IRREDUCIBLE CHARACTERS OF 3-DEGREE OF FINITE SYMMETRIC,
GENERAL LINEAR AND UNITARY GROUPS
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ABSTRACT. Let G be a finite symmetric, general linear, or general unitary group defined over a
field of characteristic coprime to 3. We construct a canonical correspondence between irreducible
characters of degree coprime to 3 of G and those of Ng(P), where P is a Sylow 3-subgroup of
(. Since our bijections commute with the action of the absolute Galois group over the rationals,

we conclude that fields of values of character correspondents are the same.

1. INTRODUCTION

For any finite group G and any prime number p, let Irr,(G) denote the set of complex
irreducible characters of G of degree coprime to p. The McKay conjecture (first stated in [17])
asserts that the number |Irry (G)| is equal to |Irry (Ng(P))|, where P is a Sylow p-subgroup of
G. When p = 2 this conjecture was recently proved in [16]. Sometimes, it is not only possible to
show that |Irry (G)| = |Irry (Ng(P))], but we can also establish a canonical bijection between
the two sets of characters. In general, a natural correspondence of characters between a group
G and a subgroup H of G does not always exist. Particularly rare are the cases where such
a correspondence can be found to be compatible with restriction of characters, or equivariant
under the action of Galois or outer automorphisms. The goal of the paper is to construct
canonical McKay correspondences for certain important finite groups, namely the symmetric
groups and the general linear and general unitary groups (in characteristic other than 3), at
the prime p = 3. Note that the validity of the McKay conjecture for these groups was already
established by Olsson [19]. The novelty of our results lies in the construction of canonical McKay
bijections for those groups.

A canonical McKay bijection for symmetric groups at p = 2 was constructed in [7, Theorem
4.3], building on [6, Theorem 3.2]. It is natural to ask whether canonical McKay bijections
can also exist for other primes. Unfortunately, for p > 5 the fields of values of the irreducible
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characters of &,, and Ng, (P,) are distinct. Hence no canonical bijection can possibly exist
when p > 5, since we would expect it to commute with the action of the absolute Galois group
over the rationals (here we denoted by P, a Sylow p-subgroup of &,). It turns out, somewhat
surprisingly, that a canonical McKay bijection does exist for G,, at p = 3. Note that, in general,
such a bijection does not exist for solvable groups. For instance the fields of values of the 3'-
degree irreducible characters of the solvable group G := GL2(3) and N¢g(P) are distinct, for P
a Sylow 3-subgroup of G.

Our first main result constructs a canonical McKay bijection in the case of symmetric groups
G,, for the prime p = 3.

Theorem A. Let n be any positive integer and let P € Syl3(&y,). Then there is a canonical
bijection between the set Irrs (S,,) of complex irreducible characters of 3'-degree of &,, and that

of Ng, (P).

Our proof relies on previous results on combinatorics of representations of symmetric groups,
particularly [19], and also on the following key step analyzing the case n = 3* for any k € N. In
Theorem 3.7 we find a canonical bijection x — x* between Irry (S4x) and Irry (Ne,, (Psr)), that
is compatible with character restriction (i.e. x* is an irreducible constituent of x |n L (Py)s for

3
every x € Irrg/(S4r)). This is done by considering the representation theory of the intermediate
subgroup G3x-1163, lying between S3i and N63k (Pyr). In particular we can prove the following
general theorem, valid for every odd prime number, that we believe is of independent interest.

Theorem B. Let p be an odd prime and let H = G ,1-116, < &k, for some natural number k.
Let x € Trry (&), then x L= x* + A, where x* € Trry (G6-116p) and A is a sum (possibly
empty) of irreducible characters of degree divisible by p. Moreover, the map x — Xx* is a bijection
between Trry (S) and Irry (Gpu-116p).

The second main result of the paper constructs canonical McKay bijections at p = 3 for
GL,(q) and GU,(g) when 3t ¢, building on Theorem A and some results of [19] and [5].

Theorem C. Let n be any positive integer and let ¢ = p® be any power of a prime p # 3. Then
there is a canonical bijection between the set of complex irreducible characters of 3'-degree of
GLn(q) and that of Na,,(q)(P) for P € Syl3(GLy(q)). Similarly, there is a canonical bijection
between the set of complex irreducible characters of 3'-degree of GUy(q) and that of Nqu,, (q)(P)
for P € Syls(GU,(q)).

We will prove that the canonical bijections constructed in Theorem C commute with the action
of the absolute Galois group Gal(Q/Q). This implies, for instance, the following corollary.

Corollary D. Let n be any positive integer and let ¢ = p* be any power of a prime p # 3. Let G
be either GL,,(q) or GU,(q), and let P be a Sylow 3-subgroup of G. Then the fields of values of
the 3'-degree complex irreducible characters of G are equal to the fields of values of the 3'-degree
complex irreducible characters of Ng(P).



2. PRELIMINARIES

2.1. Extensions of characters and wreath products. In this section we will recall some
known results on extensions of characters in wreath products and other character theoric results
which will be needed in the sequel.

Let &,, be the symmetric group of degree m. If K is a finite group, write K" = K x --- x K

for the m-fold external direct product of K. The natural action of &,, on the direct facrgors of
K™ induces an action via automorphisms of &,, on K™, so we can define the wreath product
H=K!6,,:= K" x &,,. Asitis customary, we denote the elements of H by (z1,...,z,;y),
where z; € K and y € &,,. Also, we will identify subgroups and elements of both the base
group K™ of H, and the permutation group &,, acting on the factors of K™, with their natural
embeddings in H.

With the same notation as above, recall that the irreducible characters of K™ are of the form

V=11 @ QUm,

where 9; € Irr(K) for each ¢, and ® denotes the external direct product of characters. In
particular, note that ¢ € Irr(K™) is invariant in H if and only if

Y=y = @Y R @Yy

m

for a uniquely determined v, € Irr(K). In this case, ¢ has a distinguished irreducible extension

to H defined by the following statement.

Lemma 2.1. Let K be any finite group with an irreducible CK-module U. For any m € Z>o,
consider H =K 16,, = K" x &,,. Lett be any transposition in the standard subgroup &,, of
H. Then the irreducible module U™ = U ® ... @ U of K™ <1 H has a unique extension V to
H, with character say 0 satisfying the following conditions:

(i) If 2+ dim(U) then det(0)|s,, is trivial.

(i) If 2| dim(U) but m > 3, then det(0)|s,, is trivial and 0(t) € Z>y.

(iii) If 2| dim(U) and m = 2, then 6(t) € Zo.
In particular, if K™ < L < H and gcd(|K|,|L/K™|) = 1, then V|1, is the canonical extension
in Theorem 2.2 (below). Moreover, if a finite group A acts on K and we extend its action to H

by letting A act trivially on &,,, then the map U — V is A-equivariant. Furthermore, the map
UV is Gal(Q/Q)-equivariant.

Proof. First, fix a basis (e; | 1 < i < d) of the space U. Then we let any element g =
(hi,...,hm) € K™ act on U®™ via

g:€; €, RQ...0¢€;, — hl(eil) ®h2(€i2) X ... ®hm(€im)a 1<iq,..., i, <d.
Then we can define the action of any element 7 in the natural subgroup &,, on U®™ via

e ®ein ... Q€ e ) Q€ ,®. .. .06, ., 1<iq,... i, <d.

2)
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One can check that this turns U®™ into an H-module which we denote by V;. Note that the
trace of t on Vj is d™~1 > 0. By Gallagher’s theorem [8, Corollary 6.17], if Vo % V; is another
extension of U®™ to H, then Vo = V; ® W, where W is the sign C&,,-module. In particular,
the trace of t on V3 is —d™~! < 0, and the claim in (iii) follows, taking V = V;.

Let 0; be the character afforded by V;, i = 1, 2. Note that the action of ¢ on the basis vectors of
U®™m gives rise to a disjoint product of d™~1(d—1)/2 2-cycles. Hence det(61)(t) = 1 in the case of
(ii), and we again done here. Assume 21 d. Then det(s)(t) = det(61)(t)(=1)%" = —det(8y)(1),
and so there is a unique ¢ € {1,2} such that det(6;)(t) = 1, whence we are done in (i) as &,, is
generated by transpositions.

Assume furthermore that K™ < L < H and gcd(|K|,|L/L™|) = 1. Then we are not in case
(iii), and so o(f|r) = o(f|xm) by the previous result, whence 6| is the canonical extension
singled out in Theorem 2.2.

It is also straightforward to check that the map U + V is equivariant under the action of
both A and Gal(Q/Q). O

We remark that the extension described in the previous lemma is uniquely determined for
a fixed complement &,, of K™ in H as in the statement, but that different choices of such a
complement may produce different extensions of the module U®™ (differing at most by tensoring
by a sign module). Also, it is clear that conjugate complements of K™ in H inducing the wreath
product K1 &,, would lead to the same extension of U™ to H described in Lemma 2.1.

Another situation in which uniquely determined extensions of characters exist is the following.
We point out that next theorem is a particular case of a slightly more general fact, but we will
only need the result as stated below (see Corollary 8.16 of [8] and the comments before it for
details).

Theorem 2.2. Let N < G and let ¢ € Irr(N) be G-invariant. Suppose that (|G/N|,|N|) = 1.
Then v has a uniquely determined irreducible canonical extension z/; € Irr(G), characterized by
the property that 1) and ¢ have the same determinantal order: 0(1&) =o(v).

Suppose that N < G and that ¢ € Irr(N) is extendible to G. Then recall that Gallagher’s
Corollary 6.17 of [8] provides a complete description of the set of irreducible characters Irr(G | )
of G lying over 9, in terms of the characters of G/N.

At certain points in our arguments we will also need to use some known correspondences of
characters. We refer the reader to [8, Theorem 6.11] for a reference on the standard Clifford’s
correspondence. We next include for future reference two useful results which are contained in
M. Isaacs” work [9, Corollaries 4.2 and 4.3].

Proposition 2.3. Let N G and K < G with NK =G and NN K = M.

(i) Suppose that 0 € Irr(N) is invariant in G and assume @ = O is irreducible. Then
restriction of characters defines a bijection from Irr(G | 0) into Irr(K | ¢).

(ii) Suppose that ¢ € Trr(M) is invariant in K and assume 0 = o~ is irreducible. Then
induction of characters defines a bijection from Irr(K | ¢) into Irr(G | 0).
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2.2. Background on combinatorics and representations of &,,. In this section we recall
some basic facts in the representation theory of symmetric groups. We refer the reader to [11],
[13] or [20] for a more detailed account. A partition A = (A1, A2, ..., A7) is a finite non-increasing
sequence of positive integers. We say that \; is a part of A\. We call £ = ¢()\) the length of A and
say that A is a partition of |A| = > \;. We denote by P(n) the set consisting of all the partitions
of n. The Young diagram of A is the set [A] = {(i,7) e NxN|1<i</l(N),1 <j<N\}. Here
we orient N x N with the z-axis pointing right and the y-axis pointing down. Given A € P(n),
we denote by X the conjugate partition of .

We say that a partition u is contained in A, written p C A, if u; < A;, for all ¢ > 1. When
this occurs, we call the non-negative sequence A\ p = (A\; — ;)52 a skew-partition, and we call
the diagram [A ~ p] = {(i,7) e Nx N |1 <i</l(N),pu <j<N\} askew Young diagram.

The rim of [)\] is the subset of nodes R(\) = {(4,j) € [A\] | (i + 1,5 +1) € [A]}. Given
(r,c) € [A], the associated rim-hook is h(r,c) = {(i,j) € R(\) | r <i,¢ < j}. Then h = h(r,c)
contains e := A\, —r+ A, —c+1 nodes, in a(h) = A\, —c+1 columns and X, — 7+ 1 rows. We call
leg(h) = A, — r the leg-length of h. We refer to h as an e-hook of A. The integer e is sometimes
denoted as |h|. Removing h from [)] gives the Young diagram of a partition denoted A — h. In
particular |\ — h| = |A\| — e and h is a skew Young diagram.

Let h be an e rim-hook which has leg-length ¢. The associated hook partition of e is h =
(e — £,1%). So (e — £,1%) coincides with its (1,1) rim-hook. Given any natural number n, we
denote by H(n) the subset of P(n) consisting of all hook partitions of n. Namely H(n) =
{n—2,1") | 0<z<n-—1}

Let p be a (not necessarily prime) natural number, we say that a partition 7 is a p-core if it does
not have removable p-hooks. Given a partition A of n, its p-core A(,) is the partition obtained
by successively removing p-hooks from A. We will denote by A®) = (A%, A} ... AP~1) the p-
quotient of A\ (see [20, Section 3] for the definition). Following Olsson’s convention we always
consider abaci consisting of a multiple of p number of beads. This assumption guarantees that
the p-quotient of a partition is well defined (see either [13, Chapter 2] or again [20, Section 3|
for the definition of James’ abacus).

For any given A € P(n) we denote by T'()) its p-core tower (see [20, Section 6]). In particular
we find convenient to think of the p-core tower as a sequence T'(A) = (Tj(A))72, where the j-th
layer (or row) T}(\) consists of p? p-core partitions. We denote by |T;(\)| the sum of the sizes of
the p-cores in the j-th layer of T(\). We have that n =}, |T;(\)|p?. Moreover, every partition
A of n is uniquely determined by its p-core tower. This follows by repeated applications of [20,
Proposition 3.7].

There is a natural one-to-one correspondence between irreducible characters of &,, and par-
titions of n. We denote by x* the irreducible character labelled by A € P(n). The Murnaghan-
Nakayama rule (see [11, Page 79]) allows to explicitly compute the entire character table of &,,.
A useful corollary of this rule is the so called hook-length formula (see [11, Chapter 20]). This
gives a closed fowmula for the degree of any irreducible character of &,. In particular, for a
hook partition h = (n — z,1%) € H(n) we have that x"(1) = ("71).

T
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Let now p be a prime number. Given any partition A of n, the p-core tower of A encodes all
the information concerning the p-part of the degree of the corresponding irreducible character
x*(1). In particular, in [15] the following fundamental result is proved.

Theorem 2.4. Let p be a prime number and let X be a partition of n € N. Suppose that
n = Z?:o a;p’ is the p-adic expansion of n. Then x* € irry (6,) if and only if |Tj(\)| = a; for
all j € N.

2.3. Some remarks on the Littlewood-Richardson rule. In order to prove some of the
main results in this article, we will make extensive use of a generalised version of the Littlewood-
Richardson rule. This is probably known to experts, but we were not able to find an appro-
priate reference in the literature. For the reader’s convenience we start by recalling the classic
Littlewood-Richardson rule.

Definition 2.5. Let A = aq,...,a; be a sequence of positive integers. The type of A is the
sequence of non-negative integers msi,mo,... where m; is the number of occurrences of ¢ in
ai,...,ax. We say that A is a reverse lattice sequence if the type of its prefix aq,...,a; is a
partition, for all j > 1. Equivalently, for each j =1,...,k and i > 2

Hull<u<ja,=i—1} >{v]|1<v<j,a, =1}

Let o - n and 8 F m be partitions. The outer tensor product x® @ x? is an irreducible
character of &,, x G,,. Inducing this character to &,1,, we may write
(X @x)emm = Y O .
yH(n+m)
The Littlewood-Richardson rule asserts that C’;’ 5 1s zero if @ € v and otherwise equals the

number of ways to replace the nodes of the diagram [y \ «] by natural numbers such that

(i) The numbers are weakly increasing along rows.
(ii) The numbers are strictly increasing down the columns.
(iii) The sequence obtained by reading the numbers from right to left and top to bottom is
a reverse lattice sequence of type 5.

We call any such configuration a Littlewood-Richardson configuration of [y~ «].

The Littlewood-Richardson rule describes the decomposition of the restriction of any irre-
ducible character of &,, to any 2-fold Young subgroup of &,,. In this article we will need to have
some control on the restriction of irreducible characters to arbitrary Young subgroups of &,,.
We start by introducing some notation. Let k € N>o and let n; € N> for all i € {1,...,k}. Let
p be a partition of n = nj +ng + --- + ny and let p; be a partition of n; for all i € {1,... k}.
Denote by u the sequence p = (1, ..., pix).

Definition 2.6. For all j € {1,...,k} let m; = ny +--- +nj. We denote by Aj; the subset of
P(m1) x P(mg) x -+ x P(my) consisting of all the sequences of partitions (A1, Az, ..., A;) such
that:

) ppi=AMCAC--C A =p.
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(i) Aj+1 ~ A; admits a Littlewood-Richardson configuration of type pji1, for all j €
{1,...,k—1}.

Notice that condition (ii) is equivalent to say that the Littlewood-Richardson coefficient

A' .
OA;;;H = <( 1@ xHit) Th,mjilbn X ”1> #£0, for all j.

Remark 2.7. Let u = (p1,...,1,) and p be as above. Denote by pu* = (p1,...,pr—1) the

sequence obtained by removing the last component from pu. For o € P(n — ng) we denote by
Aji(0) the subset of Aj; defined by

.AZ(O’) ={) e .Az D A1 =0}

By definition we have that Aj(0) # @ if and only if A7. # @ and Cgy, # 0. Moreover, for
every o € P(n — ny) such that C%,, # 0, the map

(Ala ey )‘k727 U) — (Ah ey )\k727 g, p)7
is a bijection between A7, and Ali(o).
Lemma 2.8. Keeping the notation introduced above, we have that

Sn
<(XM1 ®Xﬂ2®...®xﬂk) S % >7£0,

if and only if Aﬁ #* .
Proof. We proceed by induction on k. If £ = 2 then the statement follows from the Littlewood-
Richardson rule.

Assume that .AZ # . Let k>3 and let A = (Aq,..., ) € .AZ. From Definition 2.6 we have
that

Mo &n
<(X o ®X“k)Ten_nkxenk7Xp> # 0.

Moreover, the sequence (A1, Ag, ..., A\k—1) € AZ’E’I, where p* := (p1,...,pp—1). By inductive
hypothesis we deduce that -

Gn n
<(XM1 ®XM2 Q- ®XM€_1 T@nl Xk Xgnk 17X > 5& 0.

We now let B = &, x -+ xG,,,C =6, x---x6,, , and H = &,_,, X &,,. Moreover,
given any sequence of partitions v = (v1,...,vs) we denote by x% the irreducible character
X' ® - ® xYs. We conclude by observing that,

() = (18 @) 1) 2 (0 @) T3 7)) 0.

Assume now that < TB ,Xp> # 0. Since XﬂTg" = (Xﬁ*Tg’“"’f ® xH*) Tg", we deduce that

annk

there exists a partition o € P(n — ng) such that x“ is an irreducible constituent of XH*T P
and such that C%,, # 0. By inductive hypothesis there exists a sequence (A1,...,\p_2,0) €
AZ* # &. It is now easy to observe that (A1,...,\x_2,0,p) € .AQ. g
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The following proposition is a generalisation of Lemma 2.8. We decided to keep two distinct
statements for the convenience of the reader. First we need to introduce a last piece of notation.
For A= (\,...,\p) € Aﬁ we denote by d) the natural number defined by

k—1
- Aj+1
dA - H C)‘j/’l’j+1.
Jj=1

Again for any sequence of partitions v = (v1,...,vs) we denote by x* the irreducible character
XV1®'..®XVS‘

Lemma 2.9. Let p = (p1,...,pux) € P(n1) x --- x P(ng) and let p € P(n), where n = ny +

<o +mng. Then
(G2
(ETer o X) = D da
A€Af

Proof. We proceed by induction on k& € Ns>o. If k& = 2 the statement coincide with the
Littlewood-Richardson rule. Suppose that k£ > 3 and denote by B and C the Young subgroups
of &,, defined by

B=6G, x---x6,, (=6, x--x6

Nk—1-*

For any sequence A = (A1,...,\¢) € Aj we have that \* = (A1,..., A1) € Azf_l, where
w* = (1, ..., pr—1). Moreover, by inductive hypothesis we have that

*2Gn_n A
<Xﬁ C k?X . 1> = Z dl'
Ak—1
1€Aﬁ*

It follows that
Gn * ann Gn
<XETB ’XP> = <(Xﬁ TC k® Xﬂk) S XGny Xp>

- Y (Y @) <x"®x“kT§Z_nkxenkvXp>

c€P(n—nyg) IEAZ*

= Z ( Z dl) Cg#k

cEP(n—ng) IGAZ*

= > (X 4

c€P(n—nyg) AGAZ(U)

where the last two equalities above follow from the discussion in Remark 2.7. 0

The key step in the proof of Lemma 3.2 below is to use Lemma 2.9 in the specific case where
p€HP) and p = (u, p, ..., p), for some p € P(pk1).
- —

p—times



3. A CcANONICAL MCKAY BIJECTION FOR Gz

Our next goal is to construct a canonical bijection between Irry (&S3x) and Irry (Ng,, (Psr)),
where Ps. € Syl3(Ss3r). As mentioned in the introduction, this will be the key step towards
the proof of Theorem A. More precisely, we will first prove Theorem B, by describing a global
bijection between the irreducible characters of p-degree of &« and those of the stabilizer & -1
S, of a set partition of {1,... ,pF} into p sets of size p*~!. Afterwards we will fix p = 3 and we
will construct a local bijection between the irreducible characters of 3'-degree of Gsr-1 1S3 and
those of the normaliser of a Sylow 3-subgroup of G .

3.1. A global bijection and the proof of Theorem B. Let p be an odd prime and let
n = p* for some k € N. This section is devoted to the proof of Theorem B. In particular we
show the existence of a natural bijection between Irry (&,r) and Irry (&, k-1 1 &), canonically
defined by the restriction functor.

We will use the following easy observation, whose proof is omitted:

Lemma 3.1. Let H < G, be the stabilizer of a set partition of {1,... ,pk} into p sets of size
p*=1. Then H = Spr-1 0 X, where X = &, 1s a subgroup of &, which induces by conjugation
the full permutation group on the direct factors of (6pk—1)p. Furthermore, X is unique up to

H -conjugacy.

By a slight abuse of notation, we will denote a subgroup X = &, of H as in the previous
lemma simply by &,. Note that the above result implies that if x € Irr((&,s-1)?) is invariant
in H = &,x-1 16y, then Lemma 2.1 provides a uniquely defined extension of x to H which is
independent of the complement of (&,x-1)” in H considered.

It is well known that Irr,y (S,¢) = {x* | A € H(p*)}. On the other hand, if A € H(p*~!) and

we write y = x* € Irryy (S i-1), then x®P € Irry ((&,4-1)P) has a uniquely defined extension

P
X € Ity (&,6-116,) described in Lemma 2.1. In particular, by Gallagher’s theorem [8, Corollary

6.17] for any p € H(p) we have that
XA, ) == XXM € Iy (€1 06, [ X*F)

and in fact

Irry (S -1 06,) = {x(\, )| A € H(p* 1), n € H(p)}.
We will use this notation throughout this section.
We start with a technical lemma, that will be crucial to construct the desired correspondence.

Lemma 3.2. Letj € {0,1,...,p*—1} and let h; = (p* —j,5) € H(p*). Suppose that j = pm+x

for some unique m € {0,1,...,pF" ' — 1} and z € {0,1,...,p —1}. Let A = (pF~1 —m,1™) €
H(pE~1). The following holds:

0 if pe PP 1) N {2},

hy o, (XM)EPY) =
<X He i (X) > O =,
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k=1 and sup-

Proof. In order to ease the notation we let K = (ka—1>p. Let 1 be a partition of p
pose that (x*)®P is a constituent of " | . An easy consequence of the Littlewood-Richardson
rule shows that p must be a subpartition of hj. Hence u = (p*~1 — a,1%) € H(p*~1), for some
ac{0,1,....pF1 -1}

It is now convenient to change point of view. By Lemma 2.8, we observe that x” is an
irreducible constituent of the induction from K to &, of (x*)®P if and only if there exists
a sequence u = 1 C p2 € ... € p, = p of partitions such that u; € P(ip*~1) for every
i€{1,2,...,p— 1}, and such that there exists a Littlewood-Richardson configuration of type
poof [piv1 ~ pg] for every i € {1,2,...,p — 1}. In this case we say that (u1,p2,...,1p) is a
p-sequence of p.

In particular if p € H(p*) then we notice that ap + 1 < £(p) < (a + 1)p. This can be seen
by observing that p has a 4+ 1 parts and that for all ¢« € {1,...,p — 1} we have that {(u;+1) =
O(p;) + a + €; for some g; € {0,1}. This fact is enough to deduce that if (x"7 L, (x*)®P) # 0
then @ = m and hence p = .

To conclude the proof we first need to recall the notation introduced in Definition 2.6. Let
p € P(p¥) and pu € P(p*~1). Denote by A, the set consisting of all the u-sequences of p (this

was previously denoted by A’(’#’#’m’#)). Let 7 = (u1, p2, - .., pip) € Al We let d? be the positive
integer defined by
p—1
d? = H Cﬁfﬁfa
i=1

where C//i! denotes the usual Littlewood-Richardson coefficient. From Lemma 2.9 we see that

<Xp ¢K7(Xu)®p> — Z de.

P
TEA]

In the case where p = h; and . = A, the above formula is particularly easy to use. As we
noticed before each partition p; 41 is a hook partition obtained from p; by adding m + ¢; boxes
to the first column and adding the remaining p*~! — (m + &;) boxes to the first row, for some
g; € {0,1}. Since () = 1+ pm + = we deduce that for exactly = values of i € {1,...,p — 1}
we have that ¢; = 1. This shows that |A};\j| = (pgl). Let now 7 = (p1,...,4p) € A};\j. Then

k—1

[ttis1 ~ p4] is a skew partition of p*~! with one row of length p*~1 — (m + &;), and one column

of length m + ¢;, for some ¢; € {0,1}. Hence C’;\‘Z’; =1 for all 7, and therefore d?j = 1. This
shows that (X" |, (x*)®P) = (p;1)7 as required. O

Let m € {0,1,...,p*"! —1}. Denote by A,, the subset of Irry (& pr-1 1 6,) defined by
A = (P = m, 1), 1) | € Hip)}.
Similarly let By, be the subset of Irr) (&) defined by

Bm _ {X(pk_(pm—i-x),lpmez) ’ = {O’ 1’ RN A 1}}
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Clearly |Ap,| = |Bm| = p for all m € {0,1,...,p*~! — 1}. Moreover we have that

pk 1_1 -1
o1 16,) = ] Ap, and Irry (& U B

m=0

Irry (&

Proposition 3.3. Let m, ¢ € {0,1,...,p* 1 —1}. Let x € B,,, and 1) € A,. If<zp,x le k—116p> +
0 then m = {. ’

Proof. Suppose for a contradiction that ¢ € Ay for some £ € {0,1,...,p*"t — 1} ~ {m}. Then
Y = x((p"t —£,1%), u), for some p € H(p). By Lemma 3.2 we have that

k—1_p 10 k—1_p 10
0= <X i(6pk_1)zﬂ (X(p o ))®p> > <¢ i(ka_l)i’” (X(p o ))®p> = x"(1).

This is a contradiction. O

Theorem 3.4. Let m € {0,1,...,p*"1 —1} and let x € B,,. Then x |
X* € Ay, and where A is a sum (possibly empty) of irreducible characters of degree divisible by

=x*+ A, where

S 1116
pk—1°2P

p. Moreover the map x — x* is a bijection between B,, and A,,.
Proof. For x € {0,1,..., %} let AZ, be the subset of A4, defined by

Afn = {X((pk_l —m, 1m)7 (p - Y 1y)) | (/S {:Ua (p - 1) - J?}}
Similarly let BE be the subset of B,, defined by
By, = {X® ) |y € o, (p - 1) - 2}).
We will show by reverse induction on z € {0,1,..., %} that the following statement holds.
Claim. Let x € B},. Then x |4 Sy X*+A, where x* € AT and where A is a sum (possibly
.
empty) of irreducible characters of degree divisible by p. Moreover the map x — x* is a bijection

between BE and AY,.

Base Step. Let A = (pF~'—m,1™) € H(p*!) and pp = (p”L1 pgl) € H(p). Let ¢ := x(\, p)
-1

be the unique element of A i . To shorten the notation, let K = &,x-1 2 S,. Since (1) and

&
/&, : K| are both coprime to p, there exist x € Irr, (&) such that x is a constituent of ¢ Tka
By Proposition 3.3 we deduce that x € B,,. Hence there exists y € {0,1,...,p — 1} such that
y = yP* = m+9). 17" By Temma 3.2 we obtain that

(p; 1) = <x e i (X/\)®p> > <w by (xk)®p> = x*(1) = <ppgll>.

p=1
This clearly implies that y = %. Therefore we have that B,?> = {x} and that

1 ifo=1,
0 if ¢ elrry(K)~{¢y}.

. . -1
This shows that x* = ¢, and proves the claim for x = £o=.

X lK,0) =
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Inductive Step. Let z € {0,1,..., % — 1} and assume that the claim holds for all z <

y < %. Clearly |A7,| = |By,| = 2. Let ¢ € A7, = {1,92}. Since ¥(1) and |G« : K| are both
(G}

coprime to p, there exist x € Irr, (&) such that x is a constituent of ¢ 1,” " By Proposition

3.3 we deduce that x € B;,. By induction we deduce that

p—1
2

T
X€Bn~( |J BY) =B
y=+1 3=0

Let 7 € {0,1,...,x} be such that x € BJ,. By Lemma 3.2 we obtain that

<p ; 1> = <x e i (XA)®”> > <¢ e i (XA)®”> = x"(1) = (p; 1).

This necessarily implies that j = z. Therefore we have that BE = {x, x2} and that

L ifo=1,
0 if ¢ € Irry(K) N {¢}.

This shows that x* = 1. We conclude by showing that (x2)* = 9. Let X’ be a p/-degree

x{K,0) =

constituent of (12) TIG(” " Using the inductive hypothesis and Lemma 3.2 exactly as above, we
deduce that ¥’ € B, = {x, x2}. This immediately implies that x’ = xo. It follows by Lemma
3.2 that vy is the only constituent of degree coprime to p of x2 |x and also that (x2 Lk, 12) = 1.
Hence (x2)* = 2.

Therefore we have that x — x* is a bijection between Bj, and A}

mo

as required. Taking the
union of these sets over z € {0,1,..., %} we obtain the statement of the theorem. O

As a straightforward consequence of Theorem 3.4 we obtain the following result, which is a
slightly stronger statement than Theorem B, as presented in the introduction.

Theorem 3.5. Let K := G,k-116,. Let x € Irry(S,k). The restriction x Lk has a unique
irreducible constituent x* lying in Irr,y (K), appearing with multiplicity 1. Moreover the map
X = X* s a bijection between Irry (S x) and Irry (K).
More precisely if X = (p* — (mp + x), 1"P*®), for some x € {0,1,...,p—1} and x = x*, then
X" € {x(p, 1), x (1, v2)}, where
p=@Et—m,1™) | v =(p—=,1%) and vy = (xz+1,1P717%).
In Section 4 below we will be able to give an ultimate complete description of the bijection

given in Theorem 3.5 for the prime p = 3. In particular in Corollary 4.10 we will completely
identify the character x*.

3.2. A local bijection. We fix the prime p = 3. Let k > 1, and suppose that P is a Sylow
3-subgroup of the symmetric group Gs,. Our aim in this section is to define a natural bijection
of characters

@3k : II‘I‘3/(63I¢) — II‘I‘3/(N63k (Pk)) 5
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such that ®3x(x) is an irreducible constituent of x |ng (), for each y € Irrg (Sar).
3

It is easy to check that P} induces on {1,...,3*} a unique maximal block system consisting
of three blocks of size 31 each, and we denote by H = G3i-1 1 &3 < G4k the stabilizer of the
corresponding set partition. (Recall that by Lemma 3.1 the complements &3 of the base group
inducing the wretah product H are all conjugate.) It is clear that Py N (Sgk-1)3 = (Pr_1)3, and
if (z) denotes the unique Sylow 3-subgroup of &3, then Py = (Py_1)% x (2) =: Pp_1 1 (2). It is
not difficult to show (see the proof of Lemma 4.2 in [19]) that Ng_, (P:) < H, so in particular
Ne,, (Pr) = N (Fy).

In order to prove our main results in this section, we need first to recall some known facts on
the structure of the wreath product H = G3x-1 1 &3, which are contained in Proposition 1.5 of
[19] and its proof (see also Lemma 7.1 below). Let

M = {(x1,x2,23) | x; € Nng—l (Py—1), ©; =x; (mod Pj_1) for all 7,5} .
Then we have Ny (Py) = MS3 = M x &3 . In particular, it is clear that
Nu(Py) <Ne,, , (Pr-1)163.
The elements in the derived subgroup of Py are precisely
P = {(z1,22,23;1) |2; € Py_1 and m12073 € P}_,},

so in particular P} < M. Of course, note that P is normal in Nz (P). Furthermore, we have
that

(31) NH(Pk)/PkI = M/Pé X 63,

in a natural way.
The following result contains a key step in the construction of the map ®5. described above.

Proposition 3.6. There exists a natural bijection between the sets Irry (Nggk_1 (Pr—1)163) and
Irry (N g (Py)), which is compatible with character restriction.

Proof. Observe that the case k = 1 is trivial, because &3 has a normal Sylow 3-subgroup, so
assume that k > 2. We divide the proof of the result into several steps.

Step 1. There exists a natural map A®3 i 1)y from the set of 3'-degree G3-invariant irreducible
characters of N63k—1 (Py_1)3, into the set of irreducible characters of 3'-degree of M whose kernel
contains P

Proof of Step 1. Note that any 3'-degree irreducible character of N63k71(Pk_1)3 that is &3-
invariant is of the form A®3, where A € II‘I‘3/<N63,€71 (Pg—1)). So assume \ € Irr3/(N63k71 (Pg-1)),
and let a € Irr(P;_1) be an irreducible constituent of Ap,_,. In particular, note that « is linear.
Of course, by Clifford’s Theorem 6.2 of [8], « is unique up to N@Bk_l(Pk_l)—conjugacy. Let
n = a® € Irr((P,_1)%). If I denotes the stabilizer of « in Ne,, ; (Pg-1), then J = I3 is the
stabilizer of n in Ng_, , (Py_1)%. By Clifford’s correspondence, let & € Irr(I|)) be uniquely

determined by & TNGSk—l (Pe-1)_ A. Then ¢ = %3 € Trr(J) lies over i and induces to A®3, again
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by Clifford’s correspondence. Also, note that ¢ is an extension of n by Gallagher’s theorem
[8, Corollary 6.17], because « extends to I by Theorem 2.2, and Ne,, , (Pr_1)/Py_1 is abelian
(see Lemma 3.3 of [18], for instance). Let L = M N J, so ¢ |r€ Irr(L|n). Now, by Clifford’s
correspondence, we have that ¢ = (¢ iL)TM € Irrg (M).

It is not difficult to check, by using the uniqueness in Clifford’s correspondence, that the
definition of the character ¢ in the previous paragraph depends only on A, which is the same to
say that it is independent of the choice of a. Thus, we may write 1) = 1y.

In order to finish the proof of this step, we need to show that P’ < ker(v)), for any A €
Irrsy (N63k71 (Pi—1)). First, note that 1) is Gs-invariant. In particular, since &3 has a cyclic
Sylow 3-subgroup we deduce that 1) extends to M P,. Now, by elementary character theory P’
is contained in the kernel of any extension of ) to M P, and this completes the proof of this
step. O

Step 2. The map defined in Step 1 is bijective.

Proof of Step 2. First we show that the map in Step 1 is surjective. Let ¢ € Irry (M) with
P’ < ker(¢). It is clear from (3.1) that v is Gg-invariant, and in particular it is fixed by the
Sylow 3-subgroup (z) of &3. Since (1) is coprime to 3, an easy argument on character degrees
yields that ¢ lies over a 3'-degree irreducible character of (Pj_1)® which is (z)-invariant, that
is 1) lies over a character of the form n = a®3 € Irr((Py_1)?), where a € Irr(Py_1) is linear.
Let I be the stabilizer of a in N, 4 (Py_1), and write J = I and L = M N J. By Clifford’s
correspondence, let v € Trr(L |n) such that v M= 4. Since (P,_1)? has index coprime to 3 in
J, by Gallagher’s theorem [8, Corollary 6.17] we have that v = 7 - J, where 7 € Irr(L) is the
canonical extension of 7 (in the sense of Theorem 2.2) and ¢ € Irr(L/K). Now let 7 € Irr(J) be
the canonical extension of 7 to J, so 7 restricts to 7 by the properties of the canonical extension.
Note that L is (z)-invariant. Also, note that ¢ is (z)-fixed. Since J/K is a abelian, it is clear that
d extends to J, and since J/K is a 2-group (see Lemma 3.3 of [18]), we deduce by coprime action
that there exists a (z)-invariant extension  of § to J. Then ¢ = 7 -4 is a (z)-invariant extension
of  to J. It is clear that ¢ = 4®3, for some extension & of & to I. Let A = & TNGB’“—l(Pk_l),
which of course is an irreducible character of degree coprime to 3. By construction we have that
1 = 1), so the map in the previous step is surjective, as wanted. Similar considerations lead to
the conclusion that the map in Step 1 is also injective, which completes the proof of this step.
O

Step 3. If A®¥3 = ¢, under the map defined in Step 1, then there exists a natural bijection

f)\: Irrgx(NGBkA (Pkfl) I 63 ’ )\®3> — II‘I‘3/(NH(P) ‘ w)\)
which is compatible with character restriction.
Proof of Step 3. As before, write ¥ = 1), and let 1]) = o M Recall that 1) = 1,/3 dar, and that
since ¢ is invariant under Gg, it follows that 1 is also Ss-invariant. Now, by Proposition 2.3(1)

restriction defines a bijection from Irr(JM x &3 | 1)) into Irr(Nz (P) | ). Observe that 1) induces
irreducibly to A®3 by Clifford’s correspondence, and thus by Proposition 2.3(2) induction defines
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a bijection from Irr(JM x S3 | 1/3) into Irr(Nggki1 (Py_1) 1 63| A®3). By composing the inverse
of the latter bijection with the former one, and then restricting the resulting map to the set of

irreducible characters of degree coprime to 3, one obtains a correspondence

f)\l Irr3/(N63k71 (Pkfl) ! 63 ‘ )\®3) — Irrgl(NH(P) ’ w)\)
as desired.
O

Step 4. The union f of the maps fy defined in Step 2, with A running over Irrg,/(Ngski1 (Px-1)),
is a natural bijection

f:Trry (Ne, ) (Pr1) 1 63) — Irrg (N (P))

which is compatible with character restriction.

Proof of Step 4. Let & € Irry (N63k71 (Pp—1)163). It is easy to see that £ lies over a unique 3'-
degree irreducible character of N63k71 (Py_1)3, which necessarily is of the form A®3 for a unique
A €Ity (N, (Py—1)). Thus f(§) = fi(€), and the union f of the maps defined in Step 1 is
well-defined.

Suppose now that p € Irrs/ (N g (P)), so in particular we have that P < ker(u). Then it follows
from (3.1) that p lies over a uniquely determined character ¢ € Irry (M) with P’ < ker(¢)), which
necessarily is Gs-invariant. Thus, by Step 3 in order to show that f is surjective, it is enough to
see that for any v € Irry (M) with P' <ker(¢), there exists A € Irry(Ng,, , (Px—1)) such that
¥ = . Of course, this is contained in Step 2.

Finally, it is easy to deduce from Step 2 that the map f is injective,

O

We have completed the proof of Proposition 3.6. (|

Theorem 3.7. There exists a canonical bijection Par between Irry (S3r) and Irry (Ng,, (Pg))-

Moreover, ®3i(x) is an irreducible constituent of the restricted character x Ing L (P)s for all
3

X € Irry/ (G3r).

Proof. We work by induction on k£ > 1. If kK = 1 then the result is clear, since &3 has a normal
Sylow 3-subgroup, so assume that k& > 2.

Suppose that the result holds in Ggr-1, and let Py, € Syl3(S3x). Let H = G611 63 < Gy
be determined by P as in the beginning of this section. By Theorem 3.5, we need to define a
canonical bijection

Irrg (H) — Irry(Ng, (Px))
which is compatible with character restriction. As before, write P, N (Sge-1)3 = (Py_1)3. Then,
observe that by Proposition 3.6, it suffices to define a natural correspondence

Irrg (H) — Trry (N63k—1 (Pr_1) 163)

which respects restriction of characters.
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Let ¢ = 693 € Trry ((Gge-1)%), where § € Irry/(Sge-1). By the inductive hypothesis, let
A = ®3-1(0), and write v = A3 ¢ Irr3/(N63k_1(Pk_1)3). In particular, note that v is a
constituent of iNGSk_l(Pkfl)s' Let 1 (respectively ) be the extension of ¢ (resp. v) to the
wreath product H (resp. Ng , ,(Ps-1)63) described in Lemma 2.1. Then it is easy to see
that © is a constituent of the restriction of ¢ to N@3k71 (Px—1) 1 S3. Thus, the map ¢-§ — -9,
where 0 € Irr(S3), is a natural bijection

Irrg (H | ) — Irry (N6:5k71 (Px—1)163|v)

which respects restriction of characters. Now, it is easy to see that the union of these maps, where
1 Tuns in the set of Gz-invariant characters in Irry ((Ssr-1)%) and v € Irry (Ne,, , (Pp_1)?) is
defined accordingly as above, is a canonical bijection as desired. O

4. A CANONICAL McKAY BIJECTION FOR &,

In order to deal with the general case in symmetric groups and construct a canonical bijection
between Irry (&,) and Irrs (Ng, (P,)), we need to analyse first the case where n = 2 - 3, for
some k € N.

4.1. The case n = 2 - 3*. We start with some observations on the structure of the two sets
Irry (Sy.31) and Ity (Ng, , (Pa.3r)). We first introduce the following useful definition.

Definition 4.1. Let hy, he € H(3F) be two distinct hook partitions, hy # he. We say that a
partition A € P(2 - 3%) is hook-generated by the pair {h1, ho} if A has two removable 3*-hooks
k1, ko and we have that A — k; = h; for ¢ € {1,2}.

Remark 4.2. The concept introduced in 4.1 is well defined since for every pair {hi, ha} of
distinct 3*-hooks there exists a unique partition A € P(2 - 3¥) such that A is hook-generated
by {hi,he}. This can be seen by looking at the 3-core towers of the partitions involved. From
repeated applications of [20, Theorem 3.3] we deduce that for any i € {1, 2} there exists a unique
z; € {1,...,3} such that Tj(h;) = (3,...,9) for all j < k and Ty(h;) = ((hz)’f,,(hl)gk),
where (h;)¥ = (1) and (h;)¥ = @, for all s € {1,...,3F} \ {a;}. Since hy # hy it follows that
x1 # 9. If X € P(2-3F) is hook generated by {hi1, ha}, then it follows that T;(\) = (2, ..., 92)
for all j < k and Ti(\) = ()\’f,...,)\];k), where A¥ = (1) for all i € {1,2} and A} = &, for all
s € {1,...,3%} ~ {x1,22}. Since every partition is uniquely determined by its 3-core tower, we

have that A is unique.

We denote by HG(2 - 3%) the subset of P(2 - 3%) consisting of all partitions that are hook-
generated by some pair of distinct 3*-hooks. Definition 4.1 and Remark 4.2 show that a partition
A lies in HG(2 - 3%) if and only if its 3-core tower T'(\) has exactly two non-empty 3-cores lying
in the k-th layer. Both these 3-cores are equal to (1).

Let A= {x"| heH(2-3%)} and let B = {x* | A\ € HG(2-3¥)}. From Theorem 2.4 we have
that II‘I‘3/ (62,3k) =A U B.
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Definition 4.3. Let n,m € N. Given w € {(n),(1")} and X\ = (m — z,1%) € H(m) we let

(m—x+n,1%) ifw=(n),

1) MUT Y e 1y = (11,

Moreover, we write £(\ ® w) = dxx' + (1), Where dyy = 1 if 2 =y and 0,y = 0 if x # y.

It is easy to observe that A = {hew | h € H(3%),w € {(3F), (13"} }.

We next describe the set of 3'-degree irreducible characters of G4, 1G2 < G4 5x. As in Lemma
3.1, it is easy to see that all complements of the base group (&3:)? in the wreath product
G35 1Sy are conjugate. Thus, for each x = x* € Irry (S5 ) with h € H(3F), Lemma 2.1 provides
a uniquley defined extension Y of the character x®2 € Trrz ((S4k)?) to Gar 1 Ga. If u € P(2), we
denote

X(h,p) = x-x" € Irr(Gar 1 G2)
where of course x* € Irr(S2) is identified with its inflation to S ! G2, Now it is easy to see
that Irrg (G411 S2) = C'U D, where

C = {x(h,p) | h € H(3") and u € P(2)}

and

G116
D ={(x" ®x") T(é’:,:); | hi,hy € H(3F) and hy # ho}.

We now let ¥y : A — C be the map defined by

x(h,(2)) ife(hew) is even,

hew\ __
(*2) ™) = x(h, (12))  if e(h e w) is odd.

On the other hand we let W5 : B — D be the map defined by
AN _ (b hoy 4.853k162
Vo(x) = (XM @x™) (g, 2 -
where {h1, ha} hook-generates A.

Theorem 4.4. The map VU : Irry (Sq.56) — Irry (Sar 1 S2), defined by V(a) = Vi(a) for all
a € A, and by ¥(b) = Wy(b) for all b € B, is a canonical bijection.

Proof. The map W, is clearly a bijection between A and C'. The map W, is well defined, since
any partition A € HG(2-3%) is hook-generated by a unique pair of distinct 3*-hooks. This can be
proved with an argument similar to the one used in remark 4.2. The map is clearly surjective,
and it is injective by Remark 4.2. Since both W; and W4 are choice-free bijections, we have that
so is W.

Finally we observe that W is equivariant with respect to group automorphisms. This is
straightforward for inner automorphisms of &, 3%, and then it can be checked explicitly for the
general case after computing ¥ for Sg (when k = 1), see Example 4.5 below. ([l

We remark that a similar map was constructed in a different context by Evseev in [4].
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Example 4.5. Let n = 6. The partition labelling the irreducible 3’-characters of &g are
H(6) U{(3,3);(3,2,1);(2,2,2)}. In the equations below we completely describe the bijection ¥
obtained in Theorem 4.4 in the case of Gg.

X = x((3),2) 5, x®Y e x((2,1),(12), X ((1%), (2))
X s x((3),(12) X = x((2,1),(2), XU = x((1%), (1,1))
X(3,3) S (X(3) ® X(?,l)) /]\63262 , X(S,Q,l) — (X(3) Q X(13)) T63262’ X(2,2,2) s (X(13) ® X(Q,I)) TGgZSQ.

Let P, denote a Sylow 3-subgroup of &,.. It is clear that P,.4. partitions the set {1,...,2- 3*}
into two orbits of size 3¥, and that Py = (Psr)? < (S3x)?, where (G4:)? is the Young subgroup
of 6,31 associated to that set partition. Now, it is not difficult to see that

NGz'ak (Pz,gk) = Ngsk (P3k) 16,
and the complements of the base group in this wreath product are all conjugate. Write N, :=
Ne, (P) for 7 € N, 50 Nygt = Nar 16 < G311 Sy, If ¢ € Trr( Ny ), we denote by ¢ € Trr(Ny.qe)
the extension of ¢®2 € Irr((Nsk)?) prescribed by Lemma 2.1. Then we have that Irrg (Ny.ge)
equals to

{63 | 9 €Ty (Np), p € PYU{(@0) (3% | 09 € Ty (Nye), 6 # 4}

Now, Theorem 3.7 together with the structure of Irrg (Sar 1 S2) = C' U D as discussed at the
beginning of Section 4.1, shows that the following holds.

Proposition 4.6. The map © : Irrg (Sar 1 Sg) — Irrg (Nygr ), defined by
O(x(\, 1)) = dx - x*

for all x(\, ) € C, where ¢y = @3 (x*) € Irrg (N3i); and by

oy 2841616 v N,
@((X)‘ ® x") T(é’;)g ) = (P3r (X/\) ® P (X)) T(]\ink)z

or all (x* ® x¥ 63'“?6226 D, is a canonical bijection. Moreover, ©(x) s an irreducible con-

stituent of X In, ., for all x € Irry (G4 1 Gs).

Theorem 4.7. The map ®4.5x obtained as the composition of the maps ¥ and © is a canonical
bijection between Irrs (Sy.5x) and Irrs (Ny.gr).

In the last part of this section we focus on giving a more precise description of the canonical
bijection constructed in Theorem 3.5 for the prime p = 3.

Proposition 4.8. Letn = 2-3%, let h = (n—¢,1°) € H(n) and let K = G3:16,. The restriction
(x") Lk has a unique irreducible constituent ¢" lying in C.

More precisely if m € N is such that £ = 2m+x for some x € {0,1}, then ¢" = x(\, p) where
A= 3k —m,1™) and p = (2) if m + z is even, p = (1,1) if m + z is odd.
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Proof. Let pn = (3% —y,1¥) € H(3%) and let v € H(2 - 3%) be such that x” is an irreducible

constituent of (x* ® x*) T%'iky. An easy application of the Littlewood-Richardson rule shows
sk

that 2y + 1 < £(v) < 2(y + 1). We deduce that

1 ifu=2x,
(4.3) X" b2 X @ X! ) =
SUpT ) 0 if pe H(3E)~ {A}.
This implies that there exists v € P(2) such that ¢" := x()\,v) is the unique irreducible con-
stituent of (x") lx lying in C. Equivalently, (x") lx= #" + A, where A is a sum (possibly
empty) of irreducible characters of K of the form (x” ® x?) T{é )2 for some 0,7 € H(3F).
3

In particular A(y) = 0, where v € K < &,.4x is the element of cycle type (23k) such that
K= (ng X ng) X (7). Using the Murnaghan-Nakayama formula we deduce that

m

Sk -1 m-+x h h A v 3k -1 v
(=)™ =x") =) =" ((2) = [~ ]x"((12)).
We conclude that v = (2) if m+x is even, v = (1,1) if m+x is odd. The proof is concluded. O

Lemma 4.9. Let k € N>g and let m € {0,1,...,3F"1 —1}. Let A = (3% — 3m, 13™) € H(3F),
a=(2-3F1—2m 12™) € H(2-3F1) and p = (3F 1 —m,1™) € H(3* ). Then ¢ = x* @ x*
is the unique irreducible character of Gq.31 X Gar such that

<X>‘ iGNkﬂ XG g1 1/1> #0# <¢ i(@sk_l)g, Y@ ® X“> '

Moreover, <x)‘ \l/GQ'Sk_IXGSk_law> =1

Proof. To ease the notation we let A = Gy q6-1 X Gar-1 and B = (Sg-1)3. Let ¢ = x¥ @ x*
be an irreducible constituent of x* |4 and of (x* ® x* ® x*) 14, We want to show that
v = a. Since ¢ lies below x* we deduce that v € H(2 - 3¥). Moreover, by equation (4.3) in
the proof of Proposition 4.8 we obtain that v € {(2-3F~1 — (2m + 1), 1?"+1) a}. Suppose that
v=(2-3"1—(2m+1),12"*1) and let p € H(3¥) be such that x” is an irreducible constituent
of ¢ 193+, Then we would have that £(p) > 3m + 2 > 3m + 1 = ¢()\). This is a contraddiction.
Hence v = o and ¢ = 9.

The second statement follows easily because <X/\ B, X* @ x* ® X”> =1 by Lemma 3.2. [

As a corollary we obtain the desired description of the canonical bijection constructed in

Theorem 3.5 for the prime p = 3.

Corollary 4.10. Let k € Nug and let A = (38 — (3m + z),13™*®) € H(3F) and p = (38! —
m,1™) € H(3* 1), for some x € {0,1,2} and m € {0,1,...,3*"1 —1}. Write § € Irr(S3-1163)
for the extension of (x*)®® € Irr((&4x—1)3) described in Lemma 2.1. Then the unique irreducible

constituent of degree coprime to 3 of x ¢63k71363 18
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0- (" ifz=0,
XF=190-(x®Y) ifr=1,
9. (x\INmHL ifp =2,

Proof. If © = 1 the statement follows immediately from Theorem 3.5. Suppose that z = 0.
By Theorem 3.5 we know that x* = 6 - x”, for some v € {(3),(1%)}. Adopting the notation
of Lemma 4.9, let a = (231 — 2m,12™) € H(2-3*71) and let ¢ = x* @ x* € Irry (A),
where A = Gg.31-1 X G3r-1. From Proposition 4.8 we deduce that A := (o - (xI)™) @ x#
is a constituent of g, where K := (ng—l l 62) X Ggr-1 and o is the canonical extension of
Y* ® x* to its stabilizer given by Lemma 2.1. Moreover, A is the unique constituent of x* |k
lying over 6, by Lemma 3.2. Therefore x* |x= A and hence x” |s,= (xT*)™ (as characters
of (Gz1-1163)/(Sgr-1)3 = S3). This implies that x* = (x**))™, as desired. By Theorem 3.5,
this also settles the case x = 2. g

4.2. Arbitrary n € N. In this section we let n = 22:1 a, - 3™ be the 3-adic expansion of
n, for some ny > .-+ > ny € Ny and some a; € {1,2} for all k € {1,2,...,t}. We relax a
bit the notation by saying that a partition A € Irrg/(&,,) or equivalently that A\ k3 n if the
corresponding irreducible character x* € Irry (&,,).

Proposition 4.11. Let \ be a partition of n. Then A € Irrs(S,,) if and only if one of the

following conditions holds.

(i) A has a unique removable (ay - 3™ )-hook h1, and A4, .3m1) € Irr3/(&pgy 371 ).
(ii) a1 =2, A has two removable 3" -hooks hy,hy and Azn1y € Irr3/(&p—2.3m1 ).

Proof. The statement follows directly from Theorem 2.4, applied to the case where p =3. [

Remark 4.12. Let m € N be such that m = 22:1 ay, - 3" is the 3-adic expansion of m, for
some my > msa--->m; > 0. Let N € N be such that N > m; and let n = 3N + m.

Let v € P(m) and £ € {0,1,...,3" — 1}. From [1, Theorem 1.1] we know that ~ has exactly
one addable 3V-rim hook of leg length £. Hence v has exactly 3"V addable 3V-hooks (one for
every possible leg-length). Let Aj, Ao, ..., A\3n be the distinct partitions of n obtained by adding
a 3V-hook to 7.

For each i € {1,...,3"} the 3-core tower T'()\;) has the following form. Tj(\;) = T}(7) for all
j < N and there exists a permutation o € G3n such that Ty(\;) = (M), ..., ( i)éVN), where
(AZ-)G{V@ = (1) and (\)Y =@ forall s € {1,...,3V} < {o(4)}.

In particular, the position of the non-empty 3-core in the N-th layer T (\) of the 3-core tower
T(\) uniquely determines the leg-length of the unique removable 3V-hook of \;.

Proposition 4.11 allows us to associate to each partition A € Irrg/(&,,) a sequence of partitions
N = (1, oy .oy pig) € Irrgr (Sgy3n1 X -+ X Sg,.3n¢ ), in the following way.
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(1) If X has a unique removable (a; - 3" )-hook h1, then let g1 = hy and set Ao = Aap3m) =
A—hq.

(ii) If @1 = 2 and A does not have a removable (a; - 3™)-hook, then by Proposition 4.11 it
has two removable 3™-hooks hi,hg. For each j € {1,2} let v; := A — h;. Clearly v; has a
unique removable 3"-hook k;. In this case let p; € Irrg/(Sa.371) be the unique partition hook-
generated by {ki,k2} and let Ay = A(3n1). Notice that this is well defined since k1 # ko. This
can be observed by applying Remark 4.12 to the partition v = Azn1).

Either ways we have p; € Irrg/(Sg,.371) and Ao € Irrg (Sy,_q,.371), so we can reapply the
process to Ao and obtain pg € Irry (Sg,.372) and Az € Irrg (S),—q,.371 —ay.372 ). After ¢ iterations
of this algorithm we obtain the desired sequence \* = (puy, pa, ..., fit).

Proposition 4.13. The map T' : A — X* = (u1, po, ..., pt) s a bijection between Irrs (&,,) and
Irr3 (Ggy.3m1 X -+ X Ggp3ne ). Moreover, if uj € H(aj - 3%) for all j € {1,...t} then X" is an

; ; ; A
irreducible constituent of x ‘I/Galisnl XX @ gy

Proof. The discussion before the statement of Proposition 4.13 shows that each A € Irrg/ (S,,)
uniquely determines a sequence ({1, 42, ..., 1) € Irrg/ (S .m0 X -+ X Sg,.3n ). We show now
that this map has an inverse. This is clearly enough to prove the proposition.

We proceed by induction on the length ¢ of the 3-adic expansion of n. If ¢ = 1 then the
statement holds trivially. Suppose that t > 2. Let (u1, p2, ..., ) € Irrg (Sgy3n1 X -+ X G, .3n0 )
and let v € Irrg (&,,_q,.371) be the partition corresponding to the sequence (ug, ..., ). The
partition 7 exists and it is well defined by inductive hypothesis. Since p; € Irrg (&4, .371) we
have that (u1,7) identifies a unique partition A € Irrg/(&,,) as follows (we need to distinguish
two cases, depending on the shape of p;).

(i) Suppose that pu; = (a;-3™ —£,1%) € H(a1-3™). By [1, Theorem 1.1], we know that ~ has
a unique addable (aj - 3™ )-rim hook h; of leg length ¢. In this case A is defined as the partition
obtained by adding hi to . (More formally A is the unique partition of n that has a removable
(a1 - 3™ )-hook hy of leg length ¢, and such that A\ — h; = 7).

(ii) Suppose that a; = 2 and py € Irry (Sg4,.371 ) is not a hook partition. Then there exists
{k1,k2} C H(3™) , k1 # ko such that {k1, k2} hook-generates p1. For j € {1,2} let £; be the
leg-length of k;. Moreover, denote by v; the (unique) partition of n — 3" obtained by adding
(in the unique possible way) a 3™-hook of leg length ¢; to 7. In particular, looking at the
3-core towers of 11 and vy we have that there exist 1,22 € {1,2,...,3"} such that: T),,(v;) =
(V)1 s (vj)38,), where (v5)z! = (1) and (v));"* = @ for all i € {1,2,...,3"} \ {z;}. From
Remark 4.12, we have that x1 # .

We now define A as the partition of n such that Tj(\) = Tj() for all j < ny and T),,(\) =
(ATY, ..., Aghy ), where A = (1) for i € {x1, 2} and A = @ for i € {1,2,...,3"} \ {z, 22}

In both cases we obtain a canonically defined partition A € P(n) such that x* € Irry(S,)
and such that \* = (1, o, ..., fe)-
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The second statement is proved by induction on ¢. If ¢ = 1 the statement holds trivially.
Let t > 2 and let h be the unique removable a13™-hook of A\. Then \* = (h,ua,..., 1),

()‘ - h)* = (/‘LQ’ s nut) and
<XM2 Y Xut Teni‘h‘ux/\_h> 7& 07

by inductive hypothesis. Moreover, an easy application of the Littlewood-Richardson rule shows
that <(X/\_h ® x") 16, X/\> # 0. This concludes the proof. O

Proposition 4.13 together with Theorems 3.7 and 4.7 implies Theorem A, which we reformulate
below:

Theorem 4.14. Letn = 22:1 ay, - 3™ be the 3-adic expansion of n. The map ® defined as the
composition of the maps T' and ($g,.371 X -+ X Py, .3n¢ ) is a canonical bijection between Irrs (&y,)
and Irry (Ng, (Py)). Moreover, if ai, # 2 for all k € {1,...,t} and x € Irr3/(&y,), then ®(x) is
an irreducible constituent of X INg (P,)-

Of course, in the previous theorem we embed G, .31 X - X G,,.3n naturally as a Young
subgroup of &,,. We also note that the characters in Irry (Ng, (P,)) are rational-valued, as it
can be checked by using Lemma 7.1 below, for instance.

5. IRREDUCIBLE CHARACTERS OF 3'-DEGREE OF GENERAL LINEAR AND UNITARY GROUPS

Using the McKay bijection previously described for symmetric groups, it is possible to con-
struct a similar canonical bijection for general linear and unitary groups in non-defining char-

acteristic. From now on let ¢ be a power of a prime p # 3.

5.1. General linear groups. For any n > 1, let G = GL,(q) be the finite general linear
group, with a natural module V' = Fp = <61,...,6n>Fq. As in [14], it is convenient for us
to use the Dipper-James classification of complex irreducible characters of GG, as described in
[12]. Namely, every x € Irr(G) can be written uniquely, up to a permutation of the pairs
{(51,A1), - (SmsAm)}, in the form

(5.1) X = S(s1,A1) 0 S(s2,A2) ©...0S(Sm, Am)-

Here, s; € qu has degree d; over Fq, \; = k;, Z:L k;d; = n, and the m elements s; have
pairwise distinct minimal polynomials over F,. In particular, S(s;, A;) is a primary irreducible
character of GLg,q,(¢). The subset Irrg/(G) is conveniently described by Lemmas (5.3) and
(5.4) of [19]. In what follows, we will fix a basis of V' and use this basis to define the field
automorphism Fj, : (z;5) — (2};) and the transpose-inverse automorphism 7 : X — X ~1; also
set DT := (F,, 7). Note that Aut(G) = Inn(G) x D*. Then, in this and the subsequent sections,

our canonical bijections will be shown to be equivariant under D and also I' := Gal(Q/Q).
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5.2. General unitary groups. Let G~ := GU,(¢) = GU(V), the group of unitary transfor-
mations of the Hermitian space V = FZQ. The Ennola duality establishes a procedure to obtain
Irr(G™) from Irr(G™) by a formal change g to —q, where GT := GL,,(g). We will exhibit it more
explicitly for our purposes of studying Irrs/(G™).

As in the case of G*, we can identify G~ with its dual group (in the sense of the Deligne-
Lusztig theory [2], [3]). It is easy to see that any semisimple element s_ € G~ has centralizer

of the form
Co-(s-) = GUy, (qdl) X ... x GUy, (qd“) X GLka+1(qd“+1) X ... x GLg, (qd"),

where >0, kid; = n, all di,...,dq are odd, and all dg41,...,d, are even. In what follows, we

use the convention
GLy,(—¢") := GU(¢)
for any positive integers k,d. Then we can write
Cg-(s-) = GLy, ((=¢)™) x ... x GLy, ((=¢)™) x GLg,,, ((=g)"*") x ... x GLg, ((=9)™);
which can then be obtained, replacing g to —¢, from

Ca+(54) = GLg, (™) x ... x GLy, (¢™)

for some semisimple element s, € G*. Each unipotent character of GLy,((—q)%) is labeled by
a partition \; - k;; let 07 ()\;) denote such character and set

YT =" (M) @Y (N) ® ... ().

Note, see [2, Chapter 13], that if ¢/ ();) is the unipotent character of GLg, (¢%) labeled by the
same \;, then deg ™ ()\;) is a product of some powers of g and some cyclotomic polynomials in
q; furthermore, if we make the formal change ¢ to —¢, then we obtain deg ™ (\;) (up to sign):

deg 9™ (Ni) = £ deg ¥ (\i)g——q-
As explained on [5, p. 116], for each x~ € Irr(G™), we can find a unique G~ -conjugacy class of
semisimple elements s_ € Irr(G™), a linear character §_ of L_ := Cg-(s—) and ¢~ as above so
that x= = iRg:(:%_w_), where Rf: is the Lusztig induction. Similarly, we can find a linear
character 81 of Ly := Cg+(s4) and form T = Rf:(&rw*) € Irr(GT), with
YT =yt @Yt (R)®...@vT(\).
Note that
Xt =5(s], 1) 08(sh,Aa)o...08(sh, \)

for suitable s € IF‘qX of degree d; in (5.1). Adopting this notation, we will also write x~ in the

form

(5.2) X~ = S(s1,A1) 0S(s2,A2) 0...085(sp, Ar),
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with the following modification: either d; > 3 and s; € qu NFg, ord;j =1 and s?“ =1, or
d; =2, and s; € IE‘;2 but S?H # 1 (note that each s; is an eigenvalue of s_ on V corresponding
to the factor GLg,((—¢q)%) of Cg-(s—)). In the two latter cases, we define

deg™ (s5) == dj.
According to [5, (1.3)],
V) = [GF Ly (1), X~ (1) =[G L]y -9~ (1),
Furthermore, |G|, respectively |L_|,s, can be obtained from |G|, respectively from |L.|,,
by replacing ¢ with —¢ (and possibly multiplying by —1 to get a positive number!) It follows
that x~(1) is obtained from x*(1) by the formal change ¢ — —q. More precisely, there is a

monic polynomial f = Zﬂ o Cit' € Z[t] in the variable ¢ (which is a product of a power of ¢ and
some cyclotomic polynomials in ¢, independent from g¢), such that

xT(1) = flg), x (1) = £f(—q).

Now we choose e~ € {1,2} such that the order of (—¢) modulo 3 is e~, and choose e* € {1,2}
to be the order of ¢ modulo 3. First consider the case e™ = 1, i.e. 3|(¢+1). Then 3+t x~ (1) with
e” =1lifand only if 31 f(—q) = >, ci(—q)" = >, ¢i(mod 3), i.e. precisely when 3 1 xT(1) =
f(q) with et = 1. Next, we consider the case e~ =2, i.e. 3|(¢ —1). Then 31 x™ (1) with e~ = 2
if and only if 31 f(—¢q) =Y, ci(—q)" = 3_.(—1)'c;(mod 3), i.e. precisely when 31 x* (1) = f(q)
with et = 2. In each of these cases, we can then apply Lemmas (5.3) and (5.4) of [19] to x™ to
get the conditions on d; = deg(s}) = deg™ (s;) and A;. Hence we have obtained (where again
ey and ¢} denote the e-core and the e-power of a partition y):

Theorem 5.1. Write n = ¢+ me~ with 0 < ¢ < e, where e~ € {1,2} is the order of (—q)
modulo 3. Then the character x~ in (5.2) has degree coprime to 3 if and only if all the following
conditions hold:
(i) If nj == kjdj = cj + mje” with 0 <c; <e” and 1 < j<r, then 37 _jc;j=c, >\ ym;=
m, and 31 (m!/ 5, m;!).
(ii) s; € IE‘qXQ, and dj = deg™ (s;) divides e~, for 1 <j <r.
(ili) Set €} := e~ /d;j for 1 <j < r. Then dj‘()‘j)(e;)‘ = ¢j, ()\j)(eg) = ()\j,oa---a/\j,e;.q); with
Aji g myq for 0 <i <€} —1. Neat, Zfigl mj; =m; and 31 (m;!/ Hfigl mj;!).

Again, in what follows we will fix a basis of V' and use this basis to define the field automor-
phism F, : (zi;) = (2};); also set D™ := (F},). Note that Aut(G) = Inn(G) x D~. Then, in this
and the subsequent sections, our canonical bijections will be shown to be equivariant under D~

and also I' = Gal(Q/Q).

Remark 5.2. In both of the cases ¢ = &£, the action of D* and I' on the labels of Irr(G%) is
explained in the proof of [7, Theorem 5.3]. In particular, S(s,\)° = S(s7,)) and S(s,\)f? =
S(sP, \), for ¢ € T and F, € D°. Moreover S(s,\)” = S(s71,\) for 7 € DT. (The action of T
on ﬁqx is defined at the beginning of Section 5 in [7].)
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6. LINEAR AND UNITARY GROUPS: A GLOBAL BIJECTION

Let ¢ be a power of a prime p # 3 and let G5, be GL,(q) for ¢ = + and GU,(q) for ¢ = —.
When necessary, we will write G5(q) instead of the shorter notation G5,. We will also interpret
the expressions like ¢ — € as ¢ — 1.

Let R® be a Sylow 3-subgroup of G:,. In order to explicitly describe a canonical bijection
between Irry (Gy,) and Irry (Nge (R°)), we will adopt a strategy that is similar to the one used
in the previous sections, in the case of symmetric groups. Namely, we will identify a convenient
subgroup H¢ such that Ng: (R°) < H® < Gy, and we will first construct canonical bijection
between Irry (G5,) and Irry (H®), and a second one between Irry (H®) and Irrg/(Nge (R®)). Let
VTt = Fy = {€1,...,en) denote the natural module for G, and V— = IFZQ, endowed with an

orthonormal basis eq,...,e,, be the natural module for G~.

6.1. The case 3 | (¢—¢). Suppose 3 divides g—e. Let n € N and let A3/ (n) be the set consisting

of all (ny1,ng,...,n,)F n such that
n!
3 =——.
[Tj=1(n;!)
From [19, Section 5] and the discussions in Section 5 we deduce that y € Irr(G:) has degree
coprime to 3 if and only if there exists a partition (n1,na,...,n,) € Ag(n) and pairwise distinct

elements s1,...,8, € ?qx with s?_g =1 for all j, such that
X = S(s1,A1) 0 S(s2,A2) 0...085(8m, Am),

where x% € Irry (&, ), for all j € {1,...,7}.

Then we define the subgroup H* to be GL1(¢)!S,, when ¢ = +, and GU;(¢)1S,, when ¢ = —,
where in both cases G,, denotes the subgroup of permutation matrices in Gf, with respect
to our fixed basis eq,...,e, of V¢, Note that H® is invariant under the field automorphism
F, ¢ (z55) — (:L“Z) (defined in the given basis of V¢), and also under the transpose-inverse
automorphism 7 : X — ‘X! when ¢ = +. Furthermore, both I' and D? act trivially on &,,.
The indicated automorphisms 7 (for ¢ = +) and F}, together with the inner automorphisms,
generate the full group Aut(G%). Note that H® = G511 S,,. An easy application of the theory
recalled in Section 2.1 shows that ¢ € Irr(H¢) has degree coprime to 3 if and only if there exists
a partition p := (n1,ng,...,n,) € Ay (n) and pairwise distinct elements si,...,s, € qu such
that 33_5 =1 for all j, such that

®mn1 A QN2 Ay —— Qn, A e
Y= ((8(s1,(1) XM ®(S(s2, (1) xP) @@ (S(s (1) M)
where \; kg nj, for all j € {1,...,7}. Here we denoted by I, the subgroup of H® defined by
I, =G{ (6 x - x6, )= (G{16,,) x -+ x (G516,,) < H°. Moreover, for all 1 <i <r
—— QN
the character S(s;, (1)) € Irr(G5 1 S,,;) denotes the extension of S(s;, (1))®™ € Irr((GS)™),
prescribed by Lemma 2.1.
The above discussion shows that the following statement holds.
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Proposition 6.1. Let x = S(s1,A1) o0 S(s2,A2) o...08(sp, Ay) € Irrg (GS,). Denote by x* the
element of Trry/(HE) defined by

« ——  Qni ®n2 ——  Qnr HeE
X = ((S(Slv(l)) XA1)®(S(827(1)) X/\2)®®(S(S7”7(1)) 'X)\T))Tlp ’
where p = (|A1],...,|A\|). The map x — x* is a canonical bijection between Irrs (G5) and

Irrg/ (HE). Moreover, the bijection is both I'-equivariant and D®-equivariant.

Proof. The discussion in Section 6.1 easily implies that the map x — x* is a bijection. Moreover,
using Lemma 2.1 together with Remark 5.2 it is routine to check that the bijection is both I'-

equivariant and D¢-equivariant. O

6.2. The case 3|(¢+¢). Let n = 2m (we will treat the case n = 2m+ 1 separately, see Theorem
6.4). We will explicitly construct a subgroup H® = HZ, = (GL1(q?) xc C2)1&,, that is invariant
under the field automorphism F},, and also under the transpose-inverse automorphism 7 if e = +.
We start by giving the construction in the case m = 1. We let V; be the natural module for Gf.

First let ¢ = —. Then we fix a basis (e, f) of V; such that the Hermitian form takes values
eoe = fof =0and eof = 1. Then we take GL;(¢?) to be the subgroup {diag(a,a™9) | a € IE‘;},
and the involution z to be swapping e and f. Now if F), is defined in this basis (e, f) then
H$ = (GL1(¢?), 2) is Fp-invariant.

Next suppose ¢ = +. Note that 3|(¢ + 1), and so ¢ = p/ for some odd f and 3|(p + 1).
Furthermore, we can find § € Fj2 \F, of order (p+1)-ged(2,p— 1), so that P+t = —1 = got1,
Now we view F 2 as a vector space over F, with basis (1, 3) and let M, denote the matrix of the
multiplication M,(v) = zv by = € IE‘qXQ, relative to this basis. Note that v := g+ P € [, and

a

b a+~b
Then we take z to be (the action of) Fj,, which, by the above discussion, is represented by

Ma-i—bﬁ = for a,b € Fq. It follows that Fp(Ma+b5) = Map+bp5 and T(Mm) =M,1.

0 -1

x € F) is (Fp, 7)-invariant.

1
M, = ( 7 ) In particular, M is F)-fixed and 7(M,) = M;gM.. Hence, H] = (M, M. |

In the general case for any m, it suffices to take V' to be the sum of m isomorphic copies of
Vy (with our fixed basis), and set HS, = H{ 16, = (GL1(¢?) x C2)1&,,, where &,, denotes the
subgroup of permutation matrices in G§,, acting on the diagonal (2 x 2)-blocks of the matrices
in (H{)?™. Note that the action of Cy = (2) on GL;(¢?) is given by exponentiation to the
(eq)™" power. In particular, the subgroup of the fixed points under this action coincides with
G§ < GLy(¢?).

An irreducible character x of H¢ has degree coprime to 3 if and only if there exists a partition
p=(mi,...,m;) € Ag(m) such that

X:01®92®..,®0TT§£8’

where I, = (GL1(¢?) x: C2) 16, = [(GL1(¢%) ¥ C2) 1 &y, ] X -+ x [(GL1(¢?) %e C2) 16y, ], and

—~—

6 = (@D;X)mj) -x%. Here 91, ... ,1), are pairwise distinct irreducible characters of GL;(¢?) % Cs,
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w;amj denotes the extension of w?mj to (GL1(¢?) xe C2) 1 Sy, given in Lemma 2.1, and A; is a
partition of m; such that Ve Irry (&, ), for all j € {1,...,r}. Moreover, we denoted by &,
the Young subgroup of &,,, corresponding to p € P(m).

From now on we denote the group GLi(¢?) x. Cy by K¢. For each g € Gf, note that
S(g,(1)) € Irr(GL1(¢?)) is invariant in K¢. Since GL;(¢?) is cyclic, it is not difficult to see that
each such S(g, (1)) has a unique extension S(/g_,\(/l)) to K* such that it restricts trivially to Cs.
Thus, observe that if ¢ € Irr(K*) then 1 is of one of the following forms:

S(/g,\(/l)) -xY for some v € P(2), ifge Gy,

K .
S(Q?(l))TGLl(QQ) if g EF(;Q \Gi.

Construction of the bijection. Let y =0, ® ) ® - -+ ® HTTIILIE € Irrg (H€) be as above. Let
P
Q5 be the subset of ]F;2 defined by

€ Ke .
Qo ={g €Fp\Gi | =S5(g. (), 2y 37 €L 7}

Similarly we let 7 = (2&2) U le’l), where for all v € P(2) we define Qf as
O ={geGi¥;=5(,1) x" Fjel{l,....r}}.
Of course, here we are using the same notation as above for the extension S(g, (1)), for g € G5.
Observe that the definition of all the sets above depends on € and on the irreducible character
X- These dependences are omitted in our notation. Moreover, the set )y is regarded as a set
of representatives for the equivalence classes [g] = {g,¢°?}. It is also important to observe that
the sets QSQ) and le’l) are not necessarily disjoint.
For g € Qg let Ma(g) ={j € {1,...,r} | ¢; = S(g, (1))TgL1(q2)}. Similarly for v € P(2) and

g€ QY define MY(g) = {j € {1,....7} | ¥ = S(g. (1)) - x*}. Let Mi(g) = M (g) U M{"V(g).
Since 11, ...,1, are pairwise distinct, we deduce that |Ma(g)| = 1 for all g € Qo. Hence, we
can relabel some of our variables in the following way. For g € Qq, if Ms(g) = {j} then denote
mj by mgy and A\; by Ag4. Clearly we now have that A\, = mg,. Similarly, for g € €y, we observe
that 1 < |M;i(g)| <2 and |M;(g)| =2 if and only if g € ng) N le’l). Hence we can proceed as
follows.

Ifge (QgQ) N le’l)), then Mi(g) = {j} = My for some j € {1,...,r} and for a unique
v € P(2). In this case we denote m; by m} and \; by A\j. Moreover we let mZ' =0 and )\Z’ =g.
(Recall that / denotes the conjugate partition of v).

On the other hand, if g € 952) N le’l) then there exist distinct 4,5 € {1,...,7} such that
M1(2) (9) = {i} and Ml(l’l)(g) = {j}. In this case we denote m; by mE,Q), Ai by )\é2), m;j by mgl’l)

and A\; by )\él’l). Moreover we let mgy = mgf) + mgl’l).

Remark 6.2. The relabelling of the integers my,...,m, and of the partitions A1, ..., A, de-
scribed above is well defined because the sets

Mg(g),Ml(Q)(g),Ml(l’l)(g) for all g€ Q1 UQQo,
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are pairwise disjoint. Moreover, the relabelling is natural and choice-free since each of those sets
has size at most 1 (so no choice is made).

With this in mind, we let x* be the irreducible character of G5, defined as the following circle
product of primary irreducible characters.

X =] S(g.A) o T] S ¢ (),

geQ2 he

where ((h) is the unique partition of 2mj with 2-core equal to @ and 2-quotient equal to
A7),

Theorem 6.3. The map x — x* is a canonical bijection between Irrs (H) and Irrs (GS).

Moreover, the bijection is both I'-equivariant and DF-equivariant.

Proof. We keep the notation introduced in Section 6.2. Let Q = Q3 U Q. Let k£ = |[©|. Then
X* = Si0---0Sk, where for all £ € {1,...,k} we have that Sy is a primary irreducible 3'-character
of G5, , for some g € Q. This follows by observing that for g € €2y we have that 3 { XM (1).
On the other hand, for h € Q; we have that ((h) has 2-core equal to @ and 2-quotient equal to
(A1, A2), where
mp,!

Hje{l,Q} |)‘j“.
Hence in both cases Sy satisfies condition (2) of [19, Lemma 5.4] (for € = +1) or the hypothesis
of Theorem 5.1 (for e = —1).

It is easy to see that the partition underlying the sequence (mg)geq lies in Az (m). For

3txM(1) and 3¢

example notice that

Gy X - X Gy < X Gy < G,
ge

Hence for ¢ = +1 and for € = —1, we have that x* € Irrg/ (G5, respectively by [19, Lemma 5.3]
and by Theorem 5.1.

The map is a bijection since every step in its definition is choice-free, unique and reversible.
It is therefore easy to construct its inverse. Equivariance with respect to the actions of I' and
Ds# follows again from Lemma 2.1 together with Remark 5.2 (recall that both I and D*® fix every
permutation matrix). O

The passage from 2m to 2m + 1 is given in the following statement.

Theorem 6.4. Let m > 1 be an integer, ¢ = £, and let ¢ = —e(mod 3) be a prime power.

(i) If we embed G7(q) x G5,,(q) as a standard subgroup of G5, ,(q) and choose a Sylow 3-
subgroup P of the direct factor G5,,(q), then P € Syl3(GS5,,,,(q)) and

Nes, . (P) = Gi(a) X Nes_(g)(P).

(ii) There is a canonical bijection between Irrs (G5, 1(q)) and Irr(Gi(q)) x Irrs (G5, (q)).
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Proof. (a) To prove (i), it suffices to note that 3 { [G5,, . 1(q) : G5,,(q)], and that all composition
factors of P on the natural module U = F?™ of G5,,(¢) = G*(U) are of even dimension, where
F=F,ife =+ and F =Fp if ¢ = —. Hence P € Syl3(G*(V)) for V := L& U with L :=F, and
Nge(v)(P) preserves this decomposition of V.

(b) Express any x € Irrs (G5, 1(¢)) in the form (5.1) or (5.2), and apply [19, Lemma (5.3)] in
the case ¢ = 4. In the case ¢ = —, apply Theorem 5.1. Then there is a unique 7 such that k;d; is
odd. Relabeling the k;d; if necessary, we may assume that 2 { k1d;. Next, applying [19, Lemma
(5.4)] and Theorem 5.1 to S(s1, u) € Irrg (GY, 4 (q)) with p:= X1, we see that di =1, s{ © =1,
2 = (1), 12 = (o, p1), pi is a 3'-partition of m; for i = 0,1, mg+my = (kyd; —1)/2, and 34
((kld;njl)/Q). Now by [21, 5.16] there is a unique v - (k1d1 — 1) such that () = @ and v =2,
Applying [19, Lemma (5.4)] and Theorem 5.1 again, we see that S(s1,v) € Irrg/(Gy, 4, _1(q)). It
follows by the parametrization of Irr(GL2y,(¢)) given in (5.1) and of Irr(GUgy,(q)) given in (5.2)
that

(6.1) X" = 8(s1,v) 0 S(s2,A2) 0...085(Sm, Am) € Irr3 (G5, (q)),

where the fact that 3 1 x*(1) follows from [19, Lemma (5.3)] and Theorem 5.1. Note that the
term S(s1,v) in (6.1) disappears if and only if k1d; = 1.

Now we can define the following canonical map
© : Irrg (G 41 (q)) = Irr(Gi(q)) X Irrgr (G5, (q)), X = (S(s1, (1)), X7)-

(c) Conversely, consider any pair (S(¢, (1)), x*) € Irr(G5(q)) x Irrg (GS5,,,(¢)) with x* written
in the form (6.1); in particular, t97° = 1. If ¢ is different from all s; in (6.1), then we define

a:=S5(t, (1)) o S(s1,v) 0 S(s2,A2) 0...08(8m, M) € Irr(GS5,,11(q))-

Note that a(1) = (¢?™*! — )x*(1) is coprime to 3, and O(a) = (S(¢, (1)), x*).

In the remaining case, there is precisely one s; in (6.1) that is equal to ¢; without loss we may
assume that s; = ¢t. By [19, Lemma (5.3)] and Theorem 5.1 applied to x*, m’ := deg(s1)|v| is
even, and 3 { deg S(s1,7). By [19, Lemma (5.4)] and Theorem 5.1 applied to S(s1,v), V() = &,
2)

V) = (19,11), v is a 3'-partition of m/, for i = 0,1, mj) +m/} = m’/2, and 3 { (77:7;{12) Again by

: : / _ 2) _ (2
) * ) 2 _ = .
21, 5.16], there is a unique v = (m' + 1) such that 3y = (1) and 72 = () Now
B = S(s1,7) 0 S(s52,A2) 0...05(8m, Am) € Irr(G5,,,41(q))-

Using [19, Lemma (5.4)] and Theorem 5.1 we see that 3 { degS(s1,7). Then applying [19,
Lemma (5.3)] and Theorem 5.1 to both x* and /3, we can conclude that 3 f §(1), and that
O(8) = (5, (1)), x7)-

Thus © is surjective. On the other hand, since the McKay conjecture holds for Gf(q) for
any k (see [5]), (i) implies that two sets Irr(G9(q)) x Irrs(G5,,(q)) and Irrs (G5, (¢)) have the
same cardinality. Consequently, © is a bijection, and we have proved (ii). (Il
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7. LINEAR AND UNITARY GROUPS: A LOCAL BIJECTION

As usual, we say that a partition A\ - m is a 3'-partition of m (and write A F3 m) if and only
if 34 x2(1).

We will make use of the following hypothesis, which is fulfilled by the results of §§3, 4:

(*) For every m = ZE:O m; with m; = a;3", 0 < a; < 2, we have constructed a canonical
bijection

Dy, : Trryr(6,,) — Trry (N, (Rin)), X+ N,

which is compatible with breaking m into its 3-adic pieces m; in the sense of Theorem 4.14,
when we choose R, € Syl3(&,,) to be Ry, = Ry, X ... X Ry, with Ry, € Syl3(6,,,) and
G, X ... X By, is naturally embedded in &,, as a Young subgroup.

If R < &,,, then let i® denote the R-orbit of 1 < i < m. The proof of the following statement

is straightforward and will be omitted:

Lemma 7.1. Let p be a prime, and let K be a finite group with Q € Syl,(K). Let H := K&y,
and R € Syl,,(&,,) so that P := Q1 &,, € Syl,(H). Then

Ny (P) ={(z1,...,xm;2) | z; € Ng(Q), z € Ng,,(R), x;lxj € Q if i = j7}.

Theorem 7.2. Let K be a finite group with a normal, abelian Q@ € Syls(K). Fiz any m =
Si—omy = 1 with mj = a;37, 0 < a; < 2, and R € Syly(&,,). Let H = K16, and let
P =QUR € Syl3(H). Then there is a canonical bijection

O : Irrg (H) — Irry (Ng (P)).

In particular, © is Gal(Q/Q)-equivariant. Moreover, if a finite group A acts on K and we
extend its action to H by letting A act trivially on S,,, then © is A-equivariant.

Proof. (a) First we fix a total order on Irry (K). For any o € Irrg/(K), the character c®™ €
Irr(K™) has a canonical extension & to H defined by Lemma 2.1. Next, any 3'-partition A\ - m
yields a canonical character & - x* of 3/-degree of K™ &,,, where x* € Irr(&,,) corresponds to
A

Now it is easy to see that every x € Irrg (H) is uniquely labeled by

(7.1) x = x(p,a,A),

where p=(ky > ka > ... >k, >1)Fm, 0 = (01,...,0,), 0; € Irrg/(K) are pairwise distinct,
A= (A,..., ), A is a 3-partition of k;, 3+ (m!/[[;_, ki!), and if k; = ky for ¢ < ¢’ then
o; > oy. Indeed, given such a (p, o, \), we can consider the character

¢ = aigkl ®U§)k2 ®...0 o2
of K™ which has the inertia subgroup K" x Y in H, where

Y:6k1 XGkQX...XGkT.
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By Lemma 2.1, a;@ki has a canonical (equivariant under A and I') extension G; to K ki 1Sy, and
then we get the irreducible character

¢:= (61 XM ®...® G X
of K™ %Y. Inducing ¢ to H, we obtain x.
The condition 3t (m!/];_, ki!) is equivalent to

t r
(7.2) ki:Zbi,JBj, 1§i§’l“, mezaj, OSjSt.
7=0 1=1

We can further refine the i*" component \; of the parameter A of x as follows. Recall \; Fg k; =
Z§':0 k; j, where k; j := bi,j3j. Choosing Ry, ; = Rgg’j, we have Ry, = Ry, o X Ry, ; X ... X Ry, , €
Syl3(Sy,), and

NGki (sz) = NGki’O (Rki,o) X NGki’l (Rki,l) XX NGki’O (sz‘,o)‘
Hence, by (*) (which follows from Theorem 4.14), we can find a unique \; ; 3 k; ; for each j
such that

M) = (o) @ A\)f @ @ (\ip)*.

Thus each A\; with 1 < ¢ <7 is uniquely determined by the tuple (Ao, Ai1,. .., Aig)-

(b) For each i, we fix Rgi € Syl3(&3i). Then we can take Ry, € Syl3(&,,,) to be Ry, and
then take R to be Ry, X ... X Ry,,. Note that N := Ny (P) normalizes Q™ and the subgroup
[Q™, P] = [Q™, R] of [P, P]. Modding out by this subgroup and using the explicit structure of
N given in Lemma 7.1, we can identify Irrs (N) with Irrg (M), where

(7.3) M = N/[Q™,P] = My x My x ... x M.
Here,
(7.4) M; = K% x Ng,,. (Rm,) = (K x Ng_, (R3:)) 1 &4,

and we use the convention M; = 1 if a; = 0. (Indeed, if m = 3! for instance, then by Lemma
7.1, h = (h1,...,hm;2) belongs to N N K™ if and only if z = 1, h; = z;y for all 1 < i < m,
xz; € Q and y € T, where we have expressed K = Q x T for a fixed 3'-subgroup T using the
Schur-Zassenhaus theorem. Now the map

(x1y7 T2Y,y -y TmY, 1) = T1ZT. .. ITmyY

yields an isomorphism (N N K™)/[Q™, P] = K. Furthermore, the complement Ng, (R;,) in N
centralizes (NNK™)/[Q™, P]. The general case then follows by a straightforward consideration.)
Now, using (7.3), we can represent each 6 € Irry/(N) = Irry (M) uniquely as

(7.5) =00, ...R b,
where 0; € Irrs/ (M;).

(¢) Next we parametrize Irrg (M;). First we consider the case a; = 1. Then by (7.4) we can
identify M; with K x Ng (Rgi). Hence, by Theorem A, each 6; € Irrg/(M;) is uniquely written
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as 7; ® ,u?, where 7; € Itz (K) and ju; F3 3 (equivalently, pu; € H(3%), so that ®4i(x*) = ,uﬁ).

i
Thus when a; = 1, there is a canonical bijection between Irrg (M;) and Irry (K) x Irrg (Ss:).
(d) Next assume that a; = 2. Using (7.4) we identify M; with (K x X)) &g, where X :=
Ng,, (R3i). Consider any 6; € Irry (M;).

(d1) First assume that an irreducible constituent of the restriction of 6; to K x K < M; is
different on restriction to the two direct factors. In this case, 6; is induced from the character

@ W) e e (v?)

of K x X x K x X, where 7'3’2 € Iirg(K), 7} > 72, and 1/3’2 € H(3"). Thus 6; is uniquely

determined by a 2-set {r}, 72} and an ordered pair (v},v?).

(d2) In the remaining case we have 7; ® 7; as an irreducible constituent of (6;)|xxx for some
7; € Irrg (K). Then we have two possibilities. In the former, 6; is induced from the character

TR BT

of Hx X x H x X, where 51.1 2 e Irrg (X)) are distinct. Correspondingly, there is a unique
v; € Irrg(S,,,) such that 1/1-i € Irry(Ng,,. (Rp,)) is induced from the character Bl @ % of
X x X <aNg,,. (Rm,;) = X 1 G. In the latter, 6; extends the character

T ® B T ® B

of K x X x K x X, where f5; € Irrg(X). By Lemma 2.1, such an extension is uniquely
determined by the sign of the trace of the involution (1,2) € &5. Correspondingly, there are
two characters ;= in Trry (&,,,) such that (1) € Irrys (Neg,,, (Rm,)) extend the character 8; ® f3;
of X x X < Neg,, (Rm;) = X 16;, and they are distinguished by the sign of the trace of the
involution (1,2) € G3. Hence there is a unique v; k3 m; such that VE agrees with #; on the sign
of the trace of (12). Thus, in either one of the two possibilities, 6; is uniquely determined by
7; € Irry (K) and v; B3 m;.

We have shown that, in the case a; = 2, there is a canonical bijection between Irrg (M;) and
the (disjoint) union of Irry (K) x Irry (S, and Trry (K){2 x Trrg (&5:)2. (Here, for any finite
set Q, we let Q{2 denote the set of all 2-subsets of Q, and Q? denote the Cartesian product
Q x0.)

(e) Consider any x = x(p,o,A) € Irrg/(H) as in (7.1). Recall that p= (k1 > ko> ... > k)
m satisfies (7.2). Consider any 0 < j <t with a; > 0 (note that M; =1 if a;j = 0). Then there
is some k; = Zz':o ki ; with 1 <4 <7 and b;; > 0. Suppose that b; ; = a;. Then we choose
6; € Irry (M;) labeled by o; € Irrg (K) and A; j Fa ki j = m;.

Suppose now that b; ; # a;. Then (7.2) implies that (b;;,a;) = (1,2), and that there is
a unique i’ # ¢ such that by ; = 1. We may assume for definiteness that ¢ < 4/, whence
o; > oy by our construction of (p,o,A). Then we choose 6; € Irry (M;) labeled by the 2-set
{oi,00} € Irry(K){2} and the ordered pair (); j, A j) of 3/-hooks as in (d1).
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Thus we have assigned to x a canonical §; € Irrs (M;) for each 0 < j < t. It is straightforward
to check that the map y — x*, with x* := 0y ® 6, ®...®6; € Irry(N) as in (7.5), is a canonical
bijection.

To conclude let I' denote either the absolute Galois group Gal(Q/Q) or the group of automor-
phisms A described in the statement of the Theorem. It is easy to observe that for g € I' and
x = x(p,a,A) € Irrg (H), we have that x9 = x(p, %, \), where g9 = (¢7,...,0). This follows
from direct computations, using Lemma 2.1 and the fact that the characters of the symmetric
groups are rational-valued, and so I'-invariant. Moreover, if § € Irrs/(M;) for some i such that
a; = 1, then 6 = 0(o, ) is labelled by o, pu € Irrg/ (K) X Irrg (S3:). It is again not difficult to see
that 09 = 0(07, i), for all g € I, using that the characters in Irry (N, (Ps:)) are rational-valued
and thus ®s; is trivially I'-equivariant. A similar observation shows that also for a; = 2 we have
that I' acts non-trivially only on the Irrg (K )-part of the label of an irreducible 3’-degree char-
acter of M;. From this we deduce that the canonical bijection © is both Gal(Q/Q)-equivariant
and A-equivariant. O

8. PROOFS OF THEOREM C AND COROLLARY D

Let n = 2m + ¢, for some ¢ € {0,1}. Let P be a Sylow 3-subgroup of G%(¢), chosen (as
in Theorem 6.4) such that NG§m+1(Q)(P) = Gi(q) x Ngz_(q)(P). Let H*(g) be the subgroup of

5m(q) defined in Sections 6.1 and 6.2 by

G5(9) 16, if 3 divides g — ¢,

H%(q) =
(GL1(g?) . C2) 16, if 3 divides g + €.

It follows that Nge () (P) < Ga(q) x H(q) < Gi(q) x G5,,(q) < G5,(q) (see for instance [5,
Section 3]. This in particular implies that Ngs (4)(P) = Npe(g)(P). Therefore Theorem 7.2
gives a canonical bijection © between Irrg (H®(q)) and Irr3/(NG§m(q)(P)).

Denote by ®,. the map between Irrs (G5, (¢)) and Irrs/ (H®(q)), described in Proposition 6.1
(when 3 divides ¢ — ¢) or in Theorem 6.3 (when 3 divides ¢ +¢). If ¢ = 0 then © 0 &, is a
canonical bijection between Irrs (G7,(g)) and Irrz (Nge (o) (P))-

When ¢ = 1, let ¥ be the map described in Theorem 6.4 (ii). In this case we have that
(id x ©) o (id x ®4¢) o ¥ is a canonical bijection between Irrz/(G7,(¢)) and Irrs (Nge (o) (P))-

In both cases the bijection obtained is equivariant with respect to the action of the absolute
Galois group Gal(Q/Q) and with respect to the action of group automorphisms because it is
obtained as the composition of equivariant bijections.

This completes the proof of Theorem C. Corollary D directly follows from Theorem C.
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