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Abstract: We consider Hitchin’s hyperkéhler metric g on the moduli space M of degree
zero SL(2)-Higgs bundles over a compact Riemann surface. It has been conjectured that,
when one goes to infinity along a generic ray in M, g converges to an explicit “semiflat”
metric g**, with an exponential rate of convergence. We show that this is indeed the case
for the restriction of g to the tangent bundle of the Hitchin section B C M.

1. Introduction

1.1. Summary. Fix a compact Riemann surface C. In [9] Hitchin studied the moduli
space M of degree zero SL(2)-Higgs bundles on C, and showed in particular that M
admits a canonically defined hyperkdhler metric g.

In [6,8] a new conjectural construction of g was given. The full conjecture is com-
plicated to state (see [13] for a review), but one of its consequences is a concrete picture
of the generic asymptotics of g, as follows.

The non-compact space M is fibered over the space 3 of holomorphic quadratic
differentials on C. We consider a path to infinity in M, lying over a generic ray
{tdo}ier, C B, where ¢ has only simple zeroes. Along such a path, the prediction

is that
1
g=¢"+0 (e‘“"”) : (1.1)

where g% is the semiflar metric, given by a simple explicit formula (see Sect. 3.1), and
o is any constant with @« < M (¢o), where M (¢y) is the length of the shortest saddle
connection in the metric |¢g]| (see Sect. 3.2).

Very recently, Mazzeo—Swoboda—Weiss—Witt [11] have shown that, along a generic
ray, the difference g — g% does decay at least polynomially in t. This work motivated us
to wonder whether one could show directly that the decay is actually exponential. In this
paper we show that this is indeed the case for the restriction of g to the tangent bundle
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of a certain embedded copy of B inside M, the Hitchin section: (1.1) holds there for any
o < %M (¢0). (Unfortunately, we miss the conjectured sharp constant by a factor of 2).
The precise statement is given in Theorem 1 below.

1.2. The strategy. Points of B correspond to holomorphic quadratic differentials ¢ on C.
Since these form a linear space, tangent vectors to B3 likewise correspond to holomorphic
quadratic differentials ¢. Given (¢, ¢) € TB, both g4(¢, ¢) and g;f (¢, @) arise as

integrals over C (which can be found in (4.23) and (4.24) below). The integrand in g3
is completely explicit, while the integrand in g4 depends on the solutions of two elliptic
scalar PDEs on the surface C. To prove (1.1) for some given o, we need to show that

1
these two integrals agree up to O (e ™4/ ?),

To do this, we let r(z) denote the |¢g|-distance from z to the closest zero of ¢g, and
divide the surface C into two regions, as illustrated in Fig. 1:

e The “far” region Cgyy = {z : ro(z) > «}. In this region we can show that the
1

integrands agree to order O(e—*"?): indeed, we show that the difference § of the
1

integrands decays as § = O(e 7"?"0@) for any y < 4. This part of our analysis
contains no big surprises, and is closely parallel to the analysis carried out by Mazzeo—
Swoboda—Weiss—Witt in the more general setup of arbitrary SL(2)-Higgs bundles
in [11]. (However, because we restrict to the Hitchin section B C M, our job is
somewhat simpler: we only have to deal with scalar PDEs, and use more-or-less
standard techniques. The specific estimates we use in this part are built on the work
of Minsky in [12].)

e The “near” region Cpear = {7 : 79(2) < «}. This region looks more difficult because
our estimates do not show that § is close to zero here. The hapPy surprise—which
was really the reason for writing this paper—is that when o < 5 M (¢o), § turns out

to be close to an exact form that we can control, as follows. For any o < %M (¢0),
Chear 18 a disjoint union of disks D; centered on the zeros of ¢g. On each D; we show

1
that § = dB; + O(e~***?), for a 1-form f8; which has the same decay property as §,
1
namely 8; = O(e™ 7! 210y, Thus g; is exponentially small on the boundary of D;,
1

1 1
and Stokes’s theorem gives fD,- 8= faD,- Bi+ 0@ 47y = 0(e 7).

1
Combining these contributions we obtain the desired estimate [. § = O(e~*'?).

Fig. 1. A genus 2 surface C equipped with a holomorphic quadratic differential ¢ which has 4 simple zeroes
(orange crosses). The shortest saddle connection is shown in green; its length is M (¢p). We have chosen o
slightly smaller than %M (¢0)- Cnear is the union of 4 disks D; centered on the zeroes, all with the same radius
«. The complementary region Cg,, is shaded (color figure online)
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1.3. Outline. We carry out the strategy described above as follows. In Sects. 2 and 3 we
set up the background and notation, and state our main result precisely, as Theorem 1.
In Sect. 4 we derive integral expressions for the restrictions of g and g*' to 7. In Sects.
5-7 we develop the main PDE estimates we use to derive exponential decay. In Sects. 8
and 9 we construct the 1-forms 8; which we use in the “near” region. In Sect. 10 we put
all this together to complete the proof of the main theorem.

1.4. Origin in experiment. This work was initially inspired by computer experiments
(using programs developed by the authors, and building on work of the first author
and Wolf in [4]) that seemed to show exponential decay of g — g% in certain cases,
despite the lack of an exponentially decaying bound on the integrand near the zeros
of ¢. While these experiments were conducted in a slightly different setting—namely,
meromorphic Higgs bundles on CP' with a single pole—all of the essential features and
challenges are present in both cases. The experimental results therefore suggested that
some “cancellation” would occur in Cpeqr. Further investigation of the integrand in this
region led to the results of Sects. 8 and 9 below, and thus to the main theorem.

This experimental counterpart of this work is ongoing and will be the subject of a
forthcoming paper and software release.

1.5. Outlook. Tt would be very desirable to understand how to extend Theorem 1 to
Higgs bundles of higher rank, say SL(/NV)-Higgs bundles. There is a conjecture very
similar to (1.1) in that case, but instead of the shortest saddle connection, it involves the
lightest finite web as defined in [7]. While the analysis of Cg,r should extend to this case
using methods similar to those of [11], it is not clear how our approach to Cpear Should
be generalized.

Similarly, one would like to extend Theorem 1 to work on the full M instead of only
B C M. The analysis of Cg, has already been done on the full M in [11], so again the
issue is whether the analysis of Cpear can be extended.

In another direction, it would be desirable to improve Theorem 1 to show that the
exponential estimate holds forall ¢ < M (¢) instead of justa < %M (¢0). However, this
might require a new method; in our computation we meet several different corrections

1
which are naively of the same order e 2M#0)12 . one would need to find some mechanism

by which these different corrections can cancel one another.

2. Background

2.1. Higgs bundles. Recall that a stable SL(2)-Higgs bundle over C of degree zero is a
pair (£, ¢) where

e & is a rank 2 holomorphic vector bundle over C, equipped with a trivialization of
det &,

e ¢ is a traceless holomorphic section of End £ ® K¢,

e all p-invariant subbundles of £ have negative degree.

There is a (coarse) moduli space M parameterizing stable SL(2)-Higgs bundles over C
of degree zero [9,10].
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2.2. Harmonic metrics. For each stable SL(2)-Higgs bundle (£, ¢) of degree zero, it
is shown in [9] that there is a distinguished unit-determinant Hermitian metric 4 on &,
the harmonic metric. The metric h is determined by solving an elliptic PDE: letting
D denote the Chern connection in &, with curvature Fp € Q2(su(&, h)), and letting
O =¢—¢ e Ql(su(, h)) with ¢ the h-adjoint of ¢, we require

Fp— %[@, ®]=0. 2.1)

In this equation both Fp and ® depend on /.

2.3. The hyperkdhler metric. Now we recall Hitchin’s hyperkihler metric g on the
moduli space M. A beautiful description of this metric was given by Hitchin in [9] in
terms of an infinite-dimensional hyperkihler quotient. In this paper we will not use the
hyperkéhler structure; all we need is a practical recipe for computing the metric. In this
section we review that recipe.

Let v be tangent to an arc in M, and lift this arc to a family of Higgs bundles
(&, ¢r), equipped with harmonic metrics ;. Identify all the (&, h;) with a fixed C*
SU(2)-bundle E. Then we have a family of unitary connections D; on E and 1-forms
®, € Q' (su(E)) which for all ¢ satisfy (2.1). For brevity, let D := D and ® := &
denote these objects at # = 0. Differentiating at t = 0 we obtain a pair of 1-forms

(A, @) = (3Dl , 3 Pl,—g) € Q' (su(E))>. (22)

Given a € Q! (su(E)) we define a nonnegative density |«|? on C by
lodx + oeydy|2 =— Tr(a)% + ag) dxdy. (2.3)
Here z = x +1iy is a local conformal coordinate on C. In coordinate-independent terms,
the density |o¢|2 corresponds (using the orientation of C) to the 2-form — Tr(« A *«),

where » denotes the Hodge star operator on 1-forms. Now we equip Q' (su(E))? with
the L? metric

1 DI = [ (1R +16F). 4
Letp: QO(su(E)) — Q(su(E))? be the linearized gauge map, defined by
p(X) = (—dp X, [X, ®]). (2.5)
We consider the orthogonal decomposition of (A, ®) relative to the image of p,
(A, &) = (A, &) + (A, d)* (2.6)
with (A, ®)! € p(QO(su(E)) and (A, ®)+ € p(Q(su(E))*. Hitchin’s hyperkihler

metric g is
gv,v) = [I(A, &) % (2.7)
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2.4. The Hitchin section. Fix a spin structure on the compact Riemann surface C. The
spin structure determines a holomorphic line bundle £ equipped with an isomorphism
L£? ~ K¢, and thus a rank 2 holomorphic vector bundle

E=LeoL " (2.8)

This bundle has det € = £ ® £~ which is canonically trivial. Let B be the space of
holomorphic quadratic differentials on C,

B=HC, K?). (2.9)

For each ¢ € B there is a corresponding Higgs field,
_(0-9¢ 0
Y= € H'(C,End€ ® K¢). (2.10)

The Higgs bundles (£, ¢) are all stable, and thus determine a map ¢ : B — M. The
image ((B) C M is an embedded submanifold, the Hitchin section.! Moreover, ¢ is a
holomorphic map, with respect to the complex structure on M induced from its real-
ization as moduli space of Higgs bundles (which is the complex structure denoted / in
[9]). Thus ¢(B) is a complex submanifold of M. From now on, by abuse of notation, we
identify B with ((B).

Our interest in this paper is in the restriction of the hyperkihler metric g from the
full T M to TB. This restriction is a Kéhler metric on B, which we will also denote g.

3. Metric Estimate

3.1. The semiflat metric. Let B' C B be the locus of quadratic differentials with only
simple zeros, which is an open and dense set. On B we define an explicit Kéhler metric
g*! as follows. A tangent vector to B can be represented by a quadratic differential ¢.
We define )
<, ) =2/ oF G.1)
c 1ol
Note that the integrand on the right hand side is a smooth density on C \ ¢~'(0). The
condition that ¢ € B’ implies that this integral is convergent.
We remark that g*' is a “(rigid) special Kiihler” metric on B’ in the sense of [5]. It
does not extend to a Riemannian metric on the full B.

3.2. Threshold and radius. Any nonzero quadratic differential ¢ € B induces a flat
metric |¢| on C, which is smooth except for conical singularities at the zeros of ¢. From
now on we always use this metric to define geodesics and lengths on C, unless a different
metric is explicitly referenced. A saddle connection of ¢ is a geodesic segment on C
which begins and ends on zeros of ¢ (not necessarily two distinct zeros), and which has
no zeros of ¢ in its interior.

1 More precisely there are 22>8n8(C) Hitchin sections, corresponding to the equivalence classes of spin
structures on C. All of our discussion applies to any of them.
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We define the threshold M : B — R>( by

the minimum length of a saddle connection of for¢ € B,
M($) = £ ¢ tord , (62
0 forgp € B\ 5.
Then M is continuous and has the homogeneity property
M(¢) =12M($). 1 €R.. (33)

The threshold measures the distance “between zeros” of ¢ (including the possibility
of a segment between a zero and itself). In what follows it will also be important to
consider the distance from an arbitrary point to the zeros of ¢. We define the radius
function r : C — R of ¢ by

r(z) = d(z, 1 (0)). (3.4)

The main technical estimates that are used in the proof of Theorem 1 are all phrased in
terms of bounds on various functions on C in terms of the radius.

3.3. The estimate. Now we can state the main result of this paper:

Theorem 1. If ¢ € B, and ¢ is any holomorphic quadratic differential on C, then for
any a < %M (¢o) we have

(8100 — 814) (@ D) = O " [1p]|*) (3.5)

ast — oo, where || - || denotes any norm on the vector space B. Having fixed such a
norm, the implicit multiplicative constant in (3.5) can be taken to depend only on «,
M (o), and the genus of C.

4. Coordinate Computations

4.1. Self-duality equation and variation in coordinates. To set the stage for the proof of
Theorem 1 we start by deriving local coordinate expresswns for the self-duality equation
(2.1) at a point ¢ € B, and for its first variation in the direction of (A <I>) representing
¢ € T¢B

In a local conformal coordinate z = x +iy on C we write ¢ = P(z) dz? for a
holomorphic function P. Let dz% denote a local section of £ satisfying dz% ® dz% =dz;
there are two such local sections, the choice of which will not matter in the sequel. Using
the local trivialization of £ = £ @ £~! given by the frame (dz%, dz_%), which we call
the holomorphic gauge, we can write

0-pP e ™0 0 e\ _
9= <1 0 )dz, h = ( 0 e”)’ o' = <_e—2u? 0 )dz, (4.1)

—ou 0
D=d+A, A:< 0 Bu)' 4.2)

This diagonal form for & reflects that the splitting £& £~ is orthogonal for the harmonic
metric in this case [9, Theorem 11.2].
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Then (2.1) reduces to a scalar equation for u,
Au— 4@ —e 2P =0, (4.3)

where A = 494 is the flat Laplacian.

In more invariant terms, (4.3) is an equation for the globally defined metric ¢ |dz|? on
C. For Higgs bundles of this type, the Hermitian metric /2, the Kihler metric e?#|dz|2, and
the (local) scalar function u all contain equivalent information. In most of what follows
we work with u, which unlike / and e**|dz|? is a coordinate-dependent quantity: Under

a conformal change of coordinates z — w it transforms as u — u — log “a—’f ‘ We refer

to objects with this transformation property as log densities. Note that the difference
of two log densities is a function. Also, if ¢ = P dz%is a quadratic differential, then
% log | P| is a log density.

When considering the density # on C which corresponds to the unique harmonic
metric on the Higgs bundle associated to ¢ € 3, we sometimes write u(¢) to emphasize
its dependence on ¢, and to distinguish it from other local solutions to (4.3) on domains
in C or in the plane that we consider.

Next, we consider a variation ¢ € Ty B expressed locally as ¢ = P(z)dz2. Dif-
ferentiating (4.3) we find that the corresponding first order variation , describing the
infinitesimal change in h, satisfies the inhomogeneous linear equation

Adi — 8it(e® +¢~24|P|?) + 8¢ 2 Re(PP) = 0. (4.4)

Unlike u, u is a well-defined global function on C (independent of the coordinate z).
Since the operator A — 8(e?" +e~2*| P|?) is negative definite, (4.4) uniquely determines
u.

4.2. Unitary gauge. In preparation for calculating the L? inner product of variations it
is more convenient to work in unitary gauge, expressing the Higgs field and connection

relative to the frame (e%“dz%, e_%”dz_%); then (4.1) and (4.2) become

0 —e “P i 0 e\ _ i fxdu 0
g":<eu 0 )dz’ 4 —<—e—uFo>dZ’ A—z(o —*du)’ (4-3)

with infinitesimal variations given by

. (0 e"Pi—etP d L
= e 0 Lo ¢

0 e“u\ _
e “Pii—e“P 0 dz,  (4.62)

. i fxdi 0
A=§<*0“_* dd), (4.6b)

which of course gives a corresponding expression for = ¢ — ¢.
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4.3. Orthogonal decomposition. Let (A, ®) be obtained from a solution of the self-
duality equation (2.1). Define the linear map u = p@,0) : Ql(su(é',h))2 —
Q2(su(&, h)) by

w(A, d)=dp*x A — [, xD). 4.7

A variation (A, ®) is L2-orthogonal to the image of the linearized gauge map p if and
only if it satisfies (A, d) =0. We say that such a variation is in gauge.
For a general variation (A, ), the orthogonal decomposition of (2.6) is given by

(A, &))" = (A4, ) — p(X) (4.8)
where X € QY(su(E)) satisfies u(p(X)) = ,u(A, CiJ).

For the specific variation obtained in (4.6) we find that dp % A=0,and a straight-
forward calculation yields

0 := pn(A, ®) = —[P, xP]
= —2((¢:, $1+ (9], ¢ Ddxdy 49)
= —26_2”(P? —PP) ((1) _01> dxdy.

The computation of (A, <i>)l therefore reduces to solving
n(p(X)) = —dpxdpX — [[X, @], x®P] = Q (4.10)

for X. Equation (4.10) implies in particular that X is diagonal and traceless; thus we

may write
L. /10
X:§1v (O _1). “4.11)

After so doing, (4.10) becomes a scalar equation for v,

Av — 8u(e® + ¢~ 2| P?) + 8¢~ 2 Im(PP) = 0. (4.12)

We note the striking similarity between (4.12) and (4.4); in fact, replacing P — iP
and v — —u in (4.12) gives exactly (4.4). This suggests that we combine # (the metric
variation) and v (the infinitesimal gauge transformation to put the tangent vector in
gauge) into the single complex function

F =1 —iv, (4.13)
which we call the complex variation, which then satisfies the inhomogeneous linear
equation

(A — 8™ + e*2“|P|2)) F+8 2PP =0. (4.14)
As with (4.4) above, when working on the entire compact surface C, Eq. (4.14) uniquely
determines the complex function F. We write F(¢, ¢) for this unique global solution

determined by (¢, ¢) € TyB when it is necessary to distinguish it from other local
solutions of the same equation.
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4.4. Calculating the norm. Using the calculations above we can now determine an
explicit integral express1on for gg (¢, $) in terms of P, P, u, and F.
The first step is to calculate p(X) in unitary gauge. We find p(X) = (B, V) where

B — % (dov _(ziv> ’ U= — wT’ ¥ =iv (94 e_(:P> dz. (4.15)

Now (A, dD)L = (A, <i>) — (B, V) is orthogonal to (B, ¥), hence the hyperkihler norm
of the associated tangent vector to the moduli space M is

86(h, ) = (A, D)7 = II(A, D)II* — 1(B, W) |1 (4.16)

Now we need only to substitute the expressions for (A, Cb) from (4.6) and (B, V) from
(4.15) and simplify. Two observations will be useful in doing this. First, if £ = £ — &'
Q' (su(&)) where £ is expressed in unitary gauge as £ = f(z)dz for f a matrix-valued
function, then

|2)? =4tr(f f")dxdy. 4.17)

6 0

Second, if B = <O )

), with 6 a scalar 1-form, then we have
2 2
1BIZ = |*B1> =20 A #6. (4.18)
Using (4.17) to simplify |®|? and (4.18) to simplify |A|?, we find?
.. . . 1 .
I(A, &))1* = f AP+ 10 = ~[1dil)” +/ (e%2 +e 2| Pi — P|2) dxdy,
C C

(4.19)
where [|0]? = fc 6 A #8. Proceeding similarly for ||(B, W)||? using (4.15), we have

1
1B, W) = 3 Ido]? +/ (4(e2“ +e*2“|P|2)v2) dxdy. (4.20)
c
Subtracting (4.20) from (4.19) we obtain
86 (. ¢) = / ( 252 4 4e= 2| Py — PP — 4™ + 6_2”|P|2)v2) dxdy
c
+ Ly - Lyavp? 4.21)
—||dul||” — =||dv]“. .
2 2
Next we integrate by parts on C to replace ||dit||? and ||dv||? by — fc(ﬂAa)dxdy and
-/ ¢ (vAv)dxdy respectively, and substitute for Az and Av using the differential equa-
tions (4.3) and (4.12). A few terms cancel and we are left with
8o(9. §) = / (4e—2“|115|2 — 4e 21 Re(PP) — 4e~ 2" Im(P?)) dxdy  (4.22)
c
or more compactly,

8o(p. $) = f 42 (|1f>|2 _ Re(FP?)) dxdy. (4.23)
C

2 Abusing notation, we often write integrals over C with the integrand expressed in a local coordinate and
frame for £.
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As a reassurmg cons1stency check, note that g4 is indeed a Hermitian metric, i.e.
8¢ (¢, i) = g6 (¢ $): one sees this easily from (4.23), since changing ¢ — i¢ leads
to F — iF and P — iP. The same is not true of (4.19) by itself: it holds only once we
subtract the pure gauge part (4.20).

To sum up the results of this section, and restate the formula (3.1) for g*' in the same
local coordinates, we have:

Theorem 2. For any quadratic differential ¢ € B’ and tangent vector ¢ e TyB =B

with respective coordinate expressions ¢ = P(z) dz* and é = P(2)dz2, the norm of ¢
in the hyperkdhler metric g is given by (4.23), where u and F are the solutzons of (4.3)
and (4.14). The norm of the same tangent vector in the semiflat metric g*'

8y (. p) = / 2|P|7P|* dxdy. (4.24)
c
]
The goal of the next three sections is to gain some control over the integral expressions

(4.23) and (4.24) by studying the behavior of the functions # and F. We will see that
these functions are well-approximated by

u~

(4.25)

at points that are not too close to the zeros of ¢. It is easy to check that substituting these
approximations directly into (4.23) yields exactly the semiflat integral (4.24). Bounding
the difference g — g thus reduces to understanding the error in the approximations.

5. Exponential Decay Principle

We now develop a criterion for solutions to certain elliptic PDE on regions in the plane
to decay exponentially fast as we move away from the boundary of the region. The
method is standard—combining the maximum principle with the known behavior of the
eigenfunctions of the Laplacian—and the results in this section are surely not new. A
similar method was used in [12], for example, to derive the exponential decay results
for (4.3) that we will generalize in Sect. 6.

Theorem3 Let Q = {|z| < R} be adisk in C, and for z € Q let p(z) = d(z,0) =
— |z| denote the distance to the boundary of this disk. Suppose thatw € C*(Q)NC%(Q)
sansﬁes
A—KHw=g (5.1)
where k, g € C°(Q), k > 4, and suppose that for every y < 4 there exists a constant
A(y) such that g obeys the exponential decay condition
lg] < A(y)e™"". (5.2)

Then, for any v < 4, there exist constants K(y) and A'(y), such that w obeys the
exponential decay condition

lw < K()(M +A'(y)e"”, (5.3)

where M = supyq, |w|. Moreover, given any y’ > y, A’(y) can be chosen to be equal
to A(y").
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The proof will rely on the following maximum principle.

Lemma 4. Let Q2 be a bounded region in C, and let w, v € Cz(Q) N CO) withv > 0.
Suppose w satisfies
(A —IPw =g, (5.4)

and that v satisfies
(A=K =3, (5.5)
where k, g, k, g € C°(Q) are functions such that
k>k>0 and |g| < g. 5.6)
If lw| < von K, then |w| < v on Q.

Proof. First we claim w < v, or equivalently that v — w > 0 on 2. By compactness of
Q, the function v — w achieves its minimum at a point p, and it suffices to show that
the minimum value is nonnegative. If p € 9 then this is true by the hypothesis that
lw| < vondL. If w(p) < O0then (v—w)(p) > 0because v is everywhere nonnegative.
Thus the remaining case is that w(p) > 0 and p is an interior local minimum of v — w,
hence A(v — w)(p) > 0. Then we find

0 < A —w)(p) = k(p)?v(p) — k(p)*w(p) — &(p) — g(p) using (5.4), (5.5)
<SE (@ —w)(p) —&(p) —g(p) because w(p) > Oand k > k
<KX(p)(v — w)(p) because g +g > 0

Since k > 0 this shows (v — w)(p) > 0 as required.

To complete the proof we must also show that —w < v. However, this follows by
applying the argument above to the function w’ = —w, which satisfies (A —k*)w’ = ¢/,
where g’ = —g. Since |w'| = |w| < v on dQ and |g'| = |g| < g, the necessary
hypotheses still hold in this case. O

In the proof of Theorem 3 we will use Lemma 4 to reduce to the case where & is
constant and where g and w are both radially symmetric eigenfunctions of the Laplacian.
In preparation for doing this, we recall the properties of those eigenfunctions and relate
them to the exponential decay behavior under consideration.

The modified Bessel function of the first kind I is the unique positive, even, smooth
function on R such that

Aly(lz]) = To(|z]) (5.7

and Ip(0) = 1. Thus the function Iy(c|z|)/Io(cR) is the solution to the Dirichlet problem
for (A — ¢?) on the disk |z| < R with unit boundary values.
The function Iy(x) satisfies (see e.g. [1, Section 9.7.1])

TIo(x) ~ (2x)~2¢", (5.8)

where f ~ g means that f(x)/g(x) — 1 as x — oo. It follows that, if a function f
satisfies an exponential decay condition

f < Ae P (5.9)
for some y > 0, then for any y < y we have

_In(
<A o(¥1z])

5.10
Io(y R) 410
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for some A(A, y, ¥) linear in A. Conversely, if we have (5.10) and y < y then we get
(5.9) for some A(A, y, y) linear in A3

Proof of Theorem 3. Suppose we are given constants y < ¥’ < 4. The function g obeys

gl < A(y)e"'” (5.11)
and thus Iotviz)
~Io(ylz
lgl < A (5.12)
=GR

for some A(A, y,y’) linearin A = A(y’). For w satisfying (5.1) and g satisfying (5.12)
we will show that
lo(ylz])

Io(y R)

for some K (¥). Once this is achieved we can pass back from (5.13) to the desired (5.3)
using the exponential bound on /j discussed above. Moreover, since A depends linearly
on A(y’), we can choose A" = A in (5.3), at the cost of possibly rescaling K.

Define

lw| < K(M + A) (5.13)

v=BI(ylz]) (5.14)

for a constant B > (. Note that (A — yz)v = (. We will determine a value of B so that
Lemma 4 can be applied to v and w on 2. Specifically, we must ensure that:

(1) |w| < vondfand
(i) (A —16)v < —|g| on €2,

so that, in the notation of Lemma 4, we can take g = —(A — 16)v and k = 4.
First we consider (i). The function v is constant on €2 and equal to B Ip(y R). Since
M = sup,q |w], it suffices to choose

M
B > ) (5.15)
Io(y R)
Now we turn to (ii). We have
(A —16)v = —(16 — yH)v (5.16)

which we have written in this way to emphasize that (16 — y2) > 0. With the given
bound (5.12) on |g|, the desired inequality (ii) follows if

~Io(ylzl)
B 16—y3 > A ,
o(y1z)( v o/ R)

(5.17)

or equivalently
A 1

B> ——. 5.18
16 —y2 Ip(yR) ©.18)

3 Adjusting the constants when converting between exponential and Bessel bounds is necessary due to the
1 1 -
X~ 2 factor in the expansion of Iy, with the relevant observation being that x 2e™7* = O(e™V¥) forally < y

1
whereas of course x2e™ V¥ £ O(e7 V).
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Using (5.15) and (5.18) it is easy to verify that

1 ~ 1

satisfies both conditions (i)—(ii), and then by Lemma 4 we find |w| < v on D, which is
the desired bound (5.13) with

- 1
K=max|1l, ——— . (5.20)
16 — y2

O

6. Estimates for the Density u

As in Sect. 4 above, let u = u(¢) be the solution of the self-duality equation (4.3) on
the compact Riemann surface C for a given holomorphic quadratic differential ¢ € B
expressed locally as ¢ = P(z) dz2. Tt was shown by Minsky in [12] (see also [14,
Lemma 2.2]) that u is approximated by % log | P| up to an error that decays exponentially
in the distance from the zeros of ¢. Building on Minsky’s results (and following a similar
outline to [3, Section 5.4]), we establish the following estimate which gives a slightly
faster exponential decay rate:

Theorem 5. Fix ¢ € B and assume M(¢) > 1. For any y < 4, there exist constants
A(y) and b(y) such that the density u = u(¢p) satisfies

1 _
u(z) = 3 log| Pl < A(y)e yr@ (6.1)

forall z € C with r(z) > b(y). The constants A(y) and b(y) can be taken to depend
only on y and the topological type of C.
Furthermore, under the same hypotheses we have the C' estimate

! @
‘V¢(M — 7 logP()| < Aly)e e (6.2)

¢

where Vg and |v|g denote, respectively, the gradient and the norm of a tangent vector
with respect to the metric |Q|.

To prove this, we will first establish some rough bounds on u. These will allow us to
apply Theorem 3 to the equation satisfied by u — % log | P|.

6.1. Rough bounds. Let ¢*°|dz|? be the Poincaré metric on C of constant (Gaussian)
curvature —4. In general, the Gaussian curvature of a metric e?#|dz|? is given by K =
YN (see e.g. [2, Section 1.5]); therefore, the equation K = —4 satisfied by the
Poincaré metric becomes

Ao = 4e%° (6.3)

which is Eq. (4.3) with ¢ = 0.
Now for the solution u = u(¢) of (4.3) associated to a general quadratic differential
¢ = P dz?, we have the following lower bounds in terms of o and P:
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Lemma 6. We have u — o > 0 everywhere on C, and u — % log |P| = 0o0nC\ ¢~ (0).
Proof. Using (4.3) and (6.3) we have

Al — o) = 4™ — e —e 2| P?) < 4(e® — &%), (6.4)

At a minimum of u — o', we have A(u — o) > 0 and so by (6.4) we find e** — e >0
there. Thus u — o > 0 at the minimum, hence everywhere on C.
The lower bound on u — %log | P| is similar. Using that %log | P| is harmonic on

C \ ¢~ 1(0), we find that
1
Au — 5 log|P|) = 42 — e PP, (6.5)

Since %log |P(z)] — —oo as z approaches a zero of ¢, while u is smooth on the
entire surface C, the difference u — % log | P| has a minimum on C \ ¢~!(0). At such a
minimum we have A (u — % log | P|) > 0, which gives e** —e™2%|P|> > 0. This implies
u— % log |P| > 0 at a minimum, and thus everywhere. O

Complementing these lower bounds on u, we have the following rough comparison
to the singular flat metric |¢|. Recall that the radius r(z) is the distance from z to ¢~ (0)
with respect to the metric |¢|.

Lemma 7 (Minsky [12, Lemma 3.2]). Fix ¢ € B and assume M(¢) > 1. Let z € C be
a point withr(z) > 1. Then u(z) — % log |P(z)| < M where M is a constant depending
only on the topological type of C. 0O

Note that Minsky’s bound is more general, giving an upper bound at any point z
depending only on the topological type of C and on the |¢|-radius R of an embedded
disk centered at z that contains no zeros of ¢. The hypotheses of the lemma above give
such a disk of definite radius (in fact, one can take R = %), resulting in the bound stated
above that only depends on the topological type.

6.2. Exponential bounds.

Proof of Theorem 5. We start with the C” bound (6.1). Consider a local coordinate ¢
about z in which ¢ = d¢2. Allowing this coordinate chart to be immersed, rather than
embedded, we can take it to be defined on |{| < r(z) with z corresponding to { = 0.
While the boundary of this disk touches the zero set of ¢ (by definition of r), if we consider
D = {|¢| < r(z) — 1} then the image of this disk in C consists of points satisfying the
hypotheses of Lemma 7. Therefore, by Lemmas 6 and 7 we have 0 < u(¢) < M for all
¢ eD.
In this coordinate system we have P({) = 1 and thus (6.5) becomes

Au = 4™ — 4e2* = 8 sinh(2u). (6.6)

Similarly, in this coordinate the difference |u — % log | P|| reduces to |u].

The function 8 sinh(2x)/x has a removable singularity at x = 0; let f denote its
extension to a smooth function on R, which satisfies f(x) > 16 forx > 0. Sinceu > 0
we can rewrite the equation above as

(A—kHu=0 (6.7)
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where k = / f (1), and thus k > 4. Now Theorem 3 applies to # on D with g = 0 and
p =r(z) — 1, giving
Jul < A(y)e @D (6.8)
for all y < 4. Absorbing the e” factor into the multiplicative constant we obtain the
desired bound (6.1) in terms of e ="
Given this C° bound, the corresponding C! bound (6.2) follows by standard elliptic
theory applied to (6.6), as shown in e.g. [3, Corollary 5.10]. O

7. Estimates for the Complex Variation ¥

Next we turn to the complex variation F = F (¢, ¢) associated to ¢ € B and ¢ € TyBB.
We will see that this function is exponentially close to %% = %%. Specifically, we have:
Theorem 8. Fix ¢ € B and assume M(¢) > 1. Also fix é. For any y < 4, there exist
constants A(y) and b(y) such that the function F (¢, ¢) satisfies

-2t

F——Z| < AW)lle @ (7.1)

29

forall z € C withr(z) > b(y).

To prove this, we proceed as in Sect. 6, first deriving some rough bounds, and then
improving them to exponential bounds using Theorem 3.

7.1. Rough bounds. We begin with some notation related to metrics on C. If 7 is a log
density on C, with associated Kéhler metric e?|dz?|, and if ¢ € B has local expression
¢=P dz2, we denote by

lpl, =e 2P|:C >R (7.2)
the pointwise norm function of ¢ with respect to this metric, and by
lolly = sup 1y (7.3)

the associated sup-norm. Finally, we let
An et e_znA (74)

denote the Laplace—Beltrami operator of the metric e>7|dz?|.
Recall from Sect. 6 that o denotes the density of the Poincaré metric on C of curvature
—4.

Lemma 9. The complex variation F satisfies sup | F| < ||<15||g.

Proof. Rewriting (4.14) in terms of the Laplace—Beltrami operator A, it becomes:

(Ay — K)F =-G, (7.5)
where
K =8(1+1¢[%),
8¢ (7.6)

- e4”|dz|4'
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Note that K > 0 and that G is a well-defined complex scalar function on C which
satisfies

|G| = 8¢luldlu- (7.7)

Considering a maximum and a minimum of each of the real and imaginary parts of F,
which exist by compactness, we find from (7.5) that

sup | F| < sup2K 1G], (7.8)
and we have
K61 = 19l (—2 ) < Ligy.. (1.9)
L+plz) ~ 2
Finally, by Lemma 6, we have u > o. Therefore |q§|u < |(;'5|(7 and
sup | F| < sup2K |G| < sup o = - (7.10)
O

We will also need the following lower bound on the pointwise norm |¢|,. Recall r(z)
denotes the |¢|-distance from z to ¢! (0).

Lemma 10. Ler ¢ € B’ and suppose ||¢|lc > 1. There exists a constant § depending
only on the ray Ry¢ with the following property: If z € C satisfies r(z) > 1, then
lpls (z) = 6.

Proof. Let Z = ¢~1(0). First suppose that ||¢|, = 1. For any positive radius r,
a uniform lower bound on |¢|,(z) for z with r(z) > ro follows immediately from
compactness of C and of the unit ball in 5.

Using that d;y = !/ 2d¢, the same argument shows that for ||¢||, > 1 we also have

a uniform lower bound on |¢|,(z) when r(z) is greater than a fixed positive multiple of
1/2

lollo

Thus to complete the argument it suffices to consider the case when r(z) is small

compared to ||¢ ||(1,/ % That is, we consider a point z in a disk of radius €||¢ ||<1,/ 2 about one
of the zeros. Equivalently, if we let ¢g = ||¢||;1¢, then z lies in a disk of ¢g-radius €
about a zero of ¢9. Assume that € is small enough (depending on the ray) so that there
is only one zero of ¢ in this disk, and that the disk is identified with [¢| < R by a
coordinate function ¢ such that ¢g = ¢d¢?. We work in this coordinate system for the
rest of the proof.

Write the Poincaré metric of C on this disk as €27 |d¢|?. Then, using compactness of
the unit ball in B again, we have e29 < M for a uniform constant M.

The ¢o-distance from 0 to ¢ is proportional to [¢]3/2, and thus the ¢-distance is

proportional to ||¢||(1,/ 2 |¢|?/?, with universal constants in both cases. The hypothesis

that r(z) > 1 therefore becomes |{(z)] > ¢ ||<;5||;l/3 for a constant ¢ > 0. Using that
¢ = |l¢lls¢de?, at such a point z we have

19l (2) = e 2Dl 12 = M plloclipl, ) =M ellplZ?  (7.11)

Since we assumed ¢l > 1, this gives the desired lower bound with § = M~!c. O
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7.2. Exponential bounds.

Proof of Theorem 8. Define
Ld
f =F - _fv
29
so that our goal is to give an exponentially decaying upper bound on | f| at a point z.
As in the proof of Theorem 5 we first choose an immersed coordinate chart |{]| < r(z)
where ¢ = d¢? and z corresponds to ¢ = 0.
Using (4.14), after a bit of algebra we find that in this coordinate system f satisfies
the equation

(7.12)

(A —16coshu)) f = —8% sinh(2u). (7.13)

Let € > 0, and restrict attention to the smaller disk Q = {|¢] < (1 — e)r(z)}.
Assume that r(z) > € L. Then all points of Q are at distance at least 1 from ¢~1(0),
and Lemma 10 gives

<5 lo (7.14)

‘é‘ _ 19l
¢l 1glo

throughout 2. Now fix y < 4, let b(y) denote the constant from Theorem 5, and assume
that r(z) > €~ 'h(y). Then Theorem 5 applies to u at each point of €2, giving

()| < A(y)e ", (7.15)

Combining this with the bound (7.14) on %, we find that the right hand side of (7.13) is
bounded above by

A'Wllllge™"@ (7.16)
for some constant A’(y).

Let p denote the function on 2 that gives the ¢-distance to 9<2. Since r(z) > p(2)
we can replace (7.16) by

AW)dlloe™7". (7.17)

When combined with the fact that 16 cosh(2u) > 16, this exponential decay of the
inhomogeneous term of (7.13) implies that the solution f is also exponentially decaying;
specifically, applying Theorem 3 we have for any y < 4

|FI<S K@M+ A" () dllo)e " (7.18)

where M = supyq | f|. We have | f| < |F|+ % ‘% , and therefore Lemma 9 and (7.14)

give M < (1 + S Hdlls. Substituting this value for M into (7.18) and evaluating at
¢ =0 (.e. at z), where p = (1 — €)r(z), we obtain

@) < A" (W dlloe”r179r@ (7.19)

for a constant A”’(y) depending on the ray R.¢. Since € was arbitrary, this gives the
desired bound. O
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8. Holomorphic Variations

In our analysis of Cyear we will exploit the following basic observation: if D C C is a
disk containing exactly one zero of ¢, then any holomorphic quadratic differential ¢ on
D can be realized as ¢ = Lx¢ for some holomorphic vector field X on D. This fact
allows us to construct an explicit solution of the complex variation equation (4.14) on
D, using the following:

Theorem 11. Given a quadratic di jgferentlal ¢ = P(z)dz2 solution u of (4.3), and
holomorphic vector field X = x(2);, let

Yx = Lx¢ = (x P, +2x. P)dz? (8.1)
and define a complex scalar function Fx by
Fxe®|dz|” = Ly (e*|dz]?) (8.2)
or equivalently in local coordinates
Fx = x;+2xu;. (8.3)

Then F = Fy satisfies the complex variation equation (4.14) with ¢> = VYy.

Proof. We begin by noting that the self-duality equation (4.3) is natural with respect
to biholomorphic maps, i.e. if ® is such a map then the log density of the pullback
metric ®*(e2* |d_z|2) satisfies the equation for the pullback differential ®*¢. The real
vector field X + X has a local flow which consists of holomorphic maps, and hence gives
rise to a local 1-parameter family of solutions for the corresponding family of pullback
quadratic differentials. Taking the derivative of this family of solutions at t = 0 we find
that the Lie derivative of e**|dz|> with respect to X + X gives a solution of the variation
Eq. (4.4) for

=Ly, 30 (8.4)
Specifically, if we define i by

ie?|dz|? = Ly, 5(€*|dz|*) (8.5)

then i and ¢ satisfy (4.4). The expression (8.5) is equivalent to saying that # is the
Riemannian divergence of the vector field X + X with respect to the metric e?*|dz|>.

Now, recall that (4.14) is equivalent to the separate equations (4.4) for it = Re(F)
and (4.12) for v = — Im(F), and that these two equations are related by the substitutions
it — —vand ¢ — i¢.

For a real tensor T we have Re(LxT) = Ly, 3T, and hence Re(Fy) is exactly i
as defined by (8.5), which we have seen satisfies (4.4) with ¢ = Ly,5¢. Because ¢ is
holomorphic we in fact have L, 3¢ = Lx¢ = ¥x. Hence Re(Fx) satisfies the desired
equation.

Because Lix = iLx we have —Im(Fx) = Re(Fix) which therefore satisfies (4.4)
with ¢ = L;y,.5x® = Lix¢ = ix. Using the substitutions noted above, this is equiva-
lent to Im(Fy) satisfying (4.12). O
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9. Exactness

Given quadratic differentials ¢ and ¢ on a compact Riemann surface C, recall that our
ultimate goal is to bound the difference

A, §) = gs (b, §) — &5 (. ). ©.1)

Though the integrals defining g4 and g;f were previously written in terms of densities
(scalar multiples of dxdy), using the orientation of C we can convert the integrand to a
differential 2-form which we denote by §. Also recall that this integrand depends on the
density u and complex function F, respectively satisfying (4.3) and (4.14). Explicitly,
by taking the difference of the integral expressions (4.23) and (4.24) we find
2

8(¢,p,u, F) = <4e—2“(|1')| — Re(FPP)) — 2%) dx Ady, (9.2)
where ¢ = P dz? and as usual ¢ = P dz2. Thus if u(¢) and F (¢, ¢) denote the unique
solutions to (4.3) and (4.14) on a compact Riemann surface C for given ¢ and ¢, then
we have

A, §) = fca<¢,¢3,u(¢>, F($, ). 9.3)

As mentioned in Sect. 1.2, our technique for bounding the integral of §(¢, ¢ u(op),
F (¢, ¢)) over the region Cpear near the zeros of ¢ involves approximating ¢ in that
region by an exact form. The key to this approximation is that §(¢, ¢, u, F) itself is
exact whenever ¢ and F are obtained from ¢ and u using a holomorphic vector field as
in Theorem 11:

Lemma 12. Let ¢ = P dz? be a quadratic differential and u a log density satisfying
(4.3), both on a domain U C C. Let X = xd; be a holomorphic vector field on U. Let
é = Lx¢ and F = Fyx as in Theorem 11. Then §(¢, ¢, u, F) = dB, where

ﬂ:(e_2“—|P|_l) (2|P| wdlx 2+ x 1 *d|P] ) (9.4)
Proof. Substituting ¢ = Lx¢ as given by (8.1) and F = Fx from (8.2) into (9.2), we
obtain an explicit formula in terms of x, P, and u:
8(p. Ly, u. Fx) = (4e-2“(|xPz|2 +20xPI* + 3Re(x 7z P P) = 2Re(x X P Pzu2)
X P Re(xizPPo)
|P| |P|

Now we consider 8. For a holomorphic function f, we have

*d| fI? = *d(f f) = * (f. fdz + f fzdZ) = —i (f. fdz — f fzdZ) = ZIm(fzde).6
(9.6)

—4Re(x)_(§P13uz)) — —8|XZ|2|P|>dx/\dy. 9.5)

Using this, we find that § = 2Im(B) where
B= @ = 1PI7) (21PPxeq + X *P.P) dz. ©.7)

It is then straightforward to calculate df = 2Im(3p) in terms of P and x, and to
verify that it is equal to (9.5); in the latter step, it is useful to recall Im(cdz A dz) =
2Re(c) dx A dy for any complex scalar c. We omit the details of this lengthy but ele-
mentary calculation. 0O
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10. Exponential Asymptotics

In this section we prove Theorem 1. To do so we return to considering a compact
Riemann surface C and the ray {¢ = r¢p};cr, generated by ¢g € B'. Write ¢ = P dz2.
Let ¢ = P dz? € TyB' = B. Fix some y < 4.

Let z1, ..., z, denote the zeros of ¢, and let D; denote an open disk centered on z;
of |¢|-radius

- —M(¢> —rzM<¢>o> (10.1)

This is the largest ¢-radius for which the sets D; are disjoint, embedded disks. Note that
D; can also be described as the disk about z; of |¢g| -radius 1 5 M (¢o), and in particular
the set D; is independent of 7.
Since we are considering asymptotic statements as ¢ — 00, and since by hypothesis
M(¢p) > 0, we may assume when necessary that R is larger than any given constant.
Let Cpear = |J; Di and Cryr = C \ Cpear- Then we have

A(¢,<i>>=fc a(¢>,¢$,u<¢),F<¢,q&))+Z/D8(¢,¢,u<¢>),F<¢,¢S>), (10.2)
far i i

and we will bound these terms separately.

The “far” region. For any z € Cg,r we have r(z) > R. Assume R is large enough
so that Theorems 5 and 8 apply. Then we have u =~ %10g|P| and F =~ %F with
respective errors bounded by a(y)e "R and a(y)||<13||ge_VR for some constant a(y).
If these approximate equalities were exact, then § would vanish identically; that is, by

direct substitution into the definition (9.2), we find that

1 P
<¢ b, - 5 log|Pl. 5 ) —=0. (10.3)

To handle the situation at hand, we will strengthen this to show that § is pointwise small

when u and F are only near % log| P| and %% (respectively).
Again by substitution into (9.2), we find that for any scalar functions w and © we
have

6. b, ~ 1 |P|+ P, P 2 1y 48 Re(P By ) drad
0 —— =[2—— -1 - e .
g w, P 128 P 1P| 123 AAAY
(10.4)
Now assume that |w| < 1, so that
2/e™2" — 1] < clw| (10.5)
and B
[4e72P| "1 Re(P P)| < el Pl (10.6)
for a constant ¢ > 0. Using these estimates with (10.4) gives
5(¢,¢,%log|P|+w,%%+u) |P|2 .
< lwl+[Pllul ). (10.7)
dx Ady |P|
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If we furthermore assume R > 1, then Lemma 10 applies to ¢ throughout Cr,y, giving
a uniform lower bound on e ~2?| P|. Substituting this into the previous bound, we can
now bound § relative to the hyperbolic area form as follows:

‘ (¢ §. 5 log| Pl +w, lfw)‘ ¢ (1921wl +1dlslnl) € 1dz. (10.8)
2P ’ o ‘

Here c is a constant, but not the same constant as in (10.7). We already observed that
on Cry the integrand 8(¢ &, u(@), F(¢, $)) has the form (10.4) with |w| < a(y)e VR
and || < a(y)lpllse”" K. Thus

8(¢, &, u(@), F($, 9))| < ' (W)Iple "R e |dz|? on Crar, (10.9)

for a constant ¢’(y ). Integrating (10.9), and using that the o-area of Cf,, is bounded and
|#le < l¢llo, we obtain

/ 8(¢, p, u(g), F(¢,d)) = O (||<i>||§e‘”) (10.10)
Cfar

with the implicit constant depending only on ¢’(y) from (10.9).
The “near” region. Next we consider the integral over one of the disks D; in (10.2).
Identify D; with a disk {|z| < R} in C, using a coordinate z in which ¢|p, =z dz>.
On D; there is a unique holomorphic vector field X = x 9. such that ¢ = Lx¢p =
Lx (z dz?); explicitly, if we write

¢ = an"dz?, (10.11)
n
then u
n n
- . 10.12
X Z Ml (16.12)

By Theorem 11, the associated function Fy defined by Fxe*®)|dz|?> = Lx (e*®|dz|?)
satisfies (4.14) on D;, which is the same equation satisfied by F (¢, é). We will show
that Fx and F (¢, ¢) are in fact exponentially close on D;.

First we consider the restrictions of these functions to d D;, which is far from the
zeros of ¢, allowing the estimates of the previous sections to be applied. By Theorem 8
we have

. 1P )
‘F(¢>,¢) —3p|= O0(lplloe™ ) on dD;. (10.13)

Turning to Fy = x, + 2)u;, note that the equation ¢ = Lx¢ gives

P—xP, P
XZZTZE_XaZ(IOg|PI) (10.14)
and thus .
FX=XZ+2XMZ=£+2)(E)Z <u—llog|P|>. (10.15)
2P 2

By the C! bound from Theorem 5 we have

1
ER (u -3 10g|P|> =0 "®) ondD;. (10.16)
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Next we need a bound on | x| on d D;. For this, note that for any z € D;, x (z) depends

. : _2 . :
linearly on ¢, and scales as t~ 3. Thus, for # > 1 we have an estimate |x (z)| < c(2)||¢]ls
for some c(z), and since the closure of D; is compact we can take this constant to be
independent of z, i.e. on D; we have

xI=0di$lo)- (10.17)
Now combining (10.16) and (10.17), we get

1P SR
Fx — ——| = O0(|¢llse "®) on 9D;. (10.18)
2P
Then by (10.13) and (10.18) we find that the function u : D; — C defined by
= Fx —F(¢,$) (10.19)
satisfies )
1= 0(¢loe”"®) ondD;. (10.20)

Because Fy and F (¢, (jb) both satisfy the linear inhomogeneous equation (4.14), their
difference p satisfies the associated homogeneous equation, which has the form (A —
k) = 0 for an everywhere positive function k [compare (7.5)]; this implies that || has
no interior maximum. Thus || achieves its maximum on d D;, and (10.20) gives

1= 0(lglloe”"®) on D;. (10.21)

Next we use this estimate on p to estimate the integral of §(¢, ¢ u(ep), F (¢, (i&))
over D;. We have

8(p, b, u(e), F(¢, ) = 8(¢, ¢, u(¢), Fx + 1)

, . (10.22)
= 8(¢, ¢, u(p), Fx) +4e 2@ Re(uP P)dx A dy.
Since e 2@ | P| < 1 (by Lemma 6) we have
|de™ 2@ Re(iuP P)| < 4|u]| P| (10.23)
and the bound (10.21) gives
/D 4e= 2@ Re(uP P)dx A dy = O(||¢]2e 7 R). (10.24)

Considering the other term on the right hand side of (10.22), by Lemma 12 the form
8(¢, ¢, u, Fx) is exact, so we can use Stokes’s theorem to reduce to a boundary term:

[ @ dar=[ (= ipt) (PP edixP P e dlPE). 1025)
D; JaD;

It just remains to show that this boundary term is exponentially small. Fix some y’ with
y <y’ < 4.By Theorem 5, we have (e —|P|™hH = O(e_V/R) on d D;. Next, using
the estimate (10.17), the fact that P scales as ¢, and the fact that the coordinate radius
of D; scales as t1/3, we have

7 .
/BD (2APPwdix P+ X P+ dIP2) = 0G5 1612). (10.26)
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Using this in (10.25) gives

/D 5. .1, Fx) = 05|92 R) = 0(|p|2e "), (10.27)

i

where in the last equality we use the fact that R — oo as ¢t — oo by (10.1).
Now we have bounded the integrals of both terms in (10.22); combining these bounds
we conclude

/D_ 3(6, ¢, u(@), F(§, ) = Olpl; ™). (10.28)

Summing up. Finally, substituting the far and near bounds [(10.10) and (10.28)] into
(10.2), we obtain ) )
A@.$) = 0(dlze""). (10.29)

Using (10.1), and that y < 4 was arbitrary, we obtain the exponential bound from
Theorem 1 by taking y = 8a/M (¢o).

Finally, we consider the contributions to the multiplicative constant in (10.29). We
have seen that the individual exponential estimates in the components of Cpe,r depend
only on y. The number of such components is linear in the genus of C. The estimate
in Cr,r obtained above is also linear in the hyperbolic area of C, or equivalently in the
genus. Overall we find the multiplicative constant in the final estimate depends on y
and the topology of C, or equivalently, on v, M (¢p), and the genus. This completes the
proof of Theorem 1.
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