

1 Article

2 Biocompatible Cantilevers for Mechanical 3 Characterization of Zebrafish Embryos using Image 4 Analysis

5 **Yuji Tomizawa ¹, Krishna Dixit ¹, David F. Daggett ² and Kazunori Hoshino ^{1,*}**

6 ¹ Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut, United States of
7 America

8 ² Department of Molecular & Cell Biology, University of Connecticut, Storrs, Connecticut, United States of
9 America

10 * hoshino@engr.uconn.edu

11 Received: date; Accepted: date; Published: date

12 **Abstract:** We have developed a force sensing system to continuously evaluate the mechanical
13 elasticity of micrometer-scale (a few hundred micrometers to a millimeter) live tissues. The sensing
14 is achieved by measuring the deflection of force sensitive cantilevers through microscopic image
15 analysis, which does not require electrical strain gauges. Cantilevers made of biocompatible
16 polydimethylsiloxane (PDMS) were actuated by a piezoelectric actuator and functioned as a pair of
17 chopsticks to measure the stiffness of the specimen. The dimensions of the cantilevers were easily
18 adjusted to match the size range and stiffness of the zebrafish samples. In this paper, we
19 demonstrated the versatility of this technique by measuring the mechanical elasticity of zebrafish
20 embryos at different stages of development. The stiffness of zebrafish embryos was measured once
21 per hour for 9 hours. From the experimental results, we successfully quantified the stiffness change
22 of zebrafish embryos during embryonic development.

23 **Keywords:** stiffness analysis; force sensor; Zebrafish embryo; Biosolid Mechanics; Soft Lithography
24

25

26 **1. Introduction**

27 The study of three-dimensional micro-mesoscale (100 μm – 1 mm) tissues, such as multicellular
28 spheroids [1-6], tissue organoids [7-11], and animal embryos [12-14], is a topic of recent interest. The
29 study of biomechanics in such tissues can provide a deeper understanding of the differentiation,
30 migration, and proliferation of cells. Commercially available atomic force microscopy (AFM) has
31 already shown success in the mechanical characterization of single cells [15,16] and flat tissue sections
32 [17]. However, the sensing cantilever of the AFM only operates in a limited degree of motion and is
33 not suitable for the study of fully three-dimensional tissues at the micro-mesoscale. Several
34 microfabricated silicon cantilevers integrated with piezoresistive strain gauges have demonstrated
35 the versatility needed for force sensing [18-21] and micromanipulation [22,23]. However, the
36 lithography-based fabrication process required to make the force sensitive cantilevers expensive,
37 limiting their use in biomedical applications where low cost disposable components are desired.

38 Here we propose a force sensor system based upon microtweezers modified from our previous
39 study [24]. The microtweezers consist of two arms connected by a flexible plate, which is displaced
40 by a piezoelectric bimorph actuator. A microcantilever that functions as a force sensitive tip was
41 attached to each of the two arms. When the tweezers compress a sample, the bending of the tweezer
42 tips and the indentation of the sample are measured by tracking microscopic images. The measured

43 displacements and the known stiffness of the cantilever provide the information needed to find the
44 sample stiffness. The main advantage of our system is that the tweezer tips do not require any active
45 force sensing elements and their bending is simply monitored through microscopic observation. The
46 force sensing tips can easily be changed to match experimental conditions or target objects. In our
47 previous study, we fabricated SU-8 force sensing tips by photolithography. However, SU-8 is not an
48 FDA-approved biocompatible material [25], and it may not be widely acceptable to study the growth
49 of live cells or tissues. In this study, we used a precision cutting machine to cut a
50 polydimethylsiloxane (PDMS) film into the shape of the force sensing tips. PDMS is an FDA
51 approved, commonly-used material for biological and biomedical applications because of its
52 advantageous properties including biocompatibility along with easy and low-cost fabrication.

53 We demonstrated the efficacy of our biocompatible force sensitive cantilevers by studying the
54 growth of zebrafish embryos. zebrafish (*Danio rerio*) are one of the most popular vertebrate animal
55 models in biomedical studies because they are easy to keep and breed, they grow at a fast rate
56 compared to other vertebrate animal models (several days), and their transparent body at the
57 embryonic and larval periods allows researchers to observe their internal structure [26,27]. The
58 zebrafish embryo is thus an excellent platform to study the development and formation of functional
59 tissues and organs in vertebrates. Zebrafish development is traditionally divided into several periods
60 from the 1-cell stage to 72 hours post fertilization (hpf), with distinct and well-characterized
61 morphological structures forming in each [28]. During the segmentation period (10 – 24 hpf),
62 sequential groups of mesodermal cells undergo a striking mesenchymal to epithelial transition about
63 every 30 minutes as they form the somites, in which the dermis, vertebrae, and skeletal muscle begin
64 to differentiate [29]. We therefore hypothesized that significant stiffness changes occur during the
65 segmentation period and measured the stiffness of the embryos hourly for 10 hours to observe
66 changes over this time.

67

68 2. Materials and Methods

69 2.1. Design of the system

70 2.1.1. Microtweezers

71 The microtweezers are comprised of two tweezer arms, each having a cantilever fixed to the
72 ends as the force sensing tip (Figure 1a). The tweezer arms are connected to each other by a flexible
73 plate spring. The tweezer arms and the flexible plate spring were designed using SolidWorks®, and
74 the entire body was 3D printed through selective laser sintering (SLS) using nylon powder
75 (Shapeways, NY). A single bimorph piezo actuator (Steminc, FL) was set between the moving arm
76 and the tweezer body. When a voltage is applied, the piezo actuator bends and pushes the circular
77 fulcrum of the moving arm rotating the moving arm about the center of the plate spring. The
78 cantilevers were attached to the tweezer arms using cantilever holders (Figure 1b). The cantilever
79 holders were milled using monoFab SRM-20 Compact Milling Machine (Roland DGA Corporation,
80 CA), and the adjustable holders were 3D printed through stereolithography of UV curable acrylic
81 polymer (Shapeways, NY) which can print out structures at a higher resolution than nylon powder.

82

83

84

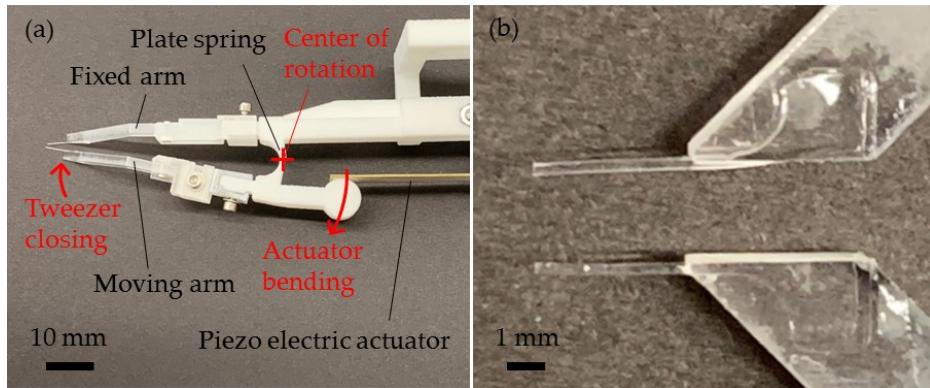
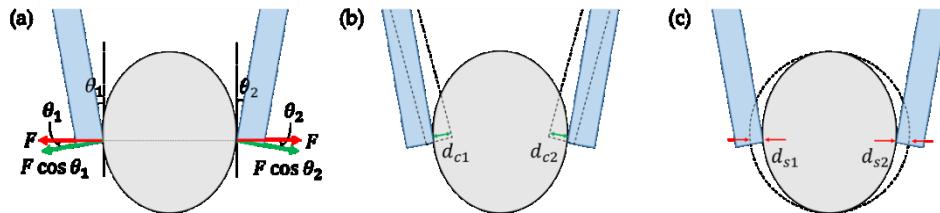


Figure 1. Photographs of the microtweezers. (a) The microtweezer system, (b) PDMS cantilevers attached on the acrylic cantilever holders.

2.1.2. Principle of force sensing

A sample is placed between the two cantilevers of the microtweezers. When the cantilevers compress the sample, the sample is deformed and the cantilevers are bent by the applied forces. From Hook's law, the forces applied in the microtweezer system are described as the following:

$$\begin{cases} F_1 \cos \theta_1 = k_{c1} d_{c1} \\ F_2 \cos \theta_2 = k_{c2} d_{c2} \end{cases}, \quad (1)$$


where the numbers 1 and 2 indicates the cantilever on the left and the right respectively, F_1 and F_2 are the applied forces, θ_1 and θ_2 are the angles between the cantilevers and the tangent lines of the sample (Figure 2a), k_{c1} and k_{c2} are the spring constant of the cantilevers, and d_{c1} and d_{c2} are the displacement of the cantilevers (Figure 2b). Biological tissues are non-uniform composite materials which can be modeled as an assembly of multiple segments as will be discussed in the results section. However, it is practical to model the embryo as a simple spring because it indicates a clear force-displacement relationship and allows us to design cantilevers that better-match the sample stiffness. When we assume that the stiffness is uniform along the sample and the applied forces at the two cantilever sides are balanced, we can use the resulting equation $F_1 = F_2$ to obtain the following relationship between the forces applied by the cantilevers and the sample indentation:

$$F = k_s d_{s1} = k_s d_{s2}. \quad (2)$$

Where, k_s is the spring constant of the sample on each side, and d_{s1} and d_{s2} are the sample indentations on the left and the right, respectively (Figure 2c). In our study, we measured the total sample indentation $D_s = d_{s1} + d_{s2}$, and the cantilever bending of the fixed arm d_{c1} . From these measurements, sample stiffness k_s can be calculated by the following equations:

$$k_s D_s = 2F = \frac{2k_{c1} d_{c1}}{\cos \theta_1} = \frac{2k_{c2} d_{c2}}{\cos \theta_2}, \quad (3)$$

$$k_s = \frac{2k_{c1} d_{c1}}{D_s \cos \theta_1} = \frac{2k_{c2} d_{c2}}{D_s \cos \theta_2}. \quad (4)$$

115

116 **Figure 2.** Force sensing by the microtweezers. (a) Force diagram.
 117 (b) Deflections of the cantilevers. (c) Sample indentations

118 2.1.3. Stiffness analysis using pattern matching and tracking

119 In order to measure cantilever bending and sample indentation, we used pattern matching and
 120 tracking of the optical images using a custom MATLAB program. While a sample is compressed by
 121 the microtweezers with N steps, the sample images of each steps were taken by a charge-coupled
 122 device (CCD) camera. An image tile of 50×50 pixels was chosen at the edge of the cantilevers from
 123 the first image, and a scan area of 100×100 pixels was searched in the second image by the pattern
 124 matching algorithm to find the best matching area of the image tile in the first image. In the algorithm,
 125 the dot product of the normalized target vector (the chosen image tile, $50 \times 50 = 2500$ elements)
 126 and a normalized subset vector ($50 \times 50 = 2500$ elements) of the scan area was calculated as the
 127 subset area. The subset vector sweeps the scan area, and when it gives the maximum dot product
 128 with the target vector, it is defined as the best matched area in the second image. Once the best
 129 matched area is defined in the second image, it is updated as the new target vector and the scan area
 130 in the third image is searched. This process is repeated for N steps, and the movement of the target
 131 image tile is calculated in pixels. In this experiment, we measured the displacement of the cantilevers
 132 and sample indentations in pixels and converted the measurements to millimeters.

133 2.2. Cantilever

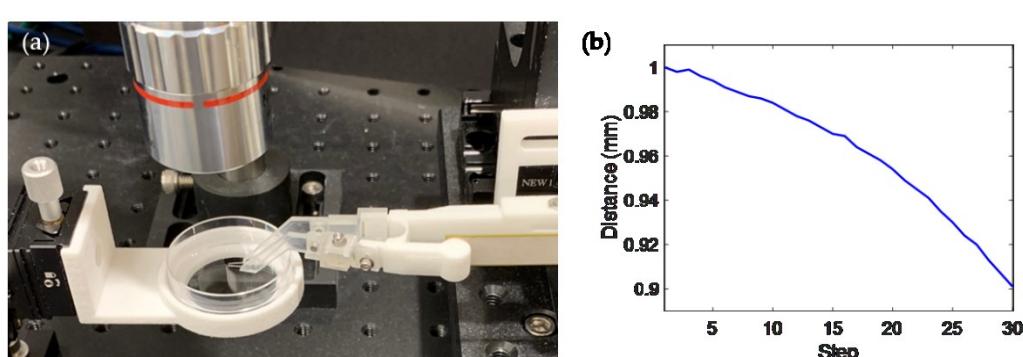
134 2.2.1. Cantilever fabrication

135 The cantilevers were fabricated from a thin film of Polydimethylsiloxane (PDMS). First a Sylgard
 136 184 Silicone Elastomer base and a curing agent (Dow Corning, MI) were mixed at a weight ratio of
 137 8 : 1. We added more curing agent than the typical mixing ratio of 10 : 1 because stiffer PDMS retained
 138 better shapes when cut into small pieces. The PDMS mixture was spin coated on a glass slide at a
 139 speed of 500 rpm at an acceleration of 300 rpm/s for 60 seconds. It was then cured at 120 °C for 1 h.
 140 The fabricated PDMS film with a typical thickness of about 180 μm was cut to cantilevers of length 4
 141 mm and width 300 μm by using a Silver Bullet Cutter (Silver Bullet Cutters, MN). The cantilevers
 142 were attached to the cantilever holders by using a drop of PDMS mixture as a glue.

143 2.2.2. Cantilever calibration

144 The dimensions of the cantilevers were designed so that the cantilevers would be sufficiently
 145 soft for stiffness analysis of zebrafish embryos. The spring constant of a cantilever is given by the
 146 following equation:
 147

$$148 \quad k = \frac{3EI}{L^3}, \quad (5)$$

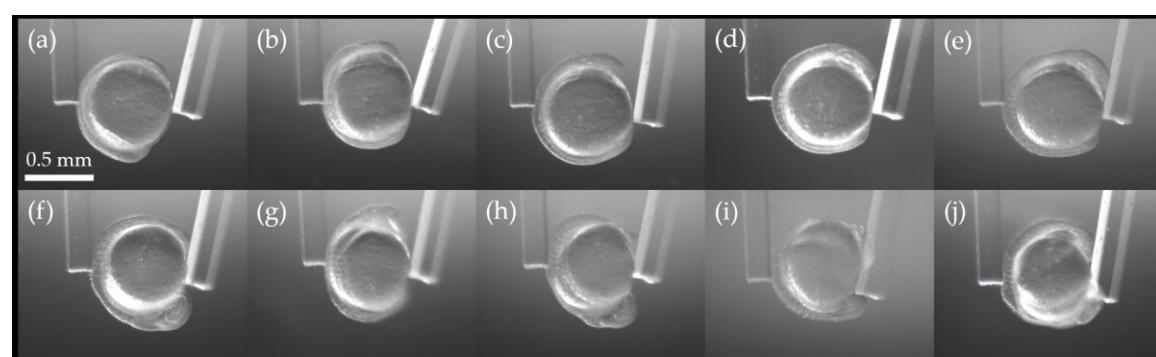

149 where E is the Young's modulus of the cantilever, I is the second moment of area, and L is the
 150 cantilever length. For a rectangular cantilever, the second moment of area is given as $I = \frac{WT^3}{12}$ with
 151 the cantilever width W and thickness T . Equation (5) can then be written as:
 152

$$153 \quad k = \frac{EWT^3}{4L^3}. \quad (6)$$

155 According to the literature, the typical Young's modulus of PDMS with a mixing ratio of 10 : 1 is
 156 around several hundred kPa to several MPa, and it depends upon various factors such as curing
 157 temperature, curing time, and so forth [30-33]. Therefore, cantilever calibration was necessary to
 158 know the actual spring constant of the fabricated cantilevers. In the calibration, a cantilever made of
 159 Polyethylene terephthalate (PET) was used as a reference cantilever. The dimensions of the
 160 reference cantilever were $L \times W \times T = 20 \text{ mm} \times 1 \text{ mm} \times 0.13 \text{ mm}$. First, the spring constant of the
 161 reference cantilever was measured by using a load cell rated for 20 gf. The load cell was fixed to a
 162 stepper motor and pushed the tip of the reference cantilever while it moved down in 10 steps with
 163 about 0.4 to 0.5 mm per step. The applied force was measured by the load cell and the deflection of
 164 the cantilever was observed by a CCD camera as it was being bent. After obtaining the spring
 165 constant of the reference cantilever, the spring constant of the PDMS cantilevers were obtained in a
 166 similar way using the reference cantilever. The PDMS cantilever was fixed on a stepper motor and
 167 pushed the reference cantilever tip-to-tip while it moved down in 20 steps with about 0.07 mm each
 168 step. The bending distances δ_{ref} and δ_c of the reference and the PDMS cantilevers, respectively
 169 were observed by a 1288×964 pixel CCD camera (FLIR blackfly). The force applied to the PDMS
 170 cantilevers were calculated from the spring constant and the displacement of the reference
 171 cantilever, providing the spring constant of the PDMS cantilevers. Using the ratio of δ_{ref} over δ_c
 172 and spring constant of the reference cantilever k_{ref} , the cantilever stiffness k_c can be found as
 173 $k_{ref} \cdot \left(\frac{\delta_{ref}}{\delta_c} \right)$.

174 2.3. Experimental setup

175 Figure 3a shows our experimental setup. A microscope composed of a 1288×964 pixel CCD
 176 camera (Point Gray) and an M PLAN APO 5X/0.14 objective lens (MITUTOYO) were used. An
 177 Arduino® Uno board was used as the serial communication interface for microtweezer
 178 opening/closing control. The input voltage of -45 V to +45 V was supplied from the Arduino board
 179 through a high voltage amplifier to the piezo electric actuator according to the commands from the
 180 MATLAB program. In the experiment, 30 steps of input voltage were applied to the piezo actuator to
 181 close the microtweezers and apply indentation to embryos. Figure 3b shows a typical plot of the
 182 distance between the two cantilevers for 30 steps of input voltage.
 183


184

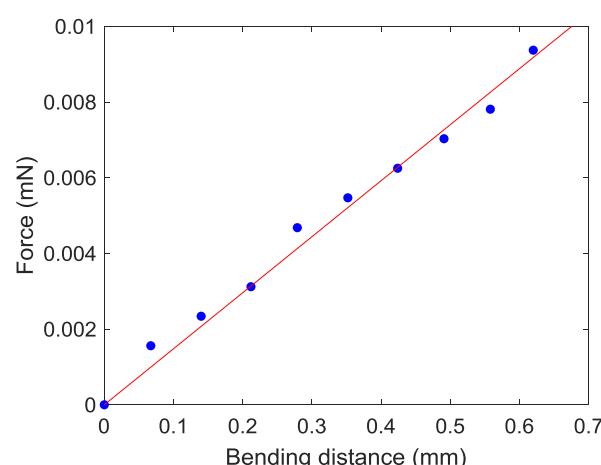
185 **Figure 3.** (a) Picture of the experimental setup, (b) plot of the distance between the two cantilevers for 30 steps.

186 2.4. Preparation of zebrafish embryos

187 Zebrafish embryos at the beginning of the Segmentation period were selected and manually
 188 dechorionated before the experiment. During the experiment, the dechorionated embryos were kept
 189 in a 35 mm tissue culture treated dish (Celltreat, MA) filled with the embryo media (13.7 mM NaCl,
 190 0.5 mM KCl, 1.3 mM CaCl₂, 1 mM MgSO₄, 4.2 mM NaHCO₃ and 0.07 mM sodium/potassium
 191 phosphate buffer, pH 7.2). The conventional zebrafish developmental staging series is based on
 192 incubation temperature of 28.5 °C, with increases or decreases in temperature of a few degrees
 193 speeding or slowing development, respectively, without detrimental effect [28]. The temperature
 194 during the experiment was approximately 25 – 27 °C. We used two zebrafish embryos (referred to as

195 Embryos 1 and 2) for the stiffness analysis. Figure 4 shows growth of Embryo 1 during the 9 hour
 196 experiment, in which the embryo developed from approximately the 3 somite stage to the 20 somite
 197 stage.
 198

199


200 **Figure 4.** Growth of Embryo 1 during the experiment. (a) - (j) are pictures at the
 201 experimental time $T = 0, 1, \dots, 9$ hours (approximately 3 to 20 somite stages).

202

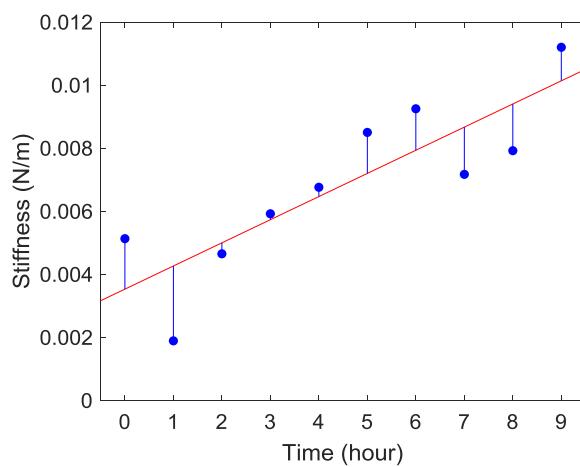
203 3. Results

204 3.1. Cantilever calibration

205 The obtained spring constant of the reference cantilever was $k_{ref} = 0.151$ N/m. From the
 206 dimensions of the cantilever ($L \times W \times T = 20 \text{ mm} \times 1 \text{ mm} \times 0.13 \text{ mm}$) and Equation (6), the elastic
 207 modulus of the reference cantilever material is approximately 2.20 GPa, which is within the observed
 208 range of the elastic modulus of PET of 2 – 2.7 GPa [34]. Figure 5 shows the force measurement
 209 corresponding to the bending distance of the PDMS cantilever we used in the study. The equation of
 210 the linear regression is $y = 1.48 \times 10^{-2}x$, where x is the bending distance of the PDMS cantilever
 211 (mm) and y is the force (mN). From the slope of the linear regression, the calibrated stiffness of the
 212 PDMS cantilever was 1.48×10^{-2} [N/m]. To evaluate manufacturing error of PDMS cantilevers, we
 213 made the identical 10 PDMS cantilevers and measured the dimension, the spring constants, and the
 214 Young's moduli of them. Table 1 shows the average and the standard deviations of the measurements
 215 among 10 PDMS cantilevers. The average Young's modulus of the 10 PDMS cantilevers was
 216 estimated to be 1.70 ± 0.77 MPa, which is within the range of reference values of 1.3 – 2.5 MPa
 217 reported in [32,33].
 218

219
 220 **Figure 5.** Force measurement of the PDMS cantilever at the fixed arm side.
 221 The red line is the linear regression: $y = 1.48 \times 10^{-2}x$ ($R^2 = 0.987$).
 222

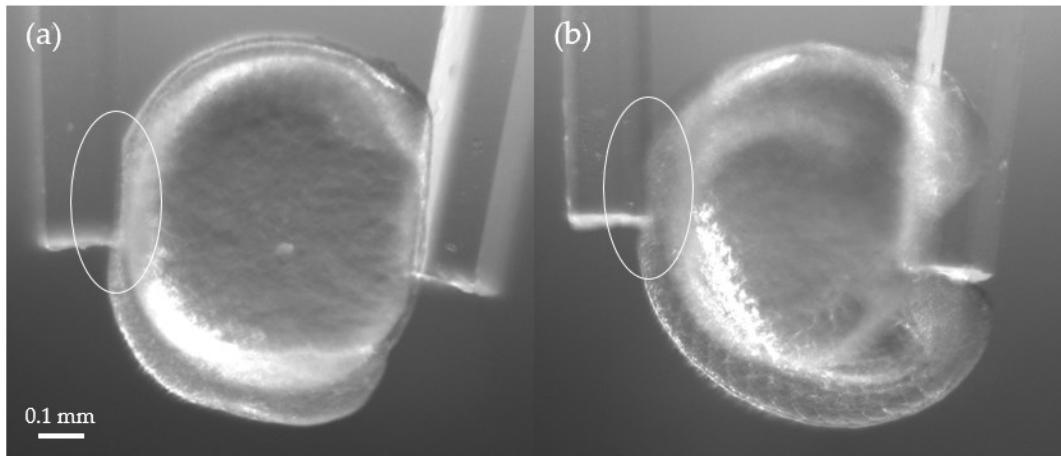
223


Table 1. Measured dimensions of PDMS cantilevers (N=10)

	Length (mm)	Width (mm)	Thickness (mm)
Average	3.47	0.261	0.183
Standard deviation	0.16	0.015	0.044

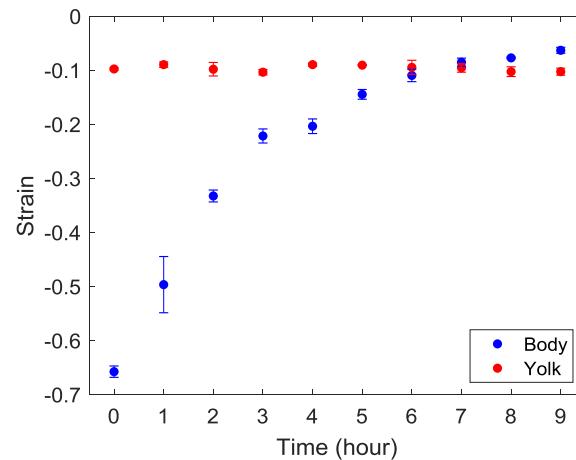
224

225 *3.2. Stiffness analysis of zebrafish embryo*


226 The displacement of the cantilever at the fixed arm: d_{c1} and the total sample indentation: D_s
 227 were obtained from pattern matching, and the cantilever angle θ_1 was measured by ImageJ. We
 228 calculated the stiffness of zebrafish embryos from Equation (4). Figure 6 shows the average stiffness
 229 of Embryos 1 and 2 at each experimental time point. The deviation of the determination was
 230 calculated as $R^2 = 0.718$, which was comparable to values reported in studies of biosample stiffness
 231 measurements [35,36].
 232

233

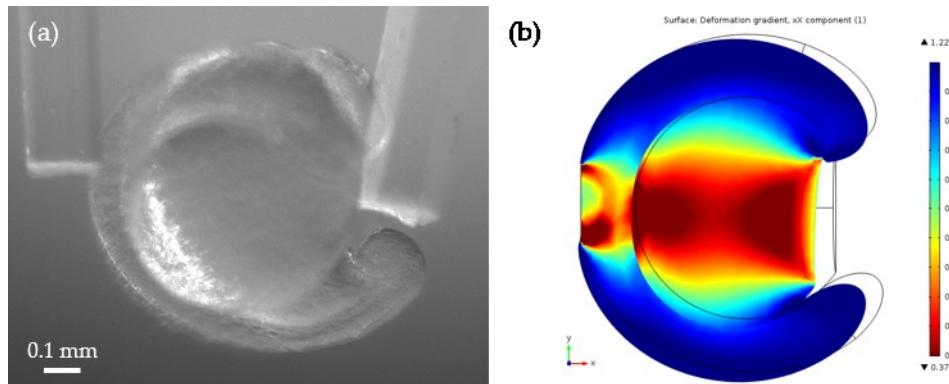
234 **Figure 6.** Average stiffness changes during the growth of Embryo 1 and Embryo 2.
 235 The red line is the linear regression: $y = 7.34 \times 10^{-4}x + 3.53 \times 10^{-3}$ ($R^2 = 0.718$).


236 We also measured strains of the zebrafish body and the yolk for each embryo. Figure 7 shows
 237 the images of Embryo 2 at $T = 0$ (~ 3 somite stage) and 9 (18-20 somite stage) that was compressed
 238 by the cantilevers. One can see that the deformation in the body is much greater than in the yolk in
 239 (a), while the deformation in (b) became less visible. Figure 8 shows the average strains of the
 240 bodies and yolks of Embryos 1 and 2. We measured the distances along the body and the yolk using
 241 ImageJ to calculate the strains. The measurements show that the zebrafish body was softer than the
 242 yolk at the early stages of the Segmentation period; the body became stiffer than the yolk at around
 243 $T = 6 - 8$ hours. The strain on the yolk was found to remain similar throughout the measurements,
 244 suggesting that the elasticity of the yolk part does not change as much as that of the body.

245

246 **Figure 7.** (a) Compression of Embryo 2 at $T = 0$ (~ 3 somite stage). The body showed a larger deformation
 247 than the yolk. (b) Compression on Embryo 2 at 9 (18-20 somite stage). The deformation of the body was
 248 significantly reduced.

249


250

250 **Figure 8.** Average strains of the zebrafish body and the yolk at each time point.

251 *3.3. Young's modulus estimation using a finite element analysis*

252 The Young's moduli of the zebrafish embryos were estimated using the finite element analysis
 253 software COMSOL Multiphysics (version 5.2). In the analysis, the COMSOL solid mechanics
 254 (stationary) module was used and a zebrafish embryo model was designed using SolidWorks®. The
 255 model was simplified to a curved tube component and a sphere component, presenting the body and
 256 the yolk, respectively (Figure 9b). The key dimensions of the model were approximated from the
 257 average values measured from the images of zebrafish embryos. In our model, the diameter of yolk
 258 was set to 0.6 mm, and the heights of the head, center body, and the tail from the yolk contact area
 259 were set to 0.17 mm, 0.16 mm, and 0.14 mm respectively. The cantilever contact area on the right and
 260 left sides of the embryos were also defined according to the measurement from their images. The
 261 vertical lengths of the cantilever contact areas at the body side and the yolk side were set to 0.2 mm
 262 and 0.35 mm respectively. For the finite element analysis, a finer free tetrahedron mesh was used. A
 263 Fixed Constraint was applied to the left contact area that is dorsal and centered on the anterior-
 264 posterior (AP) axis, and a Boundary Load was applied to the left contact area that is ventral and
 265 centered on the AP axis. The values of the Boundary Load were found from the measurements of the
 266 cantilever bending and Equation (3). The image of zebrafish embryos at $T = 8$ hours was used for this
 267 analysis. We chose this time point because one can observe well-developed zebrafish bodies then and
 268 the stiffness changes can be attributed to its structural formation. The Young's moduli of the zebrafish
 269 body and yolk were iteratively adjusted and optimized through the hill climbing method to match

270 the measured strain values at the body and the yolk. The estimated Young's modulus of the zebrafish
 271 body was around 170 Pa and the estimated Young's modulus of the yolk was around 48 Pa. The
 272 estimated values were convincing as they were close to the Young's moduli of human epithelial cells
 273 (about 50 – 100 Pa) measured by magnetic twisting cytometry and optical tweezers, and cancerous
 274 human epithelial cells (about 200 – 400 Pa) measured by scanning force microscopy and AFM
 275 reported in other literature [37-39].
 276

277
 278
 279 **Figure 9.** (a) Embryo 2 at $T = 8$ hours, (b) Strain analysis of the zebrafish embryo using COMSOL
 280 Multiphysics. The curved tube is the body of the zebrafish embryo and the round part is the yolk.
 281

282 4. Discussion & Conclusion

283 The results of our stiffness analysis show a gradual increase in stiffness of zebrafish embryos
 284 over time. The results of the strain measurements indicate that the stiffness of the zebrafish body at
 285 the onset of the Segmentation period rapidly increases within several hours, while that of the yolk
 286 remains similar. From the FEM analysis, the elastic moduli of the body and yolk at $T = 8$ hours were
 287 estimated to be 170 Pa and 48 Pa, respectively.

288 Because of the contained liquid, live cells and tissues are viscoelastic materials that have both
 289 elastic and viscous properties [24]. However, when the process of compression is slow enough, an
 290 assumption can be made that the tissue deformation is quasi-static. Our prior work has shown that
 291 compression with intervals of 1 s for the total of ~30 compression steps is slow enough so that
 292 viscosity is negligible [24].

293 Following the experiments, most zebrafish embryos survived and became healthy zebrafish
 294 larvae with no apparent defect, suggesting that our microtweezer system does not impede their
 295 development and is suitable for long term experiments.

296 A critical aspect of the stiffness analysis of zebrafish embryos is the location at which tweezer
 297 indentation applied. We set the cantilever of the fixed arm to the dorsal and the center of the AP
 298 axis of zebrafish embryos and the cantilever of the moving arm to the ventral and the center of the
 299 AP axis of them in order to avoid slipping of their body from the cantilever surface. However, it is
 300 still challenging to measure stiffness of embryos beyond the Segmentation period as their structure
 301 become more complex and the embryos move in response to physical stimuli. Future work will
 302 include the development of a method to firmly fix their posture during the measurements without
 303 inhibiting morphogenesis.

304 In conclusion, we demonstrated the measurement of stiffness changes during the growth of
 305 zebrafish embryos. The results provided good indications of the structural changes in the body
 306 during the Segmentation period. The results of the COMSOL analysis also contributed to
 307 estimations of the Young's modulus of the zebrafish body and yolk at later stages in the

308 Segmentation period. The cantilevers made of PDMS, which is an elastic and biocompatible
309 material, did not cause any apparent negative effects on the growth of zebrafish embryos.

310

311 **Author Contributions:** Conceptualization, D.D. and K.H.; Methodology, Y.T., K.D., and K.H.; formal analysis,
312 Y.T. and K.H.; resources, D.D. and K.H.; writing, Y.T., K.D., and K.H.; project administration and funding
313 acquisition, K.H.

314

315 **Acknowledgments:** The authors acknowledge the National Science Foundation (IDBR1555986 and
316 CCSS1809047) for financial support. We also thank Prof. Juliet Lee of Department of Molecular & Cell Biology,
317 University of Connecticut for her fruitful discussions and providing zebrafish embryos.

318

319 **Conflicts of Interest:** The authors declare no conflict of interest.

320

321 **References**

322 1. Ivascu, A.; Kubbies, M. Diversity of Cell-Mediated Adhesions in Breast Cancer Spheroids. *Int. J. Oncol.*
323 **2007**, *31*, 1403.

324 2. Liu, T.; Lin, B.; Qin, J. Carcinoma-Associated Fibroblasts Promoted Tumor Spheroid Invasion on a
325 Microfluidic 3D Co-Culture Device. *Lab on a chip* **2010**, *10*, 1671.

326 3. Mehta, G.; Hsiao, A.Y.; Ingram, M.; Luker, G.D.; Takayama, S. Opportunities and Challenges for use of
327 Tumor Spheroids as Models to Test Drug Delivery and Efficacy. *J. Controlled Release* **2012**, *164*, 192-204.

328 4. Vargo-Gogola, T.; Rosen, J.M. Modelling Breast Cancer: One Size does Not Fit All. *Nature Reviews Cancer*
329 **2007**, *7*, 659-672.

330 5. Zietarska, M.; Maugard, C.M.; Filali-Mouhim, A.; Alam-Fahmy, M.; Tonin, P.N.; Provencher, D.M.; Mes-
331 Masson, A. Molecular Description of a 3D in Vitro Model for the Study of Epithelial Ovarian Cancer (EOC).
332 *Mol. Carcinog.* **2007**, *46*, 872-885.

333 6. Guttilla, I.; Phoenix, K.; Hong, X.; Tirnauer, J.; Claffey, K.; White, B. Prolonged Mammosphere Culture of
334 MCF-7 Cells Induces an EMT and Repression of the Estrogen Receptor by microRNAs. *Breast Cancer Res.*
335 *Treat.* **2012**, *132*, 75-85.

336 7. DiMarco, R.L.; Su, J.; Yan, K.S.; Dewi, R.; Kuo, C.J.; Heilshorn, S.C. Engineering of Three-Dimensional
337 Microenvironments to Promote Contractile Behavior in Primary Intestinal Organoids. *Integrative biology :
338 quantitative biosciences from nano to macro* **2014**, *6*, 127.

339 8. Mondrinos, M.J.; Finck, C.M.; Jones, P.L.; Lelkes, P.I. Engineering De Novo Assembly of Fetal Pulmonary
340 Organoids. *Tissue Eng.* **2014**, *20*, 2892-2907.

341 9. Tamai, M.; Adachi, E.; Tagawa, Y. Characterization of a Liver Organoid Tissue Composed of Hepatocytes
342 and Fibroblasts in Dense Collagen Fibrils. *Tissue Engineering Part A* **2013**, *19*, 2527-2535.

343 10. Wetering, M.v.d.; Clevers, H.; Bartfeld, S.; Vries, R.; Bayram, T.; Peters, P.J.; Huch, M.; Kujala, P.; Begthel,
344 H. In Vitro Expansion of Human Gastric Epithelial Stem Cells and their Responses to Bacterial Infection.
345 *Gastroenterology* **2015**, *148*, 136.e6.

346 11. Yamaguchi, S.; Morizane, R.; Homma, K.; Monkawa, T.; Suzuki, S.; Fujii, S.; Koda, M.; Hiratsuka, K.;
347 Yamashita, M.; Yoshida, T. *et al.* Generation of Kidney Tubular Organoids from Human Pluripotent Stem
348 Cells. *Scientific reports* **2016**, *6*, 38353.

349 12. Chen, P.; Lin, S.; Xu, G.; Li, B.; Feng, X. Three-Dimensional Collective Cell Motions in an Acinus-Like
350 Lumen. *J. Biomech.* **2019**, *84*, 234-242.

351 13. Guirao, B.; Bellaïche, Y. Biomechanics of Cell Rearrangements in Drosophila. *Curr. Opin. Cell Biol.* **2017**, *48*,
352 113-124.

353 14. Mohagheghian, E.; Luo, J.; Chen, J.; Chaudhary, G.; Chen, J.; Sun, J.; Ewoldt, R.H.; Wang, N. Quantifying
354 Compressive Forces between Living Cell Layers and within Tissues using Elastic Round Microgels. *Nature
355 Communications* **2018**, *9*, 1-14.

356 15. Faria, E.C.; Ma, N.; Gazi, E.; Gardner, P.; Brown, M.; Clarke, N.W.; Snook, R.D. Measurement of Elastic
357 Properties of Prostate Cancer Cells using AFM. *Analyst* **2008**, *133*, 1498-1415.

358 16. Li, Q.S.; Lee, G.Y.H.; Ong, C.N.; Lim, C.T. AFM Indentation Study of Breast Cancer Cells. *Biochem. Biophys.
359 Res. Commun.* **2008**, *374*, 609-613.

360 17. Plodinec, M.; Loparic, M.; Monnier, C.A.; Obermann, E.C.; Zanetti-Dallenbach, R.; Oertle, P.; Hyotyla, J.T.;
361 Aebi, U.; Bentires-Alj, M.; Lim, R.Y.H. *et al.* The Nanomechanical Signature of Breast Cancer. *Nature
362 nanotechnology* **2012**, *7*, 757-765.

363 18. Tortonese, M.; Barrett, R.C.; Quate, C.F. Atomic Resolution with an Atomic Force Microscope using
364 Piezoresistive Detection. *Appl. Phys. Lett.* **1993**, *62*, 834-836.

365 19. Harley, J.A.; Kenny, T.W. High-Sensitivity Piezoresistive Cantilevers Under 1000 Å... Thick. *Appl. Phys.
366 Lett.* **1999**, *75*, 289-291.

367 20. Behrens, I.; Doering, L.; Peiner, E. Piezoresistive Cantilever as Portable Micro Force Calibration Standard.
368 *J Micromech Microengineering* **2003**, *13*, S177.

369 21. Peiner, E.; Tibrewala, A.; Bandorf, R.; Biehl, S.; LÄthje, H.; Doering, L. Micro Force Sensor with
370 Piezoresistive Amorphous Carbon Strain Gauge. *Sensors & Actuators: A.Physical* **2006**, *130*, 75-82.

371 22. Lu, Z.; Chen, P.C.Y.; Lin, W. Force Sensing and Control in Micromanipulation. *IEEE Transactions on Systems,
372 Man, and Cybernetics, Part C (Applications and Reviews)* **2006**, *36*, 713-724.

373 23. Onoe, H.; Gel, M.; Hoshino, K.; Matsumoto, K.; Shimoyama, I. Direct Measurement of the Binding Force
374 between Microfabricated Particles and a Planar Surface in Aqueous Solution by Force-Sensing
375 Piezoresistive Cantilevers. *Langmuir : the ACS journal of surfaces and colloids* **2005**, *21*, 11251-11261.

376 24. Jaiswal, D.; Cowley, N.; Bian, Z.; Zheng, G.; Claffey, K.P.; Hoshino, K. Stiffness Analysis of 3D Spheroids
377 using Micropipettes. *PLoS One* **2017**, *12*, e0188346.

378 25. Tao, S.L.; Popat, K.C.; Norman, J.J.; Desai, T.A. Surface Modification of SU-8 for Enhanced Biofunctionality
379 and Nonfouling Properties. *Langmuir : the ACS journal of surfaces and colloids* **2008**, *24*, 2631-2636.

380 26. Ingham, P.W. The Power of the Zebrafish for Disease Analysis. *Hum. Mol. Genet.* **2009**, *18*, R112.

381 27. Seto, S.; Kiat, H.; Lee, S.M.Y.; Bensoussan, A.; Sun, Y.; Hoi, M.P.M.; Chang, D. Zebrafish Models of
382 Cardiovascular Diseases and their Applications in Herbal Medicine Research. *Eur. J. Pharmacol.* **2015**, *768*,
383 77-86.

384 28. Kimmel, C.B.; Ballard, W.W.; Kimmel, S.R.; Ullmann, B.; Schilling, T.F. Stages of Embryonic Development
385 of the Zebrafish. *Developmental dynamics : an official publication of the American Association of Anatomists* **1995**,
386 203, 253-310.

387 29. Stickney, H.L.; Barresi, M.J.; Devoto, S.H. Somite Development in Zebrafish. *Developmental dynamics : an
388 official publication of the American Association of Anatomists* **2000**, *219*, 287-303.

389 30. Liu, M.; Sun, J.; Chen, Q. Influences of Heating Temperature on Mechanical Properties of
390 Polydimethylsiloxane. *Sensors & Actuators: A.Physical* **2009**, *151*, 42-45.

391 31. Liu, M.; Sun, J.; Sun, Y.; Bock, C.; Chen, Q. Thickness-Dependent Mechanical Properties of
392 Polydimethylsiloxane Membranes. *J Micromech Microengineering* **2009**, *19*, 035028.

393 32. Khanafer, K.; Duprey, A.; Schlicht, M.; Berguer, R. Effects of Strain Rate, Mixing Ratio, and Stress-Strain
394 Definition on the Mechanical Behavior of the Polydimethylsiloxane (PDMS) Material as Related to its
395 Biological Applications. *Biomed. Microdevices* **2009**, *11*, 503-508.

396 33. Hocheng, H.; Chen, C.; Chou, Y.; Lin, C. Study of Novel Electrical Routing and Integrated Packaging on
397 Bio-Compatible Flexible Substrates. *Microsystem Technologies* **2010**, *16*, 423-430.

398 34. Engineering ToolBox, Young's Modulus - Tensile and Yield Strength for common Materials. Available
399 Online: Https://Www.Engineeringtoolbox.Com/Young-Modulus-d_417.Html (accessed on 19 Dec 2018).

400 35. Lam, R.H.W.; Weng, S.; Lu, W.; Fu, J. Live-Cell Subcellular Measurement of Cell Stiffness using a
401 Microengineered Stretchable Micropost Array Membrane. *Integrative biology : quantitative biosciences from*
402 *nano to macro* **2012**, *4*, 1289-1298.

403 36. Canović, E.; Seidl, D.; Polio, S.; Oberai, A.; Barbone, P.; Stamenović, D.; Smith, M. Biomechanical Imaging
404 of Cell Stiffness and Prestress with Subcellular Resolution. *Biomechanics and Modeling in Mechanobiology*
405 **2014**, *13*, 665-678.

406 37. Kamgoué, A.; Ohayon, J.; Tracqui, P. Estimation of Cell Young's Modulus of Adherent Cells Probed by
407 Optical and Magnetic Tweezers: Influence of Cell Thickness and Bead Immersion. *J. Biomech. Eng.* **2007**,
408 *129*, 523-530.

409 38. Lekka, M.; Laidler, P.; Gil, D.; Lekki, J.; Stachura, Z.; Hrynkiewicz, A.Z. Elasticity of Normal and Cancerous
410 Human Bladder Cells Studied by Scanning Force Microscopy. *European Biophysics Journal* **1999**, *28*, 312-316.

411 39. Li, Q.S.; Lee, G.Y.H.; Ong, C.N.; Lim, C.T. AFM Indentation Study of Breast Cancer Cells. *Biochem. Biophys.*
412 *Res. Commun.* **2008**, *374*, 609-613.

413

© 2019 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (<http://creativecommons.org/licenses/by/4.0/>).