant of V' (2k; + 1) + V(2k; 4+ 1) is a square; if u; is the projection of u to this
space then —uy = —(Jag, 41, Jok,;+1) € Qok,+2k;+2(q), contradicting unbreakability. Hence
either b =0 or V} | u is a sum of two spaces V(2k; + 1). Likewise, the projection of u to
a factor GL§ (¢")) has at most two Jordan blocks; here, the only extra point to note is
that if b; = 1 and there are three blocks Ji, J, J; with the projection of s to the J; block
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giving an element of Q2(q), then the projection of s to the other blocks gives elements of
Qo1(q), Q22:(q), and z is breakable.

It follows from all these observations together with [39, 7.1] that the largest value of
|Cg ()| occurs when either b = dim V and V | u = V(n)? (n odd), or Cg(s) = GU,(q)NG
and u = (JfL/Q) € GU,(q) (n even). In either case |Cq(x)| < ¢**2(¢ + 1)?, as in Table 3.

Next suppose ¢ = 3. Following the proof of the ¢ = 3 case of [34, 5.15], for dim V' = 2n
the largest possibility for |Cg(x)| is as in Table 3, and arises when x is unipotent and
V |z =W(2)+ W(n — 2); note that the larger bound given in [34, 5.15] occurs when
= —u with V | u=V(1)* + W(n — 2), but this element z is breakable according to our
definition (which is different from the definition in [34]). For dim V' = 2n + 1 the largest
value of |Cg(z)| is as in [34, 5.15.].

Finally, if ¢ = 2 the proof of [34, 5.15] gives the bound in Table 3. [
Lemma 3.4. The following statements hold.

(i) Let g =2 or 3, and let G = Sp(V') or Q(V) with the assumptions on dimV as in
Lemmas 3.2 and 3.3. Let V =V ®F, Fq and let a € I_Fq satisfy either a1 =1 or
it =1. If x € G is unbreakable, then dim Kery (z — o) < 4.

(i) Letq="5 andlet G = Q(V) = QF (5) withn > 5. Let V = V&, Fy and let o € T,
satisfy a9t =1 or a9t = 1. Ifx € G is unbreakable, then dim Ker (x —al) < 2.

Proof. (i) For @ = £1 the lemma implies that the number of unipotent Jordan blocks
of £z is at most 4, which follows from the proofs of Lemmas 3.2 and 3.3. In the other
case, o has order ¢ + 1. A Jordan block of = on V with eigenvalue o and dimension k
corresponds to a non-degenerate subspace W of V of dimension 2k such that 2"V lies in
Sp(W) or SO(W). Hence the unbreakability of = implies that there can be no more than
four such blocks.

(ii) If # = 4w with w unipotent, then the proof of Lemma 3.3 (for the case where
g > 5 is odd) shows that V' | w is W(n) or V(2k1 + 1) + V(2ke + 1) for some ki, k2,
giving the result in this case. Now suppose x = su with semisimple part s # +1, and let
Ca(s) = Qa(5) x Q(5) x [TGL (5") as in Lemma 3.3. That proof shows that a = 0,
b is even, Vj | w is the sum of zero or two odd-dimensional spaces V' (2k; + 1), and the
projection of u to each factor GLg! (5%) has at most 2 Jordan blocks. The conclusion of
(ii) follows. ]

3.2. Linear and unitary groups.
Definition 3.5. (i) An element of the general linear group GL,(2) is breakable if it lies in
a natural subgroup of the form GL,(2) X GLy(2) where a+b=mn,1 <a <band a,b # 2.

(ii) An element of the unitary group GU,(2) is breakable if it lies in a natural subgroup
of the form GU,(2) x GUp(2) where a+b=n, 1 <a <band a,b# 2,3.

(iii) An element of the general linear or unitary group GL (3) is breakable if it lies in a
natural subgroup of the form GL(3) x GLj(3) where a+b=n,1 <a <band a,b # 2.

(iv) If ¢ > 4, then an element of GLf,(q) is breakable if it lies in a natural subgroup of
the form GL{(q) x GL;(q) where a+b=nand 1 <a <b.

If ¢ > 4 and z € G = GL{,(q) is unbreakable, then

n—1, €=+,
ce@l<{ Dap,y, (27T 1)

(cf. [34, Lemma 6.7] for the case ¢ = —).
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Lemma 3.6. Ifn > 7 and x € G = GL,(2) is unbreakable, then either
(i) [Ca(@)| <272, or
(ii) [Ca(x)| =9-2", 2|n, and x € GL,/5(4).

Proof. Suppose first that x is unipotent. As it is unbreakable, x has Jordan form .J,, or
Jn—2 + Jo. The order of Cg(z) is given by [39, 7.1], and the maximum possible order is
27+2 which occurs in the last case.

Now assume that © = su where s # 1 is the semisimple part and u the unipotent part
of z. Then

Ca(s) = [ [ GLa (2,

where > a;b; = n. Moreover, since z € Cg(s) is unbreakable, we may assume a;b; €
{n,n — 2}, and write a = a1,b = b;. If ab = n then b > 2. A Jordan block J. of u as an
element of GL,(2°) lies in a natural subgroup GL.(2), so the unbreakability of = forces
the Jordan form of u in GL4(2%) to be J, or J,_1 + J; (with b = 2 in the latter case).
By [39, 7.1], |Cq()| = |Cqr,, (20 (u)] is 2b(a=1)(2b _ 1) < 2" in the former case, and it is
29%.|GL1(2%)[* = 9-2" in the latter case, in which case also 2|n and « € Cg(s) = GL,,/2(4).
If ab = n — 2, then Cg(s) < GL4(2%) x GLa(2) and the Jordan form of u in the first factor
must be J,, whence

ICa(z)] < 22 D|GL,(29)]|GLa(2)] = (272 — 277 27) . 6 < 27F2,
giving the result in this case. [ |

Lemma 3.7. If z € G = GU,(2) is unbreakable, then |Cg(z)| < 2" .32 if n > 10 and
Cole)| <2 ifn—0.

Proof. (i) Consider the case n > 10. Suppose first that x is unipotent. As it is unbreak-
able, z has Jordan form J,,, J,—2 + Jo or J,_3 + J3. The order of Cg(x) is given by [39,
7.1], and the maximum possible order is 2" . 32, which occurs in the last case.

Suppose that x = su where s # 1 is the semisimple part and u the unipotent part of x.
If s € Z(G) then the argument of the previous paragraph applies. If s & Z(G), then

CG(S) = HGUai(zbi) X H GLCi(22di) < H GUaibi(Q) X HGU2Cidi(2)7

where Y a;b;+2 > ¢;d; = n, and all b; are odd. Moreover, since z € C(s) is unbreakable,
either a1b; or 2c¢1d; lies in the set {n,n —2,n — 3}.

Suppose a1b; € {n,n —2,n — 3}, and write a = a;,b = b;. If ab =n then b > 1 since
s € Z(G), so b > 3 (as b is odd). A Jordan block J. of u as an element of GU,(2°) lies
in a natural subgroup GU(2), so the unbreakability of = forces the Jordan form of w in
GU,(2°) to be J, or J,_1 + J1 (with b = 3 in the latter case). By [39, 7.1], the largest
possible value of [Cg(z)| = |Cqu, (20)(u)| occurs in the latter case, and is 270 .|GU(29)]? =
2" .92 proving the result in this case. If ab = n — 2, then Cg(s) = GU,(2%) x GUs(2) and
the Jordan form of u in the first factor must be J,, whence

|Cq(z)] < 22 D|GU(29)||GUL(2)] = (2772 4+ 27 270) . 18 < 27 . 32,
giving the result in this case. Similarly, if ab =n — 3 then
ICa(x)| < [Cqu, et (Ja)l|GUs(2)] = 21 (20 4 1) - 2334
— (2n73 + 2n737b> . 2334 < on+4 32_

Now suppose 2c1d; € {n,n —2,n — 3}, and write ¢ = ¢;,d = dy. If d = 1 then the
projection of s in GL.(2%9) is a central element of order 3 which is central in a natural
subgroup GUz.(2), so Cg(s) has a factor GUs.(2) rather than GL.(22?). Hence d > 1. As
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above, the unbreakability of x forces u to have Jordan form J. as an element of GL(22%).
Hence

|Cq ()| < [Car,(224)(Je)| - [GUn—2ca(2)],

which is a maximum when ¢d = n — 3, in which case |Cg(z)| < 2241 (224 —1). |GU3(2)|
which is less than 27 - 3*. This completes the proof.

(ii) Suppose now that n = 9. Assume first that © = su where s € Z(G) and u is
unipotent. As x is unbreakable, u has Jordan form Jy, J7 4+ Jo, Jg + J3 or Jg). The largest
centralizer is that of J3, which has order 218|GUj3(2)], less than 248,

Now suppose = = su with semisimple part s ¢ Z(G). Then Cg(s) is as described above.
Assuming that |Cg(z)| > 28, the only possibility is that Cg(s) = GU7(2) x GUy(2)
(note that GUg(2) x GU;(2) is not possible as this would imply that = is breakable). If
|Cq(z)] = [Ceys)(w)] > 2%, then u projects to the identity in GU7(2); but then x is
breakable, a contradiction. ]

Lemma 3.8. If n > 7 and v € G = GL{(3) is unbreakable, then |Cg(z)| < 37+2. 24,

Proof. For x unipotent the largest centralizer occurs when 2 = (J,,—2, J2) and has order
37+2. 24 by [39, 7.1].

Suppose x = su is non-unipotent. If s € Z(G) the bound of the previous paragraph
applies, so assume s ¢ Z(G). The possibilities for Cg(s) are:

e =+: Cq(s) =[] GLq, (3%)

e =~ Cals) = [[ GU,, (3%) x [T GLe, (3%4)
where Y~ a;b; = n for e = +, and > a;b; + 2> ¢;d; = n and all b; are odd for e = —. As
in the previous proof, the unbreakability assumption implies that a1b; € {n — 2,n} for
€ = +, and either a1b; or 2¢1d; is in {n —2,n} for e = —. Now we argue as in the previous
lemma that none of the possibilities for u € Cg(s) give a larger centralizer order than
3n+2 . 24' -

4. THEOREM 1 FOR LINEAR AND UNITARY GROUPS

4.1. General inductive argument. Recall R(S) from §2, and the notion of unbreaka-
bility from Definition 3.5.

Definition 4.1. Given a prime power ¢ = pf, € = 4, and an integer N = p*t® with
t1(q — €) a prime. We say that G = GL;,(q) satisfies

(i) the condition P(N) if every g € G can be written as g = 2Vy" for some z,y € G
with 2V € SL¢ (q); and

(ii) the condition P, (N) if every unbreakable g € G can be written as g = xVy” for
some z,y € G with 2V € SL¢ (q).

First we prove an extension of Theorem 2.1 for GL{,(¢):

Proposition 4.2. Let G = GLE(q) withn >4, ¢ = p’, and let t { p(q — €) be a prime not
contained in R(SLS(q)). Then P(N) holds for G and for all N = p°t®.

Proof. (i) First we consider the generic case: R(SLf,(q¢)) = {r,s1 = s2} and r and
s = s1 = sg are listed in Table 1. In particular, r = ¢(¢,n) and s; = ¢(¢,n — 1) when
€ = +. When ¢ = —, interchanging r and s if necessary, we may assume that r divides
q" — €" but not H?:_ll (¢" — €) (so r is a primitive prime divisor of (eq)” — 1), and similarly,
s divides ¢"~! — €"~! but not [Ti<icn, Z-7&”_1(qi — ).

Since N is coprime to g — €, every central element of G can be written as an Nth power.
So it suffices to prove P(NN) for every non-central g € G. Fix a regular semisimple g; € G
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of order r, in particular det(g;) = 1, and a regular semisimple h € GL,_;(q) of order s.

We can choose d € GL{(q) such that det(g2) = det(g) for gs := diag(h,d). Since both g;
and go have order coprime to IV, it suffices to show that g € gf . g2G . To this end we apply
Lemma 2.3(i).

Consider a character y € Irr(G) with x(g1)x(g2) # 0. It follows that (1) is neither
of r-defect 0 nor of s-defect 0. On the other hand, the order of the centralizer of every
non-central semisimple element of GL (¢) is either coprime to r or coprime to s. Hence
the Lusztig classification of irreducible characters of G' [9] implies that x belongs to the
rational series £(G, (z)) labeled by a central semisimple z € G* = G. It follows that
X = A\, where A\(1) =1 and ¢ is a unipotent character of G. Moreover, as shown in the
proof of [47, Theorems 2.1-2.2], v is either 1 or St, the Steinberg character of G. Since
det(g1) = 1 and det(go) = det(g) by our choice, A(g1) = 1 and A(g2)A(g) = 1 for all linear
A € Irr(G). Finally, since g ¢ Z(G) and |St(g;)| = 1,

x(g1)x(92)X(9) _ (- (1 N St(9)> >0,

) x(1) St(1)

so we are done.

(ii) The same arguments apply to the non-generic cases
<n7 q, 6) - <47 47 +)7 (67 47 _)7 (77 47 _)7

if we choose R(SL;,(¢)) to be {17,7}, {41, 7}, or {113, 7}, respectively. In the remaining
cases

(n,q,e) - (6727—"_)? (7727+)a (4727_)a
the statement follows from [24, Lemma 2.12] if we choose R(SL (q)) to be {31}, {127},
or {5}, respectively (note that GU4(2) = C5 x SU4(2)). ]

Our proof of Theorem 1 for linear and unitary groups relies on the following inductive
argument:

Proposition 4.3. Fiz a prime power ¢ = p’, an integer n > 4, and € = £. Suppose that
there is an integer ng > 3 such that the following statements hold:
(i) Let 1 <k <mng with k # 2 if ¢ = 2,3, and k # 3 if (g,¢) = (2,—). Then P,(N)
holds for GLS(q) for every N = p*® with t prime and t{ p(q — ).
(ii) For each k with ng < k < n, P,(N) holds for GLS(q) and for every N = p®t® with
t € R(SLY(q)).
N, N

If N = s for some primes s,t, then the word map (u,v) — uNo™ is surjective on
PSLE (q).

Proof. By Corollary 2.2, we need to consider only the case N = p®® with t € R(SLE(q));
in particular, ¢ 1 (g—e). It suffices to show P(V) holds for G := GLf, (¢) and this choice of N.
Indeed, in this case every g € SL{ (q) can be written as #™Vy" with det(z") = det(y") = 1.
Since ged(N, g — €) = 1, it follows that =,y € SL{,(q).
By (ii), P4(N) holds for G. Consider a breakable g € G and write it as diag(g1, ..., gm)
lying in the natural subgroup
GLE, (¢) x ... x GLg, (q).

Here, 1 < k; < n, and if k; < ng then k& = k; fulfills the conditions imposed on & in (i).
Furthermore, each g; is unbreakable. Hence, according to (i), P,(NV) holds for GLg, (q) if
ki < mno. If k; > ng, then by (ii) and Proposition 4.2, P, (N) holds for GLj (q) as well.
Thus we can write g; = ¥y} with 2,7 € GL§, (¢) and det(z)') = 1. Letting

x = diag(z1,...,2m), y:=diag(yr,...,Ym)
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we deduce that g = zVy" and det(z") = 1. Thus P(N) holds for G, as desired. []

4.2. Induction base.

Lemma 4.4. Let ¢ = pf > 2, e = £, and N = r®" for some primes r,t. Suppose that
S = PSL{(q) is simple and k =2 or 3. Then the map (u,v) — u™N v is surjective on S.

Proof. By Corollary 2.2(i), we need to consider only the case N = p®t® with t € R(S). Let
S = PSL3(q). By [20, Theorem 7.3], S~{1} C CC where C = 2° or y°, |z| = (¢*+q+1)/d
and |y| = (¢*> — 1)/d, with d = ged(3,q — 1). In particular, || and |y| are coprime. Hence
at least one of x,y has order coprime to IV, so it is an N-power in S, whence we are done.
The case of PSU3(¢) can be treated similarly using [20, Theorem 7.1]. If S = PSLa(q) with
q > 7 odd, then by [20, Theorem 7.1], S~ {1} € CC with C = z° or ¢%, |z| = (¢ +1)/2
and |y| = (¢ — 1)/2, so we can argue similarly. Finally, assume that S = SLa(gq) with
q>4even. If t{(¢—1), then S~ {1} C CC with C = 2° and |z| = ¢ — 1 by [20,
Theorem 7.1], so we are done. Assume t|(¢ — 1). Using the character table, we check that
S~ {1}y Cy® - (¥?)7if ly] = ¢ + 1, so we are done again. ]

Lemma 4.5. Let ¢ =pf >4, e = &+, and N = p*® for a prime t { p(q — €). Then P,(N)
holds for G = GLj,(q) with 1 < k < 3.

Proof. Clearly the statement holds for ¥k = 1. Suppose £ > 1 and let ¢ € G be
unbreakable. Let p € F;¢ and let e € C* have order ¢ — 1 > 3. To establish P, (N) for g,
we exhibit some N’-elements g1, g2 of G such that g € glG . gQG and at least one of g1, g0
has determinant 1.

(i) Consider the case G = GLa(q). Since g is unbreakable, it belongs to class B; or Asg,
in the notation of [60]. In the first case, g lies in a torus of order ¢?> — 1, and we define
g1 = diag(p, p~1), and go = diag(1, p’) if det(g) = p’ # 1, or go = g1 if det(g) = 1. Using
[60, Table IIJ, it is easy to check that

Z X(gl)X(QQ)X(g):(q_1)<1+l>>0.

xE€Irr(G) X(l) q

Since g1 and gy are N’-elements, we are done. Suppose now that g € As, i.e. ¢ = zu with

z € Z(G) and u a regular unipotent element. Since z is the Nth power of some central

element of G, it suffices to show that u € g{* - g¢ where we again choose g» = g1. Using

[60, Table I,

X(g91)x(g2)X(9) 1 - “my2 | _ 4g—1)

—:(q—l) 1 - — (gmn_{_gnm) =t -
x(1) 2(q+1) 2 q+1

so we are done again.

x€lrr(G) 0<m#n<q—2

The same arguments apply in the case G = GUsa(q), where we choose go = g% if g = 2u
and w is a regular unipotent element.

(ii) Consider the case G = GL3(q), Since g is unbreakable, g belongs to class Cy (so g lies
in a maximal torus of order ¢ — 1) or Az (i.e. g is a scalar multiple of a regular unipotent
element), in the notation of [60]. First suppose that t # ¢(q,3). By Lemma 4.7 (below)
we can find a regular semisimple g; € GL3(q) of order ¢(q, 3)m such that det(g1) = det(g)
and all prime divisors of m divide ¢ — 1. Note that g; belongs to class C7. Also, define
go = diag(1, p, p~!) € SL3(q) belonging to class Ag. Using [60, §3], it is easy to check that

x(91)x(92)x(9) _ o2 1
xe%:(G) x(1) > (g-1) <1 q(g+1) q3> 0
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Since g1 and g9 are N’-elements, we are done. Suppose now that ¢t = ¢(q,3). We choose h
to be a regular semisimple element of order ¢+ 1 in SLa(g) and define g; := diag(h, det(g))
so that it belongs to class B;. Using g2 as in (i), we observe that

5 x(91)x(g2)x(9) >(q_1)<1_1_ 3(¢ —2) )>0’

3 2
G @ 2 +q+1)

so we are done again.

The same arguments apply in the case G = GUs(q). [

4.3. Weil characters of GL,(¢) and GU,(¢). In this subsection we collect some infor-
mation about Weil characters of GLy(¢q) and GU,,(q) with n > 3, cf. [62, §§3, 4], [63, §4],
that play an essential role in our analysis.

First we consider the linear case: G'= GLy(q) = GL(V) with V' = F}. Fix a primitive
(g — 1)th root of unity 6 € F;' and a primitive (¢ — 1)th root of unity § € C*. Also, for
re€Gandace F; , let e(z, @) denote the dimension of the a-eigenspace of z on V @, Fy.
Then SL(V) = SL,(q) has ¢ — 1 complex Weil representations, which are the nontrivial

irreducible constituents of the permutation representation of SL(V) on V ~ {0}. The
characters of these representations are 7;, where 0 < i < ¢ — 2 and

5 qe9:9%) _ 95 .. (4.1)

MQ

k:

Similarly, G = GL,(g) has (¢ — 1)?> complex Weil representations, which are the ¢ — 1
nontrivial irreducible constituents of the permutation representation of GL(V') on V'~ {0},
tensored with one of the ¢ — 1 representations of degree 1 of GL,,(q). If we fix a character
A = A\ of order ¢ — 1 of G, then the characters of these representations are 7; ;, where
0<i,7<qg—2and

7i.4(g (q — Zazk e(9.5%) _ 95, ) “M(g). (4.2)

Note that 7; ; restricts to 7; over SLn(q).
Now consider the unitary case: G = GUy(q) = GU(V) with V' = Fp,. Fix a primitive
(g + 1)th root of unity & € F .2 and a primitive (¢ + 1)th root of unity 5 € C*. Again, for

x€Gand a e ]F , let e(x, a) denote the dimension of the a-eigenspace of z on V & , F,.
Then SU(V) = SU (¢) has ¢+ 1 complex Weil characters ¢;, where 0 <i < g and

R G Ol - i e(9,¢%)
o) =y e 43)

Next, G = GU,(q) has (¢ + 1)? complex Weil characters ¢; ;, where 0 < i, j < g and

Zé )o@ X (g), (4.4)

where A = A1 is a fixed linear character of order ¢ + 1 of G. Note that (; ; restricts to ¢;
over SU,(q).

Lemma 4.6. Let G = GLf,(q) with n > 3 and € = £. Suppose that y € G satisfies the
condition Y02 e(y,8') <1 if e = + and Y0 e(y, ") < 1 ife = —. If x € rr(G) is an
irreducible Weil character, then |x(y)| < 1.

n

Cl,] q + 1
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Proof. Consider the case € = +. By assumption, e(y,d') is at most 1 for 0 <1 < ¢ — 2,
and in fact it can equal 1 for at most one value [y. In particular,

1 1
l=—(¢g—1)—-2< < —2)—2=0.
q_l(q ) _To,o(y)_q_l(quq )

Assume now that ¢ > 0. If such [y exists, then

-2
Lz < s il
n,o(y)=7q_1 (5 O(q—1)+l§_%5 ) = 0",

If no such Iy exists, then

1=
Ti,o(y) = — (SZl =0.
qg—1
1=0
As |7 j(y)| = |Ti0(y)|, the claim follows. Similar arguments apply to the case e = —. O

4.4. Induction step: Generic case. We need the following simple observation:

Lemma 4.7. Let G = GL{,(q) with n > 3 and let T be a cyclic torus of order q" — €"
of G. Suppose there is a prime s that divides ¢" — €™ but not H?;ll(qi — €. For every
g € G, there exists a regular semisimple h € T of order sm for some m € N such that
det(h) = det(g) and all prime divisors of m divide q — €.

Proof. Let A = Cy_, denote the image of G under the determinant map det. Note that
det maps T onto A. The condition on s implies that every 2 € T of order divisible by s
is regular semisimple and st (¢ — €). It follows that det maps 77 > O4(T") into 1 and 75
onto A, where T' = T} x Ty, |T}] is coprime to ¢ — €, and all prime divisors of |T5| divide
g — €. Hence we can choose z € O4(T) of order s and y € T3 such that det(y) = det(g)
and set h := zy. O

Proposition 4.8. Suppose G = GL,(q) with n > 4, ¢ = p! > 4, and t € R(SLy(q)).
Then P, (N) holds for G and for every N = p®t®.

Proof. Consider an unbreakable g € G and a regular semisimple g; € SL,(q) of order
s € R(G) \ {t}. Denote

Irr(G/[G, G]) = {\

(M) 0<i<q—2}.

(i) First we consider the case n > 6. Choose

¢" = 1)(¢" — ¢*)
(¢=1)(¢*-1)

By [62, Theorem 3.1], every irreducible character of SL,(q) of degree less than D is either
the principal character, or an irreducible Weil character 7; as given in (4.1). It follows that
the characters in Irr(G) of degree less than D are exactly the ¢ —1 linear characters \; and
(g — 1)? irreducible Weil characters 7; j, 0 < i,j < ¢ — 2 as given in (4.2). Using Lemma
4.7, we can choose a regular semisimple go € G of order sm where all prime divisors of m
divide ¢ — 1 and det(g2) = det(g). In particular,

1Calgi) <¢" 1,

b

and

N
[}

Ai(g1)Xi(g2)Xi(g) =g — 1. (4.5)

~
I
o
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By (3.1) and Lemma 2.3,

X(g0)x(g2)x(9) | _ (¢" = 1)*? B 1
errr(G)Zx(lpD x(1) = D <l@-1 <1 Z+qt 1) . (4.6)

The choice of g; and the unbreakability of g ensure that each y € {g, 91,92} satisfies the
assumption of Lemma 4.6 and so

ITij(y)] < 1. (4.7)
It follows that if n > 5 then

3 71, (91)7i,4(92)Ti,5(9) < (¢—1)° o a1

71,5 (1) "—q q@+qt+1) 4.8

0<i,j<q—2

Together with (4.6), this implies that

Z X(.QI)X(QQ)X@<((]_1)<1_ 1 4 1 ><q_1
< > - .
XEIrT(G), x(1)>1 x(1) @?+q+1 q(®+q+1)

Hence g € ¢§ - g§ by (4.5) and Lemma 2.3(i). Since both g; and g2 have order coprime to
N, we are done.

(i) Next we consider the case n = 5. Setting s’ := (¢, 3) and using Lemma 4.7, we can
choose a regular semisimple h € GL3(q) of order s’m, where all prime divisors of m divide
q — 1 and det(h) = det(g). Also, let b’ € GLa(q) be conjugate (over F,) to diag(3,371),
where 5 € F; has order ¢+ 1. Setting go = diag(h, k'), the orders of g; and g, are coprime
to N, det(go) = det(g), and e(go,6') = 0 for 0 <1 < ¢ — 2. In particular, (4.7) and (4.8)
hold. Next, we choose D = ¢*(¢° —1)/(¢ — 1), yielding

@1 g1 g1
x(1) - D T g2 8

(4.9)
x€lrr(G), x(1)>D

Now, using [41], we check that if ) € Irr(SLs(q)) has positive s-defect and positive
s'-defect and (1) < D, then either ¢ is the principal character or a Weil character, or
s = {(q,4) and v is the unique character of degree ¢?(¢> —1)/(¢ — 1). In either case, v
extends to G. In fact, in the latter case, an extension ¢ of ) to G is the unipotent character
labeled by the partition (3,2) (see [7, §13.8]). On the other hand, 79 (as defined in (4.2))
is the unipotent character of G labeled by the partition (4,1). It follows by [22, Lemma
5.1] that

= (lg+ 7100+ ¢) — (le+7100) =p2 — p1,
where p; is the permutation character of the action of G on the set of i-dimensional
subspaces of the natural module Fg for i = 1, 2. Therefore,
w(91) = p2(g1) = pi(g1) =0 =1 =—1, @(g2) = pa(g2) — p1(g2) =1 -0 =1.

Also, the extensions of 9 to G are p\;, 0 < i < q—2, and |p(g)| < (¢° — 1)Y/2 by (3.1).
Certainly, x(g1)x(g2) = 0 unless x has positive s-defect and positive s'-defect. Hence,
combining with (4.8), we deduce that

(@ -1 _q-1
TR

3 x(91)x(g2)x(g) q—1

< +
- 2
x€lrr(G@), 1<x(1)<D X(l) Q(q +q+ 1)
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Together with (4.9), this implies that

Z X(£]1)X(£72)X@§(q_1)<1+1)<q_1’

1
x€lrr(G), x(1)>1 X( )
so we are done as before.

(iii) Here we consider the case n = 4. Since g is unbreakable, g belongs to class As,
Cy, or Eq, in the notation of [60]. In the two latter cases, note that the G-conjugacy class
of such an element ¢ is completely determined by |g| and the eigenvalues of g acting on

F;l. On the other hand, G contains a natural subgroup H = GLa(q?), and H contains an
element h with the same spectrum and order as g. Hence we may assume g = h € H.
As N = p®® and t t (¢*> — 1), we can now apply Lemma 4.5 (if h is unbreakable) to get
g = zNy" for some z € SLa(q?) < SL4(q) and y € H. Such a decomposition certainly
exists if h is breakable in H (i.e. h € GL1(¢?) x GL1(q?)).

It remains therefore to consider the case g € As, i.e. g = zu, where z € Z(G) and u is a
regular unipotent element. By [7, Corollary 8.3.6], |x(g)| < 1 for all x € Irr(G). Choosing
D = (q—1)(¢®> — 1) and go of order sm as in (i), by the Cauchy-Schwarz inequality,

< 1.35.

x(91)x(92)X(9) (¢* - 1)
2 D | S @-D@ -1

Using [60], we check that all irreducible characters of G of degree less than D are linear
or Weil characters. Hence (4.7) implies that

x€lrr(G), x(1)>D

> x(g1)x(g2)x(9)| _ (g —1)3

<

< 0.11.
x(1) ¢t —q

x€lrr(G@), 1<x(1)<D
It follows that

D X9)X(92)X(9) | 354 011 = 146 < g — 1,

x(1)
so we are done. [ ]

Proposition 4.9. Suppose G = GU,(q) with n > 4, ¢ = p/ > 4, and t € R(SU,(q)).
Then Py (N) holds for G and for every N = p®t®.

x€lrr(G), x(1)>1

Proof. Consider an unbreakable g € G and a regular semisimple g; € SU,(q) of order
s € R(G) \ {t}. Denote

I(G/[G,G]) = {\ = (\)' | 0 < i < g}

(i) First we consider the case n > 6. If n > 7, then using Lemma 4.7, we can choose
a regular semisimple go € G of order sm where all prime divisors of m divide ¢ + 1 and
det(g2) = det(g). If n = 6, then we set s’ := £(q,6) > 7 and use Lemma 4.7 to get a
regular semisimple h € GUj3(q) of order s'm, where det(h) = det(g) and all prime divisors
of m divide ¢ + 1. We also set b’ := (hy)~! and gy = diag(h, k). Then go € G is regular
semisimple, and det(gy) = det(g). In either case

ICalgi)l < (¢" "+ 1)(g+1).

Choose
D= { (¢" = (="M@ =) /(a+1)(¢* 1), n=T,
(a+1)(@+1)(¢° +1)/2, n = 6.
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If n > 7, then by [62, Theorem 4.1], every irreducible character of SU,(q) of degree less
than D is either the principal character, or an irreducible Weil character (; as defined in
(4.3). Hence, the characters in Irr(G) of degree less than D are exactly the ¢ + 1 linear
characters \;, and (g + 1)? irreducible Weil characters (; ; with 0 < 4,7 < ¢ as defined
in (4.4). Suppose n = 6 and ¢ € Irr(SUg(q)) has positive s-defect 0 and positive s'-
defect. Using [41], we check that either 1 is the principal character of a Weil character, or
(1) > D. Again, if x € Irr(G), x(1) < D, and x(g1)x(g2) # 0, then x is either a linear
character, or a Weil character.

The choice of g1 and g ensures that

Ai(91)Ai(g2)Ni(g) = g + 1. (4.10)
i=0
By (3.1) and Lemma 2.3,
3 x(m)igj)x(g) _(a+ 1)(Q’;1 + 1) _ 2(61; 0} (4.11)

x€lrr(G), x(1)>D

The choice of g; and the unbreakability of g ensure that each y € {g, g1, 92} satisfies the
assumption of Lemma 4.6, and so

Gig(y)] < 1. (4.12)
It follows that if n > 5 then

> Gi,i(91)Gi5(92)C; 5(9) < (q+1)° < (q+1)

= < : (4.13)
0<iyj<q G (1) " —q ~ alg—1)?

Together with (4.11), this implies that

XX 0) 2 1
XGIrr(C;X(l)>1 X(l) = (q T 1) (3 + 7) <q+ 1.

Hence g € ¢§ - ¢§ by (4.10) and Lemma 2.3(i). Since both g; and go have order coprime
to N, we are done.

(ii) Next we consider the case n = 5. Setting s’ := ¢(q,6) and using Lemma 4.7 we can
choose a regular semisimple h € GUs(q) of order s'm, where all prime divisors of m divide
q+ 1 and det(h) = det(g). Also, let A’ € GUs(q) be conjugate (over F,) to diag(a,a™1),
where a € F has order ¢ — 1. Setting g» = diag(h, 1), the orders of g; and g9 are coprime
to N, det(g2) = det(g), and e(go, &) = 0 for 0 < I < ¢. In particular, (4.12) and (4.13)
hold. Next, we choose D = ¢*(¢° + 1)/(q + 1), yielding

x(91)x(92)x(g q+1)(¢"+1)(¢"(¢g+1 q+1
3 (91)x( )()s( )(g" + D)(g( ))1/2< '

0 5 : (4.14)

x€lrr(G), x(1)>D

Now, using [41], we check that if ¢ € Irr(SUs(q)) has positive s-defect and positive
s'-defect and (1) < D, then either ¢ is the principal character or a Weil character, or
s = {(q,4) and v is the unique character of degree ¢?(¢°> +1)/(¢ + 1). In either case, v
extends to G. In fact, in the latter case, an extension ¢ of ¥ to G is the unipotent character
labeled by the partition (3,2) (see [7, §13.8]). Letting o be the unipotent character of G
labeled by the partition (3,1,1), of degree ¢®(¢% + 1)(¢> — ¢ + 1), we check that

p=lg+p+o
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is the (rank 3) permutation character of the action of G on the set of isotropic 1-dimensional
subspaces of the natural module FSQ, cf. [56, Table 2]. Note that ¢ has s-defect 0 and

s'-defect 0. It follows that o(g1) = 0(g2) = 0, so

olg)=plg1)—1=0—1=—1, o(g2) =plg2) —1=2—-1=1.

Also, the extensions of 1 to G are p);, 0 < i < ¢, and |¢(g)| < (¢*(¢ +1))'/2 by (3.1).
Certainly, x(g1)x(g2) = 0 unless y has positive s-defect and positive s'-defect. Hence,
combining with (4.13), we deduce that

("¢ + 1) _q+1
P(1) 7

+(q+1)

> X(g1)x(g2)x(9) | _ (¢+1)

= —1)2
x€lrr(@), 1<x(1)<D X(l) Q(q 1)
Together with (4.14), this implies that

x(91)x(g2)x(9) 11
MANT P AAMNT RV AT < — —
E ) <(g+1) 5+7 <q+1,
X€Irr(G), x(1)>1

so we are done as before.

(iii) Here we consider the case n = 4. Since g is unbreakable, g belongs to class As,
Cy, or E1, in the notation of [51]. In the two latter cases, note that the G-conjugacy class
of such an element ¢ is completely determined by |g| and the eigenvalues of g acting on

F;l. On the other hand, G contains a natural subgroup H = GLa(¢?), and H contains an
element h with the same spectrum and order as g. Hence we may assume g = h € H.
As N = p®® and t 1 (¢*> — 1), we can now apply Lemma 4.5 (if A is unbreakable) to get
g = xNyN for some x € SLa(¢?) < SL4(g) and y € H. Such a decomposition certainly
exists if h is breakable in H (i.e. h € GL1(¢?) x GL1(q?)).

It remains therefore to consider the case g € As, i.e. g = zu, where z € Z(G) and u is a
regular unipotent element. By [7, Corollary 8.3.6], |x(g)| < 1 for all x € Irr(G). Choosing
D = (g +1)(¢> +1) and g2 of order sm as in (i) (when n > 7), by the Cauchy-Schwarz
inequality,

(@+ D+ _ | g+l

SUrD@r) T s

x€lr(G), x(1)>D

Using [51], we check that all irreducible characters of G of degree less than D are linear
or Weil characters. Hence (4.12) implies that

3 x(g)x(g2)x(9)| _ (¢+1)° _atl
= —1)2
xe€lrr(G), 1<x(1)<D X(l) q(q 1) 7

It follows that

> MeNE) (D) g

VElrr((), x(1)>1 b 7

so we are done. [ ]

Corollary 4.10. Theorem 1 holds for G = PSLE (q) with ¢ = pf >4, e =+, and n > 2.

Proof. The case n = 2,3 follows from Lemma 4.4. If n > 4, then we choose ng = 3 and
apply Proposition 4.3. Note that condition (i) of that proposition is satisfied by Lemma
4.5, and (ii) holds by Propositions 4.8 and 4.9. Hence we are done by Proposition 4.3. m
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4.5. Induction step: Small fields.

Proposition 4.11. Suppose G = GL,,(2) with n > 8 and t € R(G). Then P,(N) holds
for G and for every N = 2%¢°.

Proof. Consider an unbreakable g € G and choose
D= (2" —1)(2"' —4)/3.

By [62, Theorem 3.1], Irr(G) contains exactly two characters of degree less than D: namely,
lg and 7 = 7p. In fact 7(1) = 2" — 2 and p = 7 + 1¢ is the permutation character of the
action of G on the set of nonzero vectors of the natural module V' = 3. Choose regular
semisimple elements g; = g2 of order s € R(G) \ {t}; in particular, |[Cx(g;)| < 2" — 1.
Note that p(g;) € {0,1}, so |7(gi)| < 1. Also, |Cg(g)| < 9-2" by Lemma 3.6. It follows
that
Im(90)7(g2)7(9)| _ 327
(1) = on 2
If n > 9, then by Lemma 2.3(ii)

< 0.189.

b 2" —1)-3.2%/2  9.27/?
3 X(gl)X(?Q)X(Q) <! )D3 _ 22_1 7 < 0.800.
x€lrr(G), x(1)>D X( ) -
If n =8 and |Cg(g)| < 2"*2, then
3 x(gl)x(?z)x(g) < ! )D = i <0775,
x€lrr(G), x(1)>D X( ) B

Thus, in each of these cases,

< 0.809 + 0.189 = 0.998,
x€lrr(G), x(1)>1

whence g € glG . gQG by Lemma 2.3(i). Since both g; and go have order coprime to N,
we are done in these cases. In the remaining case, by Lemma 3.6, G = GLg(2) and
g € H := GLy(4) = Z(H) x S with Z(H) = C3 and S = SL4(4). Thus we can write
g = zh with z € Z(H) and h € S. Applying Corollary 4.10 to SL4(4), we deduce that
h = xNy"N for some z,y € S. Certainly, z = 2J for some z; € Z(H). It follows that

g = (z12)Vy", and we are done again. ]

Proposition 4.12. Suppose G = GL,(3) with n > 8 and t € R(SL,(3)). Then P,(N)
holds for G and for every N = 3%t.

Proof. Consider an unbreakable g € G, so |Cg(g)| < 372 . 2% by Lemma 3.8. First, we
use Lemma 4.7 to get a regular semisimple element g; of order sm, where s € R(G) \ {t},
m is a 2-power, and det(g;) = det(g). Next we fix a regular semisimple h € SL,,_2(3) of
order s’ = ¢(3,n —2) and A’ € SLa(3) of order 4, and set g2 := diag(h,h’). In particular,
|Ceal(gi)| < 3™ —1. Also, we choose

D =377,
By Lemma 2.3(ii),

<

IN

(3" —1)-4.30n+2)/2 4 4
3n—9 3n/2—10 — g
XEI(G), x(1)>D s 3/ )
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Now we estimate character ratios for x € Irr(G) with x(1) < D and x(g1)x(g2) # 0. The
latter condition implies that x has positive s-defect and positive s'-defect. Applying [5,
Theorem 3.4], x can be only one of the following:

e two linear characters Ag 1,
e two of the four Weil characters 7; ; with 0 < i <1 as listed in (4.2), and, possibly,
e two characters ¢g 1 = pXo,1. Here, ¢ is the unipotent character of G labeled by the
partition (n — 2,2), of degree (3" —1)(3"~! —9)/16.
The elements ¢; 2 have the property that Z(sEF; e(gi,9) < 1. Hence, the estimate (4.7)
holds by Lemma 4.6. It follows that
Z 7i.3(91)7i,i(92)Tii(g)] _ 2-4- g/t <8
7;,5(1) - (3»-3)/2 — 13

0<i,5<1
On the other hand, 7 is the unipotent character of G labeled by the partition (n —1,1).
It follows by [22, Lemma 5.1] that
v =(a+70+¢) = (la+700) = p2 = p1,

where p; is the permutation character of the action of G on the set of i-dimensional
subspaces of the natural module F% for ¢ = 1,2. Observe that p2(g1) = 0 and p1(g1) =0
or 1. Therefore,

lo(g1)] = |p2(g1) — p1(91)] = [p1(g1)| < 1, w(g2) = p2(g2) — p1(g2) =1 —-0=1.
This implies that

1

(a1)0i(a2)5: 9. 4. 3n/2+1 12
ZSO(QI)SD.(?)%(Q) < 3 < 8 < 0.003.
=0 SOZ( )

(3n = 1)(3n~1 —9)/16 — (3/2-1 —1)(3n~1 —9)
In summary,

X 4
3 Xg)xle2lX(g)| 4 8 05 <107,
(1) 97" 13

x€lrr(G), x(1)>1

Our choice of g1 and go ensures that
1
> Ailg)Ailg2)Xilg) = 2.
i=0

Hence g € ¢{ - g§ by Lemma 2.3(i), so we are done since |g;| and |ga| are both coprime to
N. ]

Proposition 4.13. Suppose G = GU,,(3) with n > 7 and t € R(SU,(3)). Then P,(N)
holds for G and for every N = 3%t.

Proof. Consider an unbreakable g € G, so |Cg(g)| < 372 . 2% by Lemma 3.8. First, we
use Lemma 4.7 to get a regular semisimple g; of order sm, where s € R(G) \ {t}, m is a
2-power, and det(g;) = det(g). Then we choose
0(q,2n — 4), n =1 mod 2,
s =< U(g,n—2), n = 2 mod 4,
(q,(n—2)/2), n=0mod 4,

(with ¢ = 3). Note that s'|(¢""2 — (=1)""2) but s ¢ H?:L#n_Q(qi — (=1)"). Next, we

fix a € Fy of order "2 — (=1)" and choose a regular semisimple h € GU,_2(3) that is
conjugate over 3 to

diag (a, a4, an, ... ,a(*q)n_g) )
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Note that det(h) € Fy has order 4. Hence there is some 3 € Fy of order ¢> — 1 so that
det(h) = 8% We fix b’ = diag(8,379) € GUs(3), and set go := diag(h, ). In particular,
g2 € SU,(3) is s’-singular, g; is an N’-element and |Cg(g;)| < 4(3" ' +1) for i =1,2.

Recall the Weil characters (; j, 0 < 4,j < g, defined in (4.4). The elements g; » satisfy
the assumption of Lemma 4.6, hence the estimate (4.12) holds for y = g;. Also,

e(9.¢') <n/2 (4.15)

whenever n > 7. (Indeed, otherwise U = Ker(g — ¢ - 1y/) has dimension > (n+1)/2 in the
natural G-module V' := F",. It follows that U cannot be totally singular, so U contains
at least one anisotropic vector u. In this case, g fixes the decomposition

V= (), @ ((u)r,)"

In other words, g € GU;(q) x GU,—1(¢q), so g is breakable, a contradiction.) Asn > 7, we
deduce that e(g, &) < n — 4, whence

(q+ )¢ 4

1Gii(9)] < Tl q (4.16)
so
1€i.j(91)Gi,j(92)Ci 5 (9)] < 16 - 3n—4
: 0.8. 4.17
os%:gq Gii(1) NGEES (4.17)
Choosing

L[ BT =@ - 1)E - 27)/896, 0>,
- 36, n=1,

by Lemma 2.3(ii)

Z x(g1)x(92)x(9) < 4371 1) 4. 3(n+2)/2

0 < 5 < 0.76. (4.18)

x€lr(G), x(1)=D

Now we estimate character ratios for x € Irr(G) with x(1) < D and x(g1)x(g2) # 0. The
latter condition implies that y has positive s-defect and positive s’-defect. Applying [34,
Proposition 6.6] for n > 8, x can be only one of the following:

e 4 linear characters A\;, 0 < i < 3;
e (at most 12 of the) 16 Weil characters ¢; ; with 0 <14 < 3, and
e 4 characters p; = @\;, 0 < i < 3, if s|/(¢" ! + (=1)"). Here, ¢ is the unipotent
character of G labeled by the partition (n — 2,2), of degree
p(1) = (3" = (=1)")(3"H +9(-1)")/32.

This conclusion also holds for n = 7. (Indeed, for n = 7, using [41] we can check that if
o € Irr(SU7(q)) has positive s-defect and positive s’-defect and o(1) < D, then o is the
restriction to SU7(g) of one of the above characters of GU7(q).)

Let ¢ denote the unipotent character of G labeled by the partition (n—2,1,1), of degree
Y1) = (3" +3(=1)")(3" —9(=1)")/32.

It is well known, see e.g. [56, Table 2], that p := 1 + ¢ + ¢ is the permutation character
of the action of GG on the set of isotropic 1-dimensional subspaces of the natural module
V. Recall we need to consider ¢ only when s|(¢"~! + (—=1)"), so ¢ has s-defect 0 and
s'-defect 0. In particular, ¢¥(g1) = ¥(g2) = 0. Therefore,

p(g1) =plg1) —1=0-1=~1, p(g2) =p(g2) —1=2-1=1.
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Since |p(g)| < 4-3"/2H,

pilg)pilg2)pilg)| _ 443"
=0 wi(1) = (3 -1)(3T—9)/32

Together with (4.15) and (4.18), this implies that

< 0.05.

3 X(gl)X(W < 0.8+ 0.76 + 0.05 = 1.61.
x€lrr(G), x(1)>1 X( )

Our choice of g1 and go ensures that
q
> Xilg)Ailg2)Xilg) = 4.
i=0

Hence g € ¢{ - g§ by Lemma 2.3(i), so we are done since |g1| and |ga| are both coprime to
N. [

Proposition 4.14. Suppose G = GU,,(2) with n > 9 and t € R(SU,(2)). Then P,(N)
holds for G and for every N = 2°t°.

Proof. Consider an unbreakable ¢ € G, so |Cg(g)| < 2"** - 32 when n > 10 and
|ICc(g)| < 2% when n = 9 by Lemma 3.7.

(i) First, we use Lemma 4.7 to get a regular semisimple element g; of order sm, where
s € R(G) ~ {t}, m is a 3-power, and det(g;) = det(g). If n > 10, we can find a regular
semisimple g5 € SU,(2) of order s. In particular, g; is an N’-element and |Cg(g;)| <
3(27 1 4+1) for i = 1,2. Fix £ € F; of order ¢ + 1. Again, note that the elements gi 2

satisfy the assumption of Lemma 4.6, hence (4.12) holds for y = g;.

If n =9, we choose s' := 43 and fix a regular semisimple h € SU7(2) of order 43. Also, we
fix b’ € SU5(2) of order 3 and set go := diag(h, h’). In particular, |Cg(g2)| = 9(27+1), and
e(ga, &) equals 0 for [ = 0 and 1 for [ = 1,2. Direct computation shows that |(; j(g2)| = 1
for all 4, j. Thus, for n > 9 and y € {g1, 92},

1Gij(y)] < 1. (4.19)

(ii) Choosing

p_l @+ (2"t —1)(2"2 - 27)/81, n > 10,
- 222.7.(2°+1), n=09,

by Lemma 2.3(ii), for n > 10,

3 X(gl)ii%))((g) L3+ 11))' 3202 e (4.20)

Now we estimate character ratios for x € Irr(G) with x(1) < D and x(g1)x(g2) # 0. The
latter condition implies that y has positive s-defect and positive s’-defect. Applying [34,
Proposition 6.6] for n > 10, x can be only one of the following:

x€lrr(G), x(1)>D

e 3 linear characters \;, 0 < i < 2;

e at most 6 of the 9 Weil characters ¢; ; with 0 < ¢ <2, and

e (some of the) 27 characters Do \;, 0 < i < 2, o € Irr(S) with S := GU2(2) (see [34,
Proposition 6.3] for the definition of Dy).

This conclusion also holds for n = 9. (Indeed, for n = 9, using [41] we can check that

if o € Irr(SUg(2)) has positive s-defect and positive s'-defect and o(1) < D, then o is the
restriction to SUg(2) of one of the above characters of GUg(2).)
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Next, the inequality (4.15) implies that e(g, &) <n—5asn > 9, so

(@+1)g"° _ 0

st < 21

It now follows from (4.19) that

Gi.g (91)6ii(92)Cig(9) _ 6-27°
< — < 0.57. (4.21)
Og;gq Gi,j(1) (2n —2)/3

(iii) Now we assume that n > 10. We already observed that Z?:o e(g:, &) < 1. Thus g;
satisfies the conclusion (i) of [34, Lemma 6.7]. Hence it also satisfies the conclusion (ii) of
[34, Proposition 6.9]. Thus

2, a(l) = 1,04 7é 15,
[Dalga)l <4 3, a=ls,

4, a(l) =2.
Since [p(g)| < 3-2"/2*2,
XXX | _ g (5245 30
Z (1) <3%2 ((2n — 12— 4)/9 + 2 —2)(2n = 4)/9> < 1.06.

x=DgXi

Together with (4.21) and (4.20), this implies that

3 x(91)x(92)x(9)

<0.574+0.37+1.06 = 2.
x(1)

x€lrr(G@), x(1)>1

Our choice of g1 and go ensures that

Ai(g)Ai(g2)Ni(g) = 3.
—0

=

Hence g € ¢§ - g§ by Lemma 2.3(i), so we are done since |g;| and |ga| are both coprime to
N.

(iv) Finally, we handle the case n = 9. Now x = DJ\; can have positive s-defect and
positive s’-defect only when t = 19, s = 17, o = 1g. In this case, ¢ := Dy, is the unipotent
character of G labeled by the partition (n — 2,2), of degree

(1) = (224 1)(2® — 4)/9 = 14364.
Let 1) denote the unipotent character of G labeled by the partition (n — 2,1, 1), of degree
P(1) = (27 - 2)(2% +4)/9 = 29240.

Again, p := 1g 4+ ¢ + v is the permutation character of the action of G on the set of
isotropic 1-dimensional subspaces of the natural module V', see e.g. [56, Table 2]. Recall
we need to consider ¢ only when s = 17 (and s’ = 43), so ¥ has s-defect 0 and s'-defect
0. In particular, ¥(g1) = ¥(g2) = 0. Therefore,

o(gi) =plgi) —1=0-1=-1.
Recall that e(g,£') < 4 for all unbreakable g € GUg(q) and 0 < I < 2. Arguing as in the
proof of [34, Proposition 6.9], we obtain

lp(g)| = DS, (g)] < 2% 41 =257
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It follows that

< 0.06.

x(91)x(g2)x(g)| _ 3-257
Z 1 x(1) = 14364

By Lemma 2.3(ii),

(765 - 1161)1/2 . 224

1.05.
222.7.513 <105

<

x€lrr(G), x(1)=D

In summary,

x(91)x(g2)x(g)
2 x(1)

so we are done again. m

< 0.57 4+ 0.06 + 1.05 = 1.68,
x€lrr(G), x(1)>1

Lemma 4.15. Letq=p=2,3 and e =+

(i) Suppose that 3 <k <4 and k # 3 if (g,€) = (2,—). Then P(N) holds for GLj,(q)
and for every N = pt® with t # p a prime and t{ (¢ — €). Also, Theorem 1 holds
for PSLj.(q).

(ii) Let GLE( ) be one of the following groups:

(a) GL,(2) or GL,(3), with 5 <n <7;

(b) GU,(2) with5 <n <8;

(¢) GU,(3) withn =5,6.

Then P,(N) holds for GL(q) and for every N = p® with t € R(SL$(q)).

Proof. Direct calculations similar to those of Lemma 2.4. [

Corollary 4.16. Theorem 1 holds for G = PSLt (q) with ¢ = p/ = 2,3, e = £, n > 3,
and (TL, q, 6) 7é (37 27 _)

Proof. The case n = 3,4 follows from Lemma 4.15(i). Suppose now that n > 5. Then
we choose ng = 4 and apply Proposition 4.3. Note that condition (i) of that proposition
is verified by Lemma 4.15(i), and (ii) holds by Propositions 4.11, 4.12, 4.13, 4.14, and
Lemma 4.15(ii). Hence we are done by Proposition 4.3. ]

5. THEOREM 1 FOR SYMPLECTIC AND ORTHOGONAL GROUPS

5.1. General inductive argument. Recall R(G) from §2, and the notion of unbreaka-
bility for symplectic and orthogonal groups from Definition 3.1.

Definition 5.1. Given a prime power ¢ = p/, a finite symplectic or orthogonal group
G = CI(V) = Cl,(q), and an integer N = p®t® with ¢t > 2 a prime. We say that

(i) G satisfies the condition P(N) if every g € G can be written as g = #™Vy™V for some
xz,y € G; and

(ii) G satisfies the condition P,(N) if every unbreakable g € G can be written as
g = zNy" for some z,y € G.

Our proof of Theorem 1 for symplectic and orthogonal groups relies on the following
inductive argument:

Proposition 5.2. Given a prime power ¢ = p/, an integer n > 4, let V = Fy be a finite
symplectic or quadratic space, and let G := Cl(V') = Cl,,(q) be perfect, with Cl = Sp or Q.
Suppose that there is an integer ng > 4 with the following properties:
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(i) If 1 < k < ng and Clg(q) is perfect, then Py(N) holds for Cli(q) and for every
N = p® with t # 2,p any prime; and
(ii) For each k with ng < k < n, Py(N) holds for Cly(q) and for every N = p*t® with
t € R(Cly(g)).
N, N

If N = 5% for some primes s,t, then the word map (u,v) — uo™ is surjective on

G/Z(G).

Proof. By Corollary 2.2, we need to consider only the case N = p®t® with ¢ € R(Cl,(q));
in particular, ¢t > 2. It suffices to show P(V) holds for G. According to (ii), P, (N) holds
for G. Consider a breakable g € G and write it as diag(gi, ..., gm) lying in the natural
subgroup

Cl(Uy) x ... x CY(U;) = Clg, (q) % ... x Clg,, (q)

that corresponds to an orthogonal decomposition V =U; & ... ® U,,. Here, 1 < k; < n,
and for each ¢ either Cl,(q) is perfect or g; = £1p,. Relabeling the elements g; suitably,
we may assume that there is some m’ < m such that g; is unbreakable if 1 < i < m/ and
gi = £1y, if i > m/. Hence, according to (i), P, () holds for Cl,(q) if k; < ng and i < m/.
Suppose k; > ng. Then P, () holds for Cl,(q) if t € R(Clk,(¢)) by (ii). If ¢t ¢ R(Cl,(q)),
then by Theorem 2.1 every non-central element of G is a product of two N’-elements, so
it is a product of two Nth powers. Furthermore, all central elements of Cly,(¢) are Nth
powers. Hence P, (N) holds for Cli,(¢) in this case as well. Thus for i < m’ we can write
gi = 2Ny with z;,y; € CL(U;). Setting

U=U1&.. 08Uy, W=Upi1®...0Un, h:=diag(gm+1,---,9m) € Iso(W),
(where Iso(W) = Sp(W) if Cl = Sp and Iso(W) = GO(W) if Cl = Q), we see that either
|h| =1, or p and N are odd and |h| = 2. In particular, h = k" in either case. Letting

x = diag(z1,...,Tn) € CI(U), y:=diag(yi,...,ym) € CL(U)

we deduce that g = 2VyVhaV = 2N(yh)V. Also, 2,y € G, g = diag(¢’,h) € G with
g = diag(g1,...,9m) € Cl(U) < G. It follows that h € G, so P(N) holds for G, as
desired. ]

5.2. Induction base.

Lemma 5.3. Let ¢ = p/ and let N = p®t® with t # 2,p any prime. Then P(N) holds for
G = SLa(q) with ¢ > 4, and for Sp,(q) with ¢ > 3.

Proof. (i) Consider the case G = SLa(q). If t{ (¢ — 1), then we check that X¢ .- X¢ =G
for X = 2Z(G) and * € G of order ¢ — 1. On the other hand, if ¢ { (¢ + 1), then
Y& YE DG~ {1} for V; = y'Z(G), i = 1,2, and y € G of order ¢ + 1. Since N is odd,
we are done in both cases.

(ii) Consider the case G = Sp,(q) with 2|g. The character table of G is given in [12].
Suppose that t|(¢g% + 1). We fix a regular semisimple x1 € G of order ¢ — 1 belonging to
the class Bj(1,2) and a regular semisimple x5 € G of order ¢ + 1 belonging to the class
By4(1,2), in the notation of [12, Table IV-1]. There are 3 non-principal characters of G
that are nonzero at both 1 and z2: namely, 61 2 of degree ¢(¢*> + 1)/2, and St of degree
q*. For every 1 # g € G,

Ix(@)x(@2)x(9)l _ ., ale+1)/2 g
2 x(1) =2 e g

<1,
1g#xehr(G)
so we are done by Lemma 2.3(i).

Suppose now that t { (¢> + 1). Then at least one of z1 and x5 has order coprime to N;
denote it by x. We also fix a regular semisimple y € G of order ¢> + 1 belonging to the
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class Bs(1). There are at most 2 non-principal characters of G that are nonzero at both z
and y: namely, St and possibly a character @ of degree > q(q—1)?/2. For every 1 # g € G,

Ix(@)x(y)x(9)l _ al¢—1)/2 ¢
2 x(1) Sig-12pt g

<1,
1g#x€elr(G)

so we are done by Lemma 2.3(i).

(iii) Assume that G = Spy(q) with ¢ > 7 odd. The character table of G is given in
[59]. If t 1 (¢* + 1), then the statement follows from [20, Theorem 7.3]. So we assume that
t|(¢* + 1). Fix a regular semisimple 21 € G of order ¢*> — 1 belonging to the class By(1)
and a regular semisimple z2 € G of order (¢° — 1)/2 belonging to the class Bs(1,1), in the
notation of [59]. There are 3 non-principal characters of G that are nonzero at both z
and z2: namely, 0 o of degree q(¢® + 1)/2, and St of degree ¢*. For every 1 # g € G,

1)/2
> \x(xl)ng)a)x(g)\ <9. q((q;_rF 1))//2 a4,
e #xel(G) X nq q
so we are done by Lemma 2.3(i). []

Lemma 5.4. Let G be one of the following groups:

(i) Spe,(2) with 3 <n <6, Spy,(3) with 2 <n <5, and Spy,,(4) with n = 2,3;
(i) Qop+1(3) with 3 <n < 5;
(i) QF (2) with 4 <n <6, QF (3) with 4 <n <6, and QT (4).

Let N = pt® where p is the defining characteristic of G and t € R(G). Then P(N) holds.

Proof. Direct calculations similar to those of Lemma 2.4. [

5.3. Induction step: Symplectic groups.

Proposition 5.5. Suppose G = Sps,,(q) withn >3, ¢ = pf > 7 odd, andt € R(G). Then
P.(N) holds for G and for every N = pt°.

Proof. Consider an unbreakable g € GG; in particular,
2q™ 2|n
C < z ’
| G(9)|_{ 2" 1((]2—1), 21n

by Lemma 3.2. Let V =TF g” denote the natural module for G. Inside Spy,,_5(¢) we can
find a regular semisimple element x_ of order s_ = ¢(q,2n — 2), and, if 2|n, a regular
semisimple element z of order sy = ¢(q,n — 1). For v = £, we fix y, € Spy(q) of order

q—v.
(a) Here we consider the case 2|n, and set
g1 = diag(74, y4+), go = diag(z—,y-)
so each g; is an N’-element and |Cg(g;)| < (¢ ' + 1)(qg + 1). We also choose

(" —D(" —q)
2(¢+1)

It follows that

(¢" '+ 1)(q+1)(2¢™)"/?
x(1) D

IN

< 0.54. (5.1)
x€lrr(@), x(1)=D
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By [62, Theorem 5.2] the only non-principal irreducible characters of G of degree less than
D are the four irreducible Weil characters: 712 of degree (¢" — 1)/2 and &; 2 of degree
(¢" +1)/2. The choice of g; implies that Ker(g; = 1y/) = 0. Hence, by [23, Lemma 2.4],

w(gi)l, lw(zg:)| <1,
where w = 11 + &1 is a reducible Weil character of G and z € G is the central involution.
Note that
w(ga)| = |m(gi) +&(gi)ls |w(zgi)| = [m(g:) — &i(gs)]-
It follows that

[(m(g:) +&1(9:)) + (m(gi) = &1(gi)| _ |w(gi)| + |w(zg:)]

m1(g:)| = 5 < 5 <1
Similarly,
nj(gi)| < 1, [&(g:)] <1, Vi, j=1,2. (5.2)
It follows that
> x(g)x(g2)X(9)] 42407 o,
x(1) (¢"—1)/2

x€lrr(GQ), 1<x(1)<D
Together with (5.1), this implies that

Z Ix(g91)x(92)x(9)|

< 0.5440.24 = 0.78,
x(1)

x€lrr(G@), x(1)>1
whence g € g - g§. Since both g; and g, are N’-elements, we are done.

(b) Next we consider the case n > 3 odd. Here we choose

@ - —q)/2(* 1), n=>5,
D_{ ¢*(¢* — (g —1)/2, n=3,

Ix(g0)x(92)X(9)] _ (¢ + 1)(q+ D (g — 1)1/
2 x(1) : D

Using [50, Theorem 1.1] for n > 7 and [41] for n = 5, we show that every non-principal
irreducible character of G of degree less than D is one of the following:

< 0.15. (5.3)
x€lrr(G), x(1)>D

(bl) four irreducible Weil characters 7 2, {12 as above;

(b2) four unipotent characters oy, 3, v = £, of degree

(" —v)(¢" +vq) (" +v)(" +rg).
(1) = -1 Bu(1) = T ES

(b3) two characters of degree (¢*" —1)/2(q+1), two of degree (¢ —1)/2(q—1), (¢—1)/2
of degree (¢*™ —1)/(¢+ 1), and (¢ — 3)/2 of degree (¢*" —1)/2(q — 1).

Note that R(G) consists of two primes and contains ¢; denote R(G) \ {t} =: {s}. Since
t € R(G), there is an € = + such that ¢|(¢" — €). Now, we choose a regular semisimple
element g; of order s and take g := diag(z_,y.) of order (¢ — €)s_. In particular,
|ICa(gi)| < ("' +1)(g+1). If n = 3, then we check using [41] that the characters
x € Irr(G) with 1 < x(1) < D and such that x has positive s-defect and positive s_-defect
are described in (bl) and (b2). Thus, in all cases, in considering characters x of G of
degree less than D and computing x(g1)x(g2) we can restrict to the ones in (b1)—(b3).

Note that all characters in (b3) have s-defect 0, so vanish at g;. Next, 8. and a_, have
s-defect 0, whence

Be(g1) = a—c(g1) = 0.
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Likewise, 84+ and a4 have s_-defect 0, whence
B1(g92) = at(g2) = 0.
Consider the case e = —. We have shown that x(g1)x(g2) = 0 for x = a4, 5+, 8-, and

at(g1) = ay(g2) =0.

On the other hand, p := 1 + a4 + a— is just the permutation character of the action of
G on the set of 1-spaces of V, cf. [56, Table 2]. The choice of g; ensures that p(g;) = 0,
whence

a—(g1) = a—(g2) = —1.
Assume now that e = +. We have shown that x(g1)x(g2) =0 for x = a4, B+, a—, and

B4 (g1) = B+(g2) = 0.
On the other hand, as shown in [61], ¢ := 4+ + S_ is just the restriction to G of the
character (p o of GUsgy(q) as defined in (4.4) when we embed
G = Spgn(q) = SU2n(q) < GU2,(q).

The choice of g; ensures that ((g;) = 0, whence
B-(gq1) = B-(g2) = —1.

The same arguments as in (a) show that (5.2) holds in this case as well. Observe that, for
p==+1, U, := Ker(g — - 1y) has dimension at most n, as otherwise it cannot be totally
isotropic, so g acts as the multiplication by p on a 2-dimensional non-degenerate subspace
of U, contrary to the assumption that g is unbreakable. Using [23, Lemma 2.4], we see
that

w(g)l, lw(zg)l < ¢"?,
so, arguing as in the above proof of (5.2), we obtain
mi(9)l, 1€i(9)] < g™/
Certainly, |v(g)| < [Ca(g)|"/? < (¢**(¢* — 1))¥/? for y = a_, B_. In summary,
> X(gx(@)x(9)l . 4-q* (¢ - 1)
€It (@), 1<x(1)<D x(1) (¢"=1)/2 " (¢" =1)(¢" —a)/2(¢ = 1)
Together with (5.3), this implies that

Ix(91)x(92)x(9)|
2 x(1)

< 0.53.

< 0.154 0.53 = 0.68,
x€Irr(G@), x(1)>1

whence g € glG . gQG . Since both g; and go are N’-elements, we are done. ]

To handle the symplectic groups over Fs, we need an explicit description of low-degree
complex characters of Sp,,, (3).

Lemma 5.6. Let G = Sp,,(3) with n > 6 and let D := (3>" —1)(3"~! —3)/16. Then
{x elr(G) |1 < x(1) < D}

consists of the following 13 characters:

(i) four irreducible Weil characters n, 7 of degree (3" —1)/2, £, § of degree (3" +1)/2;
(ii) four characters S*(€), A%(n), €€ — 1g, and n7 — 1g, of respective degree
B"+1EB"+3) B"-1)@B"-3) @"-1)@3"+3) 3"+1)(3"-3)
8 ’ 8 ’ 4 ’ 4 ’
(iii) two characters S%(n), A%(€) of degree (3*™ — 1)/8, and three characters &7, &n,

&n = €7 of degree (32" — 1) /4.
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2 _ x2

Proof. Applying [50, Theorem 1.1], we deduce that the degrees, and the multiplicity
for each degree of non-principal irreducible character of G of degree less than D are as
listed above. The proof of [45, Proposition 5.4] shows that the six characters S?(¢), A%(n),
€€ —1g, ni — 1g, S%(n), and A%(€) have the degrees listed in (ii) and (iii). It also shows
that ¢ and €n are two distinct irreducible constituents (of a certain real character 7) of
degree (32" — 1)/4, so they are non-real. On the other hand, £n is the unique irreducible
constituent of degree (32" —1)/4 of a certain real character o, whence it must be real. We
have therefore identified the three characters of degree (32" — 1)/4. Finally,

[S%(1) + A*(n), S2(&) + A*(€)] = [, €] = [én. &) = 1,

so S2(n) = A%(€), since the involved characters are all irreducible, and only S%(n) and
A%(€) have equal degree. [

Proposition 5.7. Suppose G = Sp,,,(3) with n > 6, and t € R(G). Then P,(N) holds
for G and for every N = 3%¢°.

Proof. (i) Consider an unbreakable g € G; in particular,
|ICalg)| < 16- 3212 (5.4)

by Lemma 3.2. Let V = F3" denote the natural module for G. Inside Sp,,,_o(3) we can
find a regular semisimple element x_ of order s_ = £(3,2n — 2) and a regular semisimple
element . of order sy = £(3,n — 1). We fix y € Sp,(3) of order 4. If n is even, we set

g1 = diag(z4,y), g2 := diag(z_,y),
whereas for odd n, we choose a regular semisimple g; € G of order s € R(G) \ {t} and
set go := diag(w_,y). In particular, g; is an N’-element and |Cg(g;)| < 4- (3"~ + 1) for
1 =1,2. We also choose
(3271 _ 1)(37171 _ 3)
16 '

Then the characters x € Irr(G) with 1 < x(1) < D are described in Lemma 5.6.

The choice of g; implies that Ker(g; £ 1) = 0. Hence, as in the proof of Proposition
5.5,

D=

Ix(g:)| <1, Vx € {&,n}. (5:5)
On the other hand, dimp, Ker(g + 1) < 4 by Lemma 3.4. Arguing as in part (a) of the
proof of Proposition 5.5, we obtain

Ix(9)] < 3% Vx € {&n}. (5.6)
It follows that (o x(an(a) ,
x(91)x(92)x(g 4-3

> 0 < Goys <009 (5.7)

xe{&.Emm}
Let X denote the set of nine characters listed in Lemma 5.6(ii), (iii). Observe that z, has
prime order s, for v = +. Hence

Ker(g? — 1y) = 0, dimg, Ker(g2 + 1y) < 2.
This in turn implies that
w(gd) <1, |w(zgf)| <3

for the reducible Weil character w = £ + 1 and the central involution z € GG. Arguing as
in part (a) of the proof of Proposition 5.5, we obtain

IX(g7)] < (143)/2=2, Vx € {&,n}.
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Together with (5.5), this implies that
IX(g:)] <3/2, Vx € X. (5.8)

(ii) Here we assume that n > 7. If 2|n, then the four characters listed in Lemma 5.6
have either si-defect 0, or s_-defect 0. If 2 { n, then the five characters listed in Lemma
5.6 have s-defect 0. Thus, at most five characters from X can be nonzero at both g; and
ga. Also, |x(g)| < 4-3"F! for all x € Irr(G) by (5.4). Using (5.8), we see that

Ix(91)x(g2)x(g)| _ 5-(3/2)% 4.3+
On the other hand,
Z ’X(gl)iccgj)x(g)] < 4(3n~1 4 15 4.3+ ot

x€lrr(G), x(1)>D

Together with (5.7), these estimates imply that

v X@eIX@N 099 4 0,495 1 0.354 = 0,948,

x€lrr(G@), x(1)>1 X(l)

whence g € gf . gQG . Since both g1 and go are N’-elements, we are done.

(iii) We may now assume that n = 6. In this case R(G) = {7,13,73} and |¢1| = 44,
lg2| = 244. Using [41], we check that G has exactly 30 irreducible characters x that
have both positive 11-defect and positive 41-defect: namely, 14, four Weil characters, five
characters from X and listed in Lemma 5.6(iii), four characters ¢ 234 with two of each
of the degrees

D=15-(32—-1), D;:=15-(3*+1)- (3% +3*+ 1),
and 16 more, of degree larger than Dy := 3'°. In particular,

Ix(g)x(g2)X(g)| _ 4- (3" 141)-4. 3"+
2 x(1) = Dy

< 0.0074. (5.9)
x€Irr(G), x(1)>D2

Next we strengthen the bound on |x(g)| for x € X. Consider A = £1 and write
g = uv = vu, with u unipotent and v semisimple. Let V=V QF, Fs5. Note that if
w € Uy := Ker(g® — X - 1), then w belongs to W), := Ker(v — p - 1) for some p with
u? = \. Now g2 acts on W, as \u'?, where u' := uw, 1s unipotent. Next, observe that

dimg, Ker(u/? — lw,) = dimg, Ker(u' — 1y,).
It then follows from Lemma 3.4 that
dimg, Uy = dimg, Ker(g — po - 1) + dimg, Ker(g + po - 1y) <8,
where (i is a fixed square root po of A. In turn, this implies by [23, Lemma 2.4] that
w(g®)], w(zg?)| < 3%
Arguing as in part (a) of the proof of Proposition 5.5, we obtain
Ix(g%)] < 3%, Wx € {&,n}.
Using this bound and (5.6), we see that
Ix(9)] < 3%, vx € X.
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Since only five characters from X can be nonzero at both g; and g, this last estimate
together with (5.8) yields

_ . 2 a4
z;( \x(gl)ii%)x(g)\ - 5(353/_2)1)/5; < 0.0138. (5.10)

Finally, we estimate character ratios for the four characters v 2 3 4 of degree D and D;.
Since |g2| = 4 - 61, x(g) = 0 if and only if x € Irr(G) has degree divisible by 61. Using
[41], we check that

Trrgy(G) = {x € Ire(G) | 611 x(1)}
consists of exactly 343 characters. (Another way to check it is to observe that since
P € Syl (G) is cyclic, the McKay conjecture holds for G, i.e.

Irre1/(G)| = [Irrer (NG (P))]-

Direct computation shows that

Ng(P) = (Ca4q @ C1p) X Spy(3)
has exactly 343 irreducible characters of degree coprime to 61.) Certainly,

Irrg1/ (G) N {¢1,234}
is a union of some Gal(Q/Q)-orbits. Hence, by Lemma 2.11,
> x(g2)I* = > IX(g2)]> > [Trrer (G){th1,2,3,4}| = 343—4 = 339.

X€lrr(G)~{¢1,2,3,4} x€lrrgy (G)N{¢1,2,3,4}
Since Y i [x(92)]2 = [Ca(g2)| = 4- (3° + 1) = 976,

4
3" [i(g2)|? < 976 — 339 = 637
j=1

Recall that |¢;(g)] < 4-37 by (5.4) and [¥;(g1)]* < |Cq(g1)] = 4- (3% — 1) = 968. By the
Cauchy-Schwarz inequality,

2|, (92)0; 4-37.968/2 2 437 (968 - 637)1/2
j=1

j=1
Together with (5.7), (5.9), (5.10), this implies that
Z X (91)x(92)x(9)|

x(1)

whence g € gf . gQG . Since both g; and gy are N’-elements, we are again done. ]

< 0.099 + 0.0138 + 0.8618 + 0.0074 = 0.982,

x€lrr(G), x(1)>1

Proposition 5.8. Suppose G = Sp,,,(q) with n > 3, 2|q, and t € R(G). Assume that
n>4ifq=4, andn > 7 if ¢ = 2. Then Py (N) holds for G and for every N = 2°t°.

Proof. Consider an unbreakable g € GG; in particular,
q2n(q2_1)7 2|’%QZ4
ICa(9)l < Bi=1{ 2¢*"(q+1), 2{n,q>4
9., q=2

by Lemma 3.2. Let V = an denote the natural module for G. Inside Sp,y,_5(¢) we can
find a regular semisimple element z_ of order s_ = ¢(q,2n — 2), and, if 2|n, a regular
semisimple element x4 of order s; = ¢(q,n —1). We fix y € Spy(q) of order ¢+ 1. Let W
denote the set of ¢ + 3 Weil characters

Qny By iy Py Chy 1<i<q/2, 71, 1<j<q/2-1
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(as described in [23, Table 1]). Assuming n > 4 and choosing
(@ = D" = 1)(¢"" = ¢*)
2(¢* - 1) ’
we see by [23, Corollary 6.2] that W is precisely the set {x € Irr(G) | 1 < x(1) < D}.

D =

(i) Here we consider the case 2|n, and set

g1 := diag(z,y), g2 := diag(z—,y)
so that each g; is an N’-element and |Cg(g;)| < (¢"~* +1)(g¢ + 1). In particular,

3 x(gx(g2)x(@)| _ (@ +1)(g+1) B S f08293 m=1
o) x(1) - D 0.1956, n > 6. '
D) >D

If x € {an,Bn,pL, p2} then x has s,-defect 0 for some v = +, so x(g1)x(g2) = 0. For
v € EZX , the choice of g; implies that diqu Ker(g; — - 1y) equals 0 if y971 = 1, and is at
most 1 if y9+1 = 1; in fact, it equals 1 for exactly two primitive (¢ + 1)th roots of unity in
E; . Hence, by formulae (1) and (4) of [23],

m(90)| = 0, [Gh(9:)| <D,
where b:=2if ¢ > 4 and b :=1if ¢ = 2. For n > 6, it follows that
3 X(gD)x(g2)X(9)l _ a b - (¢*"(¢° —1))'/?
x(1) —2 (¢ -1)/(g+1)

Suppose that n = 4 and g > 4. Observe that diqu Ker(gi —v-1y) < 4 for v € F; with
79Tt = 1. (Indeed, this bound is obvious if v # 1. If v = 1, it follows from the condition
that g is unbreakable.) Hence, formula (4) of [23] implies that |¢}(g)| < ¢*, so
3 [x(91)x(g2)x(9)] < 4. b*-q*
X€Ir(G), 1<x(1)<D x(1) 2 (@ =1/(g+1)

Together with (5.11), this implies that

Z Ix(g1)x(92)x(9)| 0.8293 4 0.1564 = 0.9857, n =4
x(1) 0.1956 4 0.7956 = 0.9912, n > 6

< 0.7956.

x€lrr(G@), 1<x(1)<D

< 0.1564.

x€lrr(G), x(1)>1
whence g € g? . 920. Since both g; and go are N’-elements, we are done.

(ii) From now on we assume 2 { n. By Proposition 2.10 we may assume that n > 5.
We choose a regular semisimple element g; of order s € R(G) \ {t} and take go :=

diag(z_,y). In particular, again |Cg(g;)| < (¢"* 4+ 1)(g + 1). Note that all characters (3,
and 77 have s-defect 0, so vanish at ¢g;. Next, the choice of g; implies that, for v € F; ,
diqu Ker(g; —v-1y) equals 0 if 79~ = 1, and is at most 1 if 797! = 1; in fact, it equals 1

for exactly two primitive (¢ + 1)th roots of unity in F; . Using formulae (1), (3), (4), and
(6) of [23], we obtain

(o + P2)(91) = =1, (an + Bu)(g1) = 1, (an + Bn)(g2) = —1.

Furthermore, exactly one character among o, 8,, and exactly one character among p,ll,
p2, have s-defect zero. It follows that

Ix(91)] <1, Vx € {an, Bu, pps o3 }-
Likewise, 3, and p2 have s_-defect 0, so

Bu(g2) = pin(g2) = 0, lan(g2)| = lps(92)| = 1.
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We also observe that oy, (g1) = 0 if s|/(¢" — 1) and p(g1) = 0 if s|(¢" + 1). We have shown
that, among the characters in W, exactly one character can be nonzero at both g; and gs.
Denoting this character by 1,

[W(g)]/1(1) < 0.95, [¥(g)| < B2, [(g:)] < 1. (5.12)

Here, the first bound follows from the main result of [16].

(ili) Assume in addition that n > 9 if ¢ = 2. Now

— B1/2
3 |X(91)XE$1]§)X(9)‘ < CESCTErESY < 0.8003.
x€lrr (@), 1<x(1)<D X o v “
On the other hand,
- n—1 4 q 1) . B1/2
3 !x(gl)zgslzj)x(g)l < (" + >(1‘1)+ ) < 0.0478.

x€lrr(G), x(1)>D
It follows that

< 0.8003 4 0.0478 = 0.8481,
x€lrr(G@), x(1)>1

whence g € g{ - gQG . Since both g; and go are N’-elements, we are done.

(iv) Now we consider the case (n,q) = (7,2) and choose
¢®(@" —1)(¢" —q)
2(¢g+1)
Using [41], we check that there is only one character x € Irr(G) with 1 < x(1) < D; that

has both positive s-defect and s_-defect, namely the character ¢ described in (ii). Now
using (5.12)

Dy =

3 Ix(91)x(92)x(9)| < 1v(9)]

< 0.95.
x€Irr(G), 1<x(1)<D1 X(l) 1/)(1)
On the other hand,
X 6  p1/2
3 XXX _ (°+D(g+ 1) B2
x(1) D,

x€lrr(G), x(1)>D1
It follows that

< 0.95+40.01 =0.96,
x€lrr(G), x(1)>1

and we are done again. ]

5.4. Induction step: Orthogonal groups.
Proposition 5.9. Suppose G = Qo,,1(q) withn >3, ¢ = p/ odd, and t € R(G). Assume
that n > 6 if ¢ = 3. Then Py(N) holds for G and for every N = p™?.

Proof. By Corollary 2.9 and Proposition 2.10, we may assume that ¢ = 3 and n > 6.
Let V = E?H_l denote the natural module for G, and let
Fo:={yeF, |y* =1}.

Consider an unbreakable g € G; in particular, |Cg(g)| < B := 2* - ¢***3 by Lemma 3.3.
Let X denote the set of ¢ + 4 characters described in [34, Proposition 5.7]: each is of the
form D¢, for a € Irr(S) and S := Spy(gq). Choosing

D= q4n78’
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we see by [34, Corollary 5.8] that X is precisely the set {x € Irr(G) | 1 < x(1) < D}. If
v € Fp, then

dimg, Ker(g —v-1y) <4
by Lemma 3.4. Following the proof of [34, Proposition 5.11], one can show that
Dalg)l < ¢ - a(1). (5.13)

Now we choose g1 = g2 to be a regular semisimple element of order s € R(G) \ {t}, so
that g; is an N'-element and |Cg(g;)| < (¢"~' 4+ 1)(g + 1). In particular,

Ix(91)x(92)X(9)| _ ("' +1)(q¢+1)- BY?
2 1 x(lj : D

< 0.35. (5.14)

x € Irr(G),
x(1) > D

The choice of g; implies that
dimg,_ Ker(g —~- ly) <1
for all v € Fy. Following the proof of [34, Proposition 5.11], one can show that
[Da(9)] < q- (). (5.15)
In the notation of [34, Table I], if o # & 2, then Dg, = D,. In this case, it follows from
(5.13) and (5.15) for x = D¢, that
[x(g1)x(92)X(9)| ¢ - a(1)?
x(1) - x(@) (" =1)/(¢> = 1)
In the case o = &1 2 (of degree (¢ +1)/2), for x = DJ, = D, — 1¢,
x(g0x(92)X(9)| _ (¢'e(1) + D)(ge(1) + 1)

x(1) - x(1)

It follows that

< (1.1)

¢° - a(1)?
(> —1)/(¢*> - 1)

< (1.4)

qﬁ

[x(g1)x(92)X(9)] EDE D) Zeetns) a(1)?

x(1)

< (1.4)

erlrr(G), 1<x(1)<D

¢ qlg®—1)

~ Ve

< 0.26.

Together with (5.14), this implies that

Z Ix(91)x(92)x(9)|

<0.3540.26 = 0.61.
x(1)

x€Irr(GQ), x(1)>1
whence g € glG . gQG . Since both g; and go are N’-elements, we are done. ]

Proposition 5.10. Suppose G = Q5,(q) and ¢ = 2,4, e = £, and t € R(G). Assume
thatn > 5 if =4, andn > 7 if ¢ = 2. Then P, (N) holds for G and for every N = 24>,

Proof. (i) Consider an unbreakable g € G; in particular,

Calol < B={ 0 s 12}

by Lemma 3.3. We also choose

g*" 1o, n > 6,(n,q) # (7,2),
D = q4n787 (na Q) = (77 2)7
PP -1 —1)(¢—1)?/2, n=5,q=4
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Consider the prime s € R(G) ~ {t}. If 5|/(¢" ! + 1) with ¢ = 2 and € = +, then we choose
g1 = diag(x1,y1), where z1 € Q,,,_5(q) is regular semisimple of order s and y; € €5 (q)
has order ¢ + 1. In all other cases, we choose a regular semisimple g; € G of order s.

If s|/(¢" '+ 1) and (n,q,¢) = (7,2,+), then choose go := diag(ws,ys), where x5 €
Q5 _,(g) is regular semisimple of order s = £(¢,2n — 4) = 11, and y» € Q, (¢) of order
¢(q,4) = 5. In all other cases, let go := g;.

Our choices of g; imply that each g; is an N'-element, and |Cg(g;)| < (¢+1)(¢" "1 +1).
It follows that

3 Ix(g0)x(g2)x(9)] _ (¢" "+ D)(g+1)- B1/? 0.10, n>5,q=4
x(1) - D 033, n>7,q=2.

x € Irr(G),
x(1) > D

(5.16)
(ii) Now we estimate character values for the characters in
X :={xehr(G)|1<x(1) < D}.
By [50, Theorem 1.3], when n > 6 and (n, q) # (7,2) the set X’ consists of ¢+ 1 characters:
o ¢ of degree (¢" — €)(¢" ™" +€q)/(¢* — 1),
o ¢ of degree (¢*" —¢%)/(¢* — 1),
e (; of degree (¢" —¢)(¢" ' —€)/(g+1) for 1 <i < ¢/2, and
e o of degree (¢" —€)(¢" ' +¢€)/(qg—1) if ¢ = 4.
If (n,q) = (7,2) and x € & has positive s-defect, then using [41] we show that x must be

one of these ¢ + 1 characters. Likewise, if (n,q) = (5,4) and x € X has positive s-defect
and positive s.-defect, then using [41] we check that x is again one of these characters.

Let V=F 2” denote the natural module for G. Then
po=1c+p+1 (5.17)

is the rank 3 permutation character of the action of G on singular 1-spaces of V', see [56,
Table 1]. It is shown in [21] that

q/2
p=lag+y+o+) G (5.18)

=1
is the permutation character of the action of G on non-singular 1-spaces of V' (we use the
convention that o = 0 for ¢ = 2). We can identify G with its dual group G*, cf. [7]. Then
the non-identity elements of the natural subgroup € (¢) of G break into ¢/2 conjugacy
classes with representatives t;, 1 < i < ¢/2, and

Co(ti) = Qo 5(q) X Q5 (g)-

All these semisimple elements have connected centralizer in the underlying algebraic group.
Hence, these classes yield ¢/2 semisimple characters in Irr(G), which can then be identified
with ¢, 1 <@ < ¢/2. If ¢ = 4 then ¢; and (» are Galois conjugate and Q(¢;) = Q(V/5).
(Indeed, let w denote a primitive 5th root of unity in C, so that Q(w + w™!) = Q(+/5).
Let 7 : w — w? be a generator of Gal(Q(w)/Q). Following the proof of [49, Lemma 9.1],
one can show that Q(¢;) € Q(w), and ~ sends (; to (2. Moreover, since s; is real, Q(¢;) is
fixed by 72 : w — w L. Tt follows that Q((;) € Q(w)?”* = Q(V/5). As (1 and (» are distinct
Galois conjugates, we conclude that Q(¢;) = Q(v/5.) In particular, since the g; are chosen
to be 5'-elements, (;(g;) € Q, so

C1(gi) = C2(94) (5.19)
when g = 4.

(iii) Here we determine character values for the element g; of order s.
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Suppose that s = ¢(q,2n—2). Then 1 has s-defect 0, so 1(g1) = 0. Similarly, o(g1) =0
if e =4 and (;(g1) =0 if e = —. Next,
(07q+1)a €e=+,q=4,
(po(gl)vpl(gl)) = (070)7 €=+,q=2,
(2,q—1), e=—.
It follows by (5.17)—(5.19) that
Gi(g1) =2, ife=+,q=4,
@(gl) ==+l and C’L(gl) -1, if e = +,q=2,
o(g) =q—2, ife=—.

Suppose that either s = ¢(q,2n) and € = —, or s = {(¢,n) with 2 {n and € = +. Then
©, G, and o all have s-defect 0, so they all vanish at g;. Also, po(g1) = 0, so (5.17) implies
that ¥(g1) = —1.

The remaining case is that s = ¢(q,n — 1), ¢ = +, and 2|n. Then ¢ and ¢; have s-defect
0, so they vanish at ¢g1. Also, po(g1) = 2, so (5.17) implies that ¢(¢g1) = 1. Similarly,
p1(g1) = q— 1, so (5.17) implies that o(g1) = g — 2.

(iv) Suppose n > 5 and ¢ = 4. The analysis in (iii) shows that there are at most 3
characters y € X that can be nonzero at g; = g2, in which case |x(g1)x(g2)| < 4. Also,
one character in X' has degree > d := (¢" —1)(¢" ' —¢)/(¢*> — 1) and all others have degree
> 3d. It follows that

Ix(91)x(92)x(9)| 4.5. g1 | 2
xelrr(G)§X(1)<D x(1) = (q" —1)(g" 1 —q) /(¢ — 1) <1 + 3) < 0.497.

Suppose n > 7 and ¢ = 2. The analysis in (iii) shows that there are at most 2 characters
X € X that can be nonzero at g1, in which case |x(g1)| < 1. If n > 8, then

< 0.658.

Ix(91)x(g2)x(9)] 9.31/2. g3
% x() S0 /@1

If (n,q) = (7,2), then the analysis in (iii) shows that the only case where two characters
X € X are nonzero at gj is when € = +, s = £(¢,2n — 2) and x = ¢, (1. In this case, ¢
has s.-defect 0, so it vanishes at go. Furthermore,

x€lrr(G), 1<x(1)<D

po(g2) = p1(g2) =0,
so (5.17) and (5.18) imply that
Y(g2) = —1, Ci(g2) =0,

so no character Y € X can be nonzero at both ¢g; and go. In all other cases, only one
X € X can be nonzero at g1 = g2 and |x(g1)x(g2)] < 1. It follows that

3 x(g1)x(g2)x(9)] _ 3U/2 . gt 0,666
- n n—1 _ 2 _ ' '
eI (@), 1<x(1)<D x(1) (¢" +1)(g 9)/(¢* = 1)
Combining with (5.16), we are done in all cases. ]

Proposition 5.11. Suppose that G = 5, (q), where n > 5, ¢ = 3,5, and e = £. Assume
thatt € R(G), 2tn ifg=>5, andn > 7 if ¢ = 3. Then P,(N) holds for G and for every
N = ¢*tb.

Proof. (i) Consider an unbreakable g € G; in particular,

26 . q2n+4

; q=3
< B=
|Calg)| < B {62_q2n—2, q=5
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by Lemma 3.3. We also choose

g1, (n,q) # (7,3), (5,5),
D= q19’ (n,q) =(7,3),
(@ =@ - Dlg—1)*/2, (n,q) = (5,5).
For (n,q) # (5,5), we fix regular semisimple g; = g2 € G of order s € R(G) ~ {t}.
Suppose now that (n,q) = (5,5). First, we fix a regular semisimple u; € €5(5) of
order ¢ :=T7if e = 4+ and ¢ := 31 if e = —, and a regular semisimple up € Q; (5) of order
13, and set g1 = diag(u1,us). If t 1 (¢° — €), we fix a regular semisimple go € G of order
s € R(G) ~ {t}. Note that the central involution z of SOg (5) does not belong to €25 (5).
Also, a generator vy of SO, (5) does not belong to €5 ¢(5) and has two distinct eigenvalues
v, v7! of order ¢ — e. Choosing a regular semisimple v; € Qg (5) of order s, we can now
set go := diag(zvy,v2) in the case t|(¢® — ¢).
Our choice of g; implies that each g; is an N'-element, and |Cg(g;)| < (¢+1)(g" "t +1).
It follows that

IX(91)x(92)%(9)] _ (q+1)(¢g" ' +1)- B2 0.14, (n,q) # (7,3)
xe%r:(G) 1 x(1§ = D { 0.40, (”ch]) =(7,3).
wer (5.20)

Also, g9 is always s-singular. Furthermore, g; is ¢-singular when (n,q) = (5,5).
(ii) Now we estimate character values for the characters in
X :={xelr(G)|1<x(1) <D}
By [50, Theorem 1.4], when (n,q) # (7,3), (5,5), the set X’ consists of ¢ + 4 characters:
e o= Dy, — g of degree (¢ — (" + g /(¢ — 1),
o 1) = Ds; — 1 of degree (¢*" — ¢*)/(¢* — 1),
e D¢, of degree (¢" —€)(¢" ' +¢€)/2(g—1) for 1 <i <2,
e D,, of degree (¢" —€)(¢" ' —€)/2(qg+ 1) for 1 <i <2,
e Dy, of degree (¢" —€)(¢" ' —€)/(q+1) for 1 <j < (¢—1)/2, and

e D, of degree (¢" —€)(¢" ' +€)/(g—1) for 1 < j < (q—3)/2.
The characters D, of G with a € Irr(S) and S := Spy(gq) are constructed in [34, Proposition
5.7]. If (n,q) = (7,3) and x € X has positive s-defect, then using [41] we show that x
must be one of these ¢+4 characters. If (n,q) = (5,5) and x € & has positive s-defect and
positive ¢-defect, then using [41] we again show that y must be one of these characters.

Let V = Fﬁn denote the natural module for G and let Fy := {\ € qu | A*L =1}, By
Lemma 3.4,
dimg_ Ker(g—X-1y) <c

for all A € Fy, where ¢ := 4 for ¢ = 3 and ¢ = 2 for n = 5. Hence, arguing as in the proof
of [34, Proposition 5.11], we show that

[Da(9)] < ¢°- (1) (5.21)
for every v € Irr(S). On the other hand, by our choice of g;,
diqu Ker(gi — A 1y) < ¢;

for all A € Fy and ¢ = 1,2, where ¢; := 2 if (n,q) # (5,5), e1 := 0 and ey < 1 if
(n,q) = (5,5). Arguing as in the proof of [34, Proposition 5.11], we obtain

[Da(9i)] < q° - a(1) (5.22)

for every a € Irr(S).
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(iii) Recall that DS = D, — kq - 1 where ko, = 1 if @« = 15 or St and k, = 0 otherwise
cf. [34, Table II]. Suppose that ¢ = 3 and n > 8. Then «(1) < 3 for all a € Irr(S). It now
follows from (5.21) and (5.22) that

3 x(g0)x(g2)x(9)] _ 7-(37+1)%- (37 +1)

X(l) - (3n _ 1)(3n71 — 3)/8 < 0.75.

x€lrr(G), 1<x(1)<D
Together with (5.20), this implies that g € glG . gg; , so we are done in this case.

Assume now that either ¢ = 5 or (n,q) = (7,3); in particular, either s|(¢" — €) or
s|(¢""t +1). In the former case, all Y € X but ¢ = Ds; — 1 have s-defect 0, so vanish at
gi. Also, St(1) = ¢, whence by (5.21) and (5.22)

Ix(91)x(g2)x(9)] _ (¢ + 1) (¢ + 1)(¢"T' + 1)
2 x(1) : (@ —¢*)/(¢* - 1)

In the latter case, the only x € X that have positive s-defect are ¢ = D;, — 1, and
k= (q+1)/2or (¢+3)/2 characters D,,, 1 <1i < k with

< 0.33.
XEX

k
D ai(1)? < (g+1)*(q—2)/2

i=1
Moreover, ¢(1) > di = (¢" — 1)(¢" ' — q)/(¢*> = 1) and D, (1) > «a;(1)d. In this case,
using (5.21) and (5.22), we obtain

x(9)x(92)X(9)] _ (6™ + D@2 + 1)+ 1) | o= ¢“2a;(1)2 - g°i(1)
> < +
x(1) -

XEX d i=1 al(l)d

< 0.44.

In either case, together with (5.20), this implies that g € glg . gg, so we are again done. m

5.5. Completion of the proof of Theorem 1 for classical groups.

Proposition 5.12. Theorem 1 holds for all finite non-abelian simple symplectic or or-
thogonal groups.

Proof. Let G = Cl,(q) be such that G/Z(G) is simple non-abelian and ¢ = p/. By
Corollary 2.2(i), we need to prove the surjectivity of the word map (z,y) — zNy" only in
the case N = p®t® with ¢ € R(G). In particular, t # 2, p.

First we consider the case G = Spy,,(¢). By Lemma 5.3, we may assume that m > 3.
We are also done by Corollary 2.9 if ¢ = 1 mod 4. For the remaining cases, we take ng = 4
if g >7,nyg=261if ¢ =4, and np = 6 if ¢ = 2, and set n = 2m. Note that condition (i)
of Proposition 5.2 holds by Lemmas 5.3 and 5.4. Next, condition (ii) of Proposition 5.2
holds by Propositions 5.5, 5.7, and 5.8. Hence we are done by Proposition 5.2.

Next assume that G = Q3 (q) with m > 3 and 2|¢. Then we are done by Proposition
2.10 if ¢ > 8 and m > 4. Since

Q3(q) = PSLa(q), Q0 (q) = SLa(q) o SLa(q), Q (q) = PSLa(¢?),
Q5(q) = PSpy(q), ¢ (q) = SLa(q)/Z, Qg (q) = SUu(q)/Z

(for all ¢ and for a suitable central 2-subgroup Z), cf. [26, Proposition 2.9.1], we are done in
the case m = 2,3 by the results of §4. In the remaining cases of ¢ = 2,4 and n = 2m > 8§,
we take ng = 8 for ¢ = 4 and ng = 12 for ¢ = 2. Note that condition (i) of Proposition
5.2 holds by Lemmas 5.3 and 5.4 for 8 < k < ng, and by the isomorphisms in (5.23) for
k = 4,6. Next, condition (ii) of Proposition 5.2 holds by Proposition 5.10. Hence we are
done by Proposition 5.2.

Finally, let G = Q¥ (¢) with n > 7 and ¢ odd. Then we take ng = 6 if ¢ > 3 and
ng = 12 if ¢ = 3. Note that condition (i) of Proposition 5.2 holds for 1 < k < 6 by

(5.23)
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the isomorphisms in (5.23) and Lemma 5.3, and for 7 < k < ng by Lemma 5.4. Next,
condition (ii) of Proposition 5.2 holds by Proposition 5.9 when 2 t k, by Proposition 2.10
if 2|k, ¢ > 5, and (k,q) # (10,5), (14,5), and by Proposition 5.11 if 2|k, and ¢ = 3 or
(k,q) = (10,5), (14,5). Hence we are done by Proposition 5.2. ]

6. THEOREM 1 FOR EXCEPTIONAL GROUPS

Lemma 6.1. Theorem 1 holds for the Suzuki groups 2Ba(q?) with ¢*> > 8 and the Ree
groups 2Go(q?) with ¢> > 27.

Proof. Let S be one of these groups. Note that |S| is divisible by at least four different
odd primes. Hence we can find a prime divisor £ > 2 of |S| that is coprime to both ¢ and
N, and a semisimple z € S of order £. By [20, Theorem 7.1], 2% - 2° D S ~ {1}, whence
the claim follows. m

Lemma 6.2. Theorem 1 holds for the following: >Fy(2)'; G2(q) with ¢ = 3,4; 3Dy(q) with
q= 274; F4(2); E6(2)) 2E6(2)

Proof. The cases 2Fy(2), G2(3), G2(4) were checked directly using their character tables.
For the remainder, by Corollary 2.2(i), it suffices to prove Theorem 1 for N = p®t®, where
p is the defining characteristic and ¢ € R(G) = {r, s}, which is {13}, {241}, {13,17},
{73,17}, {19,17}, respectively. This was done by direct calculations similar to those of
Lemma 2.4. ]

In what follows, let ®, := ¢* + ¢3V2 + ¢* + ¢v/2 + 1.

Lemma 6.3. Let S be one of Ga(q), 2Da(q), *Fu(q), Fi(q), E§(q), Ez(q), Es(q) where
q = p’. Define the primes r, s as follows:

S r s INg(T;) : T,| |Ng(Ts): Ty
Ga(q) {(p,3f) 6
*Da(q)  L(p,12f) 4
2Fu(q®)  £(2,24f)|Ph, 12
Fy(q) (p,12f)  L(p,8f) 12 8
FEs(q) {(p,9f) {(p,8f) 9 8
2Es(q)  LU(p,18f)  L(p,8f) 9 8
E7(q) ((p,18f)  Lp,7f) 18 14
Ex(q) U(p,24f)  L(p,20f) 24 20

Fort € {r,s} let vy € X}, where X; is the set of t-singular elements in S.
(i) Cs(zt) = Tt, where Ty is a uniquely determined mazimal torus of S.
ii) [Ng(T3y) : Ty| is as in the table.

(
(i) [X:] < [S|/|Ns(Tt) = Th|.
(iv) If S % Ga(q), *Da(q), then |X;] < |S|/8.

Proof. We know that z; lies in some maximal torus 7; of S. The orders of maximal
tori are given by [6]. Inspection shows that for each ¢ there is a unique possible order
|T;| divisible by ¢, as follows, where in most cases we give also the label of T} in [6] (and
d=(3,9—¢)and e = (2, —1)):
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S ||, label |T|, label

Galg) ¢+q+1

3Da(q) ¢*—¢*+1

2F4(q2) (I’,24

Fi(q) ¢*—¢+1, By ¢ +1, By

E5(q)  (¢®+e®+1)/d, Es(ar) (¢*+1)(¢* —1)/d, Ds

)
Eiq) (=g +1)(g+1)/e, Er (¢"—1)/e, As
) @ —q"+1, Es(a) ¢ —q¢®+q*—¢®+1, Es(as)

Write S = (GF)’, where G is the corresponding adjoint algebraic group and F a Frobenius
endomorphism of G. By [58, I1,4.4], Cg(x;) is connected. Then Cg(x;) = DZ where D is
semisimple and Z is a torus. If D # 1 then D contains a subsystem SLa(q) or SUs(q)
subgroup D, so x; € Cg(D). However Cg(D) does not have order divisible by ¢. Hence
D =1 and Cg(x;) is a maximal torus, whence Cg(x;) = T}, proving (i).

Part (ii) follows from the tables in [6, pp. 312-315].

By (i), every element of X; lies in a unique conjugate of T, and the number of these
conjugates is |\S : Ng(7})l; also, 1 ¢ X;. This gives (iii), and (iv) follows immediately. m

Proposition 6.4. Theorem 1 holds for the simple exceptional group S = G/Z(QG), where
G is one of the following groups:

1) G2(Q)! q=>5;
(ii)
iii) “Fy( >
(IV) F4(Q)’ q=>95;
;

Proof. By Corollary 2.2(i), it suffices to prove Theorem 1 in the case N = p®® with p|q
and t € R(G) = {r, s}.

First we consider the case S = Ga(q) with ¢ > 5; in particular, t = £(p, 3f) (with ¢ = p/
as usual). Note that |X,|/|S| <2/(¢—1)—1/(¢ —1)* < 0.31 for ¢ > 7 by [19, Theorem
3.1], and |A}|/]S| <1 —0.68 = 0.32 for ¢ =5 by [42]. Lemma 6.3 implies that

(Xl [ 1

1
PPl o2 4032 < 2,
R 2

so we are done by Corollary 2.2(ii).

We can argue similarly in other cases. In the case S = 3Dy(q) with ¢ > 5, by Lemma
6.3 and [19, Theorem 3.1],
G A 1, 1 1

Lt 7<, 7<,’
R E R

so we are done. Also, note that the odd ¢ case is covered by Corollary 2.9.

Suppose S = 2Fy(¢?) with ¢> > 8. By [20, Theorem 7.3], S~ {1} C 2% -2 for a regular
semisimple z € S of order ®),. It remains therefore to consider the case ¢|®/,. By Lemma
6.3 and [19, Theorem 3.1],

[, [ _ 1 2 1

1
e <& - < -.
ST ST Eo1 T @on 2

Next we consider the case S = Fy(q) with ¢ > 5. Note that |X,|/|S| < 2/(¢—1) —
1/(qg — 1)? < 0.3056 for ¢ > 7 by [19, Theorem 3.1], and |X,|/|S| < 1 — 0.6619 = 0.3381



44 GURALNICK, LIEBECK, O’BRIEN, SHALEV, AND TIEP

for ¢ =5 by [42]. It follows by Lemma 6.3 that

[ Al _ 1 1
— 4+ —— <= 40.3381 < —-.
ST
For cases (v) and (vi), we note that |X,|/|G|] < 1/(¢ — 1) < 1/3 for ¢ > 4 by [19,
Theorem 3.1], and |A},|/|G| < 1 —0.6627 = 0.3373 for ¢ = 3 by [42]. It follows by Lemma

6.3 that
4], 15|

1 1
Iel Tel _§+0.3373<§,

so we are done.

If G = Fs(q), then G has two maximal tori Ty of order ¢8 — 1 and ®15, and ¢ is
coprime to both |T} 2|. According to [43, Theorem 10.1], T; contains a regular semisimple
element s; for ¢ = 1,2, such that Irr(G) contains exactly two irreducible characters y with
X(s1)x(s2) # 0, namely 1¢ and St. Since |St(s;)| = 1, it follows that

Ix(s1)x(s2)x(g)| _, , ISt(g)|
2 s

>0,
Xx€Irr(G)

so g € sy -s§ forall 1 # g € G, and we are done.

Finally, let G = E7(2), so that t € {19,127}. Consider s; € G of order 73 and sy € G
of order 43. Using [41], we check that the only x € Irr(G) that has positive 73-defect and

positive 43-defect are 1 and St. Hence s§ - s§ = G~ {1} and we are done as above. =

Lemma 6.5. The following statements hold.

(i) Let G = Fy(4) and let x € G be a non-semisimple element such that |Cg(x)| >
3-49. Then there is a quasisimple classical subgroup S in characteristic 2 of G
such that |Z(S)| is a 3-power and x € S.

(i) Let G = Fy(3) and let x € G be a non-semisimple element such that |Cg(x)| > 3.
Then there is a quasisimple classical subgroup S in characteristic 3 of G such that
|Z(S)| is a 2-power and x € S.

Proof. (i) Suppose first that z is unipotent. Following [39, Table 22.2.4], the bound on
|Ca(z)| forces x to be in one of the following unipotent classes:

Ay, A, ([11)2, A1 Ay, Ay (2 classes), Ay (2 classes), By (2 classes).

In the first two cases x lies in a subgroup SLy(4). The third class (A;); has representative
x = u1232(1)ugsaa(1) (see [39, Table 16.2 and (18.1)]). This is centralized by the long root
groups Uioi00, and these generate A = SLy(4). Then x € Cg(A) = Spg(4). The class
A1 A; has a representative in a subgroup Aj(4)A;(4), which is contained in a subgroup
Spg(4). Representatives of the four classes with labels As, A5 lie in subgroups SL3(4) or
SUs(4). Finally, representatives of the classes with label By lie in a subgroup Sp,(4).

Now suppose z is non-unipotent, with Jordan decomposition z = su, where s # 1
is semisimple and u unipotent. As x is assumed non-semisimple, u # 1. Then Cg(s)
is a subsystem subgroup of order greater than 3 - 4!, and the only possibility is that
Cg(s) = O3 x Spg(4). But then u € Spg(4) has centralizer of order greater than 4!9,
which is impossible for a nontrivial unipotent element of Spg(4).

(ii) This is similar to (i). Suppose z is unipotent. Then x lies in one of the classes
Ay, Ay (2 classes), A Ay, Ag (2 classes), As.

For the A;A; class, as above z lies in a subgroup Sping(3). Each of the other class
representatives lies in a subgroup SL3(3) or SU3(3).
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Now suppose x is non-unipotent, so x = su with semisimple and unipotent parts s, u #
1. Then Cg(s) is a subsystem subgroup of type By, A1Cs, T1C3 or T Bs, where T}
denotes a 1-dimensional torus. The last two cases are not possible, as in (i). In the
first case, z € Cg(s) = Sping(3). So assume finally that Cg(s) is of type A1C3, and let
u = ujug with u; € SLa(3), ug € Spg(3). If ug # 1 then

Ca(@)] < ISLa(3)] - [Copg(a) (uz)| < 3.
Hence ug = 1 and x = su € SLy(3) < SL3(3). This completes the proof. ]

Lemma 6.6. Theorem 1 holds for the simple exceptional groups G = Fy(q) with ¢ = 3, 4.

Proof. By Corollary 2.2(i), it suffices to prove Theorem 1 in the case N = ¢%* with
t € R(G) = {r,s}.

Suppose that ¢ { ®s. Then G has two maximal tori T} 5 of orders (¢? — 1)(¢® + g + 1)
and ¢* + 1, which are coprime to N. It is shown in [43, Theorem 10.1] that T} contains a
regular semisimple element s; for i = 1,2, such that Irr(G) contains exactly two irreducible
characters y with x(s1)x(s2) # 0, namely 1¢ and St. It follows that G~ {1} = s - 5§, so
we are done as in the proof of Proposition 6.4.

Now consider the case where ¢|®g. Choose regular semisimple s; = so € G of (prime)
order s = ®15. Using [41], we check that if x € Irr(G), 1 < x(1) < ¢'8, and x(s1)x(s2) # 0
(in particular, x has positive s-defect), then x = x12 with

x1(1) = q@1®3ds, x2(1) = qP3PFPs.

It suffices to show that every nontrivial g € G' belongs to s? . sg. This is indeed the case
if g is semisimple by [17], so we assume ¢ is non-semisimple. Moreover, if |Cq(g)| > B,
where B := 3! for ¢ = 3 and B := 3 - 419 for ¢ = 4, then by Lemma 6.5 we can embed
G in a quasisimple classical subgroup S in characteristic ¢ with |Z(S)| coprime to N,
in which case we are done by applying Theorem 1 to S/Z(S). So we may assume that
|Cc(g)] < B. Next observe that y; is rational-valued (as it is the unique character in Irr(G)
of its degree), and x;(1) = £1 mod s. It follows that x;(s1) € Z and x;(s1) = £1 mod s.
Since |x;(s1)| < |Cq(s1)]"/? = s'/2, we conclude that y;(s;) = £1. It follows that

_l’_

2
Ixi(s1)xi(s2)xi(9)] Bl/2 Bl/2
zz—; xi(1) = x1(1) " x2(1) <0.87

On the other hand, since |Cg(si)| = P12,

x(s)x(s2)x(g9)] _ BY2®1p _ 1 _ 1
2 O TR )
X€lrr(G), x(1)2¢'®
It follows that g € s{ - 5§, as stated. [

In summary, we have proved the following.

Corollary 6.7. Theorem 1 holds for all finite non-abelian simple exceptional groups of
Lie type.

Proof of Theorem 1. The case of simple groups of Lie type is completed by Proposition
5.12 for classical groups and Corollary 6.7 for exceptional groups. Alternating and sporadic
groups are handled by Lemma 2.4 and Proposition 2.5. ]

7. ODD POWER WORD MAPS

7.1. Preliminaries.
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Lemma 7.1. Let S be a finite non-abelian simple group. To prove Theorem & for all
quasisimple groups G with G/Z(G) = S, it suffices to prove it for the 2'-universal cover H
of S, that is, H/Z(H) = S and |Z(H)| is the 2'-part of the order of the Schur multiplier
of S.

Proof. It suffices to prove Theorem 3 for the universal cover L of S. By assumption,
Theorem 3 holds for H = L/Z, where Z < Z(L) is a 2-group. Thus every g € L can be
written in the form g = xyzt, where x,y, z are 2-elements of L and ¢t € Z. It follows that
g = xy(zt) is a product of three 2-elements in L. ]

Lemma 7.2. Theorem & holds for all quasisimple covers of alternating groups S = Ay,
with n > 5. Moreover, every element of S is a product of two 2-elements.

Proof. The cases S = Ag, A7 are checked directly using [8]. By Lemma 7.1, it suffices to
prove Theorem 3 for G = A,,.

(i) First we show that if g = (1,2,...,m) is an m-cycle with m = 2k + 1 > 5, then
g = T1y1 = X2y, where x;,1; € S, have order 2 or 4, and moreover x1,y1 € A,
Z2,Y2 € Sy N App. Indeed, g is inverted by the involution

x:=(1,2k+1)(2,2k)... (k= 1,k + 3)(k,k+2).
Setting vy := xg, we get y?> = xgrg = g 'g = 1, so g = xy. Next, we set
= (1,2k+1)(2,2k)...(k— 1,k +3), v/ :==2'g.

A computation establishes that |2'| = 2, |y/| = 4, and g = 2'y/. Since exactly one of z, 2’
belongs to A, and g € A, the claims follow.

(ii) Now we show that every g € A, is a product of two 2-elements. Indeed, if g is
real in A, then the statement follows from Lemma 2.7. Since ¢ is always real in S,,, we
may assume that ¢ is not real in A,,, so it is not centralized by any odd permutation in
S,. Thus g = ¢192...¢9s is a product of s > 1 disjoint cycles, where g; is an n;-cycle,
3<n; <ng <...<ng and n; is odd for all 7. We may assume that

Sp> X1 x Xo x ... x X,
where X; =S, and g; € X;.

Suppose n1 > 5. Then, according to (i) we can write g; = z;y; where z;,y; € [X;, X;] =
A,, are 2-elements. Hence g = zy with z := 2122 ... 2, and y := y192. .. Ys, as desired.

Assume now that ny = 3. Since ¢ is not real in A, and n > 5, we observe that s > 2.
Again by (i), for i > 2 we can write g; = x;y;, where z;,y; € X; are 2-elements; moreover,
xi, Yy € [Xi, Xi] if i > 3 and x9,y2 € X5 \ [X2, X2]. We may assume that ¢ = (1,2,3)
and write g1 = z1y; with z; = (1,3), y1 = (1,2). Now setting = := z1x2...2s and
Y= Y1y2 ... Ys, again g = xy is a product of two 2-elements in A,,. ]

Lemma 7.3. Let S be a non-abelian simple group of Lie type in characteristic 2. Theorem
3 holds for all quasisimple covers of S.

Proof. The case S = 2Fy(2)’ is checked directly using [8]; and S = Ag follows from
Lemma 7.2. Suppose now that S % Ag, 2F4(2)’. Then there is a quasisimple Lie-type
group H of simply connected type such that H is a 2’-universal cover of S. According to
[11, Corollary, p. 3661], every non-central element of H is a product of two 2-elements. For
g € Z(H), consider a non-central 2-element ¢ of H. Again gt~! = xy for some 2-elements

x,y of H, so g = xyt is a product of three 2-elements. Hence we are done by Lemma
7.1. |
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Lemma 7.4. (i) Theorem 3 holds for the quasisimple group G if G/Z(QG) is one of the
following simple groups: a sporadic group, PSU4(3), PSpg(3), 27(3), PSpg(3).

(ii) Suppose that G = GU,(3) with 3 <n < 6. Each g € G can be written as g = vyz,
where x,y, z are 2-elements of G and det(x) = det(y) = 1.

Proof. These statements were established using direct calculations similar to those of
Lemma 2.4. ]

7.2. Regular 2-elements in classical groups in odd characteristic. We show that
finite classical groups in odd characteristic admit regular 2-elements with prescribed de-
terminant or spinor norm.

We begin with the general linear and unitary groups.

Lemma 7.5. Let G = GL{(q) with n > 1, ¢ = £1, q an odd prime power and let
Pg—c = {X € qu | AX97¢ = 1}. For every 2-element § of jiq—c, there exists a regular 2-
element s = s,(9) of G, such that det(s) = 6 and s has at most two eigenvalues [ that
belong to pg—e (and each such eigenvalue appears with multiplicity one).

Proof. (i) First we consider the special case n = 2™ > 2 and construct a regular 2-element
Sm of G. Fix v € F; with |y| = (¢*" — 1) > 8. Using the embeddings

GL1(¢*") < GLgm-1(¢*) < GLgm(q) = G,
we can find s,,, € G which is conjugate over F, to

diag(y,v%, 74", ... 449",

It is straightforward to check that all eigenvalues of s,, appear with multiplicity one and
have order (¢?" — 1)o; in particular, s, is regular.

(ii) If n = 1, then we set s1(d) = 0. Suppose n = 2. If § # 1, then we choose
s9(0) := diag(1,6). If 6 = 1, then we can choose « = +1 such that ¢ = @ mod 4 and take

s2(1) € Cy—o — SL5(q) < G
with [s2(1)| = 4. Note that |s,(8)| < (¢* — 1)2 for all § € py— and n = 1,2.
Consider the case n > 3 odd and write
n=2"42M 4 42M 41
with mi; > me > ... > m; > 1. Setting
s := diag(Smy s Smagy - - - » Smy» @) € GLSmy (q) X ... X GLSm, (¢) x GL{(q) < G,

with a := §/[['_, det(sm,), we deduce that det(s) = § and all eigenvalues of s appear
with multiplicity one, as required.

(iii) We may now assume that
n=2"M 42M2 4 2™
with m1 > mg > ... > my > 1.
Suppose first that m; = 1. We choose
s 1= diag(smy, Smay - - - » Smy_15 52(@0)) € GLSm,; (q) X ... x GL§m,_, (q) x GL5(q) < G,
with a := §/[['_, det(sm,), so that det(s) = J. The construction of s ensures that all
eigenvalues of s appear with multiplicity one, so s is regular.

If a := my > 2, then we rewrite

n=2% 429 4 4201 4 2% 4 2%+l 4 4 2%,
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where a; = m; for 1 <i <t—1, k =t+a—1, and (ay, az+1,...,ax) = (a—1,a—2,...,2,1,1).
Now we can choose

s 1= diag(sa;; Sags - - - 5 Sap_1»52()) € GL3a; (¢) X ... X GLSay_, (q) x GLS(q) < G,
with a := §/ Hf:_ll det(sq,). Again det(s) = 0, and all eigenvalues of s appear with
multiplicity one, as desired.

The last condition on s can be checked easily in all cases. [ ]

Lemma 7.6. Let G = Sp,,,(q) with n > 1 and q an odd prime power. There exists a
reqular 2-element s of G (and neither 1 nor —1 is an eigenvalue of s).

Proof. First we consider the special case n = 2™ > 2. We fix vy € E; with |y| =

(¢*" — 1)2 > 8 and use the element s,, constructed in part (i) of the proof of Lemma 7.5
via the embeddings
GL1(¢”") <+ GLan(q) <> Spyn(q) = G.

Note that s, is conjugate over Fq to

. 2 n—1 _ _ _ 42 _n—1
diag(y,7%,7% .77 ATy, ).
In particular, all eigenvalues of s, appear with multiplicity one and have order (¢*" — 1),
whence s,, is regular.

Consider the general case
n=2"42M2 4 4 2™
with miy >mg >...>my>0and t > 1. If my > 1, set
s = diag(Smy, Smas - - - » Smy) € SPamy (¢) X ... X Spami (q) < G.

If m; = 0, then we can choose

s 1= diag(Smys Smas - - - » Smy_q»> 52(1)) € Spamy (q) X ... X Spami—1(q) X Spy(q) < G,

where s5(1) is constructed in part (ii) of the proof of Lemma 7.5. It is easy to check that
s has the desired properties. ]

Recall that the spinor norm 6(g) of g € SO, (¢) is defined in [26, pp. 29-30).

Lemma 7.7. Let G = SOf (q) with n > 2, e = +1, q an odd prime power. For § = £1,
there exists a regular 2-element s = s5(0) of G, such that 0(s) = 0; moreover, every
B e FqXZ can appear as an eigenvalue of s with multiplicity at most two, and multiplicity

two can occur only when = +1.

Proof. (i) First we consider the special case n = 2™t > 4. We fix v € ﬁ; with
Iv| = (¢*" —1)2 > 8 and use the element s, constructed in part (i) of the proof of Lemma
7.5 via the embeddings

GL1(¢*") < GLan(g) < SO;: (q)
Note that s,, is conjugate over Fq to

m_1 2 2Mm 1
q

diag(1,7%,7%,...,7" Ly ).
In particular, all eigenvalues of s,, appear with multiplicity one and have order (¢>" —1)a,
whence s, is regular. As an element of GLam (q), s, has determinant

V=1 — A" =1)/(a=1),
277L

It follows that v(¢~1/2 = 4(a" =1/2 = _1 50 f(s,,) = —1 by [26, Lemma 2.7.2].

(ii) Suppose that n = 2. We take s5(—1) € SO5(q) = Cy—o of order (¢ — €)2, and
Sg(l) = I2.

I+qt+q?+..4+¢*" !
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Next suppose that n = 4 and choose @ = £1 such that ¢ = o mod 4. We also fix
sp € SO%(q) of order (¢ —a)2 > 4 so that 6(sg) = —1 (note that we can take sg = s§(—1)).
Since SO4(q) > SO%(q) x SO5*(q), we can choose

st (1) = diag(—1Iz, I2), s; (1) = diag(so, —I2), s (—1) = diag(so, —I2), s; (—1) = diag(so, I2).

Note that [sS ()] < (¢2 —1)2 for all § = &1 and n = 2,4. Also, we need later the fact that
s§(—e€) does not have 1 as an eigenvalue.

(iii) Suppose that 6 < n =2 mod 4. We write
n=2mtl yometl 4y gmitl 49
with mq > mo > ... > m; > 1, and choose
s 1= diag(Smy s Smys - - -+ Smy, 85()) € SO;mlJrl(q) XX SO;—th (q) x S05(¢q) < G

with a := (=1)'6, so that 6(s) = 4.

Consider the case n = 0 mod 4 and write

n=2mtl ometl Ly gmutl
with mq1 > mgo > ... > my > 1. We can rewrite
n=20tlpomtly g gutl g gaetl g garatl 4y gl

where a; =m; for 1 <i<t—1, k=t+m; — 1, and

(at as i1 ak’)_{ (mt_]-amt_27"'727171)7 mt227

(), my =
Now we can choose
s 1= diag(Sa; s Sag, - - - » Say_y» Sa()) € SO;IH(Q) X ... X SO;k_ﬁl(q) x SO4(q) < G
with a := (—1)*~14, so that f(s) = 4.
(iv) From now on, we may assume
n = 2mitl pgmatl oy omitl 4

with my > mg > ... >m; >0 and t > 1. Again choose a = %1 such that 4|(¢ — «).
If m; = 0, then we choose

d=(-1

diag(smy, Smyy -+ - Smy_y, —I2,1), 6 = (=1)71,

(q) x SOS(q) x SO1(q) < G.

S = { diag(smlasmga"'75mt_135mt71)7 ( )Za

and note that s € SOT, ., (q) x ... x SOZ,

2m1+1 2mt_1+1
Finally, suppose that m; > 1. We rewrite

n =20t pgoatl g oga-atl g ogartl g garnatl 4 gatl )
where a; =m; for 1 <i<t—1, k=t+m; — 1, and

(mt—l,mt—Z,...,2,1,1), my 22,
Ay Qpaly -, Q) =
( ty dt+1 k) { (mt), my =
Next, we set
s := diag(Sa,s Sags - - - s Sap_1 » sf(—ﬁ), 1)
which belongs to

SO5.,41(q) x ... x SOF,

90k—111

(q) x SO (q) x SO1(q) < G,

where 8 = (—1)*s.
In all cases, one can verify that §(s) =, and s has the desired properties. ]
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7.3. Proof of Theorem 3 for classical groups in odd characteristics. First we deal
with special linear and unitary groups in dimensions 3 and 4.

The CHEVIE project [15] provides generic character tables for the groups SLs(¢q) and
SU3(q); these are symbolic parametrized descriptions of the character tables of all of these
groups. To establish Lemma 7.8, it suffices to prove that

_ =% 1ye x(@)x()x(z™)
R Tl v
x€lrr(GQ)
for all x,y,2 € G. While, in principle there is a function which computes c;, . from
the generic tables, its application is often difficult because the result may depend in a
complicated way on the parameters for a conjugacy class. We thank Frank Liibeck for
providing us with the following alternative proof of this result.

Lemma 7.8. Let q be a power of an odd prime and let G be one of the groups SLy(q) or
SU,(q) with n € {3,4}. Every element of G is a product of three 2-elements in G.

Proof. We choose conjugacy classes carefully, such that only very few character values
from the generic character tables are needed (and these are also available for n = 4).

We first consider G = SL3(q) or G = SU3(q). Let ¢ € IFqXZ have order (¢? — 1)3. Since
g—1and g+ 1 are even, c ¢ Fy, ¢ # ¢? and ¢ # ¢ 9.
Let = be a regular semisimple element with eigenvalues {c, c?, ¢ %'} (in case SL), or

{e,c79,c971} (in case SU). The centralizer of z in G is a maximal torus of order ¢* — 1.
Let y be a regular semisimple element of the maximal torus of order ¢> + ¢ + 1.

By inspecting the generic character tables for SLsy and SU3 in CHEVIE, we notice that
there are only two irreducible characters which both have a non-zero value on the conju-
gacy classes of  and y (the trivial character and the Steinberg character of degree ¢3).
This can be explained in terms of Deligne-Lusztig theory and Lusztig’s Jordan decom-
position of characters, see [10, 13.16]: The only semisimple element of the dual group of
G whose centralizer contains maximal tori of types of the centralizers of z and of y is
the trivial element. From information about the values of Deligne-Lusztig characters, it
follows that only unipotent characters can be non-zero on both x and y. Which unipotent
characters have this property can be read from the character table of the Weyl group of
G, isomorphic to the symmetric group on 3 points, because up to sign this describes the

values of unipotent characters on regular semisimple elements.
Now let z € G. Observe that
“I-19%,, Stz

q3

_ 2"y
cI,y,Z - |G|

(1- )-

Hence c;4,. > 0 for every non-central element z. The case z = x shows that y is the
product of two 2-power elements, so every non-central z is a product of three 2-power
elements.

For some ¢ there are non-trivial z in the center of G. To show that such z can be written
as product of three 2-power elements, we have a closer look at the generic character table
to establish that c; ... > 0. We can compute readily a sufficient lower bound for this
number: for example, in SL3(q) there are ¢ — 2 irreducible characters of degree ¢% + ¢+ 1
whose value on = and xz are some root of unity; for a lower bound we can substitute the
corresponding terms in ¢, ;. by —(¢ —2)/(¢* + ¢+ 1).

Now we turn to the case G = SLy(q) and G = SU4(q). In this case the center of G has
order 2 or 4, so there is nothing to show for center elements. All groups of type SLy(q)
contain pairs of regular semisimple elements such that only two characters are non-zero
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on both elements. But for n = 4 there are no such pairs containing 2-power elements,
therefore we need a slightly more complicated argument than before.

Let c € IFqXQ have order (¢ — 1)2. Now ¢ # ¢! and ¢ # ¢4, and G contains a regular

2-power element z with eigenvalues {c, c?, ¢!, ¢79}; its centralizer in G is a maximal torus
of order (¢*> — 1)(¢ £1). We choose as y a regular element of a cyclic maximal torus of
order ¢34 1. With the same arguments as sketched in the SL3/SUs-case, we find that only
unipotent characters can have non-zero value on both x and y. The unipotent characters of
G are obtained by restricting the unipotent characters of GL4(q) or GUy(q), respectively.
These are available in CHEVIE, and their values are all given by evaluating polynomials
over the integers at q.

There are three unipotent characters with non-zero value on =z and y, and we can
compute the precise values of ¢; ;. and c; 4 . for every non-central z € G. For all resulting
polynomials, it is easy to see that they evaluate to a positive number for all prime powers
q. This shows that y is a product of two 2-power elements, so every non-central element
is a product of three 2-power elements. ]

Proposition 7.9. Theorem 3 holds for all quasisimple covers of S = PSLy(q), if n > 5
and 21 q.

Proof. (i) By Lemma 7.1, it suffices to prove Theorem 3 for G = SLy,(q). Let s = s,(1) €
G be as constructed in Lemma 7.5. It suffices to show that every g € G is a product of
three conjugates of s, which is equivalent to

5 X(s)°x(9)
ey X2 7Y "
As |x(9)/x(1)| <1, it suffices to prove
NE
) |X((1)) <1 (7.2)

la#x€lrr(Q)

Set
D.— { (¢" = D@ =¢*)/(g—1)(¢* = 1), (n.q)# (6,3),
T (@ - D@ -1, (n,q) = (6,3).

By [62, Theorem 3.1], every character x € Irr(G) of degree less than D is either 14 or one
of ¢ — 1 irreducible Weil characters 7;, 0 < i < ¢ — 2, as defined in (4.1).

(ii) Consider the case n > 6. The construction of s in Lemma 7.5 shows that

(¢" ~1)/g—1), (n.q) # (6.3),
[Cals)] < { (" — 1)~ 1)/(g—1), (n.q)= (6.3).

Hence

< 0.9099.

Z X(s)F _ [Ca(s)]V? | S )P = [Ca(s)P*?

x(1) D

x€lrr(G@), x(1)>D xEIrr(G)

Next we estimate |7;(s)|. Recall that 15+ 79 is just the permutation character of G acting
on the set of 1-spaces of Fj. In the notation of §4.3, by Lemma 7.5, e(g,6') <1 for all
0 <1 < ¢q—2 and equality can be attained at most twice. It follows that s fixes at most
two l-spaces, i.e. 0 < 719(s) +1 <2, s0 |9(s)] < 1. Arguing as in the proof of Lemma 4.6,
for 1 <i < g — 2 we obtain

,(S)‘<q+q+1~(q—3)

= 3.
|7i > q—1
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Hence

3 2B 1 _9).33
> ’X(Sl)‘ :Z’TZ,(?’ < ir?) 31 < 0.0772.
x€lrr(G), 1<x(1)<D X( ) i=0 TZ( ) (q —q)/(q— )

Thus

3
3 |X((51))’ < 0.9099 + 0.0772 = 0.9871,
1g#x€lrr(G) X
so we are done by (7.2).

(iii) Assume now that n = 5. The construction of s in Lemma 7.5 implies that |Cg(s)| <
q* — 1; furthermore, Z;};OQ e(g,0') <1 and so, by Lemma 4.6, |7;(s)| < 1 for all i. Arguing
as in (ii), we obtain

X)) S @@ —Djlg—1)

Ix(s)[? (¢* —Dt®
xEIrr(G;x(l)ZD
XEP _ = () ¢—1
2 x(1) ; w0 S @ -afa-1

x€lrr(G),1<x(1)<D

Thus
3 4 1 1.5 -1 4 -1
2 |X(<81)>| e = 1>/)< -7 —q>/< 1 7 5q—+>3< <t
\oraaim(c) X 7*(q q ¢ —q)/(q ¢ —q)/(q
so we are done again. n

Proposition 7.10. Theorem 3 holds for all quasisimple covers of S = PSU,(q), if n > 5
and g > 5 is odd, or if (n,q) = (5,3).

Proof. (i) By Lemma 7.1, it suffices to prove Theorem 3 for G = SU,(q). Let s = s,(1) €
G be as constructed in Lemma 7.5. It suffices to show that every g € G is a product of
three conjugates of s. Hence, it suffices to prove (7.2). Set

"~ 1" - ¢
(¢—1(*—-1)
By [62, Theorem 4.1], every character x € Irr(G) of degree less than D is either 14 or one
of ¢ + 1 irreducible Weil characters (;, 0 < i < ¢, as defined in (4.3).
Consider the case n > 6. The construction of s in Lemma 7.5 shows that
(¢ +1)" 1, n>8,

ICa(s) <9 (¢ —1)(g+1)* n=T,

(¢* =1)(g+1), n=6.

D::(

Hence, as in the proof of Lemma 7.9,

3 C 3/2
s BOP_C?
x(1) D
x€lrr(G), x(1)=D
Next we estimate |(;(s)|. In the notation of §4.3, by Lemma 7.5, e(g,&') < 1 for all

0 <1 < g and equality can be attained at most twice. Arguing as in the proof of Lemma
4.6, we obtain

cqtatl-(g=1)  3¢-1

Gi(s)| < . =T
Hence
NP RGP _ a4+ D(Ba—1)/(a+1))°
2 x(1) 2 Gi(1) = -9/ q+1) < 0.1467.

x€lrr(@), 1<x(1)<D i=0
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Thus

3
3 |><((Sf>’ < 0.6992 + 0.1467 = 0.8459,
lereln(@) X

so we are done by (7.2).

(ii) Assume now that n = 5. The construction of s in Lemma 7.5 implies that |Cg(s)| <
¢* — 1; furthermore, > 7 e(g, &) < 1, hence |(;(s)| < 1 for all i by Lemma 4.6. Set

D=(q-1)(+1)(¢"+1)/(qg—1).

Using [41], we check that if y € Irr(G) satisfies 1 < x(1) < D then Y is either one of ¢+ 1
WEeil characters (;, 0 < ¢ < ¢, or one of ¢ + 1 characters a;, 0 <4 < g, where

ao(1) =@ (@ +1)/(a+1), ai(1) = (@ +1)(¢°+1)/(g+1), 1 <i<q.

Inspecting the character table of GU5(q) as given in [52], we observe that each a; extends
to GUs(¢) and |a;(s)| < 1. Hence,

KO S IGEP S IGEE _ 2g+D)
e o TG TG S @

On the other hand,

|X(S)’3 <q4 _ 1)1.5
XEIrr(G)ZX(l)>D X(l) < (q _ 1)((]2 + 1)(q5 i 1)/(q — 1) < 0.5866.

Thus

3
3 XEIP 1334 4 0.5866 = 0.72,
lg#x€elrr(G)
so we are done again. ]

For PSU,,(3), respectively PSp,, (¢), we again employ the notion of breakable elements
as defined in Definition 3.5(iii), respectively Definition 3.1.

Proposition 7.11. Theorem 3 holds for all quasisimple covers of S = PSU,(3) if n > 5.

Proof. By Lemma 7.1, it suffices to prove Theorem 3 for L := SU,(3). Consider the
following statements for G := GU,(3):

Every g € G can be written as g = xyz,

Qn) - where z,y, z € G are 2-elements and det(z) = det(y) = 1,

Qu(n) : Every unbreakable g € G can be written as g = xyz,
w5 where a,y, z € G are 2-elements and det(z) = det(y) =1,

By Lemma 7.4(ii), Q(n) holds for 3 <n < 6. It is straightforward to check that Theorem
3 holds for L with n > 7 once we show that Q,(n) holds.

We now prove Qu(n) for n > 7. Consider an unbreakable g € G. Lemma 3.8 implies
that |Cg(g)| < 372 . 2% Let s1 = sg := s,(1) and s3 := s,(det(g)), where s,(5) is
constructed in Lemma 7.5; in particular, |[Cg(s;)| < 4™. Choosing

D:= (3" —1)(3""! - 9)/32,
by the Cauchy-Schwarz inequality,

3 Ix(s1)x(s2)x(s3)x(9)| (4m)3/2(3n+2 . 2)1/2

x(1)2 < (3n — 1)(371 — 9)/32)2 < 0.4866.

x€lrr(G), x(1)>D
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By [34, Proposition 6.6], the characters x € Irr(G) of degree less than D consist of 4 linear
characters and 42 Weil characters Gij, 0 <14,j < 3. Arguing as in the proof of Lemma 4.6,

we obtain

g+q+1-(¢g—1) 3¢—1

for ¢ = 3. Together with (4.16), this implies that

s Mo @ g M) ol 2205

2 2 = Tran _ 2
x € Irr(G), X<1) X =Cij X(l) ((3 3)/4)
I1<x(1)<D 0<i ;<3
Since
Z x(s1)x(s2)x(s3)x(g) 4
(1)2 -
Yelr(G), x(1)=1 X
we conclude that
x(s1)x(s2)x(s3)x(9)
> e # 0,
xE€Irr (@) X
ie. g€ (51)% (52)7 - (53)°, as stated. [ ]

Proposition 7.12. Theorem 3 holds for all quasisimple covers of S = PSp,,,(q) if n > 1,
2tq, and (n,q) # (1,3).

Proof. (i) Consider the case n = 1. The cases PSpy(5) = Spy(4), PSpy(7) = SL3(2), and
PSp,(9) = Ag are covered by Lemma 7.3, so we may assume ¢ > 11. By Lemma 7.1, it
suffices to prove Theorem 3 for L := Spy(q). Using the character table of L as given in
[10], it is straightforward to check that g € s¥ - sl - s* for all g € L if |s| = 4.

From now on we may assume n > 2. Hence by Lemma 7.1, it suffices to prove Theorem
3 for L := Spy,(q). If ¢ = 1 mod 4, then L is real by [63, Theorem 1.2], whence we are
done by Lemma 2.7. Also, the case PSp,(3) = SU4(2) is covered by Lemma 7.3. Note that
Theorem 3 holds for Spg(3) and Spg(3) by Lemma 7.4(i). So we may assume ¢ = 3 mod 4
and (n,q) # (2,3), (3,3), (4,3).

(ii) It suffices to prove that every unbreakable g € L is a product of three 2-elements of
L. By Lemma 3.2,
29", 2n, ¢ =5,
ICL(g)| < B:={ 48321, 2|n, q =3,
"¢ 1), 21q.

Let s be as constructed in Lemma 7.6; in particular,

@ -1, n =2,
ICL(s)| <C:=q (@~ 1)(g+1), n=3,
(g+1)", n > 4.

Choosing
D:=(¢" - 1)(¢" — q)/2(q + 1),
by the Cauchy-Schwarz inequality,

IX(s)®-x(g)| C®¥?%.BY?
2 x(1)2 ST D2

By [62, Theorem 5.2], the characters x € Irr(L) of degree less than D consist of 17, and
four Weil characters: 72 of degree (¢" —1)/2 and &2 of degree (¢" — 1)/2. Recall by

< 0.5255.
x€lr(L), x(1)>D
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Lemma 7.6 that neither 1 nor —1 is an eigenvalue of s. Hence, (5.2) holds for s. Since
x(9)l < x(1),

Ix(s)” - x(s) 4
> NI > S =Ty < 1688,

x€lrr(L), 1<x(1)<D

Thus
3. <
Y 'X“)(l)’;@' < 0.5255 + 0.1668 = 0.6923,
1p,#x€lrr(L) X
so g € st s sl as stated. [ |

Proposition 7.13. Theorem 3 holds for all quasisimple covers of S = PQS (q) if m > 7
and 21 q.

Proof. By Lemma 2.7 and [63, Theorem 1.2], we may assume that m # 8,9 and ¢ =
3 mod 4 if m = 7. Note that Theorem 3 holds for Q7(3) by Lemma 7.4. By Lemma 7.1,
it suffices to prove Theorem 3 for L := €2,(q). Let s = s,(1) € L be as constructed in
Lemma 7.7.

(i) First we consider the case m = 2n; in particular, n > 5. The construction of s
implies that

ICL(s)| < C = { 84_;1;215(14_ b, Z;g
Choosing
D= { ¢, (n,€) # (5, -),
(¢ = D(Z+1)(@® = D¢ +1), (n,e) =(5,-),
by the Cauchy-Schwarz inequality,
D (P O 135

x€lrr(L), x(1)>D

By [34, Propositions 5.3, 5.7], the characters x € Irr(L) of degree less than D consist of
17 and g+ 4 characters DS, a € Irr(X), where X := Spy(¢). By Lemma 7.7, each § € IE‘qX2
can appear as an eigenvalue of s of multiplicity at most 2. Arguing as in the proof of
[34, Proposition 5.11], we obtain that |D,(s)| < ¢?a(1). Recalling that DS equals D, if
a # 1x, Sty and D, — 11, otherwise, cf. [34, Table II], for n > 6

3 2 1 1 3 2 1 3
3 |X(51) \ < ¥ (¢ algo);r ) 3 (chz(l)) < 0.849.
x € Irr(L), X( ) a=1x,Stx a( ) a € Irr(X), a( )
1<X(1)<D a # 1x,Stx

Consider the case n = 5. If 4|(q — €), then each § € qug can appear as an eigenvalue of
s of multiplicity at most 1, so arguing as above |D,(s)| < ga(1). Suppose that 41 (g —¢€).
In this case, the only eigenvalue § of s that belongs to IFqXQ is —1 and its multiplicity is 2.
In the notation of the proof of [34, Proposition 5.11], for every z € X

\w(xs)] < qdimKer(:rsflgm)/Q — qdimKer(x+Ig)'
When  runs over X, dimKer(z + I3) is 2 only for x = —1Is, it is 1 for ¢ — 1 elements,
and it is 0 for the rest. Hence,

a(1)

[Da(s)] < p(1| ;E;( w(as)a(z)| < W(q2 +q- (-1 +1-(g(¢* = 1) = ¢*) = 2a(1).
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We have shown that |D,(s)| < ga(1). Hence,

3 x()*l _ 3 (ga(®) +1)* | 3 () 599,

x € Irr(L), X(l) - a=1x,Stx D&(l) o € Irr(X), Dg‘(l)
1< x(1) < D a # 1x,Stx
Thus in all cases 5
LA
1 #x€elrr(L) X(l)

so g € s st . sl by (7.2), as stated.
(ii) Now we consider the case m = 2n + 1 > 11. Again |Cr(s)| < (¢ + 1)™. Set
D := ¢*"8. By the Cauchy-Schwarz inequality

3 3/2
3 IX(s)°] CD < 0.062.

vetn(iy xzp XU
By [34, Corollary 5.8], the characters x € Irr(L) of degree less than D consist of 1, and
q+4 characters D, o € Irr(X). By Lemma 7.7, each 5 € F;z can appear as an eigenvalue
of s of multiplicity at most e, where we can choose e = 2 for n > 6 and e = 1 for
n = 5. Arguing as in the proof of [34, Proposition 5.11], we obtain that |Dq(s)| < ¢°a(1).
Recalling that Dg, equals D, if o # &1 2 (the two Weil characters of degree (¢ 4+ 1)/2 of
X) and D, — 11, otherwise, cf. [34, Table I],

3 2a(1) + 1)3 *a(1))?
XETrr(L), 1<x(1)<D X « a€lrr(X), a#é1,2 @

so we are done by (7.2).

a=£1,2

(iii) Finally, we consider the case m = 7, so ¢ > 7. Theorem 3 holds for

Q3(q) = PSLa(q), Q0 (q) = SLa(q) o SLa(q), Q5 (q) = PSLa(¢?), Q5(q) = PSpy(q)

by Proposition 7.12, and for Sping (¢) 2 SL4(q), Sping (¢) =& SU4(g) by Lemma 7.8. Hence,
if g € L = Q7(q) is breakable in the sense of Definition 3.1, then g is a product of three
2-elements of L. If g € L is unbreakable then |Cr(g)| < ¢*(q¢ + 1)? by Lemma 3.3. Also,
x(1) > ¢*+¢®+1forall 1, # x € Irr(L) by [62, Theorem 1.1]. As |Cr(s)| < (¢+ 1), by
the Cauchy-Schwarz inequality,

IX(s)* - x(9)] _ (q+1)*° - ¢*(g+1)
X TN ar S @i

< 0.757,
1p#x€lrr(L)

so we are done as well. [ ]

7.4. Proof of Theorem 3 for exceptional groups in odd characteristics. Our goal
is to prove the following result, which, together with the results of §§7.1 and 7.3, completes
the proof of Theorem 3.

Theorem 7.14. Let G be a quasisimple group such that G/Z(QG) is an exceptional simple
group of Lie type in odd characteristic. Then every element of G is a product of three
2-elements.

The proof consists of a series of lemmas. The first is immediate from [40].
Lemma 7.15. Let G be as in Theorem 7.14, and let x be a nontrivial irreducible character
of G. Then x(1) > N, where N is as in Table 4.

Lemma 7.16. If G is as in Theorem 7.14, then G has a 2-element s such that |Cq(s)| < C,
where C' is as in Table 4.
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G N 8]

Ex(q) @+ 1)@+ 1) (¢ +1) [F -1

E7(q) (@ =)+ 1)/(¢" =1) | (¢+ 1%

E(q) (e==%) | a(¢* +1)(¢° +eq® + 1) (¢*—1)(g—€)?* ¢=emod 4
(¢ — 6)q7, g = —emod 4

Fi(q) F+qt+1 (¢+1)*¢

Ga(q)(¢>3) |¢®—1 -1

3Dy4(q) q(¢* — >+ 1) (@ —D(g+1)

*Ga(q) (¢>3) [ —q+1 g+1

TABLE 4. Bounds for character degrees and centralizers

Proof. For the most part we construct the element s within a suitable product of classical
groups inside G, using the methods of §7.2.

For G = FEs(q) we work in a subsystem subgroup A of type Ag. This has shape
d.Ly(q).e, where e = (3,¢ — 1) and d = (9,q — 1)/e (see for example [36, Table 5.1]); the
derived subgroup is a quotient of SLg(gq) by a central subgroup Z. We will define s in
SLg(q), and identify it with its image modulo Z. Choose v € F s of order (¢® —1)o, and
define sg € GL;(¢®) < GLg(q) to be conjugate over F, to diag(’y,’yq,’yqz, . ,fyq7). Let
s = diag(ss, @) € SLg(q), where a=! = det(ss). Then |Ca(s)| = ¢® — 1. Now, by [39,
11.2],

ﬁ(Eg) J Ag = E(Ag) + VAs ()\3) + VAs ()\6)
Here Va,(A3) = A3(Vh), the wedge-cube of the natural module for SLg(q), and Vag()\¢)
is the dual of this. Since 'yqi+qj+qk cannot equal 1 for distinct ¢, j, k between 0 and 7,
and also fyq““qj cannot lie in Fy, the element s has no nonzero fixed points in A3(Vg), so
dim Cf (g (s) = 8. Hence Cg(s) is a maximal torus, so Cg(s) = Ca(s) of order ¢® — 1.

Next consider G = E7(q). We will work in the simply connected version of G; the
element s we construct works equally well for the adjoint version. Let A be a subsystem
subgroup of type ASAf (¢ = 1), where ¢ = —e mod 4. This has the subgroup SL§(q) o
SL§(q) of index (3,q —€). Let v € Fa have order (¢* — 1)3, and define o = y(@+ 1) (eg+1)
B = 2@+l Now define s; € SL§(q), s2 € SL§(q) so that they are conjugate over F, to

diag(y 2,77, 8) € SLs, diag(y,7%,7", 7", 1,a) € SLg,
respectively. Let s = s1s2 € A. Then |Ca(s)| = (¢* —1)(¢*> — 1)(q — €). From [39, 11.8],
L(E7) | A2As = L{A245) + (Vay (A1) @ Vas(A2)) + (Va, (A2) ® Vag(Aa))-

Here V4, (A1) ®@ Va,(A2) = V3 ® A%(Vg), where V3, Vs are the natural modules for SLg
and SLg. One checks that s has fixed space of dimension 1 on this module (coming
from the product of the eigenvalues 8,1,a). Hence dim Cr(g,)(s) = 9, and so over F,
we deduce that Cpg.(s) = AT, where Ty denotes a torus of rank 6. It follows that
|ICc(s)| =141(q)| - |Ts(q)]. As Cg(s) contains C4(s), of the order given above, |Cg(s)| <
[A1(@)](g* = (g +1)> < (¢ +1)%¢".

If G = E§(q), then we work in a subsystem subgroup A of type A;As containing
SLa(q) o SL§(q). Again let v € Fu have order (¢* — 1); and define s, € SL§(q) as the
previous paragraph. Define s1 € SLa(q) to be conjugate over F, to diag(y2(4+€), y2(a+e))
if ¢ = e mod 4, and to I otherwise. Set s = sys5. Then |C(s)| is equal to (¢* —1)(g—¢)?
if ¢ = e mod 4, and to |A1(q)|(¢* — 1)(q — €) otherwise. By [39, 11.10],

£(E6) L A1As = ﬁ(A1A5) + (VAl(l) (= VA5 ()\3)),
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and the second summand is Vo ® A3(Vg), where V5, Vg are the natural modules for Ay, As.
We check that s has no nonzero fixed points on this tensor product, and it follows that
Cpy(s) = Ca,4,(5); hence Cg(s) = Cal(s), giving the result.

Now let G = Fy(q). Here we construct our element s in a subsystem subgroup A =
By(q) = Sping(q). It is convenient to define it in the quotient Q9(¢) and take a preimage.
We follow the proof of Lemma 7.7. Let v € Fp2 have order (¢*> — 1)2, and define s4 €
GL1(¢?) < GLa(q) < SO;(q) to be conjugate over F, to diag(y,7?,7~%,779). Then
s4 has spinor norm —1. Let ¢ = ¢ mod 4 with ¢ = £1, and define so € SO5(q) to be
conjugate to diag(y?+¢, v~ (4+9)). Then sy also has spinor norm —1, so ¢, := diag(sy, 52) €
Q6(q). Finally, let ty := diag(—1,—1,1) € Q3(¢q) and define s € A to be the preimage of
diag(t1, t2) € Q9(q). Then [Ca(s)| = (¢* — 1)(¢ — €)*. Now

,C(F4) } By = ﬁ(B4) D VB4 ()\4).

The second summand is the spin module for By(q), which restricts to the preimage of
Q6(q) xQ3(q) as (Va®@ Vo) & (V] ®@V5'), where each summand is a tensor product of natural
modules for the isomorphic group SL§(q) x SLa(q). Elements of SLi(q), SL2(¢) inducing ¢;,
ty are z1 := diag(1,~,79, v~ 1), xy := diag(y(7~)/2,4=(@=9)/2) respectively. The tensor
product of x; and 9 has fixed point space of dimension at most 1, and it follows that
dim C (g, (s) = 4 or 6. If it is 4 then Cg(s) = Ca(s), while if it is 6, then Cp,(s) = A1T3,
whence |Cg(s)| < |A1(q)|(g + 1)3, as in the conclusion.

For G = G2(q) or 3D4(q), we pick our element s in a subgroup A = SL3(q): let v € e

have order (q2—1)2 and take s to be conjugate over F, to diag(v, 79, a) where v = Ao

Now L(G2) | Ay = L(A2) + V3 + V5 and L(Dy) | Ay = L(As) + V5 + (V5)3 + V2, where
V3 is the natural 3-dimensional module and V; is trivial. It follows that Cpr(g,)(s) and
Cr(py)(s) have dimensions 2 and 4 respectively, so Cg(s) is a maximal torus, as in the
conclusion.

Finally, for G = 2G5(q), an element s of order 4 has centralizer of order ¢+ 1 (see [66]).
This completes the proof.

Lemma 7.17. Theorem 7.14 holds for Es(q), E7(q), Ga(q), 2G2(q), and also for E§(q)
with ¢ = € mod 4.

Proof. Let G be one of these groups, and let s be the 2-element of G produced in Lemma
7.16. As in the proof of Proposition 7.9, it is sufficient to establish that for every g € G,

3 X(I'Xg) g (7.3)
x€lrr(G)
and to prove this it suffices to show
3
Z [x(s)| <1.
x(1)

1#x€Irr(G)

Lemma 7.15 implies that x(1) > N for all nontrivial irreducible characters x, where N is
as in Table 4. Hence

DB 1Ca(s) /2 C(s)3/2 (32
2 b;((l))| <| Gg\r)’ Z ‘X(5)|2:| va)’ < TR

1#£xelrr(Q) x€lrr(G)

where C is as in Table 4. One checks that C3/2 /N < 1 for the groups in the hypothesis,
so the lemma follows. ]

Lemma 7.18. Theorem 7.14 holds for E§(q) with ¢ = —e mod 4, Fy(q) and 3D4(q).
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Proof. Let G be one of these groups, let s be the 2-element of G from Lemma 7.16, and
let g € G. As in the previous proof,

s)[3 Cnh(s 3/20 1/2 03/20 1/2
T Ix(gl(l\;;(g)l < [Ca(s)l = al9)l” _ Ij\%(g)! ’

1#x€lrr(G)

where C, N are as in Table 4. The result is proved if the above sum is less than 1, so we
may assume that
N4

[Cclo)l = 75 (7.4)
Our strategy is to show that an element ¢ satisfying this bound must lie in a subgroup of
G that is a commuting product of quasisimple classical groups. (A similar strategy was
carried out in Section 7 of [34].) The conclusion then follows immediately from the results
in Section 7.3, where Theorem 7.14 is established for classical groups.

Consider G = Fy(q). Here (7.4) gives

(¢®+q* +1)*
(g +1)%°

Assume first that ¢ is a unipotent element. The classes and centralizers of unipotent
elements in G are given in [39, Table 22.2.4], and every centralizer satisfying the above
bound has even order. Hence there is an involution ¢ such that g € Cg(t). Now Cg(t)
is either a quasisimple group B4(q), or a group of the form (SL2(q) o Spg(g)).2, with the
unipotent element g lying in the subgroup SLa(gq) o Spg(q). Hence g is in a product of
quasisimple classical groups, except possibly in the case where ¢ = 3 and g € Cg(t) =
(SL2(3) o Spg(3)).2. In the latter case, a computation shows that every element of Cg(t)
is a product of three 2-elements.

[Calg)l = (7.5)

Now assume g is not unipotent; say g = xu has semisimple part x # 1 and unipotent
part u € Cg(z). Now Cg(x) is a subsystem subgroup of G, and the bound (7.5) forces
this to have a normal subgroup D = By4(q), Di(q), Bs(q), C3(q), A5(q), Ba2(q) or A5(q).
Then z € Cg(D), and the unipotent elements of N (D) generate a subgroup of DCg (D),
which is contained in a subsystem subgroup S := B4(q), A1(q)C3(q) or A5(¢q)AS5(q). Hence
g = xu € S. Observe that S is a product of quasisimple classical groups, except for
A1(q)C3(q) when g = 3; however, we already noted that every element of this subgroup is
a product of three 2-elements in its normalizer. This completes the proof for G = Fy(q).

The proof for G = Ef§(q) is similar. If g is unipotent then the bound (7.4) and [39,
Table 22.2.3] imply that Cg(g) has even order, so g € Cg(t) for some involution ¢. This
centralizer is either (¢ — €) o D§(q) or (SLa(q) o SL§(¢)).2. Hence the unipotent element g
lies in Dg(q) or SLa(q) o SL§(g), and this is a product of quasisimple groups, apart from
the latter when ¢ = 3, in which case a computation shows that every element of Cg(t)
is a product of three 2-elements. When ¢ is not unipotent, the bound (7.4) is actually
stronger than the bound used in the proof of [34, Theorem 7.1] for non-unipotent elements
of E§(q), and this proof shows that such elements lie in a product of quasisimple classical
subgroups. Alternatively, an argument similar to that for Fy(q) gives the result in this
case.

Finally, let G = 3D4(q). The unipotent classes and centralizers can be found in [57],
and the unipotent case is handled exactly as for Fy(q). For ¢ = zu non-unipotent as
above, (7.4) implies that Cg(x) has a normal subgroup D = A;(¢®) or AS(q). In the first
case we argue as before that g = zu lies in DCg(D) = A1(¢®) o A1(q). In the second case
Ca(s) = ((¢> +eq+1) 0 D).(3,q — ¢), and we can assume that u # 1 (otherwise g = =
is real, and the result follows from Lemma 2.7. The group generated by the unipotent
elements of Cg(s) is just D, so u € D. But the centralizer of a nontrivial unipotent
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element of D = A$(q) has order at most (¢ + 1)¢® (see [39, Chapter 3]), so this gives
|ICa(9)| < (¢* +eq +1)(q + 1)¢>, which contradicts (7.4). ]

8. ASYMPTOTIC SURJECTIVITY: PROOFS OF THEOREMS 4, 5, AND 6

Lemma 8.1. Let k,Q > 2 be integers. There is an explicit integer D = D(k,Q), depending
on k and @ and divisible by 8, such that, for every integer N with Q(N) < k and for every
q < Q, every central element of G € {SLp,(q), SUn(q), SPay,(q), 3. (q)} is an Nth power
in G whenever D|m.

Proof. We define D = 2(Q")**! in the case G = SL or SU, and D = 2*¥*1 in the case
G = Sp or QF. Tt suffices to prove the claim for nontrivial z € Z(G).

Consider the case G = SL;,(q) or SU,,(¢), and set ¢ = +, respectively ¢ = —. Since
2|m,

GLE,(q) > GLyya(g?) = T = Cyn_1.

Furthermore, T} := T'NG has index dividing ¢— e and contains Z(G); in particular, z € T7.
If p is a prime dividing |z|, then p|(¢ — €), whence p|(¢?> — 1) and p < ¢+ 1 < Q. Thus

(G0) = (), ta-a,

() ===

SO

1ol
Write N = N1 Ny, where all prime divisors of N; divide |z| and ged(NVg, |z]) = 1. Since
Q(N) < k, we have shown that Ny divides |T1|/|z]. As T} is cyclic, we can find t € T}
such that all prime divisors of |¢| divide |z| and ' = 2. Since ged(Na, [t]) = 1, t = V2
for some h € T. Tt follows that z = A", as desired.
If G is Spa,,(q) or Q3,.(g), then |2| = 2 and ¢ is odd. We can use the same argument

as above, taking T} to be a cyclic maximal torus of order ¢™ — 1 in Sp,,,(q), respectively
SO3,,(4). .

Let ¢ = pf be a prime power, let n > 13 be an integer, and let € = +. If € = +, then we
use £*(¢" — €) to denote a primitive prime divisor ¢(p,nf) if 24 n, and £(p,nf)l(p,nf/2) if
2|n. If e = —, then we use £*(¢" — €) to denote a primitive prime divisor ¢(p, 2nf). Recall
the set R(G) for a classical group was defined after Theorem 2.1. It is convenient to also
include £(p,nf/2) in R(SL,(p’)) when 2|n.

Lemma 8.2. Let g be a prime power, let n > m > 13 be integers, and let o, 5 = +.
Suppose that ged(€*(¢" — «), 0*(¢"™ — )) > 1. Then either (n,a) = (m, ), or a =+ and
n € {2m,4m}.

Proof. If n =m, then ged(¢*(¢" — «), £*(¢"™ — 5)) > 1 certainly implies a« = . Suppose

n>m. If « = —, then £*(¢" — a) = ¢(q,2n) does not divide ]_[1221_1(qZ — 1), so it cannot
be non-coprime to £*(¢"™ — ). So a = +, and ged(¢*(¢" — 1), £*(¢™ — £)) > 1 implies that
n =2m or n = 4m. ]

Now we prove an analogue of [31, Proposition 3.4.1] for groups of type A and C":

Proposition 8.3. For every integer a > 1, there are explicit positive integers Ni(a) and
Vi(a) such that the following statements hold. Let n > 2a + 2 be any integer and q be
any prime power. Let s and t be regular semisimple elements of G := Sps,(q) belonging
to mazimal tori Ty and Ty of type T,V3, and T31, | respectively, where e; = + and
€169 = —eseq. Then the number of distinct irreducible characters of G which vanish neither
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on s nor ont is at most Ni(a). Likewise, the absolute values of these characters on s and
t is at most Vi(a).

Proof. (i) First we show that the maximal tori T} and T5 are weakly orthogonalin the sense
of [31, Definition 2.2.1] whenever ejea = —eseq. We follow the proof of [31, Proposition
2.6.1]. The dual group G* is SO(V') = SOs2y,+1(q), where V = ]F?]”Jrl is endowed with a
suitable quadratic form (). Consider the tori dual to 71 and T3, and assume g is an element
belonging to both of them. We need to show that ¢ = 1. We consider the spectrum S of
the semisimple element g on V' as a multiset. Then S can be represented as the joins of
multisets X LY U {1} and Z U T U {1}, where

n—a—1 n—a—1
- -1 .- -
X i={x,29,... a1 I A S 1,
Yoi={yy% ..y Ly
n—a—2 a
- -1 - -
Z:={z24,...,29 A RN

T o= {t,t9,... 19" t71 =9 .. t79"},

for some x,y, z,t € F;. Furthermore,

n—a__ a__ n—a—1__ a+1_
24 I €3 — 44 €@ _ 1

Let A be a multiset of elements of IF‘q, where 1 € A, the multiplicity of each element of
A is 2n + 1, and with the property that if © € A then w9, u~' € A. We claim that if
|JAN S| > 1 then A D S. Indeed, since the multiplicity of every u € S is at most 2n + 1, if
AN(XU{1}) > 1then AD X, and if |[AN(XU{1})[,|[AN(YU{1})| > 1 then A D S; and
similarly for Y, Z, T. Now if |[AN S| >1but A 2 S, then S = X UY U {1} implies that
|ANS| € {2a+1,2(n—a)+1}. But S = ZUTU{1} also, so |[ANS| € {2a+3,2(n—a)—1},
which is a contradiction as n > 2a + 3.

Applying the claim to the multiset A consisting of those u € F, such that wd" e =1,

each with multiplicity 2n + 1, and noting that A O X U {1}, we deduce that " "~ =1
for all w € S. Arguing similarly, we obtain

n—a—1__

a+1

pd" i me — et e — g4 € — 4" e —q
for all u € S.
Consider u € S. Suppose for instance that e3 # €1. In particular,
uqnfafl-i-q — 4 e — 1,
whence u9t! = 1. The condition €;ea = —e3es now implies that es = €4, s0 |u| divides

ged(q®T! — €2,¢% — €2)|(g — 1). Tt follows that u? = 1 for all u € S. The same argument
applies to the case e3 = ¢;. We have shown that u?> = 1 for all w € S. Now if 1 has
multiplicity at least 2 in S, then applying the claim to the multiset A" consisting only of
1 with multiplicity 2n + 1, we see that g = 1y as stated. It remains to consider the case
g = diag(—1,—1,...,—1,1). Now Ker(g + 1y) is a quadratic subspace of V' of type €;€e2
and also of type e3eq, a contradiction.

(ii) Now we proceed exactly as in the proof of [31, Proposition 3.4.1], using the main
result of [44] which holds for both types B, and C,. Also note that the proof of [31,
Proposition 3.4.1] uses only the weak orthogonality of the two tori 71 and T but not the
signs ¢; in their definitions. [ |

Proposition 8.4. For every integer a > 1, there are explicit positive integers No(a) and
Va(a) such that the following statements hold. Let e = £, q any prime power, and let n be
any integer greater than 2a+2. Let s and t be regular semisimple elements of G := SLS (q)
belonging to mazimal tori T1 and Ty of type Th—q,q and Tyi1n—a—1. Then the number of
distinct irreducible characters of G which vanish neither on s nor on t is at most Na(a).
Likewise, the absolute values of these characters on s and t is at most Va(a).
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Proof. (i) Again, we show that the maximal tori 77 and T3 are weakly orthogonal. Here,
the dual group G* is PGLY (V) = PGL;,(q), where V' = Fp for e = + and V = Iy, for
e = —. Consider the complete inverse images 73,4 o and T}, _q—1 q+1 of the tori dual to T}
and Ty in H := GL(V), and assume ¢ is an element belonging to both of them. We need
to show that g € Z(H). The multiset S of eigenvalues of the semisimple element g on V'
can be represented as the joins of multisets X UY U {1} and Z U T U {1}, where

X = {.’L‘, xqe’ . 7$(q6)”*a71}’ Y — {y’ yqe7 . y(qg)afl}’
Z={z29, ... ,z(qf)n_a_Q}, T .= {t, 7, ... 7t(q6)"}7

for some x,y, z,t € F;; furthermore,

nfafl_l

plan =1 _ y(QE)“—l — (a9 — 4@ t=1 _ ¢

Let A be a multiset of elements of F,, where the multiplicity of each element of A is n,
and with the property that if u € A then u?¢ € A. We claim that if ANS # () then A D S.
Indeed, since the multiplicity of every u € S is at most n, if AN X # () then A D X,
and if ANX,ANY # () then A D S; and similarly for Y, Z, T. Now if AN S # () but
A2 S, then S = X UY implies that |[AN S| € {a,n —a}. But S = ZUT as well, so
|JANS| € {a+1,n —a— 1}, which is a contradiction as n > 2a + 3.

Applying the claim to the multiset A consisting of those u € F, such that w1 =
each with multiplicity n, and noting that A D X, we see that ©(49" “~1 =1 forallu € S.
Arguing similarly, we see that (99" *""=1 =1, g0 %1 =1 for all u € S. Now applying
the claim to the multiset A’ consisting of only x but with multiplicity n, and noting that
A D X, we conclude that A =5 and g = x - 1y, as stated.

(ii) Now we proceed as in the proof of [31, Proposition 3.1.5]. Assume that y € Irr(G)
and x(s)x(t) # 0. By (i) and [31, Proposition 2.2.2], x = Xuni,« is & unipotent character
of G labeled by a partition o = n. If x, € Irr(S,,) corresponds to «, then

Xa(s1) = x(s) # 0, Xxa(t1) = x(t) #0,

where s; € S, has cycle type (n — a,a) and t; € S, has cycle type (n —a — 1,a + 1).
Arguing as in the proof of [31, Corollary 3.1.3], one can show that there are at most 4a+ 6
possibilities for «, and |xa(s1)], [xa(t1)]| < 4. n

Proposition 8.5. For every positive integer k, there are explicit positive integers A =
A(k), By = B1(k), and By = Ba(k), each depending on k, with the following property. For
every n > A and for every prime power q, every G € {SLy(q),SU,(q), Sp,(q), Spin(¢)}
contains k + 1 pairs (s;, t;) of reqular semisimple elements, 1 <i < k + 1, such that:

(a) If i # j, then ged([si| - [t], |sj] - [t5]) = 1;
(b) For each i, there are at most By irreducible characters of G that vanish neither on
s; mor on t;. The absolute values of these characters at s; and t; are at most Bs.

Proof. (i) First we consider the case G = Spin5,(¢) with n > 10k + 65. For odd
a; =21+ 11,1 <i < k+1, there are regular semisimple elements s;, t; of G belonging to
maximal tori 7}' and T? of type T, , (of order (¢"~% — €)(¢% — 1)) and T a4t
(of order (g"~%~! 4 €)(q%*! + 1)) respectively. In fact, we can choose

|si] = £(¢" % —€) - £*(q% — 1), |t;] = £ (¢" " +e) - £ (¢“T + 1).

By [31, Proposition 3.3.1] the number of distinct irreducible characters of G that vanish
neither on s; nor on t; is bounded by some explicit integer Bj(k), dependent on k but
independent of n, ¢. Likewise, the absolute values of these characters on s; and t; are
bounded by some explicit integer Ba(k), dependent on k but independent of n, g.
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It remains to check the condition (a). Let 1 < i < j7 < k+ 1. By the choice of n,
n/5>a; +1>a; +3 > 16. It follows that

2(n—a; —1)>n—a; >n—a; — 1> max(n — aj,4(a; + 1)).

Hence, by Lemma 8.2, each of £*(¢"~% — €) and £*(¢"~%~! + ¢) is coprime to £*(¢"~% —
€) - (g% +€) - £*(q% — 1) - £*(¢¥ T +1). Similarly, as n — a; — 1 > 4(a; + 1), each
of £*(g% — 1) and £*(q%T! 4+ 1) is coprime to £*(¢"~% —€) - £*(¢"~%~! + ¢). Finally, since
aj and a; are distinct odd integers, Lemma 8.2 also yields that ¢*(q% — 1) - £*(g%*! + 1)
is coprime to £*(¢% — 1) - £*(¢%*! + 1), and we are done.

(ii) Suppose G' = Spiny,, , (¢) with n > 10k+465. For odd a; = 2i4+-11,1 < i < k+1, there
are regular semisimple elements s;, t; of G belonging to maximal tori Ti1 and Ti2 of type
Trj_—’—;,ai (of order (¢"~% —1)(¢* —1)) and T,” . ;.1 (of order ("% L 1) (g%t + 1))
respectively. In fact, we can choose

|si| = 05 (q" "% — 1) - 0% (¢% — 1), |t;| = f*(qn_ai_l +1)- f*(qaﬁ_l 1),

By [31, Proposition 3.4.1] the number of distinct irreducible characters of G that vanish
neither on s; nor on t; is bounded by some explicit integer Bj(k), dependent on k but
independent of n, gq. Likewise, the absolute values of these characters on s; and t; are
bounded by some explicit integer Ba(k), dependent on k but independent of n, ¢q. Finally,
condition (a) is satisfied as shown in (i).

(iii) Consider the case G = Sps,(q) with n > 10k + 65. For odd a; = 2i + 11, 1 <
i < k + 1, there are regular semisimple elements s;, t; of G belonging to maximal tori
T! and T? of type T:;Z,ai (of order (¢"~% — 1)(¢* — 1)) and T;;;-—l,aﬂrl (of order
(q"%~1 —1)(¢g%*! + 1)) respectively. In fact, we can choose

‘Si‘ = E*(qn—ai — 1) .Z*(qai _ 1)’ |tl‘ = g*(qn—ai—l o 1) . f*(qaﬁ_l + 1)‘
Now we can finish as in (ii) but using Proposition 8.3.

(iv) Consider the case G = SL{(q) with n > 4k +17. For a; = 2i +5, 1 < i <
k + 1, there are regular semisimple elements s;, t; of G belonging to maximal tori Ti1
and T? of type Ty—q;.q; (of order (¢~ % — "~%)(g% — €%)) and T),—q,—1,4;+1 (of order
(qn—ai=t — en—aiml)(gaitl _ caitly) yegpectively. Next, observe that for every m > 7, there
is a prime ¢(—g, m) that divides (—¢)™ —1 but does not divide H?:ll((—q)’ —1; namely, we
can take {(—q,m) = £(q,2m) if 2t m, {(—q,m) = €(q, m) if 4|m, and £(—q,m) = £(q,m/2)
if 4|/(m — 2). In particular, if m > m’ > 7 and £(ge, m) = £(ge,m’), then m = m’. Now we
can choose

|si| = l(qge,n — a;) - (g€, a;), |ti] = €(qe,n —a; — 1) - l(qe, a; + 1).
Condition (b) follows from Proposition 8.4. By the choice of n, n/2 > a; > a; +2 > 9 if
1<i<j<k+1. It follows that
n—a—1>n—a;>n—-a;—1>a;+1>a; >a;+1,
so condition (a) is satisfied. ]
Lemma 8.6. Let q be an odd prime power and let g € G := SO(V) = SO (q) be a
non-semisimple element with det(g + 1y) # 0. Then there exists a g-invariant, nonzero,

totally singular subspace W C V' such that det(g|lw) = 1. Furthermore, if dimW = n/2
for all such W, then V is of type + and 4|n.

Proof. (i) Let s, respectively u, denote the semisimple, respectively unipotent, part of
g, and let (-,-) denote the bilinear form on V. It suffices to consider the case where the
g-module V is orthogonally indecomposable. Suppose first that det(g — 1y) = 0, which
implies that s = 1y. Since u # 1y, there are 0 # e, f € V such that u(e) = e and
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u(f) = e+ f. It follows that (e,e) = 0, and we can take W = (e)r,. Note that the case
dim W = n/2 is impossible here, as SO5(g) does not contain non-semisimple elements.

(ii) Next we consider the case where g has an eigenvalue A € Fy* ~\ {£1}. The inde-
composability of g implies that Cg(s) = GL,,/2(q); furthermore, V; := Ker(s — A - 1y)
is a maximal totally singular subspace of V' for ¢ = £. Pick 0 # v € Ker(u — 1y) N V..
If (vy,v-) # 0, then (vy,v_)r, is a g-invariant non-degenerate subspace of V', and so
V = (vy,v_)r,, implying that g = s is semisimple, a contradiction. So (vy,v_) =0, and
we can take W = (v, v_)F,.

Suppose now that g has an eigenvalue A # 41 with A?"! = 1. The indecomposability

of g then implies that Cg(s) = GU,,2(q) and (-,-) comes from a g-invariant Hermitian
structure on U := IF”2/2. Now s acts on U as A - 1y, and again since u # 1y we can find

0 # e, f € U such that u(e) = e and u(f) = e + f. It follows that e is totally singular in
U, and we can take W = <6>Fq2.

The existence of W in the more general case where Cg(s) = GLE (%) follows from the

previous two cases, by base changing to Fy» if € = + and F2 if € = —. In each of these
cases, dim V' = 2ab and dim W = 2b. Hence the equality dim W = (dim V') /2 implies that
V is of type + and dim V' = 4b. ]

Let G = CI(V) € {SL,(q),SUn(q),Sp,(q), % (q¢)}. In what follows, by a primary
eigenvalue of g € G we mean an eigenvalue A of g with dimKer(¢g — 1y) > n/2. It then
follows that A9~¢ = 1 in the SLf-case and A\*> = 1 in the Sp/SO-case. Also, recall the
support supp(g) was defined in [31, Definition 4.1.1]. We use the convention that in the
case G = SU(V), the relevant subspaces are considered as vector spaces over F 2.

Proposition 8.7. Given any positive integers k, C, Q, and D = D(k,Q) as defined
in Lemma 8.1. Then there is an explicit positive integer N = N(k,C,D,Q) such that
the following statement holds. Let q < @ be a prime power, and let G = Cl(V) €
{SL,(q),SUn(q),Sp,,(q), % (q)} withn > N. Let g be any element of G with supp(g) < C.

(i) g has a primary eigenvalue A.
(ii) There exist 2k 4+ 1 g-stable, orthogonal if Cl # SL, decompositions V- = U; & W;,
1 < j < 2k+1, such that g € CI(U;) x CI(W;), 5D|dimU;, dimW; > 13,
U; € Ker(g — X - 1y), and the 4k + 2 sets R(CL(U;)), R(CI(W;)) are pairwise
disjoint.
(iii) Assume in addition that 2t q, G = Q(V), g is not semisimple, and A = —1. Then
at least one of the following statements holds.
(a) =1y € Q(V).
(b) There exist 2k + 1 g-stable orthogonal decompositions V.= U; @ W;, 1 <
J < 2k +1, such that g € QU;) x Q(Wj), 20C|dim U, dim W; > 13, the
components of g in QUj;) and Q(W;) are both non-central, and the 4k + 2
sets R(2UUj)), R(QWS)) are pairwise disjoint.
(c) There exist 2k +1 g-stable totally singular subspaces W; CV, 1< j < 2k+1,
such that Stabgo vy (Wj) has a Levi subgroup SO(Uj) x GL(Wj), dim W; > 10,
dimU; > 13, g projects onto a non-central element in each of Q(U;) and

SL(W;), and the 4k + 2 sets R(2(Uj)), R(SL(Wj;)) are pairwise disjoint.
Proof. We choose
n>N=N(k,C,D,Q) =9 -5**4C + D). (8.1)

(i) Since supp(g) < C < n/2, by [31, Proposition 4.1.2] we see that g has a primary
eigenvalue A\. Moreover, arguing as in the proof of [31, Lemma 6.3.4], we deduce that ¢
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fixes an (orthogonal if Cl # SL) decomposition V = U & W, where dimU > n — 2C and
UCKer(g—A-1y).

(ii) Now we consider a chain of (non-degenerate if Cl # SL) subspaces
UlCUQC...CU2k+1CU

with e; := dimU; = 5D > 40, and moreover U; is of type + if Cl = Q (this can be
achieved since dimU > n —2C > 521D 44 by (8.1)). We also define W; := U]-J-, so that

VZUJ‘@WJ‘, dj = diij Zn—5jD.

Write ¢ = p/ for a prime p. If Cl # SU, observe that each prime in R(CIL(U;)) divides
p®—1 for some a < e, f, but cannot divide any p’—1 with b < e; f/5. Similarly, if C1 = SU,
then each prime in R(CI(U;)) divides p* — 1 for some a < 2e;f, but cannot divide any
p’ — 1 with b < 2¢;f/5. It follows that the 2k + 1 sets R(Cl(U;)) are disjoint. For the
same reason, the condition

d; > n—5D > 5%+2p
implies that each R; := R(CI(WV;)) is disjoint from all R(C1(U;)). We claim that
RiNR; = 0 (8.2)

whenever 1 < ¢ # j < 2k + 1. Assume the contrary: so £ € R; N'R; for some ¢ < j. By
the construction of R;,

g = 1) (@472 = 1) (¢4 1),
and similarly for j. Note that
(5%t —5)D > d; — d; = (57 — 5')D > 20D > 160.
It follows that ¢|(¢® — 1), where
316 < 2d; —4 —2d; < e <2d; —2d; +4 < 2-5*T1D.
On the other hand, (8.1) implies that
(dj —2)/4 > (n— 5D —~2)/4>2.51D,

We have shown that some ¢ € R(Cly,(q)) divides p*/ — 1 with 316 < e < (d; — 2)/4. This
contradicts the construction of R(Cly, (¢)) in Theorem 2.1, according to which £ = £(p, af)
for some a > (d; — 1) f/4.

(iii) We may now assume that 2 { ¢, G = Q(V), ¢ is not semisimple, and A = —1.
If —1 is the only eigenvalue of g on V ®p, F,, then the semisimple part s of g is —1y,
whence we arrive at (a). We will therefore assume that —1 is not the only eigenvalue of
gonV Qp, Fq. Recall the g-stable decomposition V = U & W with dimU > n — 2C and
U CKer(g+ 1y) C Vp := Ker(s + 1y) # V. Note that det(s|y,) = 1.

Suppose that Ker(g + 1y) # Vo, and decompose Vy = U @ Uy orthogonally. Note that
dim Uy < 2C'. Then we consider a chain of non-degenerate subspaces

UoCUlCUQC...CUQk_HCVb

with dimU; = 4 - 5/C > 20 and moreover U, is of type + for 1 < j < 2k + 1 (this can
be achieved since dim Vy > n — 2C > 4 - 52¥1C + 4 by (8.1)). We also define W; := UjL
for j > 1. Now, g has a unique eigenvalue —1 but does not act as a scalar on U; (as
Up # 0), and has at least two eigenvalues on W; ®r, F, (as Vy # V) if j > 1. Furthermore,
glu; € QUj) as U has type + and 4|dim U, whence g € Q(U;) x Q(W;). The same
arguments as in (ii) using (8.1) shows that the 4k + 2 sets R(Cl(U;)), R(CI(Wj;)) are
pairwise disjoint, and we arrive at (b).
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Assume now that Ker(g + 1y) = V5. Changing the notation, we let W := V- so that
V = Vy@W. Note that g|y € SO(W) is not semisimple, and det(g|w + 1w ) # 0. Hence by
Lemma 8.6, g stabilizes a nonzero, totally singular subspace Wy of W, with det(g|w,) = 1.
As supp(g) < C, we have dim Wy < C. Since W is non-degenerate, we can find another
s-invariant totally singular subspace Wy, of W such that Wo := Wo & W/ is non-degenerate
(of type 4). Now we consider a chain of s-invariant non-degenerate subspaces of type +

VNV()CW1CWQC...CW2]€+1CV0@WQ

with dim W]- =2c-5/ >20for 1 <j<2k+1. In each Wj, we can find a totally singular
subspace W; = Wy @ (Vo N W;) of dimension ¢ -5 > 10 which is then g-invariant. Here,
we choose ¢ € {3C — 1,3C} such that

¢ = dim Wy(mod 2), (8.3)

and so det(g|w, ) = det(g|lw,) = 1. By the construction of W}, g has eigenvalue —1 and at
least one more eigenvalue # —1 on W; ®p, El, SO g]Wj is non-central.

Now, Stabgo(y)(W;) has a Levi subgroup SO(U;) @ GL(W;), where U; := (W;)*. Note
that, since det(glw,) = 1, by [26, Lemma 2.7.2] there is an h € Q(W;) that induces the
same action on W; as that of g. But g € Q(V), so we conclude that the projection ¢’
of g onto SO(Uj) is contained in Q(U;). Note that ¢’ always has —1 as an eigenvalue
on U; ®p, F, as W2k+1 2 Vo, and has at least one more eigenvalue unless W = Wo,
in which case 2|(dimWp) by Lemma 8.6. Suppose that ¢’ is central in Q(U;). Then
g = —1y;, € Q(Uj). Furthermore, 2|c by (8.3), when 4|(dim W;). But W; is of type +,
50 —lyj € Q(W,). As V = U; @ W;, we conclude that —1y € Q(V), i.e. (a) holds. The
claim about disjointness of R(2(U;)) and R(SL(Wj;)) now follows by the same arguments
as in (ii) using (8.1). []

Proof of Theorems 4 and Theorem 5. Let k£ be a positive integer and let N be
any positive integer with w(/N) < k. For Theorem 5(i) we also assume that Q(N) < k.
By Proposition 2.6, it suffices to prove the theorems for finite simple classical groups
S of sufficiently large rank. So we assume that S = G/Z(G) and G = Cl,(q) with
Cl € {SL,SU, Sp, Q°} (and € = %). Let V :=Fy (if C1 #SU) and V := Fe (for C1 = SU)
denote the natural G-module. Also set ¢ = + if C1 = SL and ¢ = — when Cl = SU.

(i) Apply Proposition 8.5 to G and consider n > A. Since w(N) < k, by 8.5(a) there is

some 79 between 1 and k 4 1 such that the orders of s := s;, and t := ¢;, are coprime to
N. Define

Q= Q(k) := (B1B})"™.
We claim that if ¢ > @, then every g € G~ Z(G) belongs to s& - t&, so it is a product

of two Nth powers. Indeed, supp(g) > 1 since g ¢ Z(G). It follows by [31, Theorem 4.3.6]
and the condition on ¢ that

1
x(9)! < q—1/481 < .
x(1) B B;

for every 1¢ # x € Irr(G). Now condition 8.5(b) implies that

3 X(s)x()x(9)l _ BiB _

2 - )
la#x€lrr(G) X(l) BlB2
so g € s¢-t% and is a product of two Nth powers as desired. Thus we have established
Theorems 4-5 for classical groups defined over a sufficiently large field IF,,.
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(ii) From now on we may assume that 2 < ¢ < ). Suppose that g € G satisfies

supp(g) = C = C(k) := (logy Q)*.
By [31, Theorem 4.3.

[=2)

I
|

=

DI ~v/suppi)/481 < 9—logy Q)ast — 1

x(1) - B1Bj
for every 1g # x € Irr(G). Hence, as in (i), g € s¢ - t%, so g is a product of two Nth
powers. We have shown that every element in GG, with support > C' and whenever n > A,
is a product of two Nth powers. Applying Gow’s theorem, see e.g. [25, Lemma 5.1], we
see that the same conclusion also holds for all non-central semisimple g € G.

(iii) It remains to consider the non-semisimple g € G with supp(g) < C. Recall the
integer D = D(k, Q) defined in the proof of Lemma 8.1, which satisfies

8D, (q—€)|D. (8.4)

We choose n > N(k,C, D, Q) as defined in Proposition 8.7. Let A denote the primary
eigenvalue of g.

Now we apply Proposition 8.7(ii), and assume in addition that A - 1y € Q(V) if G =
Q(V). Since w(N) < k, there is some ig such that N is not divisible by any prime
in R(CI(W,,)). Hence, by Theorem 2.1, H := Cl(W;,) admits two regular semisimple
elements s’ and ¢ whose orders are coprime to N, and such that (s') - (#')¥ D H\Z(H).

Next, G contains a subgroup Cl(U;,) x Cl(W;,). Note that ¢g acts on U;, as the scalar
A. Furthermore, in the case of Theorem 4 and Theorem 5(ii) (recall that we are assuming
A1y € Q(V) if G = Q(V)), the scalar transformation A- 1y belongs to Z(G). Replacing g
by (A~!-1y)g, which does not change the coset gZ(G) of g in S, we obtain x := g|UZ.0 =1u,;
in particular, x = vV for u := 1Ui07 and we also set Ag := 1. In the case of Theorem 5(i),
(N) < k. Hence the condition (8.4) implies that  := g|v, € Z(Cl(Uj,)), whence z = uN
for some u € Cl(U;,) by Lemma 8.1; set Ag := A.

Since g fixes W;,, it follows that ¢ = zy with y := 9|Wi0 € H = Cl(W,,). Note
that y has Ao as an eigenvalue (as dimU;, < dimU) but does not act as the scalar Ao
(as otherwise g € Z(G)). It follows that y € H N~ Z(H) C (s) - (), so y = vNw?
with v,w € H. Note that u € Cl(U;,) centralizes v € H. Now the claim follows, since
g=ay=u" - vNw" = (v)Nwh.

(iv) It remains to prove Theorem 4 in the case where G = Q(V) but A - 1y ¢ Q(V); in
particular, 2 4 ¢ and A = —1. Now we apply Proposition 8.7(iii) and note that assertion
(a) does not hold. Assume assertion (b) holds. Since w(N) < k, there are at least k + 1
values of j such that N is coprime to all primes in R(€Q(U;)). The condition w(N) < k

then implies that there is some jy (among these values j) such that N is also coprime to
all primes in R(Q(W},)). Applying Theorem 2.1 to Q(Uj,) and Q(Wj,), we see that

g=a"VoV . NaV = VeV oV aN = (ac)N - (bd)N
for some a,b € Q(Uj,) and ¢,d € Q(Wj).
Assume now that we are in the case of Proposition 8.7(iii)(c). Arguing as above, we
can find jo such that N is coprime to all primes in R(Q2(Uj,)) U R(SL(W},)). As g is

non-central in both projections to (Uj,)) and SL(W, ), we can apply Theorem 2.1 to get
regular semisimple N'-elements a,b € Q(Uj,), ¢,d € Q(W},) such that

g=aVoN . NaV v =N bV aN v = (ac)N - VdY v
for some v € U and |d| = ¢*(¢" — 1) for r := dim Wj,. Here, U is the unipotent radical

of Stabgo 1) (Wj,) = UL, and L = SO(Uj,) x GL(Wj,). Our construction of b, d implies
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that Cg(t) < L for t := bNd"; in particular, Cg(t) N U = 1. As t normalizes U, the map
u + t~lutu™! maps U into U injectively, whence also surjectively. Thus {utu™' |u € U}
coincides with the coset tU. Hence, tv is G-conjugate to t = (bd)", and so tv = h" for
some G-conjugate h of bd. Thus g = (ac)NhY, as desired. n

Proof of Theorem 6. Let k£ and N be any positive integers with w(N) < k.

(i) Let G € {SLy(q),SUn(q), Spa,(q), Spin(q)}. Apply Proposition 8.5 to G and to
k 4+ 1 instead of k and consider n > A. Since w(N) < k, by 8.5(a) there is some ig, i1
between 1 and k-+2 such that the orders of s := s;,, t := t;,, and v := s;, are coprime to V.
Consider any 1¢ # x € Irr(G). Note if r is the rank of the algebraic group corresponding
to G, then since v is regular semisimple we see that Cg(v) is a maximal torus and so has
order at most (g + 1)" < ¢*%", whence |x(v)| < ¢°%". On the other hand, x(1) > ¢"/3 by
[28]. It now follows by Proposition 8.5(b) that

v MO 3BiB

1)2 or/5
1lg#x€lrr(G) X( )

for all g € G if r > 5logy(3B1B2). In this case, Frobenius’ character sum implies that g
is a product s't’v" of G-conjugates of s, t, v, hence a product of three Nth powers.

(ii) Now we assume (without any loss) that & > 52 and consider G = 2A,, with
n>A=A(k):=(k+3)(In(k+3) + lnln(k + 3) + 2).

By [53, Theorem 29|, the interval [2, A] contains at least k + 3 distinct primes. Since
w(N) < k, we can find a prime 5 < p < A < n such that p{ N. Write n = ZE:O a;p’
p-adically, with 0 < a; < p—1, a; > 1, and consider an N’-element o € G of odd order,
whose image & in A,, has cycle type

()" (P H ()™ (1) (8.5)

In particular, & has at most ag < p — 1 = n°®) cycles of length < p. Here and hereafter,
o(1) means a function of n that tends to 0 when n tends to infinity. It follows by [29,
Theorem 1.2(ii)] that

x(@)] < x()VPFM < (1)t (8.6)
for all x € Irr(S,). Next, the choice (8.5) implies that

Cs, (0) = (Cpt 1Sq,) X (Cptfl 1Sa,_1) X .. X (Cp1Sa;) X Sqq-

It follows that
t
’CSn (5_)| _ H(piai . aﬂ) < p(t+(t71)+“.+1)(p*1) . ((p o 1)!)t+1 < p(pfl)(t+1)(t+2)/2‘
1=0

Since p < A and t < log, n, we see that there is some B = B(k) > 0 such that

x(0)] < v/|Ca(o)] < P (8.7)

for all x € Irr(G). Now if x € Irr(Q) is faithful, then it is well known that x(1) > 2(*=2)/2,
Likewise, arguing as in the proof of [27, Proposition 4.1] and using [18, Theorem 5.1],
one can show that (1) > 2("=%/4 if y € Irr(A,) does not extend to S,. Let J C Irr(G)
denote the subset of all irreducible characters of G that are either faithful, or trivial at
Z(G) = Cy but do not arise as the restriction to A, of some irreducible character of S,,.
Then we have shown that x(1) > 2"/ for all x € .J, and furthermore

|J] < |Irr(G)| < 4[Irr(S,)| = 4p(n) < e“V™, (8.8)
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say with C' := m/2/3 + 1 (where p(n) is the partition function of n). Also consider the
Witten zeta function

aclrr(An)
of A,,. Combining (8.6)—(8.8) together, we get
x(o)P? (o)l X(o)f _ BB eV
2o Nm SXhm T w5 s et
1g#x€Elr(Q) x€J le#x¢J

According to [38, Corollary 2.7], lim,,—,~ Ca,, (2/5—0(1)) = 1. Hence, if we choose n > h(k)
sufficiently large, then

3
Z Ix(zfl))l <1
lg#x€elr(G) X

It follows by Frobenius’ character sum that G = 0 - 0% - 0%, and so we are done since |0

is coprime to N. ]
We can also prove an analogue of Theorem 5(i) for 2A,,:

Proposition 8.8. For any positive integer k, there is some integer h(k) such that if
Q(N) < k and n > h(k) then the word map (x,y) — xNyN is surjective on the double
cover 2A,,.

Proof. Let Q(N) < k and let G = 2A,,. The image of the map x ~ " on the cyclic
group C of order 2¥3 contains an element of order 8. Similarly, the image of the map
z +— 2V on the cyclic group D of order 372 contains an element of order 9. Hence, by
[32, Lemma 3.3], when n is sufficiently large (compared to k), there is some u € G such

that G = (V)¢ - (uV)C. [

Finally, we make some remarks about possible generalizations of the aforementioned
results.

Remark 8.9. Some natural generalizations of Theorem 1 are false.

(i) It is not true that for every N = p®q® the word map (z,y) — zNy~ is always
surjective on every quasisimple group G, or at least hits all the non-central elements of G.
For instance, if N = 20, then this map does not hit any element of order 5 in G = SLy(5)
(indeed, 20 has order 1 or 3 in G, and if # € G has order 3 then {1} U2 U2% . 2% does
not contain any element of order 5 of G). It may be that this is the only counterexample.

(ii) It is not true that for every odd integer N the word map (x,y) — Ny~ is always
surjective on every mon-abelian simple group G. For instance, consider a prime power
q > 3 where ¢ = 3mod 8 and set G := PSLy(q) and N := q(¢®> — 1)/8. Note that " has
order 1 or 2 for every « € G. It follows that every element of G that is hit by the word
map (z,y) — zVy" is either an involution or a product of two involutions, so it is real. On
the other hand, the nontrivial unipotent elements of G are not real. The same arguments
show that the word map (x,y) — ¥y is not surjective on the Ree group G = 2Gs(q),
if ¢ = 3%t > 3 and N = |G|y. It is an open question whether these two families of
simple groups exhaust all the simple groups G' on which the word map (z,y) — zVy" is
not surjective for some odd N.

Example 8.10. None of Theorems 4—6 holds for finite simple groups of Lie type and
bounded rank over fields of sufficiently large size. Indeed, according to [1, Corollary 4.2],
there are infinitely many primes p such that Q(p? — 1) < 21. For every such prime p, the
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word map (z,y) — z™ry™Nr with N, := p(p? — 1)/2 cannot be surjective on PSLa(p) (its
image consists only of the identity element); on the other hand,

w(N,) < Q(N,) <Qp° —1) < 21.

This example can be generalized to quasisimple Lie-type groups of bounded rank and
word maps of arbitrary length. Indeed, for any given integer rqg > 15, every finite
quasisimple group G of Lie type of rank < rg and defined over F, has order dividing

N, = pro T2, (p* —1). By [1, Theorem C], there exist an integer k and infinitely many
primes p such that Q(p?©' — 1) < k/ry — rg. For every such prime p, the word map
Np

!/

(1,2, ..., Tm) — (:Jcl)Nzl’(xg) R N B
can never be surjective on G (as its image consists only of the identity element), whereas
w(N)) < QN)) < 1§ +roQ(p? — 1) < k.

Example 8.11. Note that no analogue of Theorems 1, 4, or 5 holds for quasisimple
classical groups, even of unbounded rank and over fields of unbounded size. Indeed, for
any odd integer n > 1 and any ¢ = 5( mod 8), the word map (z,y) — 2%y® is not surjective
on Sp,,,(q); see [32, Theorem 4.6] for this and other examples.

Likewise, for any n, if we choose N = 27", then for any « € H := 2A,, the order of z¥ is
odd. Hence, if z is the central involution of H, then 7z has even order and so cannot
be y~ for any y € H. Thus the map (z,y) — 2™y is not surjective on H. This shows
that Proposition 8.8 does not hold if we replace Q(N) < k with w(N) < k. Certainly,
this observation also applies to any finite group G and any prime p dividing |Z(G)| (by
choosing N = p® to be the p-part of the exponent of G).

REFERENCES

[1] K. Alladi, R.M. Solomon and A. Turull, Finite simple groups of bounded subgroup chain length, J.
Algebra 231 (2000), 374-386.

[2] E. Bertram, Even permutations as a product of two conjugate cycles, J. Comb. Theory Ser. A 12
(1972), 368-380.

[3] W. Burnside, On groups of order p®q¢®, Proc. Lond. Math. Soc. (1904), S2-1, 388-392.

[4] W. Bosma, J. Cannon and C. Playoust, The MAGMA algebra system I: The user language, J. Symbolic
Comput. 24 (1997), 235-265.

[5] J. Brundan and A.S. Kleshchev, Lower bounds for degrees of irreducible Brauer characters of finite
general linear groups, J. Algebra 223 (2000), 615-629.

[6] R.W. Carter, Conjugacy classes in the Weyl group, Springer Lecture Notes 131 (1970), 297-318.

[7] R.W. Carter, ‘Finite Groups of Lie type: Conjugacy Classes and Complex Characters’, Wiley, Chich-
ester, 1985.

[8] J.H. Conway, R.T. Curtis, S.P. Norton, R.A. Parker and R.A. Wilson, ‘An ATLAS of Finite Groups’,
Clarendon Press, Oxford, 1985.

[9] P. Deligne and G. Lusztig, Representations of reductive groups over finite fields, Annals of Math. 103
(1976), 103-161.

[10] F. Digne and J. Michel, ‘ Representations of Finite Groups of Lie Type’, London Mathematical Society
Student Texts 21, Cambridge University Press, 1991.

[11] E.W. Ellers and N. Gordeev, On the conjectures of J. Thompson and O. Ore, Trans. Amer. Math.
Soc. 350 (1998), 3657-3671.

[12] H. Enomoto, The characters of the finite symplectic groups Sp(4, q), ¢ = 2, Osaka J. Math. 9 (1972),
75-94.

[13] W. Feit and J.G. Thompson, Solvability of groups of odd order, Pacific J. Math. 13 (1963), 775-1029.

[14] The GAP group, ‘GAP - groups, algorithms, and programming’, Version 4.8.7, 2017,
http://wuw.gap-system.org.

[15] M. Geck, G. Hiss, F. Liibeck, G. Malle and G. Pfeiffer, CHEVIE — A system for computing and
processing generic character tables for finite groups of Lie type, Weyl groups and Hecke algebras,
Appl. Algebra Engrg. Comm. Comput. 7 (1996), 175-210.

[16] D. Gluck, Sharper character value estimates for groups of Lie type, J. Algebra 174 (1995), 229-266.

[17] R. Gow, Commutators in finite simple groups of Lie type, Bull. London Math. Soc. 32 (2000), 311-315.



18]

[19]

[20]
[21]
[22]
23]
[24]
[25]
[26]
[27]
[28]
[29]
[30]
31]
32]

[33]

[46]
[47]

SURJECTIVE WORD MAPS AND BURNSIDE’S p®¢® THEOREM 71

R.M. Guralnick, M. Larsen and Pham Huu Tiep, Representation growth in positive characteristic and
conjugacy classes of maximal subgroups, Duke Math. J. 161 (2012), 107-137.

R.M. Guralnick and F. Liibeck, On p-singular elements in Chevalley groups in characteristic p, in:
‘Groups and Computation, III' (Columbus, OH, 1999), 169-182, Ohio State Univ. Math. Res. Inst.
Publ., 8, de Gruyter, Berlin, 2001.

R.M. Guralnick and G. Malle, Products of conjugacy classes and fixed point spaces, J. Amer. Math.
Soc. 25 (2012), 77-121.

R.M. Guralnick, G. Malle and Pham Huu Tiep, Product of conjugacy classes in finite simple classical
groups, Adv. Math. 234 (2013), 618-652.

R.M. Guralnick and Pham Huu Tiep, Low-dimensional representations of special linear groups in
cross characteristics, Proc. London Math. Soc. 78 (1999), 116-138.

R.M. Guralnick and Pham Huu Tiep, Cross characteristic representations of even characteristic sym-
plectic groups, Trans. Amer. Math. Soc. 356 (2004), 4969-5023.

R.M. Guralnick and Pham Huu Tiep, Effective results on the Waring problem for finite simple groups,
Amer. J. Math. 137 (2015), 1401-1430.

R.M. Guralnick and Pham Huu Tiep, Lifting in Frattini covers and a characterization of finite solvable
groups, J. Reine Angew. Math. 708 (2015), 49-72.

P.B. Kleidman and M.W. Liebeck, ‘The Subgroup Structure of the Finite Classical Groups’, London
Math. Soc. Lecture Note Series 129, Cambridge University Press, Cambridge, 1990.

A.S. Kleshchev, P. Sin and Pham Huu Tiep, Representations of the alternating group which are
irreducible over subgroups. II, Amer. J. Math. 138 (2016), 1383-1423.

V. Landazuri and G. Seitz, On the minimal degrees of projective representations of the finite Chevalley
groups, J. Algebra 32 (1974), 418-443.

M. Larsen and A. Shalev, Characters of symmetric groups: sharp bounds and applications, Invent.
Math. 174 (2008), 645—687.

M. Larsen and A. Shalev, Word maps and Waring type problems. J. Amer. Math. Soc. 22 (2009),
437-466.

M. Larsen, A. Shalev and Pham Huu Tiep, The Waring problem for finite simple groups, Annals of
Math. 174 (2011), 1885-1950.

M. Larsen, A. Shalev and Pham Huu Tiep, Waring problem for finite quasisimple groups, Int. Math.
Res. Notices 2013, no. 10, 2323-2348.

H. Lee, ‘Triples in Finite Groups and a Conjecture of Guralnick and Tiep’, Ph. D. Thesis, University
of Arizona, 2017.

M.W. Liebeck, E.A. O’Brien, A. Shalev and Pham Huu Tiep, The Ore conjecture, J. Eur. Math. Soc.
12 (2010), 939-1008.

M.W. Liebeck, E.A. O’'Brien, A. Shalev and Pham Huu Tiep, Products of squares in finite simple
groups, Proc. Amer. Math. Soc. 140 (2012), 21-33.

M.W. Liebeck, J. Saxl and G.M. Seitz, Subgroups of maximal rank in finite exceptional groups of Lie
type, Proc. London Math. Soc. 65 (1992), 297-325.

M.W. Liebeck and A. Shalev, Diameters of finite simple groups: sharp bounds and applications,
Annals of Math. 154 (2001), 383-406.

M.W. Liebeck and A. Shalev, Fuchsian groups, coverings of Riemann surfaces, subgroup growth,
random quotients and random walks, J. Algebra 276 (2004), 552-601.

M.W. Liebeck and G.M. Seitz, ‘Unipotent and Nilpotent Classes in Simple Algebraic Groups and
Lie Algebras’, Mathematical Surveys and Monographs, Vol. 180, American Mathematical Society,
Providence, RI, 2012.

F. Liibeck, Smallest degrees of representations of exceptional groups of Lie type, Comm. Algebra 29
(2001), 2147-2169.

F. Liibeck, Character degrees and their multiplicities for some groups of Lie type of rank < 9,
http://www.math.rwth-aachen.de/~Frank.Luebeck/chev/DegMult/index.html

F. Liibeck, Numbers of conjugacy classes in some series of finite groups of Lie type,
http://www.math.rwth-aachen.de/~Frank.Luebeck/chev/nrclasses/nrcldata.html

F. Liibeck and G. Malle, (2, 3)-generation of exceptional groups, J. London Math. Soc. 59 (1999),
109-122.

G. Lusztig, Unipotent characters of the symplectic and odd orthogonal groups over a finite field,
Invent. Math. 64 (1981), 263-296.

K. Magaard and Pham Huu Tiep, Irreducible tensor products of representations of quasi-simple finite
groups of Lie type, in: ‘Modular Representation Theory of Finite Groups’, M. J. Collins, B. J. Parshall,
L. L. Scott, eds., Walter de Gruyter, Berlin et al, 2001, pp. 239-262.

A. Malcolm, The involution width of finite simple groups, J. Algebra 493 (2018), 297-340.

G. Malle, J. Saxl and T. Weigel, Generation of classical groups, Geom. Dedicata 49 (1994), 85-116.



72
[48]
[49]
[50]
[51]

[52]

[65]
[66]
[67]

GURALNICK, LIEBECK, O’'BRIEN, SHALEV, AND TIEP

A. Moret6é and Pham Huu Tiep, Prime divisors of character degrees, J. Group Theory 11 (2008),
341-356.

G. Navarro and Pham Huu Tiep, Rational irreducible characters and rational conjugacy classes in
finite groups, Trans. Amer. Math. Soc. 360 (2008), 2443-2465.

H.N. Nguyen, Low-dimensional complex characters of the symplectic and orthogonal groups, Comm.
Algebra 38 (2010), 1157-1197.

S. Nozawa, On the characters of the finite general unitary group U(4,¢*), J. Fac. Sci. Univ. Tokyo
Sect. TA 19 (1972), 257-295.

S. Nozawa, Characters of the finite general unitary group U(5,¢?), J. Fac. Sci. Univ. Tokyo Sect. IA
23 (1976), 23-74.

B. Rosser, Explicit bounds for some functions of prime numbers, Amer. J. Math. 63 (1941), 211-232.
D. Segal, ‘Words: Notes on Verbal Width in Groups’, London Math. Soc. Lecture Note Series 361,
Cambridge University Press, Cambridge, 2009.

A. Shalev, Word maps, conjugacy classes, and a noncommutative Waring-type theorem, Annals of
Math. 170 (2009), 1383-1416.

P. Sin and Pham Huu Tiep, Rank 3 permutation modules for finite classical groups, J. Algebra 291
(2005), 551-606.

N. Spaltenstein, Caracteres unipotents de 3Dy (F,), Comment. Math. Helv. 57 (1982), 676-691.

T.A. Springer and R. Steinberg, Conjugacy classes, ‘Seminar on Algebraic Groups and Related Finite
Groups’, Lecture Notes Math. 131 (1970), 168-266.

B. Srinivasan, The characters of the finite symplectic group Sp(4,q), Trans. Amer. Math. Soc. 131
(1968), 488-525.

R. Steinberg, The representations of GL(3,q), GL(4,q), PGL(3,q), and PGL(4,q), Canad. J. Math.
3 (1951), 225-235.

Pham Huu Tiep, Dual pairs and low-dimensional representations of finite classical groups, preprint.
Pham Huu Tiep and A. Zalesskii, Minimal characters of the finite classical groups, Comm. Algebra
24 (1996), 2093-2167.

Pham Huu Tiep and A. E. Zalesskii, Some characterizations of the Weil representations of the sym-
plectic and unitary groups, J. Algebra 192 (1997), 130-165.

Pham Huu Tiep and A. E. Zalesskii, Real conjugacy classes in algebraic groups and finite groups of
Lie type, J. Group Theory 8 (2005), 291-315.

W.R. Unger, Computing the character table of a finite group, J. Symbolic Comput. 41 (2006), 847—-862.
H.N. Ward, On Ree’s series of simple groups, Trans. Amer. Math. Soc. 121 (1966), 62-89.

K. Zsigmondy, Zur Theorie der Potenzreste, Monatsh. Math. Phys. 3 (1892), 265-284.

R.M. GURALNICK, DEPARTMENT OF MATHEMATICS, UNIVERSITY OF SOUTHERN CALIFORNIA, LOS
ANGELES, CA 90089, USA

E-mail address: guralnic@usc.edu

M.W. LIEBECK, DEPARTMENT OF MATHEMATICS, IMPERIAL COLLEGE, LONDON SW7 2BZ, UK

E-mail address: m.liebeck@imperial.ac.uk

E.A. O’BRIEN, UNIVERSITY OF AUCKLAND, AUCKLAND, NEW ZEALAND

E-mail address: e.obrien@auckland.ac.nz

A. SHALEV, HEBREW UNIVERSITY, JERUSALEM 91904, ISRAEL

E-mail address: shalev@math.huji.ac.il

P.H. TiEP, DEPARTMENT OF MATHEMATICS, RUTGERS UNIVERSITY, PISCATAWAY, NJ 08854, USA

E-mail address: tiep@math.rutgers.edu



	1. Introduction
	2. Preliminaries
	3. Centralizers of unbreakable elements
	3.1. Symplectic and orthogonal groups
	3.2. Linear and unitary groups

	4. Theorem 1 for linear and unitary groups
	4.1. General inductive argument
	4.2. Induction base
	4.3. Weil characters of GLn(q) and GUn(q)
	4.4. Induction step: Generic case
	4.5. Induction step: Small fields

	5. Theorem 1 for symplectic and orthogonal groups
	5.1. General inductive argument
	5.2. Induction base
	5.3. Induction step: Symplectic groups
	5.4. Induction step: Orthogonal groups
	5.5. Completion of the proof of Theorem 1 for classical groups

	6. Theorem 1 for exceptional groups
	7. Odd power word maps
	7.1. Preliminaries
	7.2. Regular 2-elements in classical groups in odd characteristic
	7.3. Proof of Theorem 3 for classical groups in odd characteristics
	7.4. Proof of Theorem 3 for exceptional groups in odd characteristics

	8. Asymptotic surjectivity: Proofs of Theorems 4, 5, and 6
	References

