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ABSTRACT Single-molecule force spectroscopy (SMFS) provides a powerful tool to explore the dynamics and energetics of
individual proteins, protein-ligand interactions, and nucleic acid structures. In the canonical assay, a force probe is retracted at
constant velocity to induce a mechanical unfolding/unbinding event. Next, two energy landscape parameters, the zero-force
dissociation rate constant (ko) and the distance to the transition state (Ax"), are deduced by analyzing the most probable rupture
force as a function of the loading rate, the rate of change in force. Analyzing the shape of the rupture force distribution reveals
additional biophysical information, such as the height of the energy barrier (4G"). Accurately quantifying such distributions re-
quires high-precision characterization of the unfolding events and significantly larger data sets. Yet, identifying events in SMFS
data is often done in a manual or semiautomated manner and is obscured by the presence of noise. Here, we introduce, to our
knowledge, a new algorithm, FEATHER (force extension analysis using a testable hypothesis for event recognition), to automat-
ically identify the locations of unfolding/unbinding events in SMFS records and thereby deduce the corresponding rupture force
and loading rate. FEATHER requires no knowledge of the system under study, does not bias data interpretation toward the
dominant behavior of the data, and has two easy-to-interpret, user-defined parameters. Moreover, it is a linear algorithm, so
it scales well for large data sets. When analyzing a data set from a polyprotein containing both mechanically labile and robust
domains, FEATHER featured a 30-fold improvement in event location precision, an eightfold improvement in a measure of the
accuracy of the loading rate and rupture force distributions, and a threefold reduction of false positives in comparison to two
representative reference algorithms. We anticipate FEATHER being leveraged in more complex analysis schemes, such as
the segmentation of complex force-extension curves for fitting to worm-like chain models and extended in future work to data
sets containing both unfolding and refolding transitions.

INTRODUCTION

Over the last ~25 years, single-molecule force spectros-
copy (SMFS) has emerged as a powerful tool to quantify
diverse biological systems, including the strength of pro-
tein-ligand bonds (1,2) and the unfolding and refolding
of individual protein domains (3.4). In one widely used
assay, an atomic force microscopy (AFM) cantilever or
an optically trapped bead is attached to the biological
system under study and retracted at a constant velocity
(Fig. 1 A). Force is deduced as the displacement of the
force probe away from its equilibrium position. Abrupt
drops in force at the rupture force arise from unfolding/un-
binding events (Fig. 1 B). Because these events are ther-
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mally activated, there is not a unique rupture force but
rather a distribution (Fig. | C). The Bell-Evans model
rapidly emerged as a way to characterize a one-dimen-
sional projection of the underlying free-energy landscape
along the stretching axis (2.,5,6). In this analysis, a fit to
the most probable rupture force as a function of loading
rate yields the following two parameters: the zero-force
dissociation rate constant (k,) and the distance to the tran-
sition state (Axf‘) (Fig. 1 D). More advanced models that
analyze the shape of the Fy distribution provide additional
information on the free-energy landscape such as the height
of the energy barrier (4G") (7) but require higher precision
event detection and larger numbers of events. Yet, event
detection is obscured because of the presence of Brownian
motion and instrumental noise and is often done manually
or in a semiautomated manner, including in recent work
from our lab (8). Thus, accurately quantifying hundreds
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Analysis scheme

FIGURE 1 For a Figure360 author presentation of
Fig. 1, see the figure legend at https://doi.org/10.
1016/).bp;j.2018.07.031.

An overview of force spectroscopy analysis is shown.
(A) A cartoon illustrating an AFM cantilever unfolding
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a polyprotein containing four mechanically robust do-
mains (NuG2, red) and one mechanically labile one
(3D, blue) is shown. (Inset) A sketch of a one-
dimensional free-energy landscape and the following
associated parameters is shown: k,, the zero-force
dissociation rate constant; Ax*, the distance to the tran-
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—TTTT sition state; and AG", the height of the energy barrier.
(B-D) A typical analysis scheme for a polyprotein un-
folding assay illustrated with a computationally gener-
ated data set based on a model by Dudko et al. (7) is
shown. (B) A force-versus-time curve for the unfold-
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ing of the polyprotein with segments color coded
based on the domain before unfolding is shown.
(C) A distribution of rupture forces (Fg) for the azD
domain fitted to the Dudko model is shown. (D) The
most probable rupture force (FN') versus the log of
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the loading rate (0F/0r) fitted with a line per the
= Bell-Evans model (2,5,6) is shown. (E) An experi-
mental force-versus-time curve of the polyprotein
- shown in (A), with unfolding events marked by green
arrows, is shown. Color-coded data were smoothed
to 500 Hz with higher-bandwidth data (50 kHz) plotted

I in gray. (F) A high-time-resolution plot of a single

rupture event was used to define the metrics for

comparing automated algorithms: a true event is
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to thousands of rupture events in an automated, reliable,
and reproducible way is critical for gaining insight into
the diverse biomolecular systems studied by SMFS.

To address this need, multiple groups have developed al-
gorithms to detect rupture events in AFM data and other
SMFS modalities. For example, such techniques have
applied worm-like chain models to compute contour lengths
at each extension (9,10), used thresholding based on signal
or noise characteristics (11,12), and classified traces based
on transformations of the data into frequency or derivative
spaces by spatially localized Fourier series or wavelets
(13-15). These methods provide increased automation, but
their use is limited by their lack of generalization. Ongoing
efforts and interest in automated analysis continues (e.g.,
recent work integrated several steps in SMFES analysis of un-
folding data into a single package (16)). Contour-length
alignment algorithms bias results toward dominant features
and necessarily require a model. Thresholding or transfor-
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manually defined by an expert user as detailed in the
Supporting Materials and Methods; d, ., is the dis-
tance from a true event to the closest predicted event;
and d;, , is the distance from an algorithmically pre-
dicted event to the closest true event. Predicted events
are illustrative, not actual.
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mation algorithms typically require many parameters. For
example, previous techniques have six (14,15) and even
up to 14 or 17 parameters (16,17). Large numbers of param-
eters help tune an algorithm to a particular data set, but they
also increase the search space for parameter optimization
and may be difficult to apply to data sets containing unfold-
ing events occurring over a broad range of forces.

Here, we present, to our knowledge, a new algorithm for
detecting unfolding/unbinding events and apply it to SMFS
data sets representative of a variety of typical experimental
conditions. The algorithm, named FEATHER (force exten-
sion analysis using a testable hypothesis for event recogni-
tion), requires no special knowledge of a specific system’s
polymer properties, detects both rare and dominant data
behavior, and outperforms recently published algorithms
over a wide range of pulling velocities, two common sys-
tems of interest (polyproteins and DNA), and a compu-
tationally generated data set. FEATHER is a Bayesian
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algorithm because it computes the probability of each point
in the retraction curve given a model automatically calcu-
lated from the event-free approach curve. Because
FEATHER’s improved performance requires just two
easy-to-interpret parameters, a smoothing factor and a
significance threshold, we anticipate FEATHER being
leveraged to improve the throughput, quality, and reproduc-
ibility in SMFS analysis schemes.

Materials and Methods

FEATHER is written in Python 2.7, with interfaces written
for MATLAB (The MathWorks, Natick, MA) and Igor
Pro. The source code, working examples, and accompa-
nying documentation is freely available (https://doi.org/10.
5281/zenodo.1319742). Importantly, for analyzing large
data sets, FEATHER’s execution time scaled linearly with
the number of data points and offered an order of magnitude
improvement in runtime relative to the faster of the two
algorithms used for comparison (Fig. S1). The basis for
the statistical analysis used by FEATHER and all perfor-
mance metrics are presented in the Supporting Materials
and Methods. All timing and tuning results were obtained
using a desktop personal computer with 32 GB of RAM,
an Advanced Micro Devices Ryzen 5 1500x Quad-Core
CPU, and a 500-GB hard drive. To test FEATHER, we
used the following two data sets: 1) 152 force-extension
curves of a previously described polyprotein that contains
one mechanically labile target protein (a;D) with a
measured change in contour length (4L;) of 23 nm upon
rupture (&) positioned between four mechanically robust
marker domains of NuG2 (4L, = 18 nm per NuG2 mono-
mer (18)) (Fig. 1 A; Table S1), and 2) 600 force-extension
curves of DNA deposited at purposely high surface
coverage to promote multiple tip-DNA attachments and
therefore multiple rupture events per force-extension curve
(Fig. S2; Tables S2 and S3). As described in detail in the
Supporting Materials and Methods, both data sets contained
curves acquired over a range of retraction velocities (v).
Finally, FEATHER’s performance was tested using a simu-
lated data set containing force-extension curves that were
purposely challenging to analyze, as described in the Sup-
porting Materials and Methods.

Results and Discussion
Description of FEATHER

In SMFS, unfolding events occur when the force applied to a
molecule exhibits an abrupt drop in a force-versus-time
curve as the molecular configuration passes over an energy
barrier (Fig. 1 E, green arrows). To determine the location of
such events, FEATHER first fits a smoothing spline to the
raw data (Fig. 2 A) with nodes in the spline spaced at a
user-defined fractional spacing (7) of the full record length,
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so the temporal averaging time (5-50 ms) depends on
v given a fixed data acquisition rate, as is typical in such as-
says. Although the model defined by the spline has a contin-
uous first derivative, unfolding events exhibit a discontinuity
in the first derivative. Thus, unfolding events could be
located by computing when the data were inconsistent
with the model. To efficiently detect short-lived events, we
recommend users choose the largest 7 that preserves such
events in the smoothed data (Fig. S3).

To compute the statistical significance of an unfolding
event at time 7, we constructed a no-event hypothesis based
on the noise characteristics of the data relative to a reference
curve lacking any events. For AFM data, the approach curve
taken with the same individual cantilever served as an excel-
lent reference. Briefly, the process of computing the signif-
icance (P) of an event started by subtracting the smoothing
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FIGURE 2 FEATHER’s analysis scheme. (A) A high-bandwidth force-
versus-time record of polyprotein unfolding (gray) with FEATHER’s spline
fit overlaid in blue, where 7 = 15 ms, is shown. (B) The probability (P) of a
nonevent was obtained by applying Chebyshev’s inequality to the record in
(A). Unfolding events occur when this probability is near 0. (C) The prob-
ability from (B) transformed to de-emphasize regions near the surface and
regions with positive force derivatives is shown. (D) The probability from
(C) was further modified to suppress regions where the force change was
negligible, as determined from a reference curve with no events (e.g., the
approach). (E-H) Force-versus-time curves and magnified regions highlight
event determination, indicated by green arrows using a significance
threshold of Pyeqn = 0.001, are shown.
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spline from the high-bandwidth data to yield a force residual
with a zero-centered mean and variance about that mean
(which contained mostly the thermal noise of the system
within a fractional size of the record defined by 7). The
magnitude of this residual variance as a function of time
is compared to the approach curve that contained no unfold-
ing/refolding events. Alternatively stated, we determined
how the variance of the force variance changes in time
because this metric was found to be insensitive to local vari-
ation in curvature of the data but highly sensitive to unfold-
ing events (Fig. S4 F). Deviation from this mean magnitude
of residual noise was transformed into a probability using
Chebyshev’s inequality (Eq. S1), which importantly does
not assume any form of the noise distribution (19). We
note that FEATHER requires that the noise distribution of
the force residuals have zero mean and median but other-
wise does not impose constraints on the distribution.

Empirically, we observed the statistical significance of an
event was enhanced by combining the no-event probability
for the force in combination with the integral force, force de-
rivative, and force differential, all conceptually based on the
same implementation of Chebyshev’s inequality, as shown in
Eq. S2. For instance, the probability from Fig. 2 B was trans-
formed to de-emphasize stretching of the construct in which
the force derivative is positive or negligible, and surface
adhesion was ignored by including only events that started
after the tip was retracted off of the surface (Fig. 2 C). We
next suppressed events associated with small force changes
consistent with the force noise in the reference (or approach)
curve (Fig. 2 D) as described in the Supporting Materials and
Methods (Fig. S4; see pseudocode listed in Table S4). Events
were identified from the probability shown in Fig. 2 D based
on a user-defined threshold (e.g., P en = 0.001) (Fig. 2 E).
Importantly, FEATHER correctly identified rupture events
even though the rupture force varied by an order of magni-
tude within the same record (Fig. 2, F—H). Moreover, this
high-fidelity event detection was insensitive to an ~10-fold
variation in 7 and the thresholding parameter (Pycpn), in
contrast to other event detection algorithms (see Supporting
Materials and Methods; Figs. S3 and S5).

Evaluating FEATHER'’s performance

We evaluated the performance of FEATHER to accurately
and precisely analyze the unfolding of our polyprotein, which
exhibited both low- and high-force ruptures. Specifically, we
compared how well FEATHER did relative to manually an-
notated data from an expert user and two automated analysis
routines, the recently published OpenFovea (12) and the
wavelet scheme “find_peaks_cwt” method from Scientific
Python (20). These algorithms were chosen to provide a
representative sample of the viable techniques used in AFM
data analysis because they respectively utilized thresholding
and wavelet transformations, which are two broad classes of
event-detection techniques. In addition, neither of these refer-
ence algorithms requires specialized knowledge of the poly-
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mer under study like the worm-like chain model commonly
used in contour-length alignment algorithms. The following
three primary metrics were used: the relative location error,
the loading rate, and the rupture force (Fig. 3). We note that
each algorithm outputs a list of predicted event locations;
the loading rate and rupture force were then calculated in
the same way for each algorithm, given the predicted events
(see Supporting Materials and Methods).

Overall, FEATHER did an excellent job, essentially
matching the performance of human-annotated data. In
comparison to the best performance of either reference algo-
rithm, FEATHER’s prediction yielded rupture force and
loading rate distributions which were eightfold closer to
the human-annotated data and 30-fold better in an event
location metric (4Zgys), as defined below. The top panel of
Fig. 3 A shows that the distribution in the relative location
error of the “true events,” defined by an expert user, relative
to predicted events (d;.p; green shading) closely matched
the distance distribution from predicted events to true events
(d,—.i; blue line) (see Fig. 1 F for the definitions of , _, , and
d,, . and the Supporting Materials and Methods for details
of manual annotation). The peak of this distribution at low
relative error shows precision in determining event location.
The overlap between the two distributions shows that the
number of true events closely matched the number of pre-
dicted events. However, such overlap was not present
when the data were analyzed with OpenFovea, which
showed a high number of false positives, as indicated by
the gap between the distributions of d, ., (black line) and
d, . (green shading). We speculate that OpenFovea’s per-
formance may be limited in this application by a data set
that contains both low- and high-force unfolding events,
despite efforts to optimize OpenFovea’s parameters for
this data set (see Supporting Materials and Methods;
Fig. 55). The wavelet-based scheme, which also had its pa-
rameters optimized for this data set, showed better perfor-
mance on this metric than OpenFovea but still had a
30-fold higher relative location error and a threefold higher
false-positive rate than FEATHER (Fig. S6). Relative to
the better-performing wavelet scheme, FEATHER improved
event localization precision ~30-fold based on AZgys
(Table 1), where 4Zg5 is defined as the location of the
95th percentile of the combined distribution for d, ., and
di.p (see Fig. 3 A; Table S5, dashed line). As defined,
AZgs represents a good metric for the upper bound of the
error in determining event location.

Because an accurate determination of rupture force and
loading rate is critical to deriving biological insight from
force spectroscopy data (2,6,7), we next compared all three
algorithms to human-annotated results for these two metrics
(Fig. 3, B and C). As shown in the top panel of each column,
FEATHER (blue line) essentially matched the human-anno-
tated distributions (green shading), whereas OpenFovea
showed a surplus of low-force unfolding events (black
line) arising from its high false-positive rate. Again, the
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FIGURE 3 Evaluating FEATHER’s performance. (A) Shown here are histograms of fractional errors between human-annotated and algorithmically
predicted event locations for the polyprotein data set when using FEATHER, OpenFovea (12), and the wavelet-based scheme from Scientific Python
(20), where 4Z is the combined fractional distance between the identified and predicted events divided by the full range of the record, and the dotted
line denotes the location of 4Zys, where AZys is defined as the location of the 95th percentile of the combined distribution for the fractional error d;,_,
and d, .. As diagrammed in Fig. 1 F, d, ., is the distance from a human-annotated “true” event to the closest predicted event, and 4, , is the distance
from an algorithmically predicted event to the closest true event. (B) Shown here are histograms comparing the loading rates from manual-event annotation
(green) to algorithmically predicted ones for FEATHER (blue), OpenFovea (black), and Scientific Python (red), respectively. Note, the green shaded distri-
bution in all three panels represents the same data set but appears slightly different because of variations in bin size. (C) A histogram of rupture force for
human-annotated and algorithmically determined events using the same color scheme is shown.

wavelet scheme showed intermediate performance (red
line). Despite these distributions being oddly shaped
because of the presence of both low-force («;D) and high-
force (NuG2) ruptures over a range of v, we quantitatively
compared the degree of overlap between the human-anno-
tated and algorithmic results using Bhattacharya coeffi-
cient’s complement (BCC; see Table S5) (21). By this
metric, FEATHER outperforms the wavelet scheme by a
factor of eight (Table 1). We note that in additional tests
on a DNA data set purposely containing multiple tethers
that led to multiple, closely spaced unfolding events at
low force (10-30 pN), we saw even larger performance im-
provements of FEATHER by these metrics (Fig. S2 E and F;
Figs. S7 and S8). In addition, FEATHER successfully
analyzed hundreds of simulated ruptures over a wide range
of contour length changes, loading rates, and rupture forces
(Fig. S9; Table S6). Taken together, FEATHER’s perfor-

TABLE 1 The Performance Metrics for Each Algorithm

Name BCC () AZos (1)
FEATHER 0.0037 0.0065
OpenFovea 0.203 0.42
Scientific Python 0.030 0.19

BCC compares the degree of overlap between the human-annotated and
algorithmically predicted two-dimensional distribution of rupture force
versus loading rate (e.g., Fig. S7 B; Table S5). AZqs is the metric for the
upper bound of the fractional error in determining event location. The
symbol (| ) indicates a lower value is better.

mance on experimental polyprotein data, an experimental
DNA data set, and a complex simulated data set underscored
the consistent strength of FEATHER’s predictive power.

Conclusions

The canonical SMFS assay retracts a force probe at constant
velocity to yield records containing unfolding and unbind-
ing events. Here, we introduce FEATHER, which automat-
ically determines event locations for such records and
thereby determines the rupture force and loading rate.
FEATHER requires only two simple-to-understand parame-
ters to accurately and algorithmically recapitulate human-
annotated data. Its fast execution and linear runtime with
the number of data points allows for automated analysis
of large data sets that, in turn, will allow for more sophisti-
cated analysis that yields additional biophysical informa-
tion, such as 4G" (7). When analyzing a complex data set
containing both low- and high-force rupture events,
FEATHER provided more than an order of magnitude
improvement in event localization error (4Zys) relative to
other representative algorithms (Table 1) and did not bias
the data toward high-force events. We note that the data
sets used here were acquired with a relatively long, soft
cantilever. Recent efforts in improving the precision and
time resolution of AFM cantilevers will immediately aid
FEATHER’s ability to detect smaller and more closely
spaced unfolding intermediates (22,23). By predicting
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where events occur without relying upon any a priori
domain-specific model of the event, FEATHER provides a
powerful tool within a longer SMFS analysis pipeline
(12,16). For instance, it can be used to segment complex
force spectra to then determine the change in contour length
between ruptures, a value which in turn can be used to
screen large data sets for the unfolding of particular struc-
tures. Finally, we anticipate that FEATHER’s underlying
event detection algorithm can be extended to search for
both unfolding and refolding events, increasing its utility
to a broader array of force spectroscopy assays.

SUPPORTING MATERIAL

Supporting Materials and Methods, ten figures, eight tables, and four data
files are available at http://www.biophysj.org/biophysj/supplemental/
S0006-3495(18)30918-4.
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