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Abstract—The widespread adoption of mobile devices with
global positioning system enables location-based games (LBGs)
to use real world maps, while locations and objectives in LBGs
can make the progression, achievements, and virtual rewards feel
more palpable and entertaining. However, allowing location shar-
ing in LBGs gives dishonest parties opportunities to learn users’
trajectories, which compromises the users’ privacy. In this paper,
we propose a novel scheme jointly maximizing LBG players’ vir-
tual rewards while preserving their trajectory privacy. Briefly, we
first introduce a quantitative machine learning-based approach
to model trajectory inference attacks via tensor voting. Then, to
thwart this attack, we propose a tensor voting-based k-anonymous
obfuscation strategy. Considering the trajectory privacy concerns
and power constraint of hand-held mobile devices, we mathemati-
cally formulate the LBG players’ virtual reward maximization op-
timization into the mixed integer problem and develop the feasible
solutions. Simulation results and analysis show that the proposed
scheme can effectively preserve LBG players’ trajectory privacy
against tensor voting based inference attacks while maximizing
LBG players’ virtual rewards.

Index Terms—Virtual reward maximization, tensor voting, tra-
jectory privacy, obfuscation, inference attacks.

I. INTRODUCTION

R ECENTLY, the rapid development of wireless commu-
nication, the exploding growth of smart devices and the

universal use of global positioning system (GPS) have spurred
the proliferation of the location-based services (LBSs). Based
on users’ location information, LBSs offer useful features from
location-based discovery tools and smart search to games and
exercise tracking (e.g., Foursquare, Yelp, Glympse, Detour,
Gowalla, Shopkick, SCVNGR, etc.). LBSs help users keep
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up with friends, discover what is nearby, save money and un-
lock deals, play location based augmented reality games, keep
healthy habits, etc. Actually, within the last few years, LBSs
have penetrated into every corner of modern people’s daily
life, and brought us convenience. Among all LBSs, the loca-
tion based game (LBG) is a rocket-soaring business. Taking
one of the most popular LBGs, Pokémon Go [1], initially re-
leased in selected countries in July 2016, for example, it has
been widely reported that Pokémon Go surpassed 1 billion dol-
lars in revenue by February 2017 (just over six months) and
has 65 million monthly active users. By using real world maps,
LBGs make augmented reality more approachable and provide
more palpable fun to the LBG players. Those extremely addict-
ing LBGs (e.g., Pokémon Go, Ingress, Zombie Run, Resources
Games, Parallel Kingdom, etc.) have made the players become
the “snake” in Nokia Snake game, wandering around just to
maximize the virtual reward.

Despite the crazes of LBGs, LBGs’ prerequisites of players’
location sharing raise serious privacy concern. Generally speak-
ing, most LBGs require the player’s hand-held device location,
periodically report the location information to the LBG service
provider, and the location data will be stored in the servers of
the LBG provider. This implies that after accepting the terms
to share their locations, the players have no control of delet-
ing or modifying those data. Following the location reporting
mechanism above, dishonest third-party LBG servers or eaves-
dropping attackers may have chances to know the user’s reported
locations, and leverage those locations to infer the trajectory of
the user [2]. With the exposure of trajectory, the players not
only lose their privacy but also are vulnerable to various attacks,
even serious physical attacks. That is, the player’s trajectory
can be inferred in the digital world, so that his/her privacy will
be invaded in the real world. A real life example happened in
Missouri, July 2016 is that 11 Pokémon Go players have been
ripped off because of playing this LBG, as thieves learned their
trajectory and lured those victims to remote areas outside of St.
Louis. Besides robbery, more serious crimes such as sexual as-
sault, kidnapping, murder, assassination, etc. become possible
targeting specific victims at selected locations.

To prevent the crime from happening again/before it happens,
it is worthwhile to investigate how the malicious parties, either
dishonest LBG providers or eavesdropping attackers, analyze
the location data, and infer the players’ trajectories. Based on
the understanding of inference attacks, it is necessary to develop
corresponding trajectory privacy preservation schemes for LBG
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players. Meanwhile, it will be great for the LBG players to
maximize their virtual rewards in the LBGs (e.g., catching all
rare Pokémons nearby in Pokémon Go game) without any tra-
jectory privacy leakage. Besides, there is a lack of quantitative
approaches to analyze either inference attacks or the correspond-
ing privacy preservation methods in previous studies.

To address those challenges above, in this paper, we
introduce a novel trajectory inference attack model based on
tensor voting theory [3], which can quantitatively model and
analyze trajectory inference attacks. To thwart tensor voting
based inference attacks, we propose a new trajectory privacy
preserving approach. To satisfy LBG players, we further
develop a virtual reward optimization scheme under trajectory
privacy preservation and smart devices’ energy consumption
constraints. Our salient contributions are summarized as
follows.

� Different from the existing trajectory inference attacks [4],
we consider a novel trajectory inference attack model
based on tensor voting theory. Using tensor voting based
attacks, the adversary can infer LBG players’ trajectories
based on limited/partial information, e.g., just some lo-
cation data without any timestamps. As tensor voting is
robust and sensitive to Gaussian noise, the outlier loca-
tions are supposed to be filtered out after applying tensor
voting. Thus, under tensor voting based inference attacks,
those trajectory privacy preserving schemes with random
noises are not applicable.

� Against the tensor voting based trajectory inference at-
tacks, we propose a dummy-based k-anonymous trajec-
tory privacy preserving scheme. In our scheme, we choose
dummy locations from a location set which includes
Pokémon locations, gyms in the game and other candidate
locations, which is able to satisfy k-anonymous require-
ments. In order to make progress on the privacy quan-
tification of the performance of the proposed trajectory
privacy-preserving solutions, we quantify the trajectory
privacy with Euclidean distance.

� Under the trajectory privacy and energy consumption con-
straints, we formulate the game reward maximization prob-
lem, which is a mixed integer linear programming (MILP)
problem. By relaxing binary variables, we derive the upper
bound. We also propose the heuristic algorithm for feasible
solutions, and conduct computation analysis.

� Through evaluation, we show that our proposed scheme is
effective in maximizing the virtual reward of LBGs while
keeping the LBG player’s trajectory at least k-anonymous
against tensor voting based inference attacks.

The rest of paper is organized as follows. We review the
related work on location privacy and trajectory privacy in
Section II. In Section III, we present the overview of our sys-
tem. In Section IV, we propose a novel attack model based
on tensor voting theory. In Section V, we formulate the vir-
tual reward optimization problem under k-anonymous trajec-
tory privacy preserving constraints, derive an upper bound and
illustrate a heuristic algorithm to feasibly solve the problem.
In Section VI, we conduct the performance evaluation, and
analyze the obtained results. Finally, we draw conclusions in
Section VII.

II. RELATED WORK

In existing literature, there are many papers studying location
privacy. Those location privacy preserving efforts can be gener-
ally classified into three categories. The first category is sending
fake locations along with true locations of the user to the LBG
provider, which is called dummy-based location privacy preser-
vation [5]–[8]. In this case, users send dummy requests together
with the true request, hence the attacker cannot distinguish the
real location from the dummy locations. For example, in [5],
the proposed spatiotemporal correlation-aware dummy-based
location privacy protection scheme could prevent the location
information disclosure from consecutive requests. The second
category is sending a time or space obscure location to the LBG
instead of the true location of the user, which is called obfus-
cation [9]–[11]. Some schemes belonging to this category often
put the true location together with another k − 1 dummy lo-
cations in an area in order to keep the probability of finding
out the true location at 1/k, which is called location spatial
cloaking [7], [12]–[14]. Most designs with the location spatial
cloaking approach use the syntactic privacy models, which are
sensitive to inference attacks. In this case, this solution does
not provide rigorous privacy under such situations as the source
and destination of a user’s trajectory may be acknowledged, for
example, the user may post location through social media like
Facebook. For instance, in [7], with the consideration of LBS
users’ side information, the authors proposed dummy-based lo-
cation privacy preservation schemes which are able to achieve
k-anonymity. The dummy locations were chosen based on the
entropy privacy metric. The last kind of methods is the mix-zone
model [15], [16], which is first proposed to be used in location
privacy preservation in [17]. A mix-zone indicates that when
users enter the mix-zone, they can change their pseudonym to
prevent the adversary from tracking their locations.

Beyond location privacy, it is far more challenging and com-
plicated to preserve trajectory privacy. In addition, if the tra-
jectory of a user is exposed, the locations of the user may be
known by the adversary. One popular way of trajectory pro-
tection is generating dummy trajectories. For example, in [18],
two dummy-based schemes, random pattern scheme and ro-
tation dummy generation, were proposed. The first generated
dummy trajectory randomly from start to end locations and the
second one rotated the original trajectory by a location along
the trajectory. There is another technique to protect trajectory
privacy, which is trajectory k-anonymity. In [13], the authors
proposed a trajectory privacy protection scheme against seman-
tic and re-identification attacks. In the meanwhile, the conditions
of k-anonymity could be satisfied. Most work in trajectory pri-
vacy preservation only concentrates on proposing a new privacy
protection framework, and have limited concern about how to
quantify the privacy. Quantitative privacy metrics are in need,
which helps users understand to what extent the trajectory pri-
vacy is preserved.

III. SYSTEM OVERVIEW

Generally speaking, LBG players1 tend to harvest as much
virtual reward or currency as possible while playing LBGs.

1We use LBG players and LBG users interchangeably in this paper.



ZHANG et al.: CATCHING ALL POKÉMON: VIRTUAL REWARD OPTIMIZATION WITH TENSOR VOTING BASED TRAJECTORY PRIVACY 885

Although winning virtual reward entertains LBGs players, there
exist potential risks that dishonest third-party LBG servers or
eavesdropping attackers are able to analyze their location in-
formation and track their trajectories. Therefore, it is necessary
to study the methods which attackers use to infer users’ trajec-
tories. In our paper, we assume the attacker uses tensor voting
based inference attack to track the user. Therefore, we propose a
trajectory privacy preserving scheme which is able to maximize
the virtual game rewards of users. In this paper, we focus on the
trajectory privacy preservation scheme and the balance of the
game is out of the scope of our topic. Before we illustrate our
system, we list assumptions as follows:

� We assume that the attacker is an active attacker that can
access to the history data of a user in order to learn the
user’s living habits. Additionally, the attacker uses tensor
voting based inference attack, which we will introduce in
Section IV, to track the user’s trajectory.

� We take time t as the timestamp for each location from a
time set for the trajectory T = {1, . . . , t, . . . , T}.

� In our work, we assume the users report each location
along the true path together with the other k − 1 candi-
date dummy locations on the map, which can be cho-
sen as fake locations of the users. We assume the set
of locations on the real path is T R = {L1, . . . , Li}. The
set of candidate dummy locations is D = {Ld1, . . . , Ldj},
where dummy locations are chosen from a candidate set
C = {1, . . . , c, . . . , C}. The fake trajectory set is T Rd =
{TRd,1, . . . , TRd,n}, where n means the n-th fake trajec-
tory and is in the set N = {1, . . . , n, . . . , k − 1}.

� We assume the source and destination locations are pub-
licly known, because these locations can easily be identi-
fied by others. For example, if the user is a student, in the
morning, he/she should go to school from home. Moreover,
the users may share their locations via the social networks
such as Facebook, Instagram and so on. Therefore, these
two locations are easily known to the attacker. Each of the
rest of locations along the true trajectory is supposed be
reported to the service with other k − 1 dummy locations
chosen from the candidate location set D.

In Fig. 1, it is a map from PokémonFind website, which can
display Pokémons locations so as to help PokémonGo players
catch Pokémons. The yellow diamonds mean that there exists
Pokémon. The pink triangles show that there is a gym of the
game. The squares are candidate dummy locations. All of the
locations talked above are in the setD. We set different Pokémon
locations as different reward values to simulate the virtual reality
of the game. The Pokémons and gyms locations are included in
the candidate location set. As we treat the PokémonGo player as
LBG users, we would like to generate another k − 1 trajectories
to keep his trajectory k-anonymous. Besides, we would like the
LBG users to have as much virtual reward as possible along the
other k − 1 trajectories.

IV. TENSOR VOTING BASED INFERENCE ATTACKS

A. Outlines of Trajectory Inference Attacks via Tensor Voting

Tensor voting is an unsupervised data-driven methodology
to automatically infer and group geometric objects [3], which

Fig. 1. A schematic of system model inspired by Pokémon Go game.

systematically explains how to infer hidden structures like gaps
and broken parts in the trace trajectory [19], [20]. As for trajec-
tory inference attacks, the dishonest LBG servers or eavesdrop-
ping attackers may exploit tensor voting theory to infer a user’s
trajectory, because tensor voting has desired geometric prop-
erties such as smoothing continuous trajectories and bounding
boxes with minimum registration errors.

Those salient properties make tensor voting based inference
attacks superior other inference attacks [4] because the adver-
sary only needs partial/limited information to launch inference
attacks via tensor voting. For example, as shown in Fig. 2, even
without any timestamps, the adversary can still leverage the
historical/known locations to infer the user’s trajectory using
tensor voting. In general, given the collected location data of
the LBG user, the adversary can encode the normal space with
tensor representation and mathematically infer the trajectory of
the LBG user according to tensor voting theory.

In the rest of this section, we introduce the tensor voting
framework in 2-D. As shown in Fig. 2(a), attackers are able to
collect history locations of a user. With the tensor voting process,
the outlier locations are filtered out shown in Fig. 2(b). After
feature extraction, attackers can mathematically track the user’s
trajectory. Next, we will illustrate the approach to representing a
token, which is encoded with normal space. Then, we introduce
the tensor voting based inference attack procedure.

B. Second Order Representation

The structure information of an input location site can be
encoded as a tensor. According to Gestalt principles [21], the
exist of objects or shapes which are close enough indicates that
these objects probably appear as a group. The strength of each
type of visual structure, or saliency, and the preferred normal
directions can be encoded within a second order symmetric
non-negative definite tensor.

To begin with, we need to mathematically model the struc-
tures. In a N − d space, there is a set of N orthonormal basis
vectors ê1, . . . , êN , where d basis vectors from the beginning of
this set span the normal space and the rest N − d vectors span
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Fig. 2. An illustrative example of tensor voting based inference attacks.

the tangent space. The representation of the normal space in d
dimensions is

Nd =
d∑

k=1

êk êT
k . (1)

Therefore, the projection of a vector v into the 2-D normal
space should be

vn =
d∑

k=1

êk

(
êT

k v
)

=

(
d∑

k=1

êk êT
k

)
v = Ndv. (2)

In our work, we only consider 2-D with d equals to 2.
Normal space represents the structure types well, but it is

required to know how salient the structures are in order to ad-
equately model the structure. We encode saliency and normal
spaces into a second order, symmetric, non-negative definite
tensor, because the parameters are associated with the structure
type. Furthermore, the second order tensor is equivalent to a 2 ×
2 matrix, or an ellipse. The directions of two eigenvectors are the
axes directions of the tensor. The major axis of the ellipse is the
preferred normal orientation of a potential curve going through
the location. The size of the ellipse indicates the certainty of
the preferred orientation. An arbitrary second order, symmetric,
non-negative definite tensor can be decomposed as:

T =
d∑

i=1

λi êi êT
i , (d = 2)

= λ1ê1êT
1 + λ2ê2êT

2

= (λ1 − λ2) ê1êT
1 + λ2(ê1êT

1 + ê2êT
2 ), (3)

where λi are the eigenvalues and êi are the corresponding eigen-
vectors. We further define

s = λ1 − λ2, (4)

as the saliency of the tensor. In (3), the first term refers to the
stick tensor, which shows the elementary curve token with the
eigenvector ê1 as the curve normal direction. The second term
corresponds to the ball tensor that indicates a structure which
has no preference of normal orientation or an intersection where
two or more paths cross with each other. Therefore, if λ1 − λ2

is much larger than λ2, it means the stick tensor is dominant

Fig. 3. Token refinement.

and infers that the curve goes through this token has a normal
direction parallel to the orthonormal basis vector ê1. When λ1 is
approximately equal to λ2, the tensor will become a ball tensor
which shows the token is a junction or out of the structure.

C. Tensor Voting in 2-D

After the input sites have been encoded with tensors, the
voting procedure is used to communicate information from each
input site, or voter, to any output site, or receiver.

Analysis begins with no information at the input sites other
than their locations. We create a token at each input site, accord-
ing to the second order representation, initialized with a unit ball
tensor indicating that no separation of the normal space from
the tangent space is yet known. The first step of tensor voting,
named as sparse voting, which is used to communicate infor-
mation among token locations, refined tokens have encoded
saliency and preferred directions of normal space at the input
sites. Major and minor axes of the ellipse in Fig. 3 align with the
preferred normal and tangent directions, respectively. The dif-
ference between the major and minor axis lengths represents the
degree to which structure at the token is curve-like. In addition,
the outliers tend to have lower saliency and are less curve-like
because they are unorganized and unlikely to conspire to form a
false structure. The second step of tensor voting is dense voting,
which means the tokens cast vote to every neighbor location
regardless of the presence of tokens. After these two steps, we
can get a dense saliency figure which shows the map of saliency.

In this subsection, we use Fig. 4 as an example to illustrate
the tensor voting procedure in 2-D. Stick vote is used in tensor
voting to transmit information about the normal direction from
a voter point O(x1, y1) to a votee point P(x2, y2). The tensors
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Fig. 4. Illustration of the stick vote.

of them after encoding can be represented by

TO = λO,1v̂O,n v̂T
O,n , (5)

where the unit normal vector of point O is v̂T
O,n =

[
0 1

]
, and

the unit tangent vector is v̂T
O,t =

[
1 0

]
. We assume the voter

and votee are connected by an arc of the osculating circle passing
through them, so the normal of the votee P is v̂P,n . In Fig. 4,
vT =

[
x2 − x1 y2 − y1

]
is the vector from voter O to votee P ,

θ is half of the central angle between P and O which is also the
angle between vector v and vector v̂O,t and α is the arc length
from point O to P . Geometrically, we can obtain normal vector
v̂P,n of votee P is

v̂P,n = v̂O,n cos 2θ − v̂O,t sin 2θ =
[
− sin 2θ
cos 2θ

]
, (6)

where half of the central angle θ is

θ = arcsin v̂T v̂n = arcsin
(y2 − y1)√

(x2 − x1)2 + (y2 − y1)2
, (7)

and arc length α is

α =
‖v‖θ
sin θ

=
[(x2 − x1)2 + (y2 − y1)2] arcsin (y2−y1)√

(x2−x1)2+(y2−y1)2

y2 − y1
.

(8)

During the voting procedure, votes are not cast equally from
a token to another. The vote will attenuate with distance, for
the sake of reducing the influence between unrelated tokens.
Additionally, the voter will not cast any vote to a receiver which
is at an angle larger than π/4 with respect to the tangent of the
osculating circle at the voter. The attenuation function can be
given empirically,

DF (α, κ, σ) = e−( α 2+ c κ 2

σ 2 ) , (9)

where κ is the curvature that can be found as

κ =
2 sin θ

‖v‖ =
2(y2 − y1)

(x2 − x1)2 + (y2 − y1)2
, (10)

c is the penalty for curvature and the σ is the only parameter that
the user can change to set the scale of voting. The parameter c is
also used to control the degree of decay with curvature, which
is set to: c = −16 log(0.1)(σ−1)

π 2 . We can find that the attenuation

Fig. 5. Euclidean distance based trajectory privacy metrics.

function is a normal distribution function which is correspond-
ing to a real number. The stick vote cast from voter O to votee
P is as the following,

VO,P = DF (α, κ, σ)v̂P,n v̂T
P,n , (11)

which is also a stick tensor. Finally, stick votes received at a
votee P are the sum of votes cast by all the input tokens. We
assume that there are k locations in a set K on the map. The
votes received by a votee P can be represented as

VP =
∑
x∈K

Vx,P , (12)

where Vx,P is the vote point x cast to point P . Because the vote
is also a stick tensor, equation (12) can be decomposed by (3)
as following

TP = (λP,1 − λP,2)v̂P,n v̂T
P,n

+ λP,2(v̂P,n v̂T
P,n + v̂P,t v̂T

P,t). (13)

V. VIRTUAL REWARD MAXIMIZATION WITH TRAJECTORY

PRIVACY PRESERVATION

In this section, we demonstrate our virtual reward maxi-
mization scheme with trajectory privacy against tensor voting
based inference attacks. In Subsection V-A, we will propose our
formulation for game reward maximization problem. Because
the formulated problem is a mixed integer linear programming
(MILP) problem, we will give the upper bound for the prob-
lem in Subsection V-B. So as to solve the formulated problem
efficiently and effectively, we will manifest a heuristic algo-
rithm for the feasible solution and analyze the complexity of the
algorithm in Subsection V-C.

A. Game Reward Maximization Problem

We assume the user is a LBG player. For the purpose of
defending the tensor voting based inference attack, we propose
our scheme shown as Fig. 1. The user reports to the game service
each true location point along the actual trajectory together with
the other k − 1 dummy locations.2 Based on the tensor voting
analysis, we are supposed to make sure that the saliency of
dummy tensors are sufficiently large to form fake trajectories.
With tensor voting based inference attack, the attacker cannot
distinguish fake trajectories from the actual one. In addition,
the battery cost of the player’s mobile device is considered as a
constraint. Hence, we formulate the game reward maximization
problem, while preserving the player’s trajectory privacy.

2We assume that the LBG user will send out the true location together with
k − 1 dummy locations simultaneously to obfuscate the adversary.
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1) Method of Choosing Candidate Locations: As for a
PokémonGo player, the candidate locations can be chosen from
Pokémon locations, gyms of the game or other dummy locations.
In Fig. 1, the squares, diamonds and triangles are regarded as
the candidate locations. As we illustrate in Section III, we as-
sume the set of candidate dummy locations is D. The dummy
locations are chosen from a candidate set, which is C. The time
set is T . For choosing the candidate location, we denote

wt
j =

{
1, if Ldj is chosen at t,

0, otherwise,

for
∑
t∈T

∑
j∈C

wt
j ≥ (k − 1) · (T − 2)

and
∑
j∈C

wt
j ≥ k − 1, (14)

where T is the total number of time slots of the whole trajec-
tory. Like we illustrated before, we assume the source and desti-
nation locations are published, to guarantee the k-anonymity,
the sum of the selected candidate location should be larger
(k − 1) · (T − 2). Moreover, during one time slot, more than
k − 1 candidate locations from the set can be chosen to satisfy
k-anonymity level, which is shown as (14).

2) Euclidean Distance: In order to quantity the trajectory
privacy in a mathematical way, we define the location along the
true trajectory at timestamp t is Lt

i , and similarly the dummy
location along the n-th fake path at timestamp t is Lt

dj,n . The
location Lt

i can be represented as a triple-tuple (xi, yi , t). Con-
sequently, we can get the Euclidean distance between the two
locations at the same timestamp as follows,

Eu(Lt
i , L

t
dj,n ) =

√
(xt

i − xt
dj,n )2 + (yt

i − yt
dj,n )2. (15)

After processing the locations with our scheme we illustrated in
Section III, the adversary is able to get k sets of locations, which
are the dummy trajectories T Rd,n . In our work, the source
and destination locations are overlapped by true and dummy
trajectories, and hence we can define the trajectory privacy as

TP (T Rd,n , T R) =
T −1∑
t=2

Eu(Lt
i , L

t
dj,n ). (16)

So as to preserve trajectory privacy of the player, the difference
between each fake trajectory and the true trajectory should be
larger than a threshold value, which is shown in (17).

TP (T Rd,n , T R) ≥ TPT H . (17)

Here, the threshold TPT H is supposed to be set not that large,
hence different trajectories cannot be distinguished, in the mean-
while the true trajectory will not be found apart from the other
k − 1 trajectories.

3) Energy Consumption Constraint: When we generate the
plain text and transmit it through the wireless network, there
is energy consumption. Because our scheme is used in mobile
devices and there is a limited power usage, we need to consider
the power usage when processing the our scheme. The extra
energy consumption is from generation and transmission of the

dummy locations. It is supposed to guarantee that after carrying
out the scheme, the battery life time is still long enough for other
use. Therefore, the energy consumption constraint is shown as
follows:

Q −
∑
j∈C

wt
j · PE > QT H , (18)

where PE is the energy consumption of generating and trans-
mitting one dummy location, Q is the original battery capacity
and QT H is the threshold of the rest of capacity after conducting
the scheme.

4) Game Reward: In our proposed scheme, we would like
to maximize the total game reward when the user if playing
location-based games, such as PokémonGo. According to the
real game data, we set different Pokémon locations with dif-
ferent reward values, which are represented as rj with j ∈ C.
Accordingly, the total reward of the game after applying our
scheme is shown as

R =
∑
j∈C

(rj · wt
j ). (19)

5) Tensor Voting Constraint: As illustrated in Section IV,
we take tensor voting analysis to launch trajectory inference
attacks. So as to hide the true path, after processing with tensor
voting, the saliency of dummy locations should be larger than
an upper bound threshold value sT HH

. From Subsection IV-C,
we can obtain the tensor of location L after voting procedure
can be represented as following

TL = (λL,1 − λL,2)v̂L,n v̂T
L,n

+ λL,2(v̂L,n v̂T
L,n + v̂L,t v̂T

L,t). (20)

As defined in Subsection IV-B, the saliency of the tensor of
location L should be

sL = λL,1 − λL,2. (21)

Accordingly, the saliency of the locations along the dummy
trajectory can be represented as sLdj

. Hence, with the aim of
mixing the true and dummy trajectories, the saliency of each
dummy location needs to satisfy

wt
j · sLdj

≥ wt
j · sT HH

(j ∈ C). (22)

In addition, based on tensor voting theory, we can also get the
maximum distance dmax from the voter to the votee. Normally,
if the vote cast from the voter only has 1% of the voter’s saliency,
as e−(dm a x

2/σ 2) = 0.01, the votee is considered far from the
voter.

6) Problem Formulation: Given the proposed trajectory pri-
vacy preservation approach above, the formulation for the
LBG user’s reward maximization problem can be described as
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follows,

Maximize : R

s.t. : (17), (18), (19), (22)

wt
j = {1, 0} (j ∈ C),∑

t∈T

∑
j∈C

wt
j ≥ (k − 1) · (T − 2),

∑
j∈C

wt
j ≥ k − 1, (23)

where wt
j is the optimization variable and all of other parameters

are constants illustrated before. Trajectory privacy is guaranteed
by the constraint (17), which is obtained by Euclidean distance
between locations on true and fake trajectories.

B. The Upper Bound for Trajectory Privacy Optimization

The formulated trajectory privacy maximization problem is
an MILP problem, which is NP-hard to solve in general [22],
[23]. The complexity of the optimization results from the integer
parameter wt

j . We can relax the binary variable wt
j from {0, 1}

to real numbers in [0, 1], according to the methodologies in [23].
In this case, the complexity of this optimization problem will be
reduced obviously. After relaxing the integer variables, we can
explore an upper bound for the formulated problem. As a result,
the MILP problem is converted into a linear programming (LP)
problem, which can be obtained in polynomial time and solved
using CPLEX [24].

C. The Heuristic Algorithm for Feasible Solutions

As illustrated in Subsection V-B, we are able to get the upper
bound for the proposed problem as the benchmark, nevertheless
we still explore for an effective and feasible solution. In this
subsection, we will describe our heuristic algorithm to solve
this optimization problem.

It is obvious that if all the dummy locations in the set D
are determined to be chosen or not, which means all of the
wt

j -variables are decided, the proposed trajectory privacy max-
imization problem will become an LP problem. In this case,
we first relax binary wt

j -variables to 0 ≤ wt
j ≤ 1, and hence the

problem is converted to an LP problem. This LP problem can be
solved by several mathematical tools, so we are able to achieve
the feasible solution that every wt

j -variable should be a decimal
value between 0 and 1. All wt

j with decimal values are put into
a set Wt

j . If all of the fractional values are smaller than 0.5, we
fix the minimal value of wt

j , represented as wt
n , to 0. Otherwise,

there should be a maximal value of wt
j values, which is assumed

to be represented as wt
m , and then we set wt

n to 1. Subsequently,
we can relax the rest of wt

j -variables and perform an updated
LP problem as above. The procedure of the heuristic algorithm
is shown in Algorithm 1. Upon iterations of solving the updated
LP problem, we can fix all the wt

j -variables. After fixing wt
j -

variables, the original MILP is converted into an LP and can be
feasibly solved.

After the description of the heuristic algorithm for the pro-
posed problem, we analyze and compare the complexity of the
optimization solution of the MILP problem formulation and
the feasible solution with the heuristic algorithm. In this MILP
problem, there is one binary variable wt

j for j ∈ C. Therefore,
the possible combinations of wt

j is 2C . As said, considering all
of wt

j are fixed, the MILP problem will become an LP problem.
According to [25], we can find that the intrinsic computational
complexity of an LP problem is O(A3 · L), where A is whether
the number of constraints or variables in the problem depending
on which one is larger, and L is the number of binary bits re-
quired to store the data, which is the input length of a situation
of the proposed problem. The number of variables is C2, which
is larger than the number of constraints C, the complexity of
solving this LP problem is O(C6 · L). Consequently, the com-
putational complexity for the optimal solution of the proposed
MILP formulation is O(2C · C6 · L). Now, we continue to ana-
lyze the computational complexity of our heuristic algorithm. As
illustrated before, we relax and fix the wt

j -variable by iterations.
In order to determine all the wt

j -variables, we repeat doing iter-
ation. The complexity for the iteration procedure is O(C) and
the complexity for the LP problem is O(C6 · L), which results
in the overall complexity is O(C · C6 · L). Obviously, the com-
putational complexity is significantly reduced compared with
the optimal solution with complexity O(2C · C6 · L).

VI. PERFORMANCE EVALUATION

A. Simulation Setup

In the simulation, we used one user’s GPS trajectory data
from GeoLife dataset [26]. GeoLife dataset was collected by a
project of Microsoft Research Asia from 182 users over three
years. In the project, users reported their location to the ser-
vice provider very frequently by every three or five seconds.
In addition, the users’ location information was recorded in the
dataset by tuples of latitude, longitude and timestamp. We ran-
domly choose one user’s partial trajectory from the dataset and
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Fig. 6. Game reward with constant σ value and different k values.

evaluate the performance of our proposed scheme. We extract
10 locations of the selected user’s trajectory every ten seconds
and grant 100 dummy locations which are distributed around
this trajectory area. By analyzing the extracted data, the user
was walking from the source location to destination location.
The speed that people tend to choose to walk is the preferred
walking speed of human. Most people’s preferred walking speed
is around 1.4 m/s. However, some people’s walking speed can
also achieve to 2.5 m/s for a short distance [27]. As illustrated
in Subsection IV-C, the decay function is a normal distributed
function. To make the vote cast from other location higher than
1% of the voter’s saliency, the maximum distance, say dmax ,

between two locations should satisfy e−( d 2
m a x
σ 2 ) = 0.01, which

can be simplified as dmax ≈ 3σ. Compared with the walking
speed of human, we are able to set the tensor voting parameters
σ as 5, 6 or 7. Given σ values, the maximum distance between
two selected candidate locations are feasible to calculate when
the user is walking. In addition, we generate different reward
values for different locations on a designated map from GeoLife
dataset.

B. Privacy and Performance Analysis

In our work, we generate k − 1 trajectories to obfuscate the
attackers. With the higher k value, the higher trajectory privacy
can be achieved. Since the proposed scheme is used to preserve
trajectory privacy against tensor voting based attack, we need
to analyze LBG users’ privacy preservation by launching this
kind of attack. As there are two parameters σ and k in our
scheme when optimizing the problem, we first evaluate the re-
lation between both parameters. In the tensor voting procedure,
σ is a parameter to control the scale of voting, which affects
the saliency value of locations. The parameter k indicates that
there are k trajectories in the region, among which k − 1 trajec-
tories are generated by candidate dummy locations. As shown
in Fig. 6, we set σ as fixed values and compare the game reward
with different k values along trajectories with different lengths.
We find that game reward is higher with longer trajectories and
larger k values, because of the increased number of locations.
Additionally, with smaller σ value, the optimized game reward
decreases as well, since it has influences on tensor voting con-
straint of the formulation, when the voting scale σ is small. In
Fig. 7, the k value is fixed and we evaluate the relation between

Fig. 7. Game reward with different σ values and constant k value.

σ and game reward. The results show that the differences of
game reward between σ = 7 and σ = 6 are negligible. From
the results shown in Fig. 6 and Fig. 7, we observe that game re-
ward grows with higher k value and when trajectory gets longer,
the impact of parameter σ can be ignored. The simulation re-
sults show that our scheme can preserve k-anonymous trajectory
privacy against tensor voting based inference attack, while the
LBG player is able to achieve more virtual game reward.

Moreover, we compare the performance of the proposed
scheme with random and rotation [18] schemes. In the ran-
dom scheme, the source and destination locations are the same
along true and dummy trajectories. We randomly choose dummy
locations from the same candidate dummy location dataset as
used in our scheme to generate fake trajectories which is able
to satisfy the requirement of human walking speed constraints
as described before. Since the source and destination locations
are public, we abuse the rotation scheme a little bit to fit this
scenario. Here, only the locations except source and destination
locations along true trajectory are rotated and the rotation point
is the center of the trajectory. Furthermore, we limit the rotation
angle in order to keep the distance between locations along a
trajectory to satisfy the walking speed of human as well.
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Fig. 8. Impact of k values on game reward among rotation, random, and our
scheme with σ = 7.

Fig. 9. Impact of trajectory length on game reward among rotation, random,
and our scheme with σ = 7.

Through simulations, we compare the performances of ran-
dom, rotation and our scheme with σ = 7. In Fig. 8, we evaluate
the impact of k values when there are 10 locations along the true
trajectory. The result shows that our proposed scheme is superior
to either random or rotation schemes in terms of virtual reward
harvesting. In Fig. 9, we evaluate the impact of trajectory length
with k = 6. With longer trajectory, the virtual reward achieved
by our scheme is also much higher than the other two schemes.

VII. CONCLUSION

In this paper, our motivation is to address the LBG players’
trajectory privacy problem. We first introduced a novel tensor
voting based inference attack. To thwart this inference attack, we
proposed a dummy-based k-anonymous trajectory privacy pre-
serving approach, which is able to quantify trajectory privacy by
Euclidean distance and meet k-anonymity requirements. Since
our target is on LBG players, the virtual game reward is con-
sidered in the problem. Specifically, we have mathematically
formulated the LBG users’ virtual game reward maximization
problem under privacy, tensor voting and hand-held devices’
energy consumption constraints. Due to the NP-hardness of the
formulated problem, we have developed heuristic algorithms

for feasible solutions. Through extensive simulations, we have
shown that the proposed scheme can effectively maximize the
game reward of LBG players while keeping LBG user’s tra-
jectory k-anonymous against the tensor voting based inference
attack.
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