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Abstract— Spectrum trading creates more accessing oppor-
tunities for secondary users (SUs), and economically benefits
the primary users (PUs). Compared with centralized spectrum
trading designs, e.g., spectrum auction, distributed spectrum
trading captures instantaneous spectrum trading opportunities
better over large geographical regions without incurring extra
infrastructure deployment and has no network scalability issues.
However, the existing distributed spectrum trading designs have
limited concern regarding spectrum reuse. Considering spatial
reuse, in this paper, we propose a novel distributed frequency
reuse-based opportunistic spectrum trading (D-FROST) scheme,
which can further improve spectrum utilization, provide more
accessing opportunities for SUs, and increase the revenues of
PUs. In this paper, we employ conflict graph to characterize
the SUs’ co-channel and radio interferences, and mathematically
formulate a centralized PUs’ revenue maximization problem
under multiple wireless transmission constraints. Due to the
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NP-hardness to solve the problem and the non-existence of
centralized trading entity, we develop the D-FROST algorithms
based on matching with evolving preferences, and prove its sta-
bility. Through extensive simulations, we show that the proposed
D-FROST algorithm is superior to other distributed spectrum
trading algorithms without considering spectrum reuse, yields
results close to the centralized optimal one, and is effective in
increasing PUs’ revenue and improving spectrum utilization.

Index Terms— Distributed spectrum trading, frequency reuse,
matching with evolving preferences, spectrum utilization,
revenue.

I. INTRODUCTION

IN THE past few years, hand-held wireless devices and
wireless services have gradually become an indispensable

part of people’s daily life. The recent escalating demand of
smartphones and tablets especially activates the enlargement of
wireless communication applications (e.g., live video meeting,
group messaging, online gaming, on-demand video streaming,
etc.), which leads to a rapidly increase of the requirement
for radio spectrum [1]–[5]. On the other hand, current static
spectrum trading policy of Federal Communications Com-
mission (FCC) [1], [2] utterly exhausts the scarce spectrum
resources. However, even in the most crowed region of bustling
urban, many licensed spectrum bands are extremely under-
utilized in certain geographical areas and are idle most of the
time [6]. The dilemma between the proliferation of wireless
users and the depletion of spectrum motivates FCC to open
up licensed spectrum bands and seek new dynamic spectrum
access methods [1]. As one of the most promising solu-
tions, cognitive radio (CR) technology releases the spectrum
from shackles of authorized licenses, and enables secondary
users (SUs) to opportunistically access to the vacant licensed
spectrum bands in either temporal or spatial domain [2], [3].
Prior work has investigated spectrum trading issues from

different aspects. To be specific, due to the economic values
of frequency, the idea of opportunistic spectrum accessing has
initiated the spectrum market, in which primary users (PUs)
can sell/lease/auction their vacant spectrum for monetary
gains, and SUs can purchase/rent/bid the available licensed
spectrum if they suffer from the lack of radio resources to
support their traffic demands [7]–[9]. In our paper, we define
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revenue is the monetary gain from trading/lending spectrum to
the SUs. Different from common commodities or resources,
spectrum can be spatially reused, and this special feature of
spectrum has promoted a lot of research on the centralized
designs of spectrum trading. For example, Zhou et al. in [7]
have proposed a strategy-proof spectrum auction considering
frequency reuse. Jia et al. in [8] have investigated how to
design the trading and price to achieve the maximal revenue
and enforce truthfulness as well. In [10], Zhou and Zheng
have extended their work in [7], and presented a truthful
double spectrum auction, called TRUST, where multiple PUs
and SUs can trade bands according to their own demands.
Beyond the per SU or per SU transmission pair based spectrum
trading, Li et al. in [11] have proposed a per transmission
link based spectrum trading design, and shown its economic-
robustness. Although the centralized spectrum trading design
has a joint consideration of spectrum reuse and the guarantee
of economic properties, it needs the infrastructure deployment
with extra economic and control cost, and the designated
centralized spectrum traders (e.g., base stations or access-
ing points) may add huge energy consumption in existing
networks. Besides, the centralized spectrum trading designs
may not capture instantaneous accessing opportunities well,
and have scalability issues, when the network size of SUs
increases.
Beyond centralized designs, there are also some interest-

ing distributed spectrum trading schemes in existing liter-
ature [12]. For example, Xing et al. in [13] and Niyato
and Hossain in [14] investigated the spectrum pricing issues
in the spectrum market, where multiple PUs, whose goal
is to maximize the monetary gains with their vacant spec-
trum, compete with each other to offer spectrum access to
the SUs. Peng et al. in [12] implemented the celebrated
Vickrey-Clarke-Groves mechanism to two distributed spec-
trum auction mechanism, which achieve the maximization
of the agents’ individual utilities. Leveraging models in
game theory, Wang et al. in [15] proposed to construct
spectrum trading systems with desired properties, such as
power efficiency, trading fairness, Pareto efficiency, collu-
sion resistance and so on. Zhang et al. in [16] employed
many-to-one/student-project matching to share the spectrum
trying to maximize the social welfare in CR networks/LTE-
Unlicensed systems, respectively. However, most existing dis-
tributed spectrum trading designs have little consideration of
frequency reuse, which might cost PUs to lose some mone-
tary gains and SUs to miss many valuable spectrum access-
ing opportunities, and limit the improvement of spectrum
utilization.
To address the issues above, in this paper, we propose a

distributed frequency reuse based opportunistic spectrum trad-
ing (D-FROST) scheme, which considers spectrum’s special
feature, spatial reuse, and allows spectrum trading between
PUs and SUs in distributed manners. Briefly, we employ
matching theory to trade the spectrum with the objective to
maximize PUs’ revenues. Different from traditional match-
ing [16], the PU’s preference list evolves, which depends
on both SUs’ evaluated valuation and SUs’ interference rela-
tionship observed by the PU. We mathematically model the

problem, develop D-FROST matching algorithm, prove its
stability, and conduct performance evaluations. We find that
the proposed D-FROST not only saves the cost for additional
infrastructure deployment with extra power consumption as in
centralized spectrum trading designs, but also provides more
accessing opportunities for SUs, increases the revenues of PUs,
and improves spectrum utilization compared with existing
distributed designs. Compared to the conference version [17],
we add subsection “Matching Preliminaries” to explain the
basic concept of matching. We also consider different evalu-
ated value of SUs in this paper, compared to unified evaluated
value in conference version. We also prove our proposed
algorithm is pairwise stable by contradiction, and add analysis
part of computational complexity of our algorithm. Our salient
contributions are listed as follows.

• We consider a spectrum trading market consisting of PU
and SU transmission pairs as shown in Fig. 1. Similar
to [18] and [19], we employ the conflict graph to char-
acterize the SU transmission pairs’ interference relation-
ships, i.e., co-band interference and radio interference.
Based on the constructed conflict graph, we formulate the
centralized spectrum trading optimization problem with
the objective of maximizing PUs’ revenues under both
frequency reuse and wireless transmission constraints.
There is a lack of centralized spectrum trader and the
formulated problem is a mixed integer nonlinear program-
ming (MINLP).

• To pursuit feasible solutions in distributed manners,
we exploit matching with preferences [20] to propose a
novel D-FROST scheme, which jointly considers interfer-
ence mitigation, frequency reuse, and spectrum trading
benefits in matching process. In D-FROST, by oppor-
tunistically accessing to a certain band, the SU, who
targets at maximizing its transmission rate, lists its prefer-
ences over PUs’ bands based on his potential transmission
rates over those bands. Considering frequency reuse,
the PU, who targets at maximizing its revenues, will
accommodate as many SUs as possible, in case that
those SUs have no mutual interferences. A PU lists
its preferences over SUs based on the SUs’ evaluated
valuation and its observations of SUs’ conflicts, and
the preference list evolves during the matching process.
We mathematically present the PUs’ and SUs’ utility
functions, develop the D-FROST, a two-phase matching
algorithm with PUs’ evolving preferences, and prove its
pairwise stability [21].

• By carrying out extensive simulations with different num-
bers of PU and SU transmission pairs, we demonstrate
that the proposed D-FROST has great advantages over
other distributed spectrum trading algorithms without
considering frequency reuse, and show that the feasible
solutions obtained by the proposed algorithm are close to
the optimal one in terms of the PUs’ revenues, the aggre-
gated network throughput of SUs, and the spectrum
utilization.

The rest of paper is organized as follows. In Section II,
we introduce the network model and related CR transmission
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Fig. 1. Network Architecture for D-FROST.

models in FROST. In Section III, we mathematically formulate
the FROST problem in centralized way and show its hardness
to solve. We come up with a D-FROST solution, prove its
stability and present its complexity in Section IV. In Section V
we evaluate the performances, and draw conclusion remarks
in Section VI.

II. NETWORK MODEL

A. Network Configuration

We consider a spectrum trading plaza consisting of N =
{1, 2, · · · , n, · · · , N} SU transmission pairs, and M =
{1, 2, · · · , m, · · · , M} PU transmission pairs operating on
different spectrum bands. For the simplicity of presentation,
we use the words SU transmission pairs/SU pairs/SUs, and
PU transmission pairs/PU pairs/PUs, interchangeably in the
rest of this paper. Assuming each SU transmitter/receiver
has only one radio interface, and each PU pair owns one
spectrum band, i.e., PU k ∈ M owns band k.1 Denote
the unequal sized bandwidths2 of PUs’ bands by W =
{W 1, W 2, · · · , Wm, · · · , WM}. In addition, all available
spectrum bands at one SU are the same as those at another
SU in the network, i.e., every SU has opportunity to access
any PUs band in the overlapped coverage area of PUs. To put

1Since each PU owns only one band, PU setM can also be used to represent
the band set.
2Taking the least-utilized spectrum bands introduced in [22] for example,

we found that the bandwidth between [1240, 1300] MHz (allocated to amateur
radio) is 60 MHz, while bandwidth between [1525, 1710] MHz (allocated to
mobile satellites, GPS systems, and meteorological applications) is 185 MHz.

it in a mathematical way, let Mi ⊆ M represent the set of
available bands at SU pair i ∈ N , then Mi = Mj if j ∈ N
and i �= j.
In such a spectrum trading market, PUs sell available bands

for monetary gains, and the SUs choose available bands of PUs
to purchase for opportunistic accessing to deliver their traffic.
Here, SU i ∈ N is allowed to opportunistically access to a
licensed band k ∈ M and transmit with full power, when the
services of PUk are not active, but SU i has to reduce their
transmission power to make sure that the aggregated inter-
ferences from SUs are below the “interference temperature”
of PUk’s receiver [2], when primary services become active
over band k. Suppose that the evaluated valuation of SUs for
opportunistic spectrum accessing are B = {b1, b2, · · · , bN}.3
From the SU’s perspective, SUi would like to select a band
k to maximize its data transmission rate; from the PU’s
perspective, considering spatial reuse [23]–[25], a PU would
like to accommodate as many SUs as possible to maximize
its revenue, as long as there are no co-channel interferences
among those SUs as shown in Fig. 1.

B. Other Related Models in FROST

1) SU’s Transmission Range/Interference Range: When pri-
mary services are not active over a certain band, SUs can
transmit with full power over that band. Suppose all SUs have
the same full transmission power P . The power propagation
gain [22], [26] is

gi = γ · d−α
i (i ∈ N ), (1)

where α is the path loss factor, γ is an antenna related constant,
and di is the distance between transmitter and receiver of SU
pair i.4 We assume that the data transmission is successful
only if the received power at the SU pair’s receiver exceeds
the receiver sensitivity, i.e., a threshold PTx. Meanwhile,
we assume interference becomes non-negligible only if it
is over a threshold of PIn at the SU pair’s receiver. Thus,
the transmission range for a SU is RTx = (γP/PTx)1/α,
which comes from γ ·(RTx)−α ·P = PTx. Similarly, based on
the interference threshold PIn(PIn < PTx), the interference
range for a SU is RIn = (γP/PIn)1/α. It is obvious that
RIn > RTx since PIn < PTx. Typically, the interference
range is 2 or 3 times of the transmission range [22], [23],
[27], i.e., RIn

RT x
= 2 or 3. These two ranges may vary with

frequency. The conflict relationship between two SU pairs over
the same frequency band can be determined by the specified
interference range. In addition, if the interference range is
properly set, the protocol model can be accurately transformed
into the physical model as illustrated in [25].

2) Link Capacity/ Achievable Data Rate: We employ the
ON/OFF model [28] to represent the active/inactive status of
primary services. Suppose that PUk is “OFF” with probability
βk, and is “ON” with the probability (1−βk) over band k. [28]

3Note that we assume all the SUs bid with their true evaluation values for
spectrum accessing. Bidding strategy/incentive mechanism designs are beyond
the scope of this paper.
4The capacity formulation is similar if we consider fading. The major

procedure of proposed algorithms will not be changed.
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also present the specific βk formulation when PU activity is
modeled as exponentially distributed interarrivals.
When band k is available, SUi accessing to this band can

transmit with full power P , while other SUs within SUi’s
interference range keep silent. We assume that the channel
is a slow-fading channel with channel gain Hi; the distance
between transmission and receiver of SUi is di, and the
variance of the additive white Gaussian noise at the receivers
side is σ2. The signal-to-noise ratio (SNR) between the SUi

transmission pair are

SNRi =
PHi√
diσ2

, (2)

and the capacity of SU i ∈ N over band k ∈ M is

ck,OFF
i = W klog2

(
1 +

SNRi

γ

)
. (3)

When band k is not available, SUs accessing to this band
have to reduce their transmission power to make sure that
the aggregated interference is below the “interference tem-
perature” of PUk [2]. Suppose that the interference tolerance
power sensitivity for only one SU access to PUk is P k

� at PUk’s
receiver. To make sure the aggregated interference power is
lower than interference temperature, we assume sP k

Δ ≤ PIk,
and P k

Δ ≤ PIk/s. The maximum number of accepted SUs
is S, thus we add the constraint: P k

Δ = PIk/S. Therefore,
it can be assure that the aggregated interference at the primary
receiver from SUs is below the sensitivity Let SUi accessing
to band k transmit with power P k,ON

i . Then, we have P k
Δ =

P k,ON
i ·gik = P k,ON

i ·γ ·d−α
ik , where dik is the distance between

SUi and PUk. Thus, when PUk is “ON”, the capacity of SUi

over band k is

ck,ON
i = W k log2

(
1 +

SNRi

sP kγd−α
ik + γσ2

)
(4)

= W k log2

(
1 +

giP
k
�γ−1dα

ik

sP kγd−α
ik + γσ2

)
, (5)

where P k is the transmission power of PUk, k ∈ M,
and P kγd−α

ik is the PUk’s interference to SUi over band k.
Therefore, the expected capacity of SUi over band k can be
written as

ck
i = βkck,OFF

i + (1 − βk)ck,ON
i . (6)

Depending on different modulation schemes, the achievable
data rate is actually determined by the SNR at the receiver and
receiver sensitivity [22], [27]. However, in most of existing
literature [22], [24], the achievable data rate is approximated
by Eq. (6), even though this data rate can never be achieved
in practical. In this paper, we follow the same approximation.
Note that this approximation will not affect the theoretical
analysis or performance comparison in this work.

III. C-FROST: CENTRALIZED FROST OPTIMIZATION
FORMULATION

In this section, we first characterize the interferences among
SUs by using conflict graph, and then we mathematically
formulate the centralized FROST optimization problem with
the objective of maximizing PUs’ revenue under multiple
wireless transmission constraints.

Fig. 2. Interference relationship represented by conflict graph in FROST.

A. Conflict Graph and Maximal Independent Sets

1) Construction of Conflict Graph: We introduce a conflict
graph G(V , E) to characterize the interferences relationship
among SUs in FROST. Following the definitions in [24]
and [29], we interpret the SU network in FROST as a two-
dimensional resource space, with dimensions defined by the
set of SUs, and the set of available bands. In G(V , E), each
vertex corresponds to a SU opportunistically accessing to
certain band, i.e., a SU-band pair (i, k), where i ∈ N and
k ∈ M [29], [30]. Each SUi stands for a SU transmission
pair, including a SU transmitter and a SU receiver from the
same SU. Moreover, the distance between transmission pairs is
much larger than the distance between transmitter and receiver
of SU communication.
Similar to the interference conditions in [22], [24], and [30],

there is interference if either of the following conditions
is true: (i) if two different SUs are using the same band,
the receiver of one SU transmission pair is in the interference
range of the transmitter in the other SU pair; (ii) a SU
pair transmits over two or more bands at the same time.
Here, the first condition represents co-band interference, and
the second condition represents the radio interface conflicts
of SU itself, i.e., the single radio of SU transmitter/receiver
cannot support multiple transmissions over multiple bands
simultaneously.
According to these conditions, we connect two vertices in

V with an undirected edge in G(V , E), if their correspond-
ing SU-band pairs interfere with each other. Given G(V , E),
we describe the impact of vertex i ∈ V on vertex j ∈ V as
follows,

δij =

{
1, if there is an edge between vertex i and j

0, if there is no edge between vertex i and j,
(7)

where two vertices correspond to two SU-band pairs,
respectively.

2) Maximal Independent Sets: Provided that there is a
vertex set I ⊆ V and a SU-band pair i ∈ I satisfying∑

j∈I,i�=j δij < 1, the transmission at SU-band pair i will
be successful even if all the other SU-band pairs in the set
I are transmitting at the same time. If any i ∈ I satisfies
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the condition above, we can reuse the spectrum frequency,
and allow the transmissions over all these SU-band pairs in
I to be active simultaneously. Such a vertex/SU-band pair
set I is called an independent set. If adding any one more
SU-band pair into an independent set I results in a non-
independent one, I is defined as a maximal independent
set (MIS) [24], [29].

B. The Formulation of C-FROST Optimization

Let xk
i denote the accessing status of SU i ∈ N to band

k ∈ M, where xk
i = 1 indicates that SUi is opportunistically

transmitting over band k, otherwise 0. Given G = (V , E)
constructed from FROST, suppose we can list all MISs as
I = {I1, I2, · · · , Iq, · · · , IQ}, where Q is |I |, and Iq ⊆ V
for 1 ≤ q ≤ Q. Based on the definitions, assumptions
and mathematical representations of interference relationship
among SUs above, the revenue maximization optimization
problem in FROST can be formulated as follows.

Maximize
∑

k∈M

∑
i∈N

xk
i bi (8)

s.t.: xk
i ∈ {0, 1}, (i ∈ N , k ∈ M), (9)∑

k∈M
xk

i ≤ 1, (i ∈ N ), (10)

xk
i · xk

j = 0, (i, j ∈ N , k ∈ M, (i, k) ∈ Iu,

(j, k) ∈ Iu′ , Iu, Iu′ ∈ I and u �= u′) (11)

where xk
i is optimization variable, and bi is deterministic

value when SUi is given. Here, binary value xk
i indicates the

accessing status of SUi to band k, Eq. (10) means that SUi can
only access to one band at a time due to the radio interference,
and Eq. (11) presents the co-band interference constraint.5

In the FROST optimization formulation above, we just
take revenue maximization from the PUs’ side as an exam-
ple. The optimization objective can easily be converted into
others. For example, the aggregated SU network throughput
maximization from SUs’ side, i.e.,

∑
k∈M

∑
i∈N xk

i ck
i , or the

social welfare maximization from the overall network
side, i.e.,

∑
k∈M

∑
i∈N xk

i ck
i ri − ∑

k∈M
∑

i∈N xk
i bi +∑

k∈M
∑

i∈N xk
i bi =

∑
k∈M

∑
i∈N xk

i ck
i ri, where ri is the

reward per Mbps for SUi for traffic delivery.
The complexity of solving the optimization above arises

from three parts: (i) how to identify all the MISs, (ii) how
to fix the binary xk

i variables, and (iii) who plays the role
of centralized entity and conducts C-FROST optimization.
As we know [24], [29], to find all the MISs in G(V , E)
itself is NP-complete. Besides, due to the binary values and
the product constraints of xk

i variables, the formulated opti-
mization is a mixed-integer nonlinear programming (MINLP)
problem, which has no classical optimal solution. Last but
the most important, there is no centralized entity who can
capture all the instantaneous spectrum accessing opportunities

5Actually, constraints Eq. (10) and Eq. (11) can be combined and equally
substituted by one constraint, i.e., xk

i · xl
j = 0, where i, j ∈ N , k, l ∈

M, (i, k) ∈ Iu, (j, l) ∈ Iu′ , and u �= u′. Note that this substitution does not
change the type/property of the optimization, and it is still MINLP problem.
We list two constraints instead of one for illustration purposes only.

across different geographical areas, and conduct the C-FROST
optimization as explained in Sec. I. To address those issues,
we present a distributed FROST scheme in the following
section.

IV. D-FROST: DISTRIBUTED FROST VIA MATCHING
WITH EVOLVING PREFERENCES

In this section, we first present some preliminary of match-
ing theory. Then, we describe some important definitions in
D-FROST. After that, we develop a D-FROST scheme via
matching with PUs’ evolving preferences. Finally, we prove
the pairwise stability of the proposed D-FROST and analyze
the computational complexity.

A. Matching Preliminaries

1) Stable Marriage Matching: The marriage matching prob-
lem (Man,Woman,�) is a bipartite one-to-one matching
problem with two-sided preferences, which involves a finite
set of men and a finite set of women.
Each man ranks the women from the most favourite to the

least favourite based on his preferences, i.e., mani :�mani .
Such ranking is called men’s preference list. Similarly, each
woman has her preferences over man. Once the preference
lists are built, men/women take actions according to the lists.
The final result of this SM matching consists of man-woman
pairs.

2) College Admissions Matching: The many-to-one college
admissions matching model (Student, College, q,�) consists
of a finite set of colleges, a finite set of students and a finite
non-negative quota qcollegei for collegei ∈ College. Each
college has its preferences over the studentss, and based on
the college’s preferences over students, each college accept a
group of students below the college’s quota.
Note that the proposed D-FROST matching between PUs

and SUs is different from both matching models above. The
D-FROST matching is different from the one-to-one stable
marriage matching in that each PU can access multiple SUs
who have no mutual interferences. The D-FROST matching
is also different from the many-to-one college admission
matching, since the PU has no quota limitation as long as the
accepted SUs can transmit simultaneously without interfering
one another.

B. Technical Challenges for Matching in Spectrum Trading

To implement matching theory into spectrum trading,
we need to consider a modified many-to-one matching prob-
lem. Since in our assumption, each PU can accept several SUs
while each SU can only propose to one PU at a time. This
modified many-to-one matching is more complicated, since
we jointly considerate dynamic matching with evolving pref-
erences (i.e., the preference lists have to evict the interference
of accepted SUs ) and spatial reuse (modeling by conflict
graph) under multiple wireless communication constraints in
our scheme.
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C. Definitions in D-FROST Matching

1) The PU’s Observations on SUs’ Interferences: An indi-
vidual PU is not able to capture the multi-dimensional conflict
graph, which covers both co-band and radio interferences
of SUs, as shown in Fig 12(a), since a PU cannot have
the complete information about all the SUs’ preferences and
accessing status. To maximize its revenues while avoiding
co-band interferences among the accessed SUs, the PU has
to build up its preferences based on its own observations
on SUs’ interference relation. Given the SUs’ locations as
priori information, PUk can observe the co-band interferences
among SUs, who may potentially access to band k as shown
in Fig 12(b). That is, by dividing G(V , E) into | M | layers,
where Gk(Vk, Ek) is the conflict graph over band k ∈ M,
Gk(Vk, Ek) is the conflict graph observed by PUk.
Similar to the definition of Iu ∈ G and I ⊆ G in last

section, we can define Ik
u ∈ Gk and I k ⊆ Gk, which

represents the MISs observed by PUk, and all the SUs in Ik
u

can transmit simultaneously over band k.
2) The Preferences of SUs and PUs: The objective for the

SUi is to maximize its data transmission rate, i.e.,

Maximize
∑

k∈M
xk

i ck
i

s.t.: xk
i ∈ {0, 1}, (i ∈ N , k ∈ M),∑

k∈M
xk

i ≤ 1, (i ∈ N ), (12)

where ck
i is defined in Sec. II-B. Thus, for SUi, i ∈ N , we can

construct a complete, reflexive and transitive preference rela-
tion �i over all PUs as follows

k �i l ⇔ ck
i �i cl

i, k, l ∈ M. (13)

As for PUk, the goal is to maximize its revenue by accessing
as many SUs with high evaluated valuation as possible to
transmit over band k at the same time. Given Gk(Vk, Ek)
observed by PUk, we have

Maximize
∑
i∈N

xk
i bi

s.t.: xk
i ∈ {0, 1}, (i ∈ N , k ∈ M),

xk
i · xk

j = 0, (i, j ∈ N , k ∈ M, (i, k) ∈ Ik
u ,

(j, k) ∈ Ik
u′ , Ik

u , Ik
u′ ∈ I k and u �= u′). (14)

So, given a group of SUs in Ik
u and another group of SUs in

Ik
v , the preferences of PUk over those SUs can be represented
as

Ik
u �k Ik

v ⇔
∑
i∈Ik

u

bi �
∑

j∈Ik
u′

bj. (15)

3) Individual Rationale and Pairwise Block: Let PL(·)
denote the preference list. According to the preferences of
SUs and PUs, we define

• For SUi, ∀i ∈ N , μ(i) denotes the matching result of
SUi. μ(i) = k, if SUi can access band k owned by PUk,
and μ(i) = 0, if SUi cannot access any band.

• For PUk, ∀k ∈ M, μ(k) denotes the matching result of
PUk, and μ(k) = Ik

u , Ik
u ⊆ I k, if PUk can accommodate

every SUi over band k, where i ∈ Ik
u ; μ(k) = Φ, if all

SUs are denied by PUk over band k.
• For PUk and SUi, μ(i) = k, if and only if i ∈ μ(k).
Based on those definitions in D-FROST, we further define

individual rationale [21] as:
Definition 1: Given an user a ∈ M∪N (i.e., a can either be

PU or SU) and a set of partners S of user a, let Ω(S, PL(a))
denotes6 user a’s most favorite subset of S according to a’s
preference lists PL(a).7 A D-FROST matching is defined as
individually rational if and only if μ(a) = Ω(μ(a), PL(a)),
∀a ∈ M∪N .
For instance, PL(PU1)={{SU1,SU3},{SU2},{SU2,SU4}},

and we have Ω({SU2,SU4},PL(PU1)) = {SU2}, which
is not equal to {SU2,SU4}. After the D-FROST match-
ing, if μ(PU1)={SU2,SU4}, it is not individual ratio-
nal since μ(PU1) �= Ω(μ(PU1), PL(PU1)). However,
if μ(PU1)={SU1,SU3}, the matching is individual rational
since Ω({SU1,SU3},PL(PU1))={SU1,SU3}.
Furthermore, we define pairwise block as
Definition 2: Pairwise block of μ means that there is a SU-

PU pair (i, k),

• i /∈ μ(k), i ∈ Ω(μ(k) ∪ i,PL(k));
• k �= μ(i), k = Ω(μ(i) ∪ k,PL(i)).

If matching μ is individually rational and there is no pairwise
block in μ, then μ is pairwise stable.
For illustrative purposes, we give a simple example for

the pairwise block. For example, after the matching process,
we have μ(PU1) = {SU1,SU3} and SU5 is matched with
PU2. However, in PL(SU5), PU1 �SU5PU2.Then, we have
PU1 �= μ(SU5), and PU1 = Ω(μ(SU5) ∪ PU1, PL(SU5)).
Meanwhile, SU5 /∈ μ(PU1), and SU5 ∈ Ω(μ(PU1) ∪
SU5,PL(PU1))={SU1,SU3,SU5}, then (SU5,PU1) is a pairwise
block.

D. D-FROST Matching With Evolving Preferences

To avoid block and reach pairwise stable matching for spec-
trum trading, we illustrate the D-FROST matching procedure
with PUs’ evolving preferences in this subsection. Generally
speaking, although a PU cannot have the complete information
about all the SUs’ preferences, SUs’ evaluated valuation, and
accessing status, the PU can build up its own SUs’ conflict
graph based on which SUs submitted proposals to it, evolve
its preferences according to its observations, and make the
decision of accessing the SUs or rejecting them rounds by
rounds with the objective of maximizing its own revenues.
The proposed D-FROST matching process can be carried out
in two phases and five steps, which is shown in details as
follows.

1) Phase I: Tentative Matching With PUs’ Currently
Observed MISs: There are four steps in Phase I : (i) prepar-
ing preference lists, (ii) SUs’ proposal proposing, (iii) PUs’

6For the classical matching theory in economics, many researchers employ
Ch(·) to represent such a subset [21]. In this paper, we use Ω(·) instead to
avoid causing any confusion, since Ch is always used to denote the channel
in wireless communications and networking research community.
7For example, Ω(Ik

u , PL(k)) denotes PUk’s most favorite subset of Ik
u

according to preference lists PL(k), where Ik
u ⊆ I k .
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Fig. 3. Phase I: Tentative Matching with PUs’ Currently Observed MISs.

tentative matching with (i.e., accessing/rejecting) SUs, and
(iv) PUs’ preferences evolving.
First of all, all PUs and SUs will initiate the procedure

by preparing their preference lists. The SUi constructs its
preference list PL(i) according to Eq. (13). Since no SU
submits evaluated valuation to PUk yet, PUi constructs the
conflict graph Gk based on the priori location information of
the SUs within its coverage, and lists its preferences PL(k)
according to Eq. (15).
Then, having PL(i), SUi proposes to the top PU of PL(i)

in this round. Note that all the SUs propose to the PUs in
the second step simultaneously, and a SU can only propose to
one PU at a time due to the radio interference.
After receiving the evaluated valuation from SUs, PUk

updates its Gk, which includes the SUs proposals for PUk

for the 1st round, and includes the already accepted SUs
and SUs newly proposal for PUk from the 2nd round until
the |M|-th round. Based on the updated Gk, PUk will
tentatively access/match with the SUs in Ik

u , where Ik
u =

argmax
Ik

u∈Gk

(∑
i∈Ik

u
bi

)
, and reject the SUs not in Ik

u . If more

than one MIS can reach the same maximal revenue of PUk in
the current round, PUk will compare these MISs, and chooses
the MIS which reaches the promising highest revenue in the
future rounds.
After that, based on the accepted Ik

u , PUk evolves its
preference list PL(k), which puts MISs/SUs not interfering Ik

u

with higher priorities, and MISs/SUs interfering Ik
u with lower

ones. Then, the process goes back to Step 2, where SUs start
to propose to the second highest PUs in their preference lists.
The iterations continues until the tentative matching ends in

the |M|-th round.
Example of Phase I: Figure. 3 is an example for D-FROST

with current MIS in Phase I. The conflict graph of each PU
is based on Fig. 2(b). The SUs’ preference lists are based on
their utility functions. Each SU evaluated value in different
prices to access band of PUs. Figure. 3 shows the process of
matching.
In the first round, SU2 proposes to PUA; SU1, SU3 and

SU4 propose to PUB; SU5, SU6 and SU7 propose to PUC as
shown in Fig. 3(a). For PUA, there is only one SU applies

to access its band, so PUC accepts SU2. The SUs who
propose to PUB can divide into two maximum independent
sets {SU1} and {SU3,SU4}. According to the algorithm, PUB

chooses proposed combination sets of SUs who has the highest
revenue, which is {SU1} for $8. For PUC , SU5, SU6 and SU7

interfere with each other, so PUC chooses the SU who has a
higher evaluated value, which is SU6 for $12.
In the second round, all PUs evict SUs which have impact

on the SUs that are already accepted in the first round. Then
PUs evolve their preference lists to new ones. The SUs who
are rejected in the first round propose to their second favorite
PUs. In our example, SU3, SU4 and SU5 propose to PUA.
PUA makes its decision by its new preference list. Then PUA

accepts SU4 since SU3 and SU5 interference with SU2, which
is already accepted by PUA in the first ground. PUA earns the
total revenue of $8 in the second round. SU7 proposes to PUB

and PUB accept it since SU7 does not conflict with SU1.
Follow the similar procedure, SU3 proposes to PUC and is

accepted. SU5 proposes to PUB and is rejected. At last, total
revenue from allocated SUs is $8+$9+$15=$32. Each PU
earns revenue from total the evaluated value of the accepted
SUs.

2) Phase II: Block-Proof Matching With SUs’ Swapping:
In Phase II, SUi will propose again to the PUk, which SUi

prefers to its current matching μ(i), i.e., k �i μ(i). Then,
PUk will check if it can generate more revenue by accessing
SUi, compared with PUk’s current revenue. If yes, SUi will
be swapped to PUk, and PUk will update MIS including SUi,
evict SUs who interfere with SUi in the updated MIS, and
evolve PUk’s preferences. The swapped-out/evicted SUs will
repeat the same proposal procedure until no more swapping
is needed. Since all PUs prefer to the MIS which has more
evaluated value aggregation, there will not have a loop in the
phase II. To be specific, if SUi is evicted by PU, it means
there is another SUj which proposes more than SUi, and PU
can have higher monetary gain by accepting SUj .
It should be noticed that the swapping is only proposed

by SUs based on their individual rationale. PUs just need to
make decision of accepting/rejecting the SUs’ swaps based
on PUs’ preferences, and there is no requirement for PUs to
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Algorithm 1 D-FROST With Current MIS
1: Phase I:Tentative Matching with PUs’ Currently

Observed MISs
2: 1.Initialization
3: ∀k ∈ M, μ(k) = , the preference list of k, PL(k)=I .

∀i ∈ N , μ(i) = i, the preference list of i, PL(i)=M
4: 2. SUs propose to PUs
5: for all i ∈ N do
6: Propose to PU k∗ ∈ PL(i),∀k′ ∈ PL(i), k∗ �i k′.

PL(i)=PL(i)\{k∗}
7: end for
8: 3.PUs make decisions;
9: for all k ∈ M do
10: R(k) is the current Proposers for k. Select a subset of

non-interfering SU R ⊆ R(k), ∀i,i′ ∈ R, δk
i,i′ = 0,∑

i∈R bk
i xk

i is maximized
11: if ∃R∗ and R′,

∑
i∗∈R∗ bk

i∗x
k
i∗ and

∑
i′∈R′ bk

i′x
k
i′ are

both maximized then
12: ∀i∗ ∈ R∗ ∪ μ(k), i∗ ∈ Ik

u . ∀i′ ∈ R′ ∪ μ(k),i′ ∈ Ik
v

13: if ∀j∗ ∈ Ik
u , ∀j′ ∈ Ik

v ,
∑

bk
j∗x

k
j∗ >

∑
bk
j′x

k
j′ then

14: R = R∗

15: else
16: R = R′

17: end if
18: end if
19: PL(k)=PL(k)\{

i∗|i∗ ∈ PL(k), ∃i′ ∈ R, ek
i∗,i′ = 1

}
20: μ(k) = μ(k) ∪ R
21: μ(i) = k
22: end for
23: if ∃i ∈ N , μ(i) = i, and PL(i) �= then
24: Go to step 2
25: else
26: Go to step 4
27: end if
28: Phase II:Block-Proof Matching with SUs’ Swapping.
29: if for i, ∃k � μ(i), according to PL(i), i ∈ N then
30: i propose to k
31: if k /∈ μ(i), k ∈ Ω(μ(i) ∪ k,PL(i)), and i /∈ μ(k),

i ∈ Ω(μ(k) ∪ i,PL(k)) then
32: μ(k)∗ = μ(k),N ∗ = μ(k) ∪ i. μ(k) = Ω(μ(k) ∪

k,PL(i)),N ∗ = N ∗\μ(k)
33: else
34: Repeat Phase II
35: end if
36: end if
37: 4.End of algorithm;evaluated valuation

share information, or even communicate with one another.
That helps to keep the distributed feature of the proposed
D-FROST.

Example of Phase II: As shown in Fig. 4, after matching
process, SU5 is not allocated by any PU. Then SU5 proposes
again based on its preference list. It can be observed that PUC

will reject SU5 since its revenue $10 is less than the current
revenue $15. Then SU5 proposes to PUA, PUA can get revenue
$12 from SU5, which is more than $8 from its current accepted

Algorithm 2 D-FROST With Expected MIS
1: 1.Initialization
2: Same to Algorithm 1.
3: 2. SUs propose to PUs
4: Same to Algorithm 1.
5: 3.PUs make decisions;
6: for all k ∈ M do
7: Rk is the current Proposers for k.
8: if ∃ R, R ⊆ Rk, ∀i,i′ ∈ R, δk

i,i′ = 0, i ∈ Ik
u , &

∀j ∈ Ik
u ,

∑
bk
j xk

j is maximized. then
9: PL(k)=PL(k)\{

i∗|i∗ ∈ PL(k), ∃i′ ∈ R, ek
i∗,i′ = 1

}
10: μ(k) = μ(k) ∪ R
11: μ(i) = k
12: end if
13: end for
14: if ∃i ∈ N , μ(i) = i, and PL(i) �= then
15: Go to step 2
16: else
17: Go to step 4
18: end if
19: 4.End of algorithm;

set {SU2,SU4}. Then PUA accepts SU5 and evicts SU2, since
SU2 has interference with SU5. For the similar rules, SU2

applies to PUB and is matched because PUB can have higher
monetary gain when it accept SU2, and SU2 does not interfere
with SU1 and SU7. At the end, the whole spectrum get revenue
of $42 after the whole matching process.
This algorithm is summarized in Algorithm 1. In this

D-FROST with the current proposed MIS algorithm, we not
only consider PUs’ conflict graph but also consider the max-
imal revenue in SUs who propose to PUs. On the other
hand, we try to propose another algorithm which value the
revenue PUs in the future more than current time, which is
called D-FROST with expected MIS algorithm. The detail is
discussed in Sec .IV-D.5.

3) Pairwise Stability of D-FROST: The matching result of
the proposed Algorithm 1 is pairwise stable.

Proof: It is proved by contradiction. Suppose the final
matching result is not pairwise stable, i.e, ∃k′, ∃i, k′ /∈ μ(i),
k′ ∈ Ω(μ(i) ∪ k′),PL(i)), and i /∈ μ(k′), i ∈ Ω(μ(k′) ∪
i,PL(k′)). In other word, μ(k′) �= Ω(μ(k′) ∪ i, PL(k′)) and
μ(i) �= Ω(μ(i) ∪ k′, PL(i)). It means that SUi prefers to join
another band of PUk′ rather than its current matching results
PUk. Meanwhile, PUk′ would like to accept it since it can
help PUk′ earn more revenue from SUi. If the algorithm has
pairwise block, it will transfer the element of block in Phase II.
Then, after Phase II, i ∈ μ(k′), μ(k′) = Ω(μ(k′),PL(k′)), and
k′ = μ(i),μ(i) = Ω(μ(i),PL(i)). Hence, this matching result
of the proposed algorithm is pairwise stable.

4) Computational Complexity of D-FROST: The complexity
of the proposed D-FROST algorithm arises from two parts:
(i) the complexity for the PU to list its preferences by
finding enough MISs, and (ii) the complexity for the matching
between PUs and SUs. To find all MISs is NP-complete. Thus,
we use the greedy algorithm in [24] to find out a large number
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Fig. 4. Phase II: Block-Proof Matching with SUs’ Swapping.

of MISs (e.g., the number is Z = 10000) for approxima-
tion, whose complexity is O(M4N8). For the matching part,
the complexity is dominated by the total number of PUs and
SUs, which is O(MN ). Therefore, the overall complexity of
the propose D-FROST algorithm is O(M5N9).

5) PUs in D-FROST With Expected MIS: PUs in D-FROST
with expected MIS make decisions of accessing/rejecting SUs,
according to the promising/expected maximum independent
set, which potentially yields the largest revenues, instead of
currently observed MISs. For example, there are SU1, SU2,
and SU3 with unit evaluated valuation proposed to PUA during
the 1st round, and SU1 and SU2 have no mutual interferences,
but both of them interfere with SU3. However, according to
the initial G1, SU3 belongs to the maximum independent set,8

say {SU3, SU4, SU5}, and this set can bring PUA the largest
revenue, if SU3, SU4 and SU5 all propose to PUA and get
accessed to PUA’s band. In this case, SU1 and SU2 will
be accessed by PUA during the 1st round in our proposed
D-FROST with current MIS. However, in D-FROST with
expected MIS, SU3 will be accessed by PUA during the 1st
round, since PUA expects to access {SU3, SU4, SU5} to
achieve the largest revenue. With this objective, PUA waits
for SU4 and SU5 to join, and denies other SUs’ proposals in
the following rounds until the end of matching.

V. PERFORMANCE EVALUATION

A. Simulation Setup

We consider a spectrum trading market consisting of PUs
and |N | = 20 SUs, where 20 nodes are randomly deployed
in a 1000 × 1000 m2 area. Considering the AWGN channel,
we assume the noise power σ2 is 10−10W at all transmitters
and receivers. Moreover, suppose the path loss factor α = 4,
the antenna parameter γ = 3.90625, the receiver sensitivity
PT = 100σ2 = 10−8 W and the interference threshold
PT = 6.25 × 10−10 W. According to the illustration in
Sec. II-B, we can calculate the transmission range RT and the
interference range RI , which are equal to 250 m and 500 m,

8Maximum independent set is the largest MIS.

respectively. For illustrative purposes, we assume all the bands
have different bandwidths, which are randomly selected from
10 MHz to 15MHz. We also assume transmission power of
PU, SU and SU when PU coming back are 20 × 10−8 W,
15 × 10−8 W and 7 × 10−8 W, respectively. The distance
between transmitter and receiver of SU is 20m. And the
distances between PU and SU are randomly from 1m to
60m. The data transmission rates of SUs can be calculate
by Eq. (6), where the probability values of PUs’ coming
back, i.e., βk values, are randomly selected from 0 to 1. For
simplicity’s sake, every SU evaluated value is randomly picked
from [$1,$10], and we set Z = 10000 as a large enough
number for the MISs. The numerical simulations are conducted
with a random topology, where 20 SUs transmission pairs are
randomly deployed in a 1000×1000 m2area.

B. Results and Analysis

We compare the proposed D-FROST with current MIS
algorithm with another three algorithms: C-FROST, D-FROST
with expected MIS and Gale-Shapley (GS) algorithms [31].
Here, by employing Z MISs found in multi-dimensional G,
C-FROST is the solution to the relaxed centralized optimiza-
tion in Eq. (8). As a near-optimal solution to the centralized
formulated spectrum trading optimization, C-FROST can be
obtained by commercial solvers such as CPLEX [32], and
serve as a benchmark for the performance comparison.
In Fig. 5 and Fig. 8, we show the total number of accessed

SUs under the four algorithms above with M = 2 and 5,
respectively. Actually, the number of accessed SUs also repre-
sents the dynamic spectrum accessing opportunities created,
which reflects the spectrum utilization. It is not surprising
that GS algorithm has the worst performance, since GS has
no consideration about frequency reuse and only allows each
PU to trade the spectrum with one SU. Taking spatial reuse
into account, the number of accessed SUs for both D-FROST
with current MIS and D-FROST with expected MIS algorithms
increases, when there are more SUs participate in the network.
The proposed D-FROST with current MIS is superior to
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Fig. 5. The number of accessed SUs/Spectrum utilization, M = 2.

Fig. 6. Total revenues of PUs, M = 2.

D-FROST with expected MIS in terms of spectrum utilization.
That’s because in the network which employs the D-FROST
with expected MIS algorithm, allocated SUs are waiting for
other non-interference SUs who may never propose to the
same PUs.
Then, we compare total revenue of PUs under those algo-

rithms in Fig. 6 and Fig. 9. Again, GS has worst performance
in terms of PUs’ revenues, since it ignores the frequency reuse.
Note that the revenue increase of C-FROST generally stops
when the number of SUs is beyond 16 as shown in Fig. 6. That
is because there is only 2 PUs in the spectrum trading market,
and there is still a cap for spectrum trading opportunities even
though frequency reuse is considered. Moreover, the proposed
D-FROST with current MIS is still much better than D-
FROST with expected MIS. It is shown that, as number of
SU increases, PUs’ revenue of the D-FROST with current
MIS algorithm increases more rapidly than D-FROST with
expected MIS, and much closer to the sub-optimal C-FROST
solution. The reason behind that is because D-FROST with
current MIS adopts the MIS with highest revenue in current
round, and evolves preference list during matching process.
Despite the fact that D-FROST with expected MIS may have

Fig. 7. Aggregated SU network throughput, M = 2.

Fig. 8. The number of accessed SUs/Spectrum utilization, M = 5.

potential to obtain more revenue since the PU in this scheme
targets at the maximum independent set with the biggest
revenue, it cannot guarantee all SUs in that specific set will
propose to the designated PU. Those SUs may be accepted
by other PUs in previous rounds, according to their own
preference lists.
Fig.7 and Fig.10 give some insights on the aggregated SU

network throughput. The comparison is conducted under two
modes, “ON” and “OFF”, respectively. Here, “ON” mode
means SUs still work but decrease their power below “interfer-
ence temperature” when PUs come back, while “OFF” mode
means SUs absolutely shut down when PUs return. Obviously,
the performance of “ON” mode is better than that of “OFF”
mode for all algorithms. Here, the performance of GS under
“ON” mode is not a constant because it depends on the SU-PU
matchings, and the matched SUs’ transmission powers (thus
their data rates) are affected by their distance from PUs’
transmitters. Similar to the analysis for the spectrum utilization
and PUs’ revenues, the proposed D-FROST with current MIS
outperforms D-FROST with expected MIS under both “ON”
and “OFF” modes for the aggregated SU network throughput.
The last but not the least, we employ Fig. 11 and Fig. 12 to
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Fig. 9. Total revenues of PUs, M = 5.

Fig. 10. Aggregated SU network throughput, M = 5.

Fig. 11. Approximation ratio in terms of accepted SUs numbers, |M | = 2.

present the approximation ratio of C-FROST to the D-FROST
algorithm under different number of SUs by simulations. All
these statistical results indicate that the solutions found by
the proposed D-FROST algorithm is very close to the optimal
solution.

Fig. 12. Approximation ratio in terms of accepted SUs numbers, |M | = 5.

Fig. 13. Example of PU with several.

VI. CONCLUSION AND DISCUSSIONS

In this paper, we have proposed a novel distrib-
uted frequency reuse based opportunistic spectrum trading
scheme (D-FROST) with consideration for reusing spectrum
and trading the spectrum in distributed manners. In D-FROST,
we have employed conflict graph to characterize the SUs
co-channel interference and radio interference. Based on the
conflict graph, we have formulated centralized FROST opti-
mization. Due to the NP-completeness to solve this problem,
we have developed the D-FROST algorithm based on matching
with evolving preferences, proved its pairwise stability and
analyzed its complexity. Through simulations, we have shown
that the proposed D-FROST algorithm is better than other
distributed spectrum trading algorithms, which is able to yield
sub-optimal solutions and effectively improve PUs’ revenues,
the aggregated SU network throughput, and spectrum utiliza-
tion. Moreover, we would like to make the following discus-
sions on the combination between our work and VCG-like
incentive mechanism incorporated with the bidding process,
strategy-proof auction.
On the perspective of each PU, it is possible to integrate

VCG-like incentive mechanism to our matching scheme.
In existing literature, there are some spectrum auction
designs, which have attempted to achieve auction truthfulness
in spectrum auction [11], [33]. Considering spatial reuse,
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Zhou et al. in [7] proposed a spectrum auction framework
and VERITAS algorithm to support dynamic single-sided
buyer network. As shown in Fig. 13, in each matching round
of our work, each PU can be considered as a singe-sided
buyer employing VCG auction. It does not impact the
pairwise-stable characteristic since the preference lists of
SUs and PUs and the matching procedure remain the same.
The SUs propose to PUs according to their preference list/
highest capacity, and PUs will choose the MIS which has
the highest revenue. However, the total received revenue may
decrease if we integrate strategy-proof auction since different
pricing mechanisms (The similar analysis also applies to
VCG and VERITAS auction). In summary, it is possible
to integrate VCG-like mechanism to our matching based
spectrum trading, but it reduces the received revenue of PUs.
There are two major differences between the double auction

and the matching based spectrum trading with VCG auction.
First, double auction based spectrum trading is a centralized
scheme (It needs a centralized auctioneer and has scalability
issue), and it needs an entity to play the role of auctioneer
in the network (However, it is not clear which entity in the
network should play this role); by contrast, the matching based
spectrum trading with VCG-like mechanism is a distributed
approach. Specifically, in the double auction, the SUs submit
their bid and PUs simultaneously submit their asking price
to an auctioneer, and then the auctioneer chooses a price p
that clears the market: all the PUs who asked less than p sell
and all buyers who bid more than p buy at the price p. After
double auctions, the bidding price for all SUs is p. However,
in the double auction mechanism, the involved “auctioneer”
is a centralized entity which is aware of all the bid price and
asking price information from SUs and PUs. It indicates that
the double auction is a centralized spectrum trading design.
The major concern with centralized design is the failure of
the central traders. Besides, the centralized spectrum trading
design may also have salability issues, when the network
size becomes large. Therefore, the main contribution in our
paper is considers spectrums special feature, spatial reuse, and
allows spectrum trading between PUs and SUs in distributed
manners. Second, the clearing price in double auction makes
PUs charge all the SUs at the same price. That will downgrade
the spectrum trading into our previous design [19], where the
SUs have same bidding values. In this paper, we can allow
different SUs to have different bidding values, and SUs will be
charged differently, even if we integrate VCG-like mechanism
into the matching based spectrum trading.
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