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Abstract

We consider the problem of automated assignment of papers to reviewers in conference peer review,

with a focus on fairness and statistical accuracy. Our fairness objective is to maximize the review

quality of the most disadvantaged paper, in contrast to the popular objective of maximizing the

total quality over all papers. We design an assignment algorithm based on an incremental max-flow

procedure that we prove is near-optimally fair. Our statistical accuracy objective is to ensure correct

recovery of the papers that should be accepted. With a sharp minimax analysis we also prove that our

algorithm leads to assignments with strong statistical guarantees both in an objective-score model as

well as a novel subjective-score model that we propose in this paper.

Keywords: peer review, assignment algorithms, statistical learning theory, max-min fairness

1. Introduction

Peer review is the backbone of academia. In order to provide high-quality peer reviews, it is of utmost

importance to assign papers to the right reviewers (Thurner and Hanel, 2011; Black et al., 1998;

Bianchi and Squazzoni, 2015). Even a small fraction of incorrect reviews can have significant adverse

effects on the quality of the published scientific standard (Thurner and Hanel, 2011) and dominate

the benefits yielded by the peer-review process that may have high standards otherwise (Squazzoni

and Gandelli, 2012). Indeed, researchers unhappy with the peer review process are somewhat more

likely to link their objections to the quality or choice of reviewers (Travis and Collins, 1991).

We consider peer-review in conferences where a number of papers are submitted at once. These

papers are simultaneously assigned to multiple reviewers who have load constraints. The importance

of the reviewer-assignment stage of the peer-review process cannot be overstated: quoting Rodriguez

et al. (2007), “one of the first and potentially most important stage is the one that attempts to distribute

submitted manuscripts to competent referees.” Given the massive scale of conferences such as NIPS,

these reviewer assignments are often automated. For instance, NIPS 2016 assigned 5 out of 6

reviewers per paper using an automated process (Shah et al., 2017). This problem of automated

reviewer assignments forms the focus of this paper.

Various past studies show that small changes in peer review quality can have far reaching

consequences (Thorngate and Chowdhury, 2014; Squazzoni and Gandelli, 2012) not just for the

papers under consideration but more generally also for the career trajectories of the researchers.
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These long term effects arise due to the widespread prevalence of the Matthew effect (“rich get

richer”) in academia (Merton, 1968). It is also known (Travis and Collins, 1991; Lamont, 2009)

that unique and novel works, particularly those interdisciplinary in nature, face significantly higher

difficulty in gaining acceptance. A primary reason for this undesirable state of affairs is the absence

of sufficiently many good “peers” to aptly review interdisciplinary research (Porter and Rossini,

1985).

These issues strongly motivate the dual goals of the reviewer assignment procedure we consider

in this paper — fairness and accuracy. By fairness, we consider the notion of max-min fairness which

is studied in various branches of science and engineering (Rawls, 1971; Lenstra et al., 1990; Hahne,

1991; Lavi et al., 2003; Bonald et al., 2006; Asadpour and Saberi, 2010). In our context of reviewer

assignments, max-min fairness posits maximizing the review-quality of the paper which has the least

qualified reviewers. The max-min fair assignment guarantees that no paper is discriminated in favor of

luckier counterparts — even the most idiosyncratic paper with a small number of competent-enough

reviewers will receive as good treatment as possible.

One of the main goals of the conference peer-review process is to select the set of “top” papers

for acceptance. Thus, it is important that every component of the process, including the assignment

of papers to referees, is built to achieve the accuracy of the final decisions. However, all prior works

on paper assignment problem known to us (Long et al., 2013; Garg et al., 2010; Karimzadehgan

et al., 2008; Tang et al., 2010) concentrate on developing algorithms that optimize the assignment

for certain deterministic objectives. While the choice of these objectives is often reasonable, we are

not aware if any of them was shown to improve the accuracy of the process. In contrast, we take

the first approach to connect the quality of the assignment to the accuracy of the whole conference

peer-review process.

The hindrances towards accurate peer-review are the noise in the reviews and subjective opinions

of the reviewers; we accommodate these aspects in terms of existing (Ge et al., 2013; McGlohon et al.,

2010; Dai et al., 2012) and novel statistical models of reviewer behavior and design an assignment

algorithm that achieves both fairness and statistical accuracy. Importantly, our results imply that

fairness is the right proxy towards statistical accuracy.

We make several contributions towards this problem. We first present a novel algorithm, which

we call PEERREVIEW4ALL, or PR4A in short, to assign reviewers to papers. Our algorithm is based

on a construction of multiple candidate assignments which cater to different structural properties of

the similarities and a judicious choice between them provides the algorithm appealing properties.

Our second contribution is a fairness analysis. We show that PR4A is near-optimal in terms of the

max-min fairness objective. Furthermore, PR4A can adapt to the underlying structure of the data

and in various cases yield better guarantees including the exact optimal solution in certain scenarios.

Finally, after optimizing the outcome for the most worst-off paper, PR4A aims at finding the most

fair assignment for the next worst-off paper, and so on until all papers are assigned.

As a third contribution, we show that our PR4A algorithm results in strong statistical guarantees in

terms of correctly identifying the top papers that should be accepted. We consider a popular statistical

model (Ge et al., 2013; McGlohon et al., 2010; Dai et al., 2012) which assumes existence of some

true objective score for every paper. We provide a sharp analysis of the minimax risk, studying the

loss in terms of “incorrect” accept/reject decisions, and show that our PR4A algorithm leads to a

near-optimal solution.

Fourth and finally, noting that paper evaluations are typically subjective (Kerr et al., 1977; Mahoney,
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1977; Ernst and Resch, 1994; Bakanic et al., 1987; Lamont, 2009), we propose a novel statistical

model capturing reviewer subjectivity, which may be of independent interest. A sharp minimax

analysis proves that PR4A is also near-optimal for this subjective setting.

Related works: A number of past works study the reviewer assignment problem. A popular

approach is to define “similarities” between reviewers and papers and then find an assignment that

maximizes the similarity of the assigned reviewers summed across all papers and reviewers. This

approach is adopted by various papers (Long et al., 2013; Charlin et al., 2012; Goldsmith and Sloan,

2007; Tang et al., 2010) and conference management systems such as EasyChair, HotCRP, and the

Toronto Paper Matching System or TPMS (Charlin and Zemel, 2013) — one of the most widely used

automated assignment systems. We argue however that optimizing such a cumulative objective is not

fair—some papers may be discriminated against in order to maximize the global sum similarity.

The issue of fairness is partially tackled by Hartvigsen et al. (1999), where they necessitate

every paper to have at least one reviewer with expertise higher than certain threshold, and then

maximize the value of that threshold. However, this improvement only partially solves the issue of

discrimination of some papers: having assigned one strong reviewer to each paper, the algorithm

may still discriminate against some papers while assigning remaining reviewers. Large conferences

such as NIPS and ICML assign 4-6 reviewers to each paper and a careful assessment of the paper

by one strong reviewer might be lost in the noise induced by the remaining weak reviews. Instead

of guaranteeing high expertise for one reviewer, we aim at the assignment with high total expertise

among all reviewers assigned to a paper. We note that assignment computed by our PR4A algorithm

is guaranteed to have at least as large max-min fairness as that proposed by Hartvigsen et al. (1999).

The notion of max-min fairness was considered in context of peer-review by Garg et al. (2010).

They measure the fairness towards reviewers in terms of reviewers’ bids — for every reviewer they

compute a value of papers assigned to that reviewer based on her/his bids and maximize the minimum

value across all reviewers. Conceptually, we note that while satisfying reviewer bids is a useful

practice, we consider fairness towards the papers in their review to be of utmost importance. Thus, in

this work we consider similarities (Charlin and Zemel, 2013; Mimno and McCallum, 2007; Liu et al.,

2014; Rodriguez and Bollen, 2008; Tran et al., 2017) — scores that measure a relevance of reviewer

to paper, which besides reviewers’ bids are based on the full text of submission, papers authored

by reviewer, quality of previous reviews, experience of reviewer and other features that cannot be

self-assessed by reviewers. Although the algorithm by Garg et al. (2010) can also be extended to

our setup, the fairness guarantees provided in Garg et al. (2010) turn out to be vacuous for various

similarity matrices. Moreover, as we discuss later in this paper, this is a drawback of the algorithm

itself and not an artifact of their guarantees. Finally, we note that Garg et al. (2010) considers fairness

of the assignment as the end goal. However, the primary goal of the conference paper reviewing

process is an accurate acceptance of the best papers. Thus, in the present work we study the impact

of the fairness of the assignment on the accuracy of the acceptance procedure.

2. Problem Setting

In this section we present the problem setting formally with a focus on the objective of fairness.

2.1. Preliminaries and Notation

Given a collection of m ≥ 2 papers, suppose that there exists a true, unknown total ranking of the

papers. The goal of the program chair (PC) of the conference is to recover top k papers, for some
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pre-specified value k < m. To achieve this goal, the PC recruits n ≥ 2 reviewers and asks each

of them to evaluate some subset of the papers. We let µ denote the maximum number of papers

that any reviewer can review. Each paper must be reviewed by λ distinct reviewers. In order to

ensure this setting is feasible, we assume that nµ ≥ mλ. The PC has access to a similarity matrix

S = {sij} ∈ [0, 1]n×m, where sij denotes the similarity between any reviewer i ∈ [n] and any paper

j ∈ [m].1 These similarities are representative of the envisaged quality of the respective reviews

(formalized later). We do not discuss the design of such similarities, but often they are provided by

existing systems (Charlin and Zemel, 2013; Mimno and McCallum, 2007; Liu et al., 2014; Rodriguez

and Bollen, 2008; Tran et al., 2017).

Our focus is on the assignment of papers to reviewers. We represent any assignment by a matrix

A ∈ {0, 1}n×m, whose (i, j)th entry is 1 if reviewer i is assigned paper j and 0 otherwise. We denote

the set of reviewers who review paper j under an assignment A as RA(j). We call an assignment

feasible if it respects the (µ, λ) conditions on the reviewer and paper loads. We denote the set of all

feasible assignments as:

A :=
{
A ∈ {0, 1}n×m |

∑

i∈[n]
Aij = λ ∀j ∈ [m],

∑

j∈[m]

Aij ≤ µ ∀i ∈ [n]
}
.

Our goal is to design a reviewer assignment algorithm with a two-fold objective: (i) fairness to all

papers, (ii) strong statistical guarantees in terms of recovering the top papers. From a statistical

perspective, we assume that when any reviewer i is asked to evaluate any paper j, then she/he returns

score yij ∈ R. The end goal of the PC is to accept or reject each paper. In this work we consider a

simplified yet indicative setup. We assume that the PC wishes to accept the k “top” papers from the

set of m submitted papers. We denote the “true” set of top k papers as T ∗
k . While the PC’s decisions

in practice would rely on many factors, in order to quantify the quality of any assignment we assume

that the top k papers are chosen through some estimator θ̂ that operates on the scores provided by the

reviewers. In practice, such estimator can serve as a guide to the program committee to help reduce

their load. Acceptance decisions can be described by the chosen assignment and estimator (A, θ̂).
We denote the set of accepted papers under an assignment A and estimator θ̂ as Tk = Tk(A, θ̂). The

PC wishes to maximize the probability of recovering the set T ∗
k of top k papers. Our assignment

algorithm also provides appealing guarantees for the Hamming error, but we leave that analysis for

an extended version of the paper (Stelmakh et al., 2018).

2.2. Fairness Objective

A popular assignment objective (Charlin and Zemel, 2013; Charlin et al., 2012; Taylor, 2008) is to

maximize the cumulative similarity over all papers. The aformentioned works choose a feasible

assignment which maximizes the quantity

GS (A) :=
m∑

j=1

∑

i∈RA(j)

sij . (1)

An assignment algorithm that optimizes this objective (1) is implemented in the widely used Toronto

Paper Matching System (Charlin and Zemel, 2013). We will refer to the feasible assignment that

maximizes the objective (1) as ATPMS and denote the algorithm which computes ATPMS as TPMS.

1. Here, we adopt the standard notation [ν] = {1, 2, . . . , ν} for any positive integer ν.
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PAPER a PAPER b PAPER c

REVIEWER 1 1 1 1
REVIEWER 2 0 0 1/5
REVIEWER 3 1/4 1/4 1/2

Table 1: Example similarity.

We argue that the objective (1) does not necessarily lead to a fair assignment. The optimal

assignment can discriminate some papers in order to maximize the cumulative objective. To see this

issue, consider a toy problem with n = m = 3 and µ = λ = 1, with similarities shown in Table 1.

In this example, paper c is easy to evaluate, having non-zero similarities with all the reviewers, while

papers a and b are more specific and weak reviewer 2 has no expertise in reviewing them. Reviewer

1 is an expert and is able to assess all three papers. Maximizing (1), the TPMS algorithm will

assign reviewers 1, 2, and 3 to papers a, b, and c respectively. Under this assignment, paper b is

assigned a reviewer with insufficient expertise to evaluate the paper. On the other hand, the alternative

assignment which assigns reviewers 1, 2, and 3 to papers a, c, and b respectively ensures that every

paper has a reviewer with similarity at least 1/5. This “fair” assignment does not discriminate against

the disadvantaged paper b (and a) for improving the review quality of the already benefiting paper c.
In Appendix A.2 we show that in general the fairness objective value of the TPMS algorithm which

optimizes (1) may be arbitrarily bad as compared to that attained by our PR4A algorithm.

With this motivation, we now formally describe the notion of fairness that we aim to optimize in

this paper. Inspired by the notion of max-min fairness in other fields (Rawls, 1971; Lenstra et al.,

1990; Hahne, 1991; Lavi et al., 2003; Bonald et al., 2006; Asadpour and Saberi, 2010), we aim to find

a feasible assignment A ∈ A to maximize the following objective ΓS for given similarity matrix S:

ΓS (A) = min
j∈[m]

∑

i∈RA(j)

sij . (2)

The assignment optimal for (2) maximizes the minimum sum similarity across all the papers. Thus,

for every other assignment there exists some paper which has the same or lower sum similarity. In

our example the objective (2) is maximized when reviewers 1, 2, and 3 are assigned to papers a, c,
and b respectively. Unfortunately, as shown by Garg et al. (2010), the assignment optimal for (2) is

hard to compute for any non-trivial similarity matrix.

In the next section we design an assignment algorithm that seeks to optimize the objective (2)

and provide associated approximation guarantees. Importantly, while aiming at optimizing (2),

our algorithm does even more — having the assignment for the worst-off paper fixed, it finds an

assignment that satisfies the second worst-off paper, then the next one and so on until all papers are

assigned.

Perhaps surprisingly, the algorithm by Garg et al. (2010), despite having the goal of optimizing (2),

also returns an unfair assignment coinciding with ATPMS in our example from Table 1. The reason

lies in the inner-working of their algorithm which first solves the linear programming relaxation of the

problem and then finds the resulting assignment via the rounding procedure. A linear programming

relaxation splits reviewers 1 and 2 in two and makes them review both paper a and paper b. During

the rounding stage, reviewer 1 is assigned to either paper a or paper b, ensuring that the remaining
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paper will be reviewed by reviewer 2. Given that reviewer 2 has zero similarity with both papers a
and b, the fairness of the resulting assignment will be 0. This issue arises more generally in their

algorithm and is discussed in more detail in Appendix A.1.

3. Reviewer Assignment Algorithm

In this section we describe our PR4A algorithm and provide an analysis of its approximation quality

for the objective (2).

3.1. Algorithm

We present our main algorithm as Algorithm 1 and the subroutine as Subroutine 1.

A high level idea of the algorithm is the following. For every integer κ ∈ [λ], we try to assign each

paper to κ reviewers with maximum possible similarities while respecting constraints on reviewer

loads. We do so via a carefully designed “subroutine” (explained below). Continuing for that value

of κ, we complement this assignment with (λ− κ) additional reviewers for each paper. Repeating

the procedure for each value of κ ∈ [λ], we obtain λ candidate assignments each with λ reviewers

assigned to each paper, and then choose the one with the highest fairness. The assignment at this

point ensures guarantees of worst-case fairness (2). We then also optimize for the second worst-off

paper, then the third worst-off paper and so on in the following manner. In the assignment at this

point, we find the most disadvantaged papers and permanently fix corresponding reviewers to these

papers. Next, we repeat the procedure described above to find the most fair assignment among the

remaining papers, and so on. By doing so, we ensure that our final assignment is not susceptible to

bottlenecks which may be caused by irrelevant papers with small average similarities.

The higher-level idea behind the aforementioned subroutine to obtain the candidate assignment

for any value of κ ∈ [λ] is as follows. The subroutine constructs a layered flow network graph with

one layer for reviewers and one layer for papers, that captures the similarities and the constraints on

the paper/reviewer loads. Then the subroutine incrementally adds edges between (reviewer, paper)

pairs in decreasing order of similarity and stops when the paper load constraints are met (each paper

can be assigned to κ reviewers using only edges added at this point). This iterative procedure ensures

that the papers are assigned reviewers with approximately the highest possible similarities.

Remarks: We make a few additional remarks regarding the PR4A algorithm.

• Beyond worst case: Despite the fact that the fairness of the resulting assignment is determined in

the first iteration of Steps 2 to 7 of Algorithm 1, the subsequent iterations of the algorithm aim to

optimize the assignment for the second worst-off paper and so on (see Appendix C), thus avoiding

the bottlenecks which may be caused by irrelevant papers with small average similarities.

• Computational cost: A naı̈ve implementation of the PR4A algorithm has a computational com-

plexity Õ
(
λ(m+ n)m2n

)
. We give more details on computational aspects in Appendix B.

• Variable reviewer or paper loads: The PR4A algorithm allows for specifying different loads for

different reviewers and papers. For general paper loads, we consider κ ≤ maxj∈[m] λ
(j) and set

the capacity of edge between any paper j and sink as min{κ, λ(j)}.

• Incorporating conflicts of interest: One can easily incorporate any conflicts of interest between any

reviewer and paper by setting the corresponding similarity to −∞. The guarantees we establish

below will still hold with minor technical changes, provided that there is enough non-conflicting

pairs.
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Subroutine 1 PR4A Subroutine

Input: κ ∈ [λ]: number of reviewers required

per paper

M: set of papers to be assigned

S∈({−∞}∪[0, 1])n×|M|
: similarities

(µ(1), . . . , µ(n)) ∈ [µ]n: reviewers’

max loads

Output: Reviewer assignment A
Algorithm:

1. Initialize A to an empty assignment

2. Initialize the flow network:

• Layer 1: one vertex (source)

• Layer 2: one vertex for every reviewer i ∈
[n] and directed edges of capacity µ(i) and

cost 0 from the source to every reviewer

• Layer 3: one vertex for each paper j ∈ M
• Layer 4: one vertex (sink) and directed

edges of capacity κ and cost 0 from each

paper to the sink

3. Find (reviewer, paper) pair (i, j) such that the

following two conditions are satisfied:

• the corresponding vertices i and j are not

connected in the flow network

• the similarity sij is maximal among the pairs

which are not connected (ties are broken ar-

bitrarily)

and call this pair (i′, j′)

4. Add a directed edge of capacity 1 and cost

si′j′ between nodes i′ and j′

5. Compute the max-flow from source to sink, if

the value of the flow is strictly smaller than

|M|κ, then go to Step 3

6. Compute max-cost max-flow from source to

sink and for every edge (i, j) between layers

2 and 3 which carries a unit of flow in that

max-flow, assign reviewer i to paper j in the

assignment A

Algorithm 1 PR4A Algorithm

Input: λ ∈ [n]: number of reviewers required

per paper

S ∈ [0, 1]n×m: similarities

µ ∈ [m]: reviewers’ maximum load

Output: Reviewer assignment APR4A

Algorithm:

1. Initialize µ = (µ, . . . , µ) ∈ [µ]n

APR4A, A0 : empty assignments

M = [m]: papers to be assigned

2. For κ = 1 to λ

(a) Set µtmp = µ, Stmp = S
(b) Assign κ reviewers to every paper using sub-

routine:

A1
κ = Subroutine(κ,M, Stmp, µtmp)

(c) Decrease µtmp for every reviewer by the num-

ber of papers she is assigned in A1
κ. Set cor-

responding similarities in Stmp to −∞
(d) Run subroutine with adjusted µtmp and Stmp

to assign λ− κ reviewers to every paper:

A2
κ = Subroutine(λ− κ,M, Stmp, µtmp)

(e) Create assignment Aκ such that for every

pair (i, j) of reviewer i ∈ [n] and paper j ∈
M, reviewer i is assigned to paper j if she/he

is assigned to this paper in either A1
κ or A2

κ

3. Choose Ã ∈ arg max
κ∈[λ]∪{0}

ΓS (Aκ) with ties bro-

ken arbitrarily

4. For paper in J ∗ := arg min
`∈M

∑
i∈R

Ã
(`)

si`, as-

sign all reviewers R
Ã
(j) to paper j in APR4A

5. For every reviewer i ∈ [n], decrease µ(i) by

the number of papers in J ∗ assigned to i
6. Delete columns corresponding to the papers

J ∗ from S and Ã. Update M = M\J ∗

7. Set A0 = Ã
8. If M is not empty, go to Step 2
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3.2. Approximation Guarantees

We now provide guarantees on the fairness of the reviewer-assignment by our algorithm. We begin

with some notation that will help state our main approximation guarantees. For each value of κ ∈ [λ],
consider the reviewer-assignment problem but where each paper requires κ (instead of λ) reviews

(each reviewer still can review up to µ papers). Let us denote the family of all feasible assignments

for this problem as Aκ. Now define the quantity

s∗κ := max
A∈Aκ

min
j∈[m]

min
i∈RA(j)

sij (3)

Intuitively, for every assignment from the family Aκ, the quantity s∗κ upper bounds the minimum

similarity for any assigned (reviewer, paper) pair. It also means that the value s∗κ is achievable by

some assignment in Aκ. We denote largest and smallest entries in the similarity matrix as s∗0 and s∗∞.

We are now ready to present the main result on the approximation guarantees for the PR4A

algorithm as compared to the optimal assignment AHARD which maximizes (2).

Theorem 1 For any feasible values of (n,m, λ, µ) and any similarity matrix S, the assignment

APR4A given by PR4A guarantees the following lower bound on the fairness objective (2):

ΓS
(
APR4A

)

ΓS (AHARD)

(a)

≥
max
κ∈[λ]

(
κs∗κ + (λ− κ)s∗∞

)

min
κ∈[λ]

(
(κ− 1)s∗0 +

(
λ− κ+ 1

)
s∗κ)
)

(b)

≥ 1/λ. (4)

It is important to note that if we only need to assign one reviewer for each paper (λ = 1), then our

PR4A algorithm finds exact solution for the problem, recovering the classical results of Garfinkel

(1971) as a special case. In practice, the number of reviewers λ required per paper is a small constant

(often set as 3), and in that case, our algorithm guarantees a constant factor approximation. Note that

the fraction in the right hand side of inequality (a) in (4) can become 0/0 or ∞/∞, and in both cases

it should be read as 1.

We now briefly provide more intuition on the bound (4). Recalling the definition (3) of s∗κ, the

PR4A subroutine called with parameter κ finds an assignment such that all the similarities are at

least s∗κ. This guarantee in turn implies that the fairness of the corresponding assignment Aκ is at

least κs∗κ+(λ−κ)s∗∞. The denominator is an upper bound of the fairness of the optimal assignment

AHARD. The expression for any value of κ is obtained by simply appealing to the definition of s∗κ.

Next, in Sections 4 and 5 we show that the objective (2) also arises under a statistical setting

for estimating the top k papers. We use the guarantees established in the present section in order to

obtain appealing statistical guarantees for the PR4A algorithm. All proofs are given in Appendix D.

4. Objective-Score Model

We now turn to establishing statistical guarantees for our PR4A algorithm from Section 3. We begin

by considering an “objective” score model which we borrow from past works.

4.1. Model Setup

The objective-score model assumes that each paper j ∈ [m] has a true, unknown quality θ∗j ∈ R and

each reviewer i ∈ [n] assigned to paper j gives her/his estimate yij of θ∗j . The eventual goal is to
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estimate top k papers according to true qualities θ∗j , j ∈ [m]. Following prior works (Ge et al., 2013;

McGlohon et al., 2010; Dai et al., 2012), we assume the score yij given by any reviewer i to any

paper j to be independently and normally distributed around the true paper qualities:

yij ∼ N
(
θ∗j , σ

2
ij

)
. (5)

In our analysis, we assume that the noise variances are some function of the underlying computed

similarities.2 We assume that for any i ∈ [n] and j ∈ [m], the noise variance σ2
ij = h(sij), for some

monotonically decreasing function h : [0, 1] → [0,∞). We assume that this function h is known;

this assumption is reasonable as the function can, in principle, be learned from the data from the past

conferences. In the description below, however, we will primarily consider the specific choice of

h(s) = 1− s for ease of the exposition. Our results can be extended to more general function h and

we leave the details for an extended version of this paper (Stelmakh et al., 2018).

4.2. Top k Recovery

We begin our analysis with the following problem. Given a valid assignment A ∈ A, the goal of

an estimator is to recover the top k papers. A natural way to do so is to compute the estimates of

true paper scores θ∗j and return top k papers with respect to these estimated scores. The described

procedure is a simplified version of what is happening in the real-world conferences. Nevertheless,

this fully-automated procedure may serve as a guideline for area chairs, providing a first-order

estimate of the total ranking of papers. In what follows, we specifically consider the following two

estimators: (i) maximum likelihood estimator (MLE) denoted as θ̂MLE which computes the maximum

likelihood estimate of the true score for each paper, and (ii) the average score estimator θ̂MEAN which

simply computes the mean of the scores provided by the reviewers for any paper.

Let (k) and (k+1) denote the indices of the papers that are respectively ranked kth and (k + 1)th

according to their true qualities. Intuitively, if the difference between kth and (k + 1)th
papers is

large enough, it should be easy to recover top k papers. To formalize this intuition, for any value of a

parameter δ ≥ 0, consider a family Fk of papers’ scores

Fk(δ) :=
{
(θ1, . . . , θm) ∈ R

m
∣∣∣θ(k) − θ(k+1) ≥ δ

}
. (6)

Besides the gap between kth and (k + 1)th
paper, the hardness of the problem also depends on the

similarities. For instance, if all reviewers have near-zero similarity with all the papers, then recovery

is impossible unless the gap is extremely large. To quantify the tractability in terms of the similarities

we introduce the set S of families of similarity matrices parameterized by a non-negative value q:

S(q) :=
{
S ∈ [0, 1]n×m

∣∣∣ΓS
(
AHARD

)
≥ q
}
. (7)

In words, if similarity matrix S belongs to S(q), then the fairness of the optimally fair assignment is

at least q. Finally, a quantity τq captures the quality of approximation provided by PR4A:

τq := inf
S∈S(q)

ΓS
(
APR4A

)

ΓS (AHARD)
. (8)

2. Recall that the similarities can capture not only affinity in research areas but may also incorporate the bids or

preferences of reviewers, past history of review quality, etc.
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Note that Theorem 1 gives lower bounds on the value of τq.

Having defined all the necessary notation, we are ready to present the first result of this section

on recovering the set of top k papers T ∗
k .

Theorem 2 (a) For any ε ∈ (0, 1/4) and any q ∈ [0, λ], if δ > 2
√
2

λ

√
(λ− qτq) ln

m√
ε
, then

sup
(θ∗1 ,...,θ∗m)∈Fk(δ)

S∈S(q)

P

{
Tk
(
APR4A, θ̂MEAN

)
6= T ∗

k

}
≤ ε. (9)

(b) Conversely, for any q ∈ [0, λ], there exists a universal constant c > 0 such that if m > 6 and

δ < c
λ

√
(λ− q) lnm, then

sup
S∈S(q)

inf
(θ̂,A∈A)

sup
(θ∗1 ,...,θ∗m)∈Fk(δ)

P

{
Tk
(
A, θ̂

)
6= T ∗

k

}
≥ 1

2
.

Remarks: We make a few additional remarks regarding the theorem.

1. The PR4A algorithm thus leads to a strong minimax guarantee on the recovery of the top k
papers: the upper and lower bounds differ by at most a τq ≥ 1

λ
term in the requirement on δ and

constant pre-factor.

2. In addition to quantifying the performance of PR4A, an important contribution of Theorem 2

is a sharp minimax analysis of the performance of every assignment algorithm. Indeed, the approxi-

mation ratio τq (8) can be defined for any assignment algorithm. For example, if one has access to

the optimal assignment AHARD (e.g., by using PR4A if λ = 1) then we will have corresponding

approximation ratio τq = 1 thereby yielding bounds that are sharp up to constant pre-factors.

3. Theorem 2 implies that the fairness of the assignment (2) under standard minimax framework

is indeed the right proxy towards the accuracy of the acceptance decisions.

4. The result similar to Theorem 2 also holds for the θ̂MLE estimator.

4.3. Adaptivity to Underlying Structure

Optimizing fairness (2), the PR4A algorithm in Step 2 constructs several candidate assignments. We

now show that each of these candidate assignments is statistically optimal for some class of similarity

matrices. Thus, by managing these candidate assignments the algorithm adapts to the underlying

structure of similarity matrix S. Consider the following family of similarity matrices parameterized

by a non-negative value v and integer parameter κ ∈ [λ]:

Sκ(v) :=
{
S ∈ [0, 1]n×m

∣∣∣s∗κ ≥ v
}
. (10)

This class contains similarity matrices for which there exists an assignment such that each paper has

κ reviewers with similarity higher than v. Let Aκ be the assignment computed in Step 2 of the first

iteration of Steps 2 to 7 of Algorithm 1. Then the following adaptive analogue of Theorem 2 holds:

Corollary 3 (a) For any ε ∈ (0, 1/4), v ∈ [0, 1] and κ ∈ [λ], if δ > 2
√
2
√

1−v
κ+(λ−κ)(1−v) ln

m√
ε
,

then

sup
(θ∗

1
,...,θ∗m)∈Fk(δ)
S∈Sκ(v)

P

{
Tk(Aκ, θ̂

MLE) 6= T ∗
k

}
≤ ε.

10
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(b) Conversely, for any v ∈ [0, 1] and any κ ∈ [λ], there exists a universal constant c > 0 such that if

m > 6 and δ ≤ c
√

1−v
κ+(λ−κ)(1−v) lnm, then

sup
S∈Sκ(v)

inf
(θ̂,A∈A)

sup
(θ∗

1
,...,θ∗m)∈Fk(δ)

P

{
Tk(A, θ̂) 6= T ∗

k

}
≥ 1

2
.

Thus, assignment Aκ together with θ̂MLE estimator are minimax optimal up to a constant factor

in the class Sκ(v). Importantly, observe that there is no approximation factor. This is because

our subroutine can exactly find an assignment such that all papers receive κ reviewers with a high

similarity.

5. Subjective-Score Model

Following prior works, in the previous section we analyzed the performance of our PR4A assignment

algorithm under objective-score model. However, in practice reviewers’ opinions on the quality of

any paper are typically highly subjective (Kerr et al., 1977; Mahoney, 1977; Ernst and Resch, 1994;

Bakanic et al., 1987; Lamont, 2009).

Following this intuition, we move away from the assumption of some true objective scores of the

papers. We develop a novel model to capture subjective opinions and present a statistical analysis of

our algorithm under this model.

5.1. Model Setup

The key idea behind our subjective score model is to separate out the subjective part in any reviewer’s

opinion from the noise inherent in it. Our model is best described by first considering a hypothetical

situation where every reviewer spends an infinite time and effort on reviewing every paper, gaining a

perfect expertise in the field of that paper and a perfect understanding of the paper’s content. We let

θ̃ij ∈ R denote the score that this fully competent version of reviewer i ∈ [n] would provide to paper

j ∈ [m]. Continuing in this hypothetical world, every feasible assignment is of the same quality

since there is no noise in the reviewers’ scores. A natural choice of scoring any paper j is the average

score provided by reviewers who review that paper: θ̃?j (A) := 1
λ

∑
i∈RA(j) θ̃ij .

Let us now return to reality where reviews are noisy. Following (5), we assume that score of

any reviewer i for any paper j that she/he reviews is distributed as yij ∼ N (θ̃ij , 1− sij). Thus, the

goal now is to assign reviewers to papers such that reviewers are of enough ability to convey their

opinions θ̃ij from the hypothetical full-competence world to the real world with scores yij . In other

words, the goal of the assignment is to ensure the recovery of the top k papers in terms of the average

full-competence subjective scores {θ̃?j}j∈[m].

5.2. Top k Recovery

Since we are interested in average full-competence subjective scores, a natural choice for estimating

{θ̃?j} from the actual scores {yij} is the averaging estimator θ̂MEAN. In order to provide an analysis

for the subjective-score model, we recall the family of similarity matrices S(q) defined earlier in (7)

and the approximation ratio τq defined in (8), both parameterized by some non-negative value q. For

every feasible assignment A, we augment the notation T ∗
k with T ?

k

(
A, θ̃?(A)

)
to highlight that the

set of the top k papers is induced by the assignment A. Let us now present the main result of this

section.

11
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Theorem 4 (a) For any ε ∈ (0, 1/4) and any q ∈ [0, λ], if δ > 2
√
2

λ

√
(λ− qτq) ln

m√
ε
, then

sup
θ̃?
APR4A∈Fk(A

PR4A,δ)

S∈S(q)

P

{
Tk(APR4A, θ̂MEAN) 6=T ?

k

(
APR4A, θ̃?(APR4A)

)}
≤ε.

(b) Conversely, for any q ∈ [0, λ], there exists a universal constant c > 0 such that if m > 6 and

δ < c
λ

√
(λ− q) lnm, then

sup
S∈S(q)

inf
(θ̂,A∈A)

sup
θ̃?
A
∈Fk(A,δ)

P

{
Tk(A, θ̂) 6=T ?

k

(
A, θ̃?(A)

)}
≥ 1

2
,

where θ̃?A = {θ̃?j (A), j ∈ [m]}.

We thus see that our assignment algorithm PR4A leads to the strong guarantees under both the

objective- and subjective-score model.

6. Discussion

Researchers submit papers to conferences expecting a fair outcome from the peer-review pro-

cess. This expectation is often not met, as is illustrated by the difficulties that non-mainstream or

inter-disciplinary research faces in present peer-review systems. We design a reviewer-assignment

algorithm PR4A to address the crucial issues of fairness and accuracy. Our guarantees impart

promise for deploying the algorithm in conference peer-reviews. As a next step, we intend to try out

the algorithm in peer-reviewed workshops.
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Appendix A. Discussion of approximation results

In this section we discuss the approximation-related results. In what follows for any value c ∈ R, we

denote the matrix all of whose entries are c as c.

A.1. Example for ILPR algorithm.

We begin by construction a series of similarity matrices for various λ such that ΓS
(
AILPR

)
= 0

while assignments APR4A and AHARD have non-trivial fairness. Recall that we refer to algorithm

by Garg et al. (2010) as ILPR.

Proposition 5 For every positive integer λ, there exists a similarity matrix S such that ΓS
(
AILPR

)
=

0 and ΓS
(
APR4A

)
≥ 1

λ
ΓS
(
AHARD

)
> 0.

Proof Given any positive integer λ ∈ N, consider an instance of reviewer assignment problem with

m = n, µ = λ and similarities given by the block matrix

S =




1 1 0

0 0 (s̃− ε) · 1
(s̃− ε) · 1
︸ ︷︷ ︸

m1

(s̃− ε) · 1
︸ ︷︷ ︸

m1

s̃ · 1︸ ︷︷ ︸
m1



}n1

}n2

}n3

(11)

Here s̃ = n1

n1+n2
, the value ε > 0 is some small constant strictly smaller than s̃, and nr = mr > 0

for every r ∈ {1, 2, 3}. We also require n3 > λ and

n2 = (λ− 1)n1 + 1. (12)

We refer to the first m1 papers and n1 reviewers as belonging to the first group, the second m2 papers

and n2 reviewers as belonging to the second group, and so on.

The ILPR algorithm involves two steps. The first step consists of solving a linear programming

relaxation and finding the most fair fractional assignment. The second step then performs a rounding

procedure in order to obtain integer assignments. Let us first see the output of the first step of

the ILPR algorithm — the fractional assignment with the highest fairness — on the similarity

matrix (11). Observe that for each of the m3 papers in the third group, the sum of the similarities of

any λ reviewers is at most λs̃, and furthermore, that this value is achieved with equality if and only if

they are reviewed by λ reviewers from the third group. Next, the n1 reviewers from the first group

can together review λn1 papers. Dividing this amount equally over the m1 +m2 papers in the first

two groups (in any arbitrary manner) and complementing the assignment with reviewers from the

second group, we see that each paper from the first and the second groups receives a sum similarity

λ n1

m1+m2
= λs̃. It is not hard to see that any deviation from the assignment introduced above will

lead to a strict decrease of the fairness.

The second step of the ILPR algorithm is a rounding procedure that constructs a feasible

assignment from the fractional assignment (solution of linear programming relaxation) obtained

in the previous step. The rounding procedure is guaranteed to assign λ reviewers to each paper,

respecting the following requirement: any reviewer assigned to any paper j ∈ [m] in the resulting

feasible assignment must have a non-zero fraction allocated to that paper in the fractional assignment.
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Table 2: Fairness of various assignment algorithms for the class of similarity matrices (11).

λ = 1 λ = 2 λ = 3 λ = 4

ΓS
(
AILPR

)
0 0 0 0

ΓS
(
AHARD

)
0.49 0.65 0.72 0.76

ΓS
(
APR4A

)
0.49 0.65 0.72 0.76

Now notice that aforementioned requirement ensures that all papers from the third group must

be assigned to reviewers from the third group. Next, recall that on one hand, reviewers from the

first group can together review at most λn1 different papers. On the other hand, in each optimally

fair fractional assignment, the first m1 + m2 papers are assigned to reviewers from the first two

groups. Thus, in the resulting integral assignment these papers also must be assigned to reviewers

from the first two groups. These two facts together with the inequality λn1 < m1 + m2 that we

obtain from (12) ensure that at least one paper in the resulting integral assignment will be reviewed

by λ reviewers with zero similarity. Hence, the assignment computed by the ILPR algorithm has

zero fairness ΓS
(
AILPR

)
= 0.

On the other hand, it is not hard to see that ΓS
(
AHARD

)
≥ s̃ − ε. Indeed, let us assign one

reviewer to each paper by the following procedure: the m1 papers from the first group and some

m2 − 1 papers from the second group are all assigned one arbitrary reviewer each from the first

group of reviewers. Such an assignment is possible since λn1 = m1 +m2 − 1 due to (12). The

remaining paper from the second group is assigned one arbitrary reviewer from the third group. At

this point, there are m3 papers (in the third group) which are not yet assigned to any reviewer, and

n3 + n2 − 1 ≥ m3 reviewers who have not been assigned any paper and have similarity higher than

s̃ − ε with these m3 papers in the third group. Assigning one reviewer each from this set to each

of these m3 papers, we obtain an assignment in which each paper is allocated to one reviewer with

similarity at least s̃− ε. Completing the remaining assignments in an arbitrary fashion, we conclude

that ΓS
(
APR4A

)
≥ 1

λ
ΓS
(
AHARD

)
≥ s̃− ε > 0 where first inequality is due to Theorem 1.

The results of simulations for λ ∈ {1, 2, 3, 4}, parameters n1 = 1, n2 = λ, n3 = λ+1, ε = 0.01
and similarity matrices S̃ defined in (11) are depicted in Table 2. Interestingly, for these choices of

parameters, our PR4A algorithm is not only superior to ILPR , but is also able to exactly recover the

fair assignment.

A.2. Sub-optimality of TPMS

In this section we show that assignment obtained from optimizing the objective (1) can be highly

sub-optimal with respect to the criterion (2).

Proposition 6 For any λ ≥ 1, there exists a similarity matrix S such that ΓS
(
APR4A

)
= ΓS

(
AHARD

)
≥

λ
4 and ΓS

(
ATPMS

)
= 0.

Proof Consider an instance of the problem with m = n = 2λ, and similarities given by the block

matrix

S =

[
1 0.4

0.4︸︷︷︸
λ

0︸︷︷︸
λ

]
}λ
}λ (13)
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Then ATPMS assigns the first λ reviewers to the first λ papers (in some arbitrary manner) and

the remaining reviewers to the remaining papers, obtaining
∑

j∈[m]

∑

i∈R
ATPMS (j)

sij = λ2 and

ΓS
(
ATPMS

)
= 0

In contrast, assignments APR4A and AHARD assign the first 1
2n reviewers to the second group of

papers and the remaining reviewers to the remaining papers. This assignment yields
∑

j∈[m]

∑

i∈R
APR4A (j)

sij =
∑

j∈[m]

∑

i∈R
AHARD (j)

sij = 0.8λ2 and

ΓS
(
APR4A

)
= ΓS

(
AHARD

)
= 0.4λ ≥ λ

4
.

This concludes the proof.

Appendix B. Computational aspects

A naı̈ve implementation of the PR4A algorithm has a polynomial computational complexity and

requires O
(
λm2n

)
iterations of the max-flow algorithm. There are a number of additional ways

that the algorithm may be optimized for improved computational complexity while retaining all the

approximation and statistical guarantees.

One may use Orlin’s method (Orlin, 2013; King et al., 1992) to compute the max-flow which

yields a computational complexity of the entire algorithm at most O
(
λ(m+ n)m3n2

)
. Instead of

adding edges is Step 3 of the subroutine one by one, a binary search may be implemented, reducing

the number of max-flow iterations to O (λm logmn) and the total complexity to Õ
(
λ(m+ n)m2n

)
.

Finally, note that the max-min approximation guarantees, as well as statistical results remain

valid even for the assignment Ã computed in Step 3 of Algorithm 1 during the first iteration of

the algorithm. The algorithm may thus be stopped at any time after the first iteration if there is a

strict time-deadline to be met. However, the results of Corollary 7 on optimizing the assignment for

papers beyond the most worst-off will not hold any more.3 The computational complexity of each

of the iterations is at most Õ (λ(m+ n)mn), and stopping the algorithm after a constant number

of iterations makes it comparable to the complexity of TPMS algorithm which is successfully

implemented in many large scale conferences.

Let us now briefly compare the computational cost of PR4A and ILPR algorithms. The full

version of ILPR algorithm requires O(m2) solutions of linear programming problems. Given that

finding a max-flow in a graph constructed by our subroutine can be casted as linear programming

problem (with constraints similar to those in Garg et al. 2010), we conclude that slightly optimized

implementation of our algorithm results in O(λm logmn) solutions of linear programming problems,

which is asymptotically better. To be fair, the ILPR algorithm also can be terminated in an earlier

stage with theoretical guarantees satisfied, which brings both algorithms on a similar footing with

respect to the computational complexity.

3. If the algorithm is terminated after p′ iterations, then bound (14) from Corollary 7 holds for r ∈ [p′].
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Appendix C. Beyond worst case

The previous section established guarantees for the PR4A algorithm on the fairness of the assignment

in terms of the worst-off paper. In this section we formally show that the algorithm does more:

having the assignment for the worst-off paper fixed, the algorithm then satisfies the second worst-off

paper, and so on.

Recall that Algorithm 1 iteratively repeats Steps 2 to 7. In fact, the first time that Step 3 is

executed, the resulting intermediate assignment Ã achieves the max-min guarantees of Theorem 1.

However, the algorithm does not terminate at this point. Instead, it finds the most disadvantaged

papers in the selected assignment and fixes them in the final output APR4A (Step 4), attributing these

papers to reviewers according to Ã. Then it repeats the entire procedure (Steps 2 to 7) again to

identify and fix the assignment for the most disadvantaged papers among the remaining papers and

so on until the all papers are assigned in APR4A. We denote the total number of iterations of Steps 2

to 7 in Algorithm 1 as p (≤ m). For any iteration r ∈ [p], we let Jr be the set of papers which the

algorithm, in this iteration, fixes in the resulting assignment. We also let Ãr, r ∈ [p], denote the

assignment selected in Step 3 of the rth iteration. Note that eventually all the papers are fixed in the

final assignment APR4A, and hence we must have
⋃

r∈[p]
Jr = [m].

Once papers are fixed in the final output APR4A, the assignment for these papers are not changed

any more. Thus, at the end of each iteration r ∈ [p] of Steps 2 to 7, the algorithm deletes (Step 6) the

columns of similarity matrix that correspond to the papers fixed in this iteration. For example, at

the end of the first iteration, columns which correspond to J1 are deleted from S. For each iteration

r ∈ [p], we let Sr denote the similarity matrix at the beginning of the iteration. Thus, we have

S1 = S, because at the beginning of the first iteration, no papers are fixed in the final assignment

APR4A.

Moving forward, we are going to show that for every iteration r ∈ [p], the sum similarity of the

worst-off papers Jr (which coincides with the fairness of Ãr) is close to the best possible, given the

assignment for the all papers fixed in the previous iterations. As in Theorem 1, we will compare the

fairness ΓS
(
Ãr

)
with the fairness of the optimal assignment that HARD algorithm would return

if called at the beginning of the rth iteration. We stress that for every r ∈ [p], the HARD algorithm

assigns papers
p⋃

l=r

Jl and respects the constraints on reviewers’ loads, adjusted for the assignment

of papers
r−1⋃
l=1

Jl in APR4A. We denote the corresponding assignment as AHARD(J{r:p}). Note that

AHARD(J{1:p}) = AHARD. The following corollary summarizes the main result of this section:

Corollary 7 For any integer r ∈ [p], the assignment Ãr, selected by the PR4A algorithm in Step 3

of the rth iteration, guarantees the following lower bound on the fairness objective (2):

ΓS
(
Ãr

)

ΓS
(
AHARD(J{r:p})

) ≥
max
κ∈[λ]

(κs∗κ + (λ− κ)s∗∞)

min
κ∈[λ]

((κ− 1)s∗0 + (λ− κ+ 1) s∗κ)
≥ 1/λ, (14)

where values s∗κ, κ ∈ {0, . . . , λ} ∪ {∞}, are defined with respect to the similarity matrix Sr and

constraints on reviewers’ loads adjusted for the assignment of papers
r−1⋃
l=1

Jl in APR4A.
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The corollary guarantees that each time the algorithm fixes the assignment for some papers j ∈ M
in APR4A, the sum similarity for these papers (which is smallest among papers from M) is close to

the optimal fairness, where optimal fairness is conditioned on the previously assigned papers. In case

r = 1, the bound (14) coincides with the bound (4) from Theorem 1. Hence, once the assignment for

the most worst-off papers is fixed, the PR4A algorithm adjusts maximum reviewers’ loads and looks

for the most fair assignnment of the remaining papers.

Appendix D. Proofs

We now present the proofs of our main results.

D.1. Proof of Theorem 1

We prove the result in three steps. First, we establish a lower bound on the fairness of the PR4A

algorithm. Then we establish an upper bound on the fairness of the optimal assignment. Finally, we

combine these bounds to obtain the result (4).

Lower bound for the PeerReview4All algorithm.

We show a lower bound for the intermediate assignment Ã at Step 3 during the first iteration of

Steps 2 to 7. We denote this particular assignment as Ã1. Note that in Step 4 we fix the assignment for

Ã1’s worst-off papers into the final output, and hence we have ΓS
(
Ã1

)
≥ ΓS

(
APR4A

)
. On the other

hand, by keeping track of A0 (Step 7), we ensure that in all of the subsequent iterations of Steps 2 to 7,

the temporary assignment Ã will be at least as fair as Ã1, which implies ΓS
(
Ã1

)
= ΓS

(
APR4A

)
.

Getting back to the first iteration of Steps 2 to 7, we note that when Step 2 is completed, we

have λ assignments A1, . . . , Aλ as candidates. Notice that for every κ ∈ [λ], assignment Aκ is

constructed with a two-step procedure by joining the outputs A1
κ and A2

κ of Subroutine 1. Recalling

the definition (3) of s∗κ, we now show that for every value of κ ∈ [λ], the assignment A1
κ satisfies:

min
j∈[m]

min
i∈R

A1
κ
(j)

sij = s∗κ.

Consider any value of κ ∈ [λ]. The definition of s∗κ ensures that there exist an assignment, say

A∗, which assigns κ reviewers to each paper in a way that minimum similarity in this assignment

equals s∗κ. Now note that Subroutine 1, called in Step 2b of the algorithm, adds edges to the flow

network in order of decreasing similarities. Thus, at the time all edges with similarity higher or equal

to s∗κ are added, we have that no edges with similarity smaller that s∗κ are added, and that all edges

which correspond to the assignment A∗ are also added to the network. Thus, a maximum flow of

size mκ is achieved and hence each assigned (reviewer, paper) pair has similarity at least s∗κ.

Recalling that s∗∞ is the lowest similarity in similarity matrix S, one can deduce that ΓS (Aκ) ≥
κs∗κ + (λ− κ) s∗∞. Consequently, we have

ΓS
(
APR4A

)
≥ ΓS (Aκ) ≥ κs∗κ + (λ− κ) s∗∞, (15)

for all κ ∈ [λ]. Taking a maximum over all values of κ ∈ [λ] concludes the proof.
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Upper bound for the optimal assignment AHARD.

Consider any value of κ ∈ [λ]. By definition (3) of s∗κ, for any feasible assignment A ∈ A, there

exists some paper j∗κ ∈ [m] for which at most (κ− 1) reviewers have similarity strictly greater than

s∗κ. Let us now consider assignment AHARD and corresponding paper j∗κ. This paper is assigned to at

most (κ − 1) reviewers with similarity greater than s∗κ and to at least (λ − κ + 1) reviewers with

similarity smaller or equal to s∗κ. Recalling that s∗0 is the largest possible similarity, we conclude that

the following upper bound holds:

ΓS
(
AHARD

)
= min

j∈[m]

∑

i∈R
AHARD (j)

sij ≤
∑

i∈R
AHARD (j∗κ)

sij∗κ ≤ (κ− 1) s∗0 + (λ− κ+ 1) s∗κ. (16)

Taking a minimum over all values of κ ∈ [λ], then yields an upper bound on the fairness of AHARD.

Putting it together.

To conclude the argument, it remains to plug in the obtained bounds (15) and (16) into ratio
ΓS(APR4A)
ΓS(AHARD)

:

ΓS
(
APR4A

)

ΓS (AHARD)
≥

max
κ∈[λ]

(
κs∗κ + (λ− κ) s∗∞

)

min
κ∈[λ]

(
(κ− 1)s∗0 + (λ− κ+ 1) s∗κ

) .

Setting κ = 1 in both numerator and denominator, we obtain a worst-case approximation in

terms of required paper load:
ΓS(APR4A)
ΓS(AHARD)

≥ 1
λ

.

D.2. Proof of Theorem 2

Before we prove the theorem, let us formulate an auxiliary lemma which will help us show the

claimed upper bound. We give the proof of this lemma subsequently in Section D.2.3.

Lemma 8 Consider any valid assignment A ∈ A and any estimator θ̂ ∈
{
θ̂MLE, θ̂MEAN

}
. Then for

every δ > 0, the error incurred by θ̂ is upper bounded as

sup
(θ∗1 ,...,θ∗m)∈Fk(δ)

P

{
Tk
(
A, θ̂

)
6= T ∗

k

}
≤ k(m− k) exp



−

(
δ

2σ̃(A, θ̂)

)2


 ,

where

σ̃2(A, θ̂) =





max
j∈[m]

(
∑

i∈RA(j)

1
σ2

ij

)−1

if θ̂ = θ̂MLE

max
j∈[m]

(
1
λ2

∑
i∈RA(j)

σ2
ij

)
if θ̂ = θ̂MEAN.
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D.2.1. PROOF OF UPPER BOUND

First, note that estimates of papers’ scores θ̂MEAN
j , j ∈ [m] have distributions:

θ̂MEAN
j ∼ N


θ∗j ,

1

λ2

∑

i∈RA(j)

(1− sij)




Then the PR4A algorithm tries to maximize the fairness of the assignment which is equivalent to

minimizing the maximum variance of the estimated scores θ̂MEAN
j , j ∈ [m]. To maintain brevity, we

denote APR4A(j) = RAPR4A(j).

Let now S ∈ S(q). We begin with the pair of assignment and estimator
(
APR4A, θ̂MEAN

)
. Notice

that for arbitrary feasible assignment A ∈ A and estimator θ̂MEAN,

σ̃2(A, θ̂MEAN) = max
j∈[m]


 1

λ2

∑

i∈RA(j)

σ2
ij


 =

1

λ2
max
j∈[m]


 ∑

i∈RA(j)

1− sij




=
1

λ2


λ− min

j∈[m]

∑

i∈RA(j)

sij


 =

1

λ2

(
λ− ΓS (A)

)
.

Now we can write

sup
S∈S(q)

σ̃2(APR4A, θ̂MEAN) =
1

λ2

(
λ− q inf

S∈S(q)

ΓS
(
APR4A

)

q

)

≤ 1

λ2

(
λ− q inf

S∈S(q)

ΓS
(
APR4A

)

ΓS (AHARD)

)

=
λ− qτq

λ2
.

Using Lemma 8, we conclude the proof for the average score estimator:

sup
(θ∗1 ,...,θ∗m)∈Fk(δ)

S∈S(q)

P

{
Tk
(
APR4A, θ̂MEAN

)
6= T ∗

k

}

≤ k(m− k) exp




−




δ

2 sup
S∈S(q)

σ̃(APR4A, θ̂MEAN)




2


(17)

≤ m2 exp

{
− λ2δ2

4 (λ− qτq)

}
≤ m2 exp

{
− ln

m2

ε

}
≤ ε. (18)

D.2.2. PROOF OF LOWER BOUND

Proof of our lower bound is based on Fano’s inequality (Cover and Thomas, 2005) which provides a

lower bound for probability of error in L-ary hypothesis testing problems.
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Without loss of generality we assume that k ≤ 1
2m. Otherwise, the result will hold by symmetry

of the problems.

Consider the similarity matrix S̃ =
{

q
λ

}n×m
. Observe that S̃ ∈ S(q), since every feasible

assignment A ∈ A has fairness

ΓS̃ (A) = min
j∈[m]

∑

i∈RA(j)

sij = q.

Thus, in any feasible assignment each paper j ∈ [m] receives λ reviewers with similarity exactly q
λ

.

To apply Fano’s inequality, we need to reduce our problem to a hypothesis testing problem. To

do so, let us introduce the set P of (m− k + 1) instances of the paper accepting/rejecting problem:

every problem instance in this set has the same similarity matrix S̃, but differs in the set of top k
papers T ∗

k . We now consider the problem of distinguishing between these problem instances, which

is equivalent to the problem of correctly recovering the top k papers. More concretely, we denote the

(m− k + 1) problem instances as, P = {1, 2, . . . ,m− k + 1}, where for any problem ` ∈ P the

set of top k papers is denoted as T ∗
k (`) and set as {1, 2, . . . , k − 1} ∪ {k − 1 + `}. The true quality

of any paper j ∈ [m] in any problem instance ` ∈ P is

θ∗j (`) =

{
δ if j ∈ T ∗

k (`)

0 otherwise,

thereby ensuring that (θ∗1(`), . . . , θ
∗
m(`)) ∈ Fk(δ), for every instance ` ∈ P .

Let P denote a random variable which is uniformly distributed over elements of P . Then given

P = `, we denote a random matrix of reviewers’ scores as Y (`) ∈ R
λ×m whose (r, j)th entry is a

score given by reviewer ir, r ∈ [λ], assigned to paper j and

Y
(`)
rj ∼

{
N
(
δ, 1− q

λ

)
if j ∈ T ∗

k (`)

N
(
0, 1− q

λ

)
otherwise.

(19)

We denote the distribution of random matrix Y (`) as P(`). Note that Y (`) does not depend on the

selected assignment A ∈ A. Indeed, recall from (5), that assignment A affects only variances of

observed scores. On the other hand, for any reviewer i ∈ [n] and for any paper j ∈ [m], the score yij
has variance 1− q

λ
. Thus, for any feasible assignment A and any ` ∈ P , the distribution of random

matrix Y ` has the form (19).

Now let us consider the problem of determining the index P = ` ∈ P , given the observation

Y (`) following the distribution P
(`). Fano’s inequality provides a lower bound for probability of error

of every estimator ϕ : Rλ×m → P in terms of Kullback-Leibler divergence between distributions

P
(`1) and P

(`2) (`1 6= `2, `1, `2 ∈ [m− k + 1]):

P {ϕ(Y ) 6= P} ≥ 1−
max

`1 6=`2∈P
KL
[
P
(`1)||P(`2)

]
+ log 2

log (card(P))
, (20)

where card(P) denotes the cardinality of P and equals (m− k + 1) for our construction.

Let us now derive an upper bound on the quantity

max
`1 6=`2∈P

KL
[
P
(`1)||P(`2)

]
. (21)
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First, note that for each ` ∈ [m − κ + 1], entries of Y (`) are independent. Second, for arbitrary

`1 6= `2, the distributions of Y (`1) and Y (`2) differ only in two columns. Thus,

KL
[
P
(`1)||P(`2)

]
= λ

{
KL
[
N
(
δ, 1− q

λ

)
||N

(
0, 1− q

λ

)]
+ KL

[
N
(
0, 1− q

λ

)
||N

(
δ, 1− q

λ

)]}
.

Some simple algebraic manipulations yield:

KL
[
N
(
δ, 1− q

λ

)
||N

(
0, 1− q

λ

)]
= KL

[
N
(
0, 1− q

λ

)
||N

(
δ, 1− q

λ

)]
=

δ2

2
(
1− q

λ

) . (22)

Finally, substituting (22) in (20), for m > 6 and for a sufficiently small constant c, we have

P {ϕ(Y ) 6= P} ≥ 1−
λ2δ2

λ−q
+ log 2

log (m− k + 1)
≥ 1− c2 lnm+ 1

log
(
m
2 + 1

) ≥ 1

2
.

This lower bound implies

sup
S∈S(q)

inf
(θ̂,A∈A)

sup
(θ∗1 ,...,θ∗m)∈Fk(δ)

P

{
Tk
(
A, θ̂

)
6= T ∗

k

}
≥ 1

2
.

D.2.3. PROOF OF LEMMA 8

First, let θ̂ = θ̂MEAN. Then given a valid assignment A, the estimates θ̂MEAN
j , j ∈ [m], are distributed

as

θ̂MEAN
j ∼ N


θ∗j ,

1

λ2

∑

i∈RA(j)

σ2
ij


 = N

(
θ∗j , σ̄

2
j

)
,

where we have defined σ̄2
j = 1

λ2

∑
i∈RA(j)

σ2
ij . Now let us consider two papers j1, j2 such that j1

belongs to the top k papers T ∗
k and j2 /∈ T ∗

k . The probability that paper j2 receives higher score than

paper j1 is upper bounded as

P

{
θ̂MEAN
j1

≤ θ̂MEAN
j2

}
= P

{(
θ̂MEAN
j1

− θ̂MEAN
j2

)
− E

{
θ̂MEAN
j1

− θ̂MEAN
j2

}
≤ −E

{
θ̂MEAN
j1

− θ̂MEAN
j2

}}

(i)

≤ exp




−

(
E

{
θ̂MEAN
j1

− θ̂MEAN
j2

})2

2
(
σ̄2
j1
+ σ̄2

j2

)





(ii)

≤ exp



−

(
δ

2σ̃(A, θ̂MEAN)

)2


 ,

where inequality (i) is due to Hoeffding’s inequality, and inequality (ii) holds because E
{
θ̂MEAN
j1

− θ̂MEAN
j2

}
=

θ∗j1 − θ∗j2 ≥ δ and σ̃2(A, θ̂MEAN) = max
j∈[m]

σ̄2
j . The estimator makes a mistake if and only if at least

one paper from T ∗
k receives lower score than at least one paper from [m]\T ∗

k . A union bound across

every paper from T ∗
k , paired with (m− k) papers from [m]\T ∗

k , yields our claimed result.

Let us now consider θ̂ = θ̂MLE. Then it is not hard to see that

θ̂MEAN
j ∼ N


θ∗j ,


 ∑

i∈RA(j)

1

σ2
ij




−1
 = N

(
θ∗j , σ̄

2
j

)
,
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where we denoted σ̄2
j =

(
∑

i∈RA(j)

1
σ2

ij

)−1

. Proceeding in a manner similar to the proof for the

averaging estimator yields the claimed result.

D.3. Proof of Corollary 3

The proof of Corollary 3 follows along similar lines as the proof of Theorem 2.

D.3.1. PROOF OF UPPER BOUND

Let us consider some κ ∈ [λ] and S ∈ Sκ(v). We apply Lemma 8 to proof the upper bound and

in order to do so, we need to derive an upper bound on σ̃(Aκ, θ̂
MLE). Recall that assignment Aκ is

guaranteed to assign each paper with κ reviewers with similarity larger that s∗κ. Thus,

σ̃2(Aκ, θ̂
MLE) = max

j∈[m]


 ∑

i∈RAκ (j)

1

σ2
ij




−1

=


min

j∈[m]

∑

i∈RAκ (j)

1

1− sij




−1

≤ 1
κ

1−s∗κ
+ λ−κ

1−s∗
∞

≤ 1− v

κ+ (λ− κ)(1− v)
.

Thus,

sup
S∈Sκ(v)

σ̃2(APR4A, θ̂MLE) ≤ 1− v

κ+ (λ− κ)(1− v)
. (23)

It remains to apply Lemma 8 to complete our proof, and we do so by applying the chain of

arguments (17) and (18) to the bound (23), where the pair (APR4A, θ̂MEAN) in (17) and (18) is

substituted with the pair (Aκ, θ̂
MLE).

D.3.2. PROOF OF LOWER BOUND

To prove the lower bound, we use the Fano’s ineqaulity in the same way as we did when proved

Theorem 2(b). However, we now need to be more careful with construction of working similarity

matrix S̃ ∈ Sκ(v).
As in the proof of Theorem 2(b), we assume k ≤ m

2 . If the converse holds, than the result holds

by symmetry of the problem. Next, consider arbitrary feasible assignment Ã ∈ Aκ. Recall, that Aκ

consists of assignments which assign each paper j ∈ [m] to κ instead of λ reviewers such that each

reviewer reviews at most µ papers.

Now we define a similarity matrix S̃ as follows:

sij =

{
v if i ∈ R

Ã
(j)

0 otherwise.
(24)

Thus, for each paper j ∈ [m] there exist exactly κ reviewers with non-zero similarity v and in every

feasible assignment A ∈ A each paper j ∈ [m] is assigned to at most κ reviewers with non-zero

similarity. Note that S̃ ∈ Sκ(v).
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Now let us consider the set of (m− k + 1) problem instances P defined in Section D.2.2. For

every feasible assignment A ∈ A, if Y (A,`) is a matrix of observed reviewers’ scores for instance

` ∈ P , then (r, j)th entry of Y (A,`) follows the distribution

Y
(A,`)
rj =

{
N
(
δ × I {j ∈ T ∗

k (`)} , 1− v
)

if Ãirj = 1

N
(
δ × I {j ∈ T ∗

k (`)} , 1
)

if Ãirj = 0,
(25)

where ir, r ∈ [λ] is reviewer assigned to paper j in assignment A.

We denote the distribution of random matrix Y (A,`) as P(A,`). Note that in contrast to the proof

of Theorem 2, here Y (A,`) does depend on the selected assignment A ∈ A. Thus, instead of (21), we

need to derive an upper bound on the quantity

sup
A∈A

max
`1 6=`2∈P

KL
[
P
(A,`1)||P(A,`2)

]
.

First, note that for each ` ∈ [m− k + 1] and for each feasible assignment A ∈ A, the entries of

Y (A,`) are independent. Second, for arbitrary `1 6= `2, the distributions of Y (A,`1) and Y (A,`2) differ

only in two columns. Thus, for any feasible assignment A ∈ A, we have

KL
[
P
(A,`1)||P(A,`2)

]
≤ γ`1KL

[
N
(
δ, 1− v

)
||N
(
0, 1− v

)]
+ (λ− γ`1)KL

[
N
(
δ, 1
)
||N
(
0, 1
)]

+ γ`2KL
[
N
(
0, 1− v

)
||N
(
δ, 1− v

)]
+ (λ− γ`2)KL

[
N
(
0, 1
)
||N
(
δ, 1
)]

(26)

= (γ`1 + γ`2)
δ2

2(1− v)
+ (2λ− γ`1 − γ`2)

δ2

2
, (27)

where γ`1 is the number of reviewers with similarity v assigned to paper (k − 1 + `1) in A and γ`2
is the number of reviewers with similarity v assigned to paper (k − 1 + `2). By construction of

similarity matrix S̃, for each ` ∈ [m− k + 1] and for each A ∈ A, we have γ` ≤ κ. Note that two

summands in (27) are proportional to a convex combination of δ2

2(1−v) and δ2

2 . Hence,

sup
A∈A

max
`1 6=`2∈P

KL
[
P
(A,`1)||P(A,`2)

]
≤ κδ2

(1− v)
+ (λ− κ) δ2 = δ2

(
κ+ (λ− κ) (1− v)

(1− v)

)
.

Applying Fano’s ineqaulity (20), we conclude that for all feasible assignments A ∈ A, if m > 6
and universal constant c is sufficiently small, then

P {ϕ(Y ) 6= P} ≥ 1−
δ2
(
κ+(λ−κ)(1−v)

(1−v)

)
+ log 2

log (m− k + 1)
≥ 1− c2 lnm+ 1

log
(
m
2 +
) ≥ 1

2
.

This bound thus implies

sup
S∈Sκ(v)

inf
(θ̂,A∈A)

sup
(θ∗1 ,...,θ∗m)∈Fk(δ)

P

{
Tk
(
A, θ̂

)
6= T ∗

k

}
≥ 1

2
.

D.4. Proof of Theorem 4

Note that Theorem 4 is similar in nature with Theorem 2, the only difference is that now we are

trying to recover a ranking which is induced by the assignment.
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D.4.1. PROOF OF UPPER BOUND

Given any feasible assignment A, the “ground truth” ranking that we try to recover is given by

θ̃?j (A) =
1

λ

∑

i∈RA(j)

θ̃ij . (28)

Then the estimates θ̂MEAN
j , j ∈ [m], are distributed as

θ̂MEAN
j ∼ N


 1

λ

∑

i∈RA(j)

θ̃ij ,
1

λ2

∑

i∈RA(j)

σ2
ij


 = N

(
θ̃?j (A), σ̄2

j

)
, (29)

where σ̄2
j = 1

λ2

∑
i∈RA(j)

σ2
ij . Now observe that Lemma 8, with T ?

k

(
A, θ̃?(A)

)
substituted for T ∗

k ,

also holds for the subjective score model and the averaging estimator θ̂MEAN. Thus, repeating

the proof of the upper bound for averaging estimator in Theorem 2(a) and substituting T ∗
k with

T ?
k

(
APR4A, θ̃?(APR4A)

)
in (17), yields the claimed result.

D.4.2. PROOF OF LOWER BOUND

The lower bound directly follows from Theorem 2(b). To see this, consider the following matrix

of reviewers’ subjective scores:
{
θ̃ij

}
i∈[n],j∈[m]

, where θ̃ij = θ∗j . Under this assumption, the total

ranking induced by assignment A does not depend on the assignment: θ̃?j (A) = θ∗j . Now we can

conclude that such choice of subjective scores brings us to the objective model setup in which

true underlying ranking exists and does not depend on the assignment. Thus, the lower bound of

Theorem 2(b) transfers to the subjective score model.

D.5. Proof of Corollary 7

Let us pause the PR4A algorithm at the beginning of the rth iteration of Steps 2 to 7 and inspect its

state.

• The set M consists of papers that are not yet assigned:

M = [m]\
(

r−1⋃

l=1

Jl

)
.

• The vector of reviewers’ loads µ is adjusted with respect to assigned papers. For every reviewer

i ∈ [n], we have:

µi = µ− card

({
j ∈

r−1⋃

l=1

Jl

∣∣∣i ∈ RAPR4A(j)

})
.

• The similarity matrix Sr consists of columns of the initial similarity matrix S which correspond

to papers in M.
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The only thing that connects the algorithm with the previous iterations is the assignment A0,

computed in Step 7 of the previous iteration. However, we note that the sum similarity for the

worst-off papers, determined in Step 4 of the current iteration (in other words, fairness of Ãr ), is

lower-bounded by the largest fairness of the candidate assignments A1, . . . , Aλ, which are computed

in Step 2.

We now repeat the proof of Theorem 1 with the following changes. Instead of the similarity matrix

S, we use the updated matrix Sr; instead of considering all papers m we consider only papers from

M; instead of assuming that each reviewer i ∈ [n] can review at most µ papers, we allow reviewer

i ∈ [n] to review at most µi papers. Hence, we arrive to the bound (4) on the fairness of Ãr, where

AHARD should be read as AHARD (M) = AHARD
(
J{r:p}

)
and values s∗κ, κ ∈ {0, . . . , λ} ∪ {∞} are

computed for similarity matrix Sr and constraints on reviewers’ loads µ. Thus, we obtain (14) and

conclude the proof of the corollary.
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