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Abstract—Recently opened spectrum within 3550-3700 MHz
provides more accessing opportunities to secondary users (SUs),
while it also raises concerns on the operational privacy of pri-
mary users (PUs), especially for military and government. In this
paper, we propose to study the tradeoff between PUs’ temporal
privacy and SUs’ network performance using the data-driven
approach. To preserve PUs’ temporal operational privacy, we
develop an obfuscation strategy for PUs, which allows PUs to
intentionally add dummy signals to change the distribution of
temporal spectrum availability, and confuse the adversary. While
generating the dummy signals for privacy, the PUs have to con-
sider the utility of SUs and try their best to satisfy SUs’ uncertain
traffic demands. Based on the historical data, we employ a
data-driven risk-averse model to characterize the uncertainty of
SUs’ demands. With joint consideration of frequency reuse in
the cognitive radio network, PUs’ privacy, and uncertain SUs’
demands, we employ a conflict graph to characterize the inter-
ference relationship between SUs, and formulate the data-driven
risk-averse stochastic optimization problem. We provide corre-
sponding solutions and through numerical simulation, we show
that the proposed scheme is effective in preserving PUs’ tem-
poral operational privacy while offering good enough spectrum
resources to satisfy SUs’ traffic demands.

Index Terms—PUs’ temporal operational privacy, SUs’ traf-
fic demands, data-driven modeling and optimization, obfuscation
strategy.
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I. INTRODUCTION

N RECENT years, the exploding increase of mobile wire-

less devices and the proliferation of wireless services have
accelerated the growth in demand for radio spectrum [1]-[3].
With limited unlicensed spectrum, regulators are turning to
dynamic spectrum sharing and looking for advanced tech-
niques to improve spectrum utilization. As one promising
technology, cognitive radio (CR) [4]-[6] allows secondary
users (SUs) to access the idle spectrum in temporal and spa-
tial domain opportunistically, when primary users (PUs) are
not active. To further meet the ever-increasing demand for
spectrum, Federal Communication Commission (FCC) and
National Telecommunications and Information Administration
(NTIA) have agreed to open up the 3550-3700 MHz band
for unlicensed communications [7], [8]. Note that most fre-
quencies within 3550-3700 MHz are traditionally used by
government agencies, e.g., Department of Defense [8], [9],
and the operational information (such as time of use, geo-
graphical locations, anti-jamming capability, and so on) of
government facilities, e.g., military radars, are very sensitive
or even classified. Therefore, maintaining the PUs’ operational
privacy while providing SUs’ spectrum accessing opportunities
poses great challenges.

A. Related Work

There are several pioneering works about PUs’ pri-
vacy preservation in existing literature. For example,
Clark and Psounis [10] discuss several attack models and
PUs’ obfuscation strategies, based on the assumption that
all the information of PUs and SUs are stored in a
database. The adversary might hack the database or com-
promise SUs’ devices to infer PUs’ location information.
Robertson et al. [11] proposed to add false spectrum allocation
entries into the database to prevent the adversary from learning
the operational privacy of PUs. Bahrak et al. [12] use obfus-
cation methods to develop a pentagon-shaped contour, which
envelops the PU’s actual contour to hide PU’s accurate loca-
tion. Another approach is to perturb the output with noises to
satisfy differential privacy, as proposed by Dwork [13]. Since
simply adding noise signals may degrade the performance of
collaborative sensing results, Gao et al. [14] further proposed
a distributed dummy report injection protocol, which jointly
prevents the pollution of the aggregation results and preserves
location privacy of PUs. Based on attributed-based encryption
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techniques, Liu et al. [15] developed the query policy for PUs’
spectrum usage database to protect PUs’ location privacy. In
military communications, Fu et al. [16] proposed a method that
hides traffic characteristics from eavesdroppers by padding the
traffic with constant/variable interarrival times, to mitigate the
traffic analysis attacks. In addition, there are some previous
works related to the time-based traffic model. For instance,
Bonald ef al. [17] show that if the underlaying scheduler is fair,
the flow-level (TCP) throughput and delay admit simple time
based form, which is independent of the actual inter-arrival dis-
tribution between MAC layer packets. However, most existing
schemes do not consider the privacy of temporal informa-
tion such as the time of usage, which are critical for PUs.
The temporal operations of PUs might include highly con-
fidential or even classified information (e.g., the operational
time of military radars). If such information is obtained by
a malicious party, it may jeopardize national security and
people’s safety. In addition, most of the existing PUs’ pri-
vacy preserving designs have limited consideration on creating
more accessing opportunities to satisfy SUs’ traffic demands
and improve spectrum utilization, that is the sole purpose of
opening up 3550-3700 MHz band for CR communications.

In addition, there are a lot of existing literature works on
primary user activity modeling and primary user activity mea-
surement campaigns. For instance, Chen and Oh [18] and
Saleem and Rehmani [19] introduce various spectrum occu-
pancy models which extract different statistical properties from
the measured data, and discuss the spectrum occupancy pre-
diction which employs moving-average models to predict the
channel status at future time instants. Xing et al. [20] takes the
survey of prediction technique in cognitive radio network (i.e.,
hidden Markov model-based prediction, multilayer perceptron
neural-network-based prediction, etc.), and present that rele-
vant open research challenges. Hoyhtya et al. [21] introduce
a method to analyze spatial occupancy in location probabil-
ity metric, and find optimal location for sampling by use of
simulated annealing in the article.

From the aspect of the PU, if the PU could precisely pre-
dict SU’s traffic demands, it can provide better obfuscation
strategy. In this way, the PUs can intentionally add dummy
signals to obfuscate the attackers' while trying their best to
satisfy SUs’ traffic demands. However, it is a challenging prob-
lem to characterize the uncertainty of SUs’ traffic demands.
Some previous efforts tried to employ robust optimization to
address this issue. For instance, Lundén et al. [22] proposed a
robust computationally nonparametric cyclic correlation esti-
mator, which does not require the distribution information of
users’ traffic. Gong et al. [23] designed an algorithm to search
the optimal detection bound considering signal uncertainty.
However, the robust optimization approach can be very conser-
vative, since its objective is to minimize the worst case cost or
the worst case effectiveness. If PUs add too many dummy sig-
nals, according to the overly conservative analysis for privacy
preservation, it would reduce the utility of SUs.

1t refers to the attackers either hacking into the spectrum usage database
or employing multiple SUs to sense in order to learn the PUs’ operational
parameters [10].

B. Our Contribution

To address these issues, we propose a novel PUs’ obfus-
cation strategy design by formulating the PUs’ operational
privacy preservation problem as a data-driven risk-averse
optimization, and provide robust solutions. Our salient con-
tributions are summarized as follows:

e We introduce a new privacy preserving framework for
PUs’ obfuscation strategy design, which jointly consid-
ers PUs’ operational privacy in the temporal domain,
the obfuscation cost of PUs, the uncertainty of SUSs’
demands, and SUs’ traffic demand satisfaction under fre-
quency reuse network. Under such a framework, when
PUs add dummy signals to obfuscate the adversary, they
also need to consider the trade-off between preserv-
ing PUs’ temporal privacy and satisfying SUs’ traffic
requirements, and thus cannot arbitrarily generate dummy
signals for privacy preserving purposes.

e Under the proposed framework, with abundant historical
data of SUs’ traffic demands, we allow the PUs to employ
data-driven modeling to characterize the uncertainty of
SUs’ traffic demands. The PUs can build a reference SUs’
demand distribution from the historical data, and gener-
ate the predicted SUs’ demand distribution close to the
reference distribution at a certain confidence level. To
realize the spectrum reuse under the proposed network,
we employ a conflict graph to characterize the transmis-
sion interference between SUs, mathematically describe
the channel interference relationship between SUs, and
employ approximation algorithm to find a sufficiently
large number of maximal independent set.

¢ Based on the modeling of SUs’ uncertain traffic demands
and temporal operational privacy metrics, we formulate
the PUs’ temporal privacy preservation problem into a
risk-averse two-stage stochastic optimization under spec-
trum reuse. We develop algorithms for robust solutions,
and conduct simulations to verify our theoretical analysis.

The rest of paper is organized as follows. In Section II, we
introduce the network model and introduce the related model
in the system. In Section III, we formulate the PUs’ and SUs’
utility function, and an optimization problem to preserve PUs’
operational privacy. In Section IV, we develop the solutions to
the proposed problem. Simulation results and discussions are
presented in Section V, and the conclusion remarks are drawn
in Section VI

II. SYSTEM DESCRIPTION
A. Network Configuration

As shown in Fig. 1, we consider a CR net-
work [24] consisting of N SU transmission pairs,
N = {1,2,...,4,...,N} and M radars (PUs) trans-
mission pairs, M = {1,2,...,j,..., M}, transmitting over
non-overlapping brands from 3550-3770 frequency range.
Following the principles of overlay CR network communi-
cations [25]-[27], SUs can opportunistically use the band
when the PU owning that band is not active, and SUs must
evacuate if the PU comes back. Here, we assume each PU
is licensed to use a dedicated band, and each SU can only
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Fig. 1. System architecture and temporal operational attacks.

opportunistically access one band at a time. To preserve
temporal operational privacy, PUs will send obfuscating
dummy signals periodically, where the fixed period is denoted
by 7. Let T; represent the actual temporal spectrum avail-
ability for band j (i.e., available time for SUs’ opportunistic
spectrum accessing before PU j adds dummy signals), and y;
(y; < T}) be the transformed temporal spectrum availability
for band j (i.e., the available time for SUs’ opportunistic
spectrum accessing after PU j adds dummy signals). Given
the transmission rate, let a random variable d;(£) denote the
required time to deliver the uncertain traffic demands of SU i
within 7~ corresponding to scenario &. For simplicity, we call
d;(¢) the demand of SU i in the rest of this paper, and let P;
be the distribution of d;(§). For instance, 7 = 60 mins, and
PU j is actively using band j for 20 mins, so that 7; is equal
to 40 mins. After PU j executes obfuscation strategy, y; =
30 mins, and the demand of SU i is d;(§) = 25 mins.

B. Other Related Model in the System

1) SU’s Transmission Range/Interference Range: When
primary services are not active over a certain band, SUs can
transmit with full power over that band. Suppose all SUs have
the same full transmission power P. The power propagation
gain [28] is

gi=7-d;* (ieN), ey
where « is the path loss factor, v is an antenna related con-
stant, and d; is the distance between transmitter and receiver of
SU pair i.> We assume that the data transmission is successful
only if the received power at the SU pair’s receiver exceeds
the receiver sensitivity, i.e., a threshold Pr,. Meanwhile, we
assume interference becomes non-negligible only if it is over
a threshold of Py, at the SU pair’s receiver. Thus, the transmis-
sion range for a SU is Rp, = (vP/PTm)l/O‘, which comes
from v - (Rp;)~% - P = Pp,. Similarly, based on the inter-
ference threshold Py, (Pp, < Pp,), the interference range for

2The capacity formulation is similar if we consider fading. The major
procedure of proposed algorithms will not be changed.

Fig. 2. A toy overall conflict graph observed by a PU.

a SU is Ry, = (vP/Pp,)Y“. It is obvious that Ry, > Ry,
since P, < Prp,. Typically, the interference range is 2 or 3
times of the transmission range [28], i.e., g”; = 2 or 3. These
two ranges may vary with frequency. The conflict relationship
between two SU pairs over the same frequency band can be
determined by the specified interference range. In addition, if
the interference range is properly set, the protocol model can
be accurately transformed into the physical model.

2) Conflict Graph: We introduce a conflict graph G(V, )
to characterize the interference relationship between SUs in the
CR network. Following the definitions in [29], we interpret the
SU network as a two-dimensional resource space, with dimen-
sions defined by the set of SUs, and the set of available bands.
In G(V, ), each vertex corresponds to a SU opportunistically
accessing a certain band, i.e., a SU-band pair (i, k), where
i € N and k € M [29]. Each SU i stands for a SU trans-
mission pair, including a SU transmitter and a SU receiver
from the same SU. Moreover, the distance between transmis-
sion pairs is much larger than the distance between transmitter
and receiver of SU communication.

Similar to the interference conditions in [28], there is inter-
ference if either of the following conditions is true: (i) if two
different SUs are using the same band, the receiver of one SU
transmission pair is in the interference range of the transmit-
ter in the other SU pair; (ii) a SU pair transmits over two or
more bands at the same time. Here, the first condition repre-
sents co-band interference, and the second condition represents
the radio interface conflicts of SU itself, i.e., the single radio
of SU transmitter/receiver cannot support multiple transmis-
sions over multiple bands simultaneously. If there are co-band
interferences as shown in the toy conflict graph in Fig. 2, we
connect two vertices in V with an undirected edge in G(V, E).

Given G(V, ), we describe the impact of vertex 7 € V on
vertex j € )V as follows,

if there is no edge between vertex i and k,
2

where two vertices correspond to two SU-band pairs,
respectively.

To be more specific, in Fig. 2, vertices (SU 1) and (SU 2)
stand for SU 1 and SU 2 observed by a PU. They are connected
by an edge, which corresponds to the interferences discussed
previously. Vertices SU 1 and SU 2 connected through an edge
means SU 1 and SU 2 cannot transmit traffic over the spectrum
of the PU simultaneously.

3) Maximal Independent Set: Provided that there is a vertex

set Z C V and a SU-band pair ¢ € Z satisfying > J; <
ke k#i
1, the transmission at SU-band pair i will be successful even

5 { 1, if there is an edge between vertex i and k,
ik =
0,
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if all the other SU-band pairs in the set Z are transmitting at
the same time. If any i€ 7 satisfies the condition above, we
can reuse the spectrum frequency, and allow the transmission
over all these SU-band pairs in Z to be active simultaneously.
Such a vertex/SU-band pair set Z is called an independent set.
If adding any one more SU-band pair into an independent set
7 results in a non-independent one, Z is defined as a maximal
independent set (MIS) [29].

C. Attack Model

In this work, we consider passive adversaries, who may
learn the operational time of PUs either from spectrum
database or from collective spectrum sensing results of com-
promised SUs. The compromised SUs do not intercept or
modify the messages sent by PUs. Specifically, the adver-
saries can either eavesdrop the communication between the
spectrum database server and SUs, or send queries to the
database to learn spectrum availability in the database-driven
approach [10], [12], or compromise some SUs’ devices and
collect spectrum sensing® results to infer PUs’ operational
characteristics in the spectrum sensing approach [10], as
shown in Fig. 1.

III. OBFUSCATION STRATEGY AND
PROBLEM FORMULATION

A. Utility Functions of PUs and SUs

From the PU’s perspective, to preserve the temporal opera-
tional privacy from passive attackers, the PU executes obfus-
cation strategy by generating dummy signals for a certain time
period when it actually has no traffic. As a result, the adver-
sary cannot distinguish dummy signals from true signals, by
database or collective spectrum sensing. Thereafter, the adver-
sary would obtain transformed temporal spectrum occupation
of the PUs based on detected signals, which is a combination
of the dummy and true signals. As long as the dummy signals
are sent frequently, the PUs’ true operations can be hidden in
those signals and the operational privacy of PUs can be pre-
served. Thus, the utility function of PUs’ operational privacy
preservation can be written as

Upy, (v) = e(Tj = 5), (3)

where ¢ is a temporal privacy coefficient, 7; is the actual
spectrum availability, and y; is the transformed spectrum avail-
ability after the PU j’s obfuscation strategy is executed. We
can see that if (7; — y;) is sufficiently large, PUs’ temporal
operational privacy is preserved effectively.
From the SUs’ perspective, they attempt to transmit on
available spectrum to satisfy their own demand. Since SUs
can only observe the transformed spectrum availability of PUs,
i.e., the spectrum availability after PUs execute obfuscation
strategy, we denote the transformed spectrum availability for
SU i over spectrum band j as xf Assuming the SU’s traffic
M .

can be perfectly split, we let > xf denote the total avail-
j=1

able time that SU i can transmi]t over all spectrum bands. We

3Here, we assume SUs use energy detection for spectrum sensing.

define d;(¢) as the actual time needed to satisfy the traffic

M .
demand of SU i. Then, min( )" =/, d;(€)) represents the traf-
j=1

M .
fic delivery time of SU i. Specifically, when d;(§) < Y a7,
j=1

which indicates that the time for delivering the traffic c{emand
is less than the transformed available spectrum supply. Then
SU i will only in transmit d;(§) to meet its service demands.
On the other hand, if transformed available spectrum supply

M .
for SU i is less than its real demand, i.e., > xf < d;i(&),
j=1

M .
then SU i will deliver in Y z. The utility function of SU
j=1

iis Usy,(di(€)) = bEp, (min(% #lw!, d;(€))). In the net-
=1

work model, the SUs who do ]not interfere with each other
can deliver the traffic on the same spectrum simultaneously.
Let wg denotes the accessing status of SU i€ N to band
J€ M, where wg = 1 indicates that SU i is opportunistically
transmitting over band k, otherwise 0. Given G = (V, &) con-
structed from conflict graph, suppose we can list all MISs
as S = {I1,Iy,...,Zyq,...,Zq}, where Q is |.#|, and
Iy CViorl < g < Q. Based on the definitions, assumptions
and mathematical representations of interference relationship
among SUs above, the maximization optimization of utility of
function of SUs can be formulated as follows.

N M
max b Z Ep, | min Z glwl, di(€) ] ], “)

i=1 j=1
wl €{0,1}, (ieN,jeM), 5)
YW1 (eN), (©)

JEM

wlhw =0, (i,keN,jeM,(ij) ey,
(k,j) € Ty, Ty, Zy € ¥ and u # v) (7
where wz is optimization variable, b is the SUs’ traffic deliv-

ery coefficient when SU i is given, and traffic demand d;(&)
follows the distribution IP;. Here, binary value wg indicates the
accessing status of SU i to band j, (6) means that SU i can
only access one band at a time due to the radio interference,
and (7) presents the SUs who interfere with each other cannot
delivery traffic on same band simultaneously.

The optimization above is a mixed-integer linear pro-
gramming, which is NP-hard to solve. Some previous work
proposed random algorithm for MIS search and adopted
in [30], which provides a framework to find more MISs with
more computation rounds. However, random search algorithm
is quite inefficient for a large size MR-MC network, and
could result in redundant search (i.e., getting a MIS already
found) with high chance. Li et al. [31] theoretically develop
a polynomial heuristic algorithm to compute set of MISs to
better cover the critical MISs in the conflict graph. Moreover,
Li efr al. [31] solve the multi-dimensional conflict graph in
the network to maximize capacity, which is the same as our
scenario (The PU needs to find MISs to make decision to
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accept/reject proposed SUs considering SUs’ mutual interfer-
ence and spectrum reuse). We employ the greedy algorithm
in [31] to find out a large number of MISs (e.g., the number
is Z = 10000) for approximation instead of finding out all the
MIS of G(V, &), whose complexity is O(M*N8). By employ-
ing Z MISs found in G, we can solve the relaxed optimization
in (4) by commercial solvers such as CPLEX.

B. PUs’ Operational Privacy Preserving Optimization

Based on the utility functions of PUs and SUs, we expect an
obfuscation strategy jointly considering PUs’ operational pri-
vacy preservation and the satisfaction of SUs’ uncertain traffic
demands. Regardless of the PU’s power consumption, gener-
ating more dummy signals obviously better protects the PU’s
operational privacy but reduces the available opportunistic
accessing time of the SUs, diminishing the SUs’ traffic deliv-
ery. Considering the trade-off between PUs’ privacy and SUs’
utility, we formulate the PUs’ obfuscation strategy design into
an optimization, a classic two-stage stochastic programming
(SP) problem, described as follows™:

;C(Tj—yj)

max
y7‘,lj7w
N M o
+ 0 Ep, [min| Y alw!, di(¢) | |, (8)
i=1 j=1
s.t. constraints (5), (6), and (7)
T —yj = A, )
N .
> alwl <y (10)
=1

The function min(-, -) in (8) considers the influence of PUs’
M

obfuscation strategy (. a:i wi) on the SUs’ traffic delivery

J=1
time utility. It is not accurate to just let d;(¢) denote the SUs’
traffic delivery time utility, since the total available time on

PU’s spectrum may be less than d;(¢). The function min(-, -)
M ..
in (8) returns the smaller value of z_:l arf wji and d;(&). The

constraint (10) indicates that total trjansmission time for SUs
over PU j’s spectrum should be less than the total transformed
available spectrum supply of PU j. Besides, to preserve PU
J’s operational privacy, the time period of the sent dummy
signals, i.e., T —y;, is then required to be larger than a certain
predefined privacy threshold A, which is a constant, as shown
in (9).

Due to the ambiguity in demand, it is practically difficult
to know the actual probability distribution of SUs’ demands.
In this paper, we employ a data-driven approach, i.e., the
risk-averse stochastic optimization approach (RA-SP) allow-
ing distribution ambiguity [32], to characterize the uncertainty
of SUs’ demands. Instead of deriving a true distribution for the
unknown parameter &, this optimization approach constructs
a confident set D, which allows the distribution ambiguity

4If consider operational privacy of primary user over different time period,
it can be easily extend. Particularly, y; + Ay = yp 41 + Agy1.

to be within D under a certain confidence level (e.g., 99%).
With RA-SP, considering the worst-case distribution, we can
reformulate the problem as follows.

; co(Tj - y)

N M
: : J. g g
+ g?é%;bEpimln ]Z:Ixiwi,dl(g) ,

s.t. constraints (5), (6), and (7)
T —yj = A,

N . .

J. .
in w; < Y5
1=1

We use a distance measurement proposed in [33] and [34] to
quantify the distance between two distributions. Specifically, a
predefined distance measure d(IF’?, IP;) is constructed on con-
fident set D, where ]P’? is the reference distribution estimated
from historical data, and P; is the ambiguous distribution of
SU i. The distance d and confident set D can be defined as
follows:

(1)

D= {Pi:dg (]P’?,IPZ-) < 9}, (12)
dC(Pg,]P’i) :sug/ﬂhdﬂl’?—/ﬂhdﬂ"i, (13)
€

where the distance under (-structure probability metric is
denoted by dC('7 -), the tolerance is denoted by 6, and H is
a family of real-valued bounded measurable functions on {2
(the sample space on &). Tolerance 6 is correlated to histori-
cal data size. It can be easily inferred that the more historical
data that the PU can observe, the tighter D would be, and the
closer the ambiguous distribution P; would be to IP’?. More
details of (-structure probability metric will be illustrated in
the following section.

IV. RISK-AVERSE STOCHASTIC PROGRAMMING FOR
PRESERVING TEMPORAL OPERATIONAL PRIVACY

This section is organized as follows. First, we illustrate the
construction of the reference distribution IP? for SU i. Then we
represent how to determine tolerance 6 on the amount of his-
torical data under (-structure. Finally we develop algorithms to
solve the problem with respect to different probability distance
metrics.

A. Reference Distribution

First, the reference distribution IF’? is defined as follows:

Q
1
Pz < X) = o > bao(e)(®)- (14)
g=1

Suppose we use a set of historical data {d{ (&), d3(¢), d(¢),

e d%(f )} to estimate the reference distribution Pg. We uti-
lize the empirical distribution of the historical data samples
to construct Py. To be specific, the distribution in (14), the
indicator variable 5d/8(5)(x) is equal to 1 when d,g(g) < z,
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and O otherwise. Then the reference distribution data can be
represented by its mass probability pg which is the ratio of
the number of historical data samples matching d;(§) and K,
since the supporting space is discrete.

B. Converge Rate Under (-Probability Metrics

As described in Section IV, we employ three metrics and
solve our problem under these constraints correspondingly. We
define p (x, y) as the distance between two variables x and y,
and n as the dimension of Q. P = L(xz) represents random
variables x following distribution PP. The metrics are derived
as follows.

o Kantorovich Metric: denoted as dy (IP’?, P;), H =
{h: Bl < 1}, where [[h]lp: = sup{h(z) —
h(y)/p(xz,y) : = # yin Q}. By the Kantorovich-
Rubinstein theorem. the Kantorovich metric is equivalent
to the Wasserstein metric. In particular, when 2 = R, let
d,, denote the Wasserstein metric, then

w(®r) = [ e -

—00

G(z)|de, (15)

where F' and G are the distribution function derived from
]P’? and P; respectively.

o Fortet-Mourier Metric: denoted as dFM(IP’?,]P’i),
Ho= (b |l < 1} where (Bt =
sup{h(s) — h(y)/cz,y): & # yinQ} and
cleyy) = plz,y)maz{l,p(z, a)’~", p(y, a)P~}

for some p > 1 and a € (). Note that when p = 1,
Fortet-Mourier metric is the same as Kantorovich
metric. The Fortet-Mourier metric is usually utilized
as a generalization of Kantorovich metric, with the
application on mass transportation problems.

e Uniform Metric: denoted as dy(PY,P;), H =
{1 o 4>t € R"}. According to the deﬁmtlon we have
dU(]P’ P;) = sup; [PY(z < ¢),P;(z < t)].

From the definition of metrics and relationships between
metrics under (-structure, we can derive the convergence
property and convergence rate accordingly.

For the uniform metric, the convergence rate can be derived
from the Dvoretzky-Kiefer-Wolfowitz inequality [35].

Proposition 1: The convergence rate of the uniform metric
for a single dimension case is (i.e., n= 1),

IE”(dU (P?,Pi) < 9) >1— exp(—22Q>

In [32], the converge rate of the Kantorovich metric is
shown below.
Proposition 2: For a general dimension case (i.e., n > 1).

92 Q
0 ) < > .
]P(dK (Pl,]P)l) 9) 1 exp< 5 2>
Iherefore we have P(d}( (PO P, ) < 9) >

exp(— 2@2 Q) =mn, and 6 = @/2log(1/(1 — 1))/ Q.

From the relation between the Fortet-Mourier metric and
Kantorovich metric, with Proposition 2, we can easily derive
the convergence rate of other metrics.

(16)

7)

1 —

Corollary 1: For a general dimension (i.e., n > 1), we have

IP’(dFM (P?,Pi) < 9) >1 —exp<—2§2QA2).

With the convergence rate in (16)-(18), we can calculate
the tolerance # accordingly. For instance, in the Kantorovich
metric, we assume the confidence level is 7. Therefore,
P(d, (P, P;) < 6)) > 1 — exp(—33Q) = 7 according
to (16), and 6 = @./2log(1/(1 —n)/Q). After that, we
explore how to solve the problem in (11). The sample space

(18)

is Q = {eh,¢&2,... ,fQ}. The formulation can be simplified
as:
M
max > c(T; )
j=1
M . .
+ mlnz Z bpZ min Zl‘ng, d; (&) |, (19)
Pl i=1k=1 j=1
s.t. (%), (6), (7),
Tj—yj > A (20)
N .
fowz < ¥, (21)
=1
K
> pF=1¥i=1,...,N, (22)
k*l
K
max Z hep® =" hppf < 0,%hy : [h]|c <1, (23)
k

k=1

where |h\|< is defined according to different metrics. For
the Kantorovich metric and the Bounded-Lipschits metric,
|he — hy| < p(¢*,¢Y). For the Fortet-Mourier metric, |h; —
hy| < p(¢*, ¢Y) max{1, p(¢*, a)P~1, p(¢Y, )P~ }. The con-
straints in (22)-(23) can be summarized as ;. ajyhy <
bi;, 1 =1,..., L To reformulate the constraints, we consider
the following problem:

K K
: k k
min Z hypF0 — Z hxp;, (24)
k=1 k=1
K
st > aghy <bgl=1,... L (25)
k=1
The dual problem can be formulated as:
L
min Z byug, (26)
=1
st Y agu > pf—pf VE=1,...,V, 27)

=1
where u is the dual variable. Accordingly, the problem can be
reformulated as follows:

M
mz?X Zc T

+ manprl min Zaj wz,d ,

PPl k=1
(28)
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Algorithm 1 Algorithm for Obfuscation Strategy
I: Input: Historical data d¥(¢), d9(¢), dJ(¢) from true

TABLE I
THE LIST OF NOTATIONS

distribution. Set 77 as the confident level of D. Symbol  Definition
2: Output: Objective value of the added time period of N Sets of SUs
dummy signals. M Sets of PUs
3: Obtain the reference distribution Pj(z) and tolerance § _Tj Actual temporal spectrum availability for band j
based on the historical data. Yi Transformed temporal spectrum availability for band j
4: Use the reformulation (SP-M) or (SP-U) to solve the d;(&) Required time to deliver the uncertain traffic demand of SU
(2
problem. . g Conflict Graph to characterize the interference relationship
5: Output the solution. among SUs
1% Vertex set in conflict graph G
& Edge set in conflict graph G
(SP-M) s.t. (5), 6), (7), A Independent set in conflict graph G
Tj —y >\, (29) wy l:[l)r;izl r;a;lable which indicates if SU ¢ deliver traffic on
N U Utility of PUs’ operational privacy preservation
Z xi Wg < Y4 (30) b Traffic delivery coefficient
1=1 c Coefficient of temporal privacy coefficient
K L zi Transformed spectrum availability for SU i over spectrum
dob =1 b <o, 31) band j
k=1 =1 di(&) Actual traffic time demand for SU 7 corresponding to scenario
I g
Z agu; > kaO _ p1197 Vi=1,...,N. (32) P; Real distribution of SU i traffic time demand
= P? Reference distribution of SU 7 traffic time demand
d¢ Distance of two distribution under metric ¢
For the Uniform metric, we can have the reformulation from D Confidence set
the Uniform metric definition: n Confidence level
M 0 Tolerance of the distance between two distributions
max Z C<Tj — yj) Q The sample space of &
Y,o,w =1 %) The dimension of
N K M a:Z Fransformed spectrum availability for SU i over spectrum band
+ m%n Z Z bp f min Z xlj wg’ d; (5) ’ w! Jbinary variable which indicates if SU; transmit on PU;
Pi =1 k=1 j=1 t
(33)
(SP-U) s.t. — (5), (6), (7), receiver sensitivity Pp = 10002 = 10~ W and the interfer-
Tj —y; >\, (34) ence threshold P = 6.25 x 10710 W. We set Z = 10000 as
N a sufficiently large number for the MISs.
Z xi Wg < yj, (35) The actual available time of the PU’s spectrum is T = 30
i—1 mins in a particular period 7 = 60 mins. We set the utility
K parameter for measuring operational privacy level ¢ to be 3,
Z sz =1Vi=1,...,N, (36) and the utility parameter for SUs’ traffic delivery b to be 5.
k—1 We assume that traffic demand of all SUs follows a discrete

l
Z(pfo —pik) <ON¥i=1,....,L. (37
k=1
The formulation SP-M and SP-U can be solved by CPLEX,
etc. We also summarize the algorithm for the problem in

Algorithm 1, and the detailed description of notation is in
Table L.

V. PERFORMANCE EVALUATION

For ease of illustration, in the simulations, we consider a
CR network of 1 PU and [N| = 20 SUs, where 20 nodes are
randomly deployed in a 1000x1000 m? area. Considering the
AWGN channel, we assume the noise power o2 is 10710 w
at all transmitters and receivers. Moreover, we set the path
loss factor @ = 4, the antenna parameter v = 3.90625, the

distribution with two scenarios: 10 mins and 20 mins with
probabilities 0.4 and 0.6, respectively. We use this distribution
to generate the historical data set for simulations.

First, we set the confidence level 1 to be 98% and the
size of historical data varying from 100 to 300, to study the
impact of the size of historical data. We also consider two
strategies while evaluating performance: with privacy obfus-
cating strategy (A = 15 min) and without obfuscating strategy
(A = 0). First, considering only one SU in cognitive network,
the results are reported in Fig. 3. From the figure, we can
observe that the utility of network increases as the size of
historical data increases, irrespective of the kind of metric.
The intuition behind the results incurs the value 6 decreases
as the size of historical data increases. Therefore, the opti-
mized problem in (11) becomes less conservative. We can also
see that when sample size is 300, the gaps between system
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Fig. 3. Impact of size of historical data on system utility (One SU).
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Fig. 4. Impact of size of historical data on system utility (One SU) under

different coefficient c = 1, b = 4.

utility values are small under all metrics. Moreover, we study
the performance under preserving privacy scheme. We set
A = 15 mins, which indicates that there is at least 15-minute
gap between the transformed PUs’ spectrum available time
and the actual unoccupied period of the PU’s spectrum. It
can be observed that in Fig. 3, the total utility decreases after
employing preservation privacy strategy since the PU’s opera-
tional privacy preservation is at the cost of reducing accessing
opportunities for SUs. We can observe that, as the size of
historical data increases, the system utility tends to increase
under all metric we use. It is because the value of tolerance
0 decreases as the number of historical data sample increases,
therefore, the risk-averse stochastic problem becomes less con-
servative. It is shown that the performance under uniform
metric is most influenced by the size of historical data, and
the performance under Fortet-Mourier metric is always has
the highest system utility in the simulation results. In reality,
if PUs are very conservative in the predicted distribution of
SUs’ traffic demand, it should employ uniform metric. On
the other hand, the PUs could employ Fourtet-Mourier or
Kantorovich Metric to predict the total system utility. To learn
the impact on data set and parameter, we set the different value
of coefficient (¢ = 1 and b = 4), and the different distribu-
tion (10 mins and 20 mins with probabilities 0.2 and 0.8). The
result is shown in Fig. 4 and 5. We also have some insights of
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Fig. 5. Impact of historical data on system utility (One SU) under different
distribution.
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Fig. 6. Impact of historical data on system utility (10 SUs).

the system utility under multiple SUs, || =10 in Fig. 6. We
can see that the system utility is much higher after considering
frequency reuse in the CR network. To be specific, we compare
the system utility under uniform metric for different numbers
of SUs in Fig. 7. We find that the system utility increases as the
number of SUs increases. In Fig. 8, we learn the impact of dif-
ferent numbers of SUs under different metrics. It is shown that
as the number of SUs increases, the system utility increases,
since the size of maximal independent set is larger when more
SUs are in the network. Compared to the situation without pri-
vacy preserving, the system utility is always lower with privacy
preservation scheme under all metrics. Moreover, the system
utility under uniform metric has the worst performance.

In addition, we explore the impacts of dummy signals’ time
period on the system utility. The total number of historical
samples is 300, and A is set from 10 mins to 20 mins, and
the results are shown in Fig. 9. We observe the dummy sig-
nal time period increases, the overall system utility under all
metrics decreases for chosen PU’s privacy coefficient ¢, SUS’
utility coefficient b, and confidence level. The reason is that
the contribution of PU’s privacy preservation is less important
than the deduction of the denied SUs’ traffic demands to cur-
rent system. Also, from Fig. 10, we can see that the system
utility with more SUs (JA/| = 5) in the network is always
higher than the system utility with less SUs (|JNV| = 3) under
the same dummy signals time period. However, for a more
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PU’s privacy oriented system (e.g., ¢ > b), the system utility
may increase while adding more dummy signals. For given
PUs’ and SUs’ utility parameters, the proposed scheme can
provide a design guideline for such a CR network considering
the trade-off between PUs’ temporal operational privacy and
SUs’ performance.
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VI. CONCLUSION

In this paper, we have proposed a novel obfuscation strategy
for PUs within 3550-3700 MHz, which has a joint consider-
ation of PUs’ temporal operational privacy preservation and
SUs’ uncertain traffic demands satisfaction under frequency
reuse in a cognitive network communication. We have char-
acterized the interference transmission relationship of SUs by
constructing conflict graph, and approximation algorithm to
find MISs. Moreover we have employed the data-driven risk-
averse model in our scheme to characterize SUs’ uncertain
demand based on the historical data. With such a model,
we have formulated the PUs’ temporal operational privacy
preservation problem into a risk-averse two-stage stochastic
optimization. Since the formulated problem is NP-hard to
solve, we have relaxed the integer variable and developed a
robust algorithm for solutions. Our simulation results to show
the effectiveness of the proposed scheme preserving PUs’ tem-
poral operational privacy and satisfying SUs’ traffic demands.
In the future, the research can also be extended as follows.
In our current work we considered the assumption that each
SU has only one radio interface, hence each SU transmission
pair can only access one PU. In the future, we can study the
network model with several radio interfaces for each SU trans-
mission pair. Therefore, each SU can deliver traffic on different
spectrums simultaneously. Moreover, by considering a much
more complicated distribution of SUs’ traffic demand, we are
interested in achieving the system utility that better meets the
practical circumstances. Finally, we can consider the tempo-
ral operational privacy in full duplex communication for CRN
according to [36] and [37].
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