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Abstract—In this paper, we present a novel approach for
mitigating positioning errors in vehicle-to-vehicle (V2V) net-
working environments where digital beamforming is conducted
at both transmitters and receivers. Location information of
all transmitters and receivers in V2V networks performing
beamforming is essential in order to ensure reliable link
quality. However, there exists several sources of error where
this location information can be corrupted or out-of-date. By
leveraging the proposed approach in this paper employing
state estimation, these errors can be mitigated, thus providing
more accurate location information relative to V2V networking
architectures that do not employ techniques to help mitigate
potential sources of location error. Simulation results show a
99% improvement of the proposed approach relative to V2V
beamformiong architectures that do not account for location
errors.

I. INTRODUCTION

Wireless connectivity is a key technology for enabling
the reliable operation of self-driving cars in complex and
challenging environments such as traffic intersections and
multi-lane roads. Until the writing of this paper, most
information sources used by self-driving cars to support
their real-time situational awareness have been obtained
from line-of-sight (LOS) sensors such as Light Detection
and Ranging (LiDAR) [1], Radio Detection and Ranging
(RADAR) [2], and vision systems [3]. Combining these
information sources with geographical databases of various
driving environments [4] [5], self-driving cars have per-
formed reasonably well with respect to traversing public
streets and highways in ideal situations without substantial
challenges to the real-time control algorithms managing the
operations of the vehicles [6].

Despite the achievements of current self-driving car tech-
nology, there is still much work that needs to be done
in order to make these vehicles reliable and safe across
a plethora of operating conditions. Although LOS sensors
excel at gathering information about the surrounding driving
environment to provide the self-driving car with adequate
situational awareness, this environmental perception only
extends approximately a hundred meters, which is insuf-
ficient for complex driving environments (e.g., traffic in-
tersections, multi-lane highways) or challenging conditions
(e.g., inclement weather, tunnels). Consequently, research
and development efforts are currrently underway to explore
wireless connectivity as a non-line-of-sight (NLOS) source

of environmental information that can be used by the self-
driving car to support safe and reliable operation in these
conditions [7] [8]. In particular, efforts are being pursued to
devise vehicle-to-vehicle (V2V) networking, where individ-
ual vehicles communicate directly with each other without
the need for a base station, access point, or road-side unit [9]
[10].

To ensure that all vehicles on the road, both human-
operated and self-driving, obtain real-time access to wireless
channel bandwidth while operating, techniques are needed to
ensure sufficient spectral capacity for potentially hundreds
of vehicles that could be communicating simultaneously.
Although approaches such as vehicular dynamic spectrum
access (VDSA) [11] have shown potential to allieivate the
issue of vehicular spectrum scarcity, there still exists the
issue of sufficient wireless access for V2V networks in dense
traffic conditions [12]. Consequently, digital beamforming
for V2V networking has been proposed in order to increase
capacity in these environments [13]. By leveraging digital
beamforming between transmitting and receiving vehicles
within a V2V communications link, wireless spectrum is
only being used within a specific spatial direction across a
specific frequency channel at a given time, thus minimiz-
ing out-of-band (OOB) interference to other V2V wireless
links while simultaneously minimizing emissions from other
wireless transmissions. However, to enable functional V2V
wireless links employing digital beamforming at both ends,
accurate real-time position information of both transmit and
receive vehicles needs to be known, which can be challenging
in highly dynamic and mobile environments.

In this paper, we propose a novel approach for mitigating
position errors associated with V2V wireless links where
both transmitter and receiver vehicles are employing digital
beamforming. Although it is expected that most vehicles, es-
pecially self-driving cars, will possess access to geographical
databases, global navigation satellite systems (GNSS), and
basic safety messages (BSMs) to determine their location
in real-time, there is potential for location errors to occur
that can signficantly impact the performance of the dual-
beamforming and negatively impact the quality of the V2V
wireless link. GNSS errors and latency due to location
updating could result in the transmitter and receiver digital
beamforming being pointed at directions other than the
target vehicles. Consequently, leveraging state information
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of the vehicles and their driving paths can help mitigate
these errors, thus yielding a performance improvement when
compared to V2V dual beamforming implementations where
these measures are not implemented. Without loss of gener-
ality, we explore in this work how dual beamforming V2V
wireless links operate in complex driving conditions for two
vehicles; the results can be readily extended to environments
possessing multiple vehicles operating simultaneously.

The rest of this paper is organized as follows: Section II
presents the vehicle dynamics problem formulation for this
work across various operating conditions. Section III defines
the proposed state estimation process to be employed in these
environments from which this information will be used to
mitigate the location error introduced to the dual beamform-
ing V2V communication link. Section IV presents several
simulation results highlighting the performance improve-
ments of employing the proposed state estimation approach
when compared to scenarios where location information
of every vehicle is perfectly known and when the dual
beamforming V2V wireless links are used without the pro-
posed approach. Finally, concluding remarks are presented
in Section V.

II. PROBLEM FORMULATION

For simplicity, we address in this paper situations in-
volving two cars: the ego car and one other vehicle. In
what follows, the subscripts “e” and “o” are used to denote
variables associated with the ego vehicle and the other
vehicle, respectively.

Let I be an inertial frame of reference with an attached
Cartesian coordinate axes system (see Fig. 1). In what fol-
lows, we will also need a moving reference frame E attached
to the ego vehicle, such that a principal Cartesian coordinate
axis of E always points along the ego vehicle’s velocity
vector, as indicated in Fig. 1.

Fig. 1. Illustration of the problem setup. Th ego car is indicated by an
encircled black dot, whereas the other car is indicated by a yellow dot.

The geometries of the roads along which the two vehicle
travel are assumed to be perfectly known. Specifically, a
one-parameter curve defining each road is assumed to be

known. This assumption is justified by the abundant avail-
ability of accurate electronic maps of roads. We denote by
pe(s) = (px,e(s), py,e(s)) and po(s) = (px,o(s), py,o(s))
the I−coordinates of each road parameterized by the dis-
tance s along the road1.
With the preceding assumption about road geometry, the

location of each car is fully determined by a single parameter,
namely the distance traveled along the road. The state of
each car is described by its location, denoted by se and so,
respectively, and by the speed of each var along the road,
denoted by ve and vo, respectively. Therefore, the state
variables of the cars are xe := (se, ve) and xo := (so, vo),
respectively.

For each car, we assume the acceleration along the road
to be a control input. Whereas this paper does not address
autonomous control, this formulation is convenient for future
extensions of this work. The accelerations of the cars are
denoted by ue and uo, respectively. The state evolution
models for the ego and other vehicle are then described by
the linear dynamical systems:

ẋe = Axe +Bue, ẋo = Axo +Buo,

where:

A :=

[
0 1
0 0

]
B :=

[
0
1

]
. (1)

Next, we formulate state evolution and measurement mod-
els from the perspective of the ego vehicle. To this end, we
assume that the ego vehicle has an onboard localization sys-
tem that can provide a measurement ye of the I−coordinates
of the ego vehicle’s position and its speed. This assumption is
in keeping with standard localization systems that are present
on many modern cars, and on all self-driving cars. We also
assume that the ego car’s acceleration is measured. All of
these measurements are noisy. These assumptions lead to
the following state evolution and measurement model of the
ego vehicle:

ẋe = Axe +B(ue + ηe), ye = he(xe) + ne,

where ηe is the acceleration measurement noise, he(xe) :=
[pe(se) ve]

T, and ne is the localization and speed measure-
ment noise. In what follows, we will present a discretized
version of this model, where the statistical characteristics of
the noise processes will be discussed.

Next, we assume that the other vehicle communicates its
position in I−coordinates, its speed, and its acceleration over
a V2V link between the two cars. All of these quantities
are treated by the ego vehicle as “measurements,” and are
all noisy. These assumptions lead to the following state
evolution and measurement model of the other vehicle as
perceived by the ego vehicle:

ẋo = Axo +B(uo + ηo), yo = ho(xo) + no, (2)

where ηo is the acceleration measurement noise, ho(xo) :=
[po(so) vo]

T, and no is the other vehicle’s localization and
speed measurement noise.

1The “start” of each road defined by pe(0) and po(0) is assumed to be
prespecified.



A. Model Discretization

The ego car’s self-localization system is assumed to update
periodically every δte s. The time instants at which data is
transmitted over the V2V are denoted to,0, to,1 . . . , which
are not assumed to be equally spaced.

Accordingly, we may discretize the preceding state evo-
lution models; because the models are linear, the following
discretization is exact [14]:

xe(tk) = Φδtxe(tk−1) + Ψδt(ue(tk−1) + ηe(tk−1)),

xo(tk) = Φδtxo(tk−1) + Ψδt(uo(tk−1) + ηo(tk−1)),

ye(tk) = he(xe(tk)) + ne(tk),

yo(tk) = ho(xo(tk)) + no(tk),

where δt := tk − tk−1 and:

Φδt :=

[
1 δt
0 1

]
, Ψδt :=

[
δt/2
1

]
δt. (3)

In this discretized model, we assume that each of the noise
terms are independent and identically distributed zero-mean
Gaussian random variables with the following statistical
characteristics at any time instant t:

ne(t) ∼ N (03,1, Re), no(t) ∼ N (03,1, Ro),

ηe(t) ∼ N (0, qe), ηo(t) ∼ N (0, qo).

Here Re, Ro are positive definite covariance matrices char-
acterizing ego self-localization and speed measurement error
and the other car’s localization and speed measurement
errors, respectively. Similarly, qe, qo are positive variances
characterizing acceleration measurement errors.

III. PROPOSED ESTIMATION OF STATE AND BORESIGHT
ANGLE

After establishing the state evolution and measurement
models in the previous section, the estimation of the states
of the two car (performed onboard the ego car) follows
immediately from linear systems estimation theory [15]. We
denote by x̂e = (ŝe, v̂e) and x̂o = (ŝo, v̂o) the estimated
states of the ego and other car, respectively.

Let tk be a time instant at which the kth measurement is
available. That is tk is either a multiple of δte when the ego
car localization, speed, and acceleration measurement update
is available, or tk = to,n for some integer n, when measure-
ments from the other car are received over the V2V link, or
both. Define δt = tk− tk−1, i.e., δt is the time step between
two successive measurements2.The available measurements
are ye(tk),yo(tk) and ũe(tk−1) := ue(tk−1)+ηe(tk−1) and
ũo(tk−1) := uo(tk−1) + ηo(tk−1). Note that ue and uo are
not directly available. Note also that ye(tk),yo(tk) may not
be both “new” measurements at each tk : for example if
tk = to,n when data over the V2V are received in between
two successive updates of the ego car’s self-localization, then
ye(tk) = ye(tk−1).
The following are the standard recursive equations for

a discrete-time Kalman filter to update the state estimates

2For two successive ego car self-localization measurements, δt = δte.

at time tk, using the previous estimates x̂e(tk−1), x̂o(tk−1)
and the estimation error covariance matrices Pe(tk−1) and
Po(tk−1):

x̂−
e := Φδt x̂e(tk−1) + Ψδt ũe(tk−1), (4)

x̂−
o := Φδt x̂o(tk−1) + Ψδt ũo(tk−1), (5)

P−
e := ΦδtPe(tk−1)Φ

T
δt +ΨδtqeΨ

T
δt , (6)

P−
o := ΦδtPo(tk−1)Φ

T
δt +ΨδtqoΨ

T
δt , (7)

x̂e(tk) = x̂−
e +Ke(ye(tk)− he(x̂

−
e )), (8)

x̂o(tk) = x̂−
o +Ko(yo(tk)− ho(x̂

−
o )), (9)

Pe(tk) = (I(2) −KeCe)P
−
e , (10)

Po(tk) = (I(2) −KoCo)P
−
o . (11)

where:

Ke = P−
e CT

e (CeP
−
e CT

e +Re)
−1

, (12)

Ko = P−
o CT

o (CoP
−
o CT

o +Ro)
−1

, and (13)

Ce :=
∂he

∂xe

T

=

[
∇Tpe 0
0 1

]
, (14)

Co :=
∂ho

∂xo

T

=

[
∇Tpo 0
0 1

]
. (15)

The true boresight angle, namely, the inclination of the
line of sight from the ego car to the other car, measured in
the I-axes is given by:

αI
true := tan−1

(
py,o(so)− py,e(se)

px,o(so)− px,e(se)

)
.

As the true values of the state se, so are not available,
the boresight angle used for beamforming is based on the
estimated values, namely:

αI
est := tan−1

(
py,o(ŝo)− py,e(ŝe)

px,o(ŝo)− px,e(ŝe)

)
.

IV. NUMERICAL SIMULATION EXPERIMENTS

For this paper, we consider two scenarios: (i) An inter-
section of two straight roads, and (ii) An intersection of a
straight road with a roundabout. Both of these scenarios are
shown in Fig. 2. The road definitions for the first scenario
(straight road intersection) are:

pe(0) =

[
525
0

]
m, pe(se) = pe(0) + se

[
cos 70◦

sin 70◦

]
,

po(0) =

[
0
450

]
m, po(so) = po(0) + so

[
1
0

]
,

while the road definitions in the second scenario (round-
about) are given by:

pe(0) =

[
100
0

]
m, pe(se) = pe(0) + se

[
0
1

]

po(so) =

[
100
285

]
+ ρ

[
cos( soρ + θ0)

sin( soρ + θ0)

]
m,

where ρ := 100 m and θ := π
2 .
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(a) Scenario 1: Straight road intersection.
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(b) Scenario 2: Roundabout.

Fig. 2. A scale drawing of the road scenarios considered for numerical
experiments. The encircled black dot represents the ego car, whereas the
green dot represents the other car. The yellow line illustrates, at a particular
time instant, the estimated boresight, whereas the purple line indicates
boresight calculated using measurements and communicated data alone (i.e.,
without the proposed estimation scheme).

In both scenarios, the noise characteristics are the same,
namely:

qe = qo = 6.25× 10−4 m2/s4,

Re = diag(0.25 m2, 0.25 m2, 0.0625 m2/s2),

Ro = diag(36 m2, 36 m2, 0.0625 m2/s2).

The results with respect to improvements in boresight
angle estimation are presented next. To this end, we first
compare the estimated boresight angle αI

est to its true value
αI
true. We also compare the difference between the estimated

boresight angle and the boresight angle that can be computed
from the measurements and V2V communications alone.
Specifically, this angle is defined by:

αI
meas := tan−1

(
yo,2 − ye,2

yo,1 − ye,1

)
,

where, e.g., ye,1 indicates the first element of the vector ye.
Fig. 3 shows the comparison of these three angles for the

straight intersection scenario. Fig. 3(b) shows the absolute
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Fig. 3. Comparison of true, estimated, and measured boresight angles from
the transmitter for the straight-line intersection road scenario.

difference |αI
est−αI

meas|. Informally, this absolute difference
is an improvement in boresight estimation due to the pro-
posed estimation scheme, without which we would have to
use αI

meas or α
E
meas as the reference angle for beamforming.

Fig. 5 provides similar plots for the roundabout scenario,
where the absolute difference |αI

est − αI
meas| is observed to

be even larger.
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Fig. 4. BER results representing ground truth as the frame of reference
and the difference between the measured and truth and the estimated and
truth are plotted for straight-line intersection scenario.

Fig. 4 describes the Bit Error Rate (BER) with respect
to time in seconds for the straight road intersection sce-
nario. For the receiver, with its maximum positional error
displacement from the transmitter, we observe that when
beamforming is employed the losses are found to increase.
On the other hand, if the estimated location of the vehicles
calculated from the proposed state estimation model are
known, the bits lost are not as high when compared with the
measured error location of the vehicle. From Fig. 4, when the
dual beamforming is employed between the transmitter and
the estimated location of the receiver, the BER significantly
increases, resulting in a beam lock that enhances the wireless
communications between the two vehicles.

Fig. 6 illustrates the BER with respect to time in seconds
for the roundabout road scenario. Similar to the aforemen-
tioned case, the maximum angular displacement between the
error location of the vehicle and the transmitter was around
48◦ while for the estimated location of the vehicle and the
transmitter, this displacement was measured to be equal to
15◦. From Fig. 6, the beampatterns formed between time
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Fig. 5. Comparison of true, estimated, and measured boresight angles for
the roundabout scenario.
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Fig. 6. BER results illustrating the difference in the measured and truth
angles and the estimated and truth angles with ground value as the frame
of reference for the roundabout case.

instants 19(s) to 24(s) yield a BER value for vehicle’s error
location that significantly decrease when compared to the
vehicle’s estimated location. In both road case scenarios,
having the beampatterns pointed at the estimated position
obtained from the proposed state estimation model yields
improved communications between the transmitter and the
receiver when compared with the error location information
of the vehicle.

V. CONCLUSION

We present a state estimation model for mitigating posi-
tioning errors employing dual beamforming and obtain per-
formance characteristics that were evaluated using MATLAB
simulations for straight-line intersection and roundabout case
scenarios. The results show that using this approach, it
significantly mitigates the error in estimating the vehicle’s
location and achieves perfect beam lock when compared
to the location information of the vehicle obtained from
the overhead channels. Using Kalman filtering techniques
when the locations of the receiver are estimated, the BER
significantly increases when compared to the error locations
of the vehicle occurring since the variations in the delays
are due to overhead channels or GPS errors in the vehicular
networks.
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