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Let X be an infinite compact metric space with finite covering dimension and let
α, β : X → X be two minimal homeomorphisms. We prove that the crossed product
C∗-algebras C(X) �α Z and C(X) �β Z are isomorphic if and only if they have isomor-
phic Elliott invariant. In a more general setting, we show that if X is an infinite compact
metric space and if α : X → X is a minimal homeomorphism such that (X, α) has mean
dimension zero, then the tensor product of the crossed product with a UHF-algebra
of infinite type has generalized tracial rank at most one. This implies that the crossed
product is in a classifiable class of amenable simple C∗-algebras.

Keyword : Minimal dynamical systems.

1. Introduction

Let X be an infinite compact metric space and let α : X → X be a minimal
homeomorphism. It is well known that the crossed product C∗-algebra C(X) �α

Z is a unital simple separable amenable C∗-algebra which satisfies the Universal
Coefficient Theorem (UCT). There has been a great deal of interaction between
dynamical systems and C∗-algebra theory. Let β : X → X be another minimal
homeomorphism. A result of Tomiyama [33] stated that two dynamical systems
(X, α) and (X, β) are flip conjugate if and only if the crossed products C(X) �α

Z and C(X) �β Z are isomorphic preserving C(X). When X is the Cantor set,
Giordano, Putnam and Skau [11] proved that two such systems are strong orbit
equivalent if and only if the crossed products are isomorphic as C∗-algebras. In
this case, the crossed products are isomorphic to a unital simple AT-algebra of real
rank zero. The Elliott program of classification of amenable C∗-algebras plays an
important role in this case. In fact, K-theory can be used to determine when two
minimal Cantor systems are strong orbit equivalent.
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The irrational rotation algebras may be viewed as crossed products from the
minimal dynamical systems on the circle by irrational rotations. Elliott and Evans
[5] proved a structure theorem which states that every irrational rotation C∗-algebra
is isomorphic to a unital simple AT-algebra of real rank zero (there are also some
earlier results such as [3]. With the rapid development in the Elliott program, it
becomes increasingly important to answer the question when crossed product C∗-
algebras from minimal dynamical systems are classifiable. If A is a unital separable
simple C∗-algebra of stable rank one with the tracial state space T (A), then the
image of K0(A) under ρA in Aff(T (A)) is dense if A has real rank zero [1], where
ρA : K0(A) → Aff(T (A)) is defined by ρA([p]) = τ(p) for all projection p ∈ A

and for all τ ∈ T (A) (see Definition 2.3 below). Let X be an infinite compact
metric space with finite covering dimension and let α : X → X be a minimal
homeomorphism. In [23], it is shown that C = C(X) �α Z has tracial rank zero if
and only if the image of K0(C) under ρC is dense in Aff(T (C)). If X is connected
and α is uniquely ergodic, and if the rotation number of (X, α) has an irrational
value, then the image of K0(C) is dense in Aff(T (C)). This recovers the earlier
result of Elliott and Evans [5]. This is because of unital separable simple amenable
C∗-algebras of tracial rank zero in the UCT class can be classified by the Elliott
invariant up to isomorphism [16]. The Elliott program recently moved beyond the
C∗-algebras of finite tracial rank. With Winter’s method (see [36]), simple C∗-
algebras with finite rational tracial rank in the UCT class have been classified by
their Elliott invariant (see [18], [21] and [17]. Toms and Winter [34] improved the
result in [23] by showing that, if projections in C(X) �α Z separate the tracial
state space (the set of α-invariant Borel probability measures), then the crossed
products have rational tracial rank zero and therefore are classifiable by Elliott
invariant. Suppose that α, β : X → X are two minimal homeomorphisms and both
are uniquely ergodic, then C(X)�αZ is isomorphic to C(X)�β Z if and only if their
K-groups are isomorphic in a way which also preserves the order and order unit of
their K0-groups. However, as early as the 60s, Furstenburg [10] presented minimal
homeomorphisms on the 2-torus which are not Lipschitz. The set of projections of
the crossed product C∗-algebras associated with the minimal dynamical systems
in this case could not separate the tracial state space of the crossed products.
The author was asked whether crossed products of Furstenburg transformation
on 2-torus which are not Lipschitz are AT-algebras. These crossed products have
the same Elliott invariant as those of unital simple C∗-algebras with tracial rank
one (but not zero). They do not have rational tracial rank zero. On the other
hand, further developments were made by Strung [30] who showed that the crossed
product C∗-algebras from certain minimal homeomorphisms on odd dimensional
spheres have rational tracial rank one and therefore are classifiable. In these cases,
projections in the crossed products may not separate the tracial state space. It
has lately been shown that the crossed product C∗-algebras from any minimal
homeomorphisms on 2d + 1 spheres (with d ≥ 1) and other odd dimensional spaces
have rational tracial rank at most one [20]. These results, however, do not cover
the cases of the 2-torus given by Furstenburg. In fact, there are many minimal
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dynamical systems on connected spaces with complicated simplexes of invariant
probability Borel measures. In this note we show the following:

Theorem 1.1. Let X be an infinite compact metric space with finite covering
dimension and let α : X → X be a minimal homeomorphism. Then C(X) �α Z

belongs to NZ
1 , a classifiable class of C∗-algebras (see Definition 2.9 below). If Y

is another compact metric space and let β : Y → Y be another minimal home-
omorphism. Then C(X) �α Z ∼= C(Y ) �β Z if and only if Ell(C(X) �α Z) ∼=
Ell(C(Y ) �β Z).

(see Definition 2.4 for the definition Ell(·)).
We actually prove the following:

Theorem 1.2. Let X be an infinite compact metric space and let α : X → X

be a minimal homeomorphism such that (X, α) has mean dimension zero. Then
C(X) �α Z belongs to NZ

1 .

It should be noted that if X has finite dimension, then the minimal dynamical
system (X, α) always has mean dimension zero. So Theorem 1.1 follows from the-
orem 1.2. Moreover, if the minimal dynamical system (X, α) has countably many
extreme α-invariant Borel probability measures, then (X, α) has mean dimension
zero. In fact, we show that (C(X) �α Z) ⊗Z is always classifiable, where Z is the
Jiang–Su algebra. It is proved in [8] that crossed product C∗-algebras from minimal
dynamical systems of mean dimension zero are Z-stable.

Let X be a compact manifold and α : X → X be a minimal diffeomorphism.
In a longer paper, Lin and Phillips [25] showed that C(X) �α Z is an inductive
limit of recursive sub-homogenous C∗-algebras (with bounded dimension in their
spectrum). With the classification result in [12], we offer the following:

Corollary 1.3. Let X be an infinite compact metric space and let α : X → X be a
minimal homeomorphism such that (X, α) has mean dimension zero. Then C(X)�α

Z is an inductive limit of sub-homogeneous C∗-algebras described in Remark 2.10
with dimension of the spectrum at most three.

The proof of these results is based on recent advances in the Elliott program. In
[12], it is shown that the class NZ

1 of unital separable simple Z-stable C∗-algebras
which have rational generalized tracial rank at most one in the UCT class can be
classified by the Elliott invariant. It should be noted that unital infinite dimensional
simple C∗-algebras that have generalized tracial rank at most one are all Z-stable.
The range theorem in [12] shows that the class NZ

1 exhausts the Elliott invariants of
all possible unital simple amenable Z-stable C∗-algebras and the range of the Elliott
invariants is characterized. Moreover, it also shows that a C∗-algebra A ∈ NZ

1

is isomorphic to a unital simple inductive limit of subhomogeneous algebras of a
certain special form (see Remark 2.10 below) such that the spectrum has dimension
at most three. This implies that C(X) �α Z has the same Elliott invariant as
one of the model C∗-algebras in [12] as long as it is Z-stable. This immediately
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provides an opportunity for C(X) �α Z to be embedded into a model C∗-algebras
as presented in [12]. Indeed an earlier proof of the main result of this note did just
that. However, this is unnecessarily difficult since it involves exact embedding which
requires usage of an asymptotic unitary equivalence theorem and repeated usage of
a version of Basic Homotopy Lemma. It also uses a new characterization of TAC for
some special class C of weakly semiprojective C∗-algebras. We realized later that it
is not necessary to prove the actual embedding. An approximate version of it would
be sufficient. This greatly simplifies the proof.

It is worth pointing out that, without referring to the more recent long paper
[12], but referring to [17] and [22], the proof we used in this paper still gives the
following result:

Theorem 1.4. Let X be an infinite compact metric space and let α : X → X be a
minimal homeomorphism Then C(X) �α Z has rationally tracial rank at most one
if and only if K0(C(X)�Z)⊗Q is a dimension group and each extremal trace gives
an extremal state on K0(C(X) � Z).

This result, of course, is a corollary of Theorem 1.2. But it has already covered
significant large class of crossed products from minimal action on compact metric
spaces. For example, this result implies that the crossed products from non-Lipschitz
Furstenburg transformations on 2-torus are unital simple AT-algebras. Theorem
1.4 also covers all minimal actions on odd dimensional spaces studied in [20] (see
Corolarry 5.4 below and its remark).

This note is organized as follows. The next section serves as a preliminary for
the later sections. In Sec. 3, using a recent characterization of TAC for unital
simple C∗-algebras with finite nuclear dimension [37], we present another convenient
characterization for a unital separable simple amenable C∗-algebra to have rational
generalized tracial rank at most one. In Sec 4, we present a few refinements of results
in [12] to be used in this note. In Sec. 5, we present the proof for the main results
presented earlier in the Introduction.

The main results of this note were reported at “Dynamics and C*-algebras:
amenability and soficity”, a workshop at BIRS Banff Research Station in October
2014.

2. Preliminaries

Definition 2.1. Let A be a unital C∗-algebra. Denote by U(A) the unitary
group of A and U0(A) the normal subgroup of U(A) consisting of the path
connected component containing 1A. Denote by CU(A) the closure of the com-
mutator subgroup of U0(A). The map u �→ diag(u, 1A) gives a homomorphism
from U(Mn(A)) to U(Mn+1(A)) for each integer n ≥ 1. We write U(M∞(A))
for ∪∞

n=1U(Mn(A)) by using the above inclusion. Note we also use the notation
U0(M∞(A)) = ∪∞

n=1U0(Mn(A)) and CU(M∞(A)) = ∪∞
n=1CU(Mn(A)).
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Definition 2.2. Let A be a unital C∗-algebra and let T (A) be the tracial state
space. Let τ ∈ T (A). We say that τ is faithful if τ(a) > 0 for all a ∈ A+ \ {0}.
Denote by Tf (A) the set of all faithful tracial states.

Denote by Aff(T (A)) the space of all real continuous affine functions on T (A)
and denote by LAffb(T (A)) the set of all bounded lower-semi-continuous real affine
functions on T (A).

Suppose that T (A) �= ∅. There is an affine map raff : As.a. → Aff(T (A)) by

raff (a)(τ) = â(τ) = τ(a) for all τ ∈ T (A)

and for all a ∈ As.a.. Denote by Aq
s.a. the image raff (As.a.) and Aq

+ = raff (A+).
For each integer n ≥ 1 and a ∈ Mn(A), write τ(a) = (τ ⊗ Tr)(a), where Tr is

the (non-normalized) trace on Mn.

Definition 2.3. Let A be a stably finite C∗-algebra with T (A) �= ∅. Denote by
ρA : K0(A) → Aff(T (A)) the order preserving homomorphism defined by ρA([p]) =
τ(p) for any projection p ∈ Mn(A) (see the above convention), n = 1, 2, . . .

Let A be a unital stably finite C∗-algebra. A map s : K0(A) → R is said to be
a state if s is an order preserving homomorphism such that s([1A]) = 1. The set of
states on K0(A) is denoted by S[1A](K0(A)).

Denote by rA : T (A) → S[1A](K0(A)) the map defined by rA(τ)([p]) = τ(p) for
all projection p ∈ Mn(A) (for any integer n) and for all τ ∈ T (A).

Definition 2.4. Let A and C be two unital separable stably finite C∗-algebras is
with T (C) �= ∅ and T (A) �= ∅. Let κi : Ki(C) → Ki(A) (i = 0, 1) be homomorphism
and let λ : T (A) → T (C) be an affine continuous map. We say that (κ0, λ) is
compatible, if

rC(λ(t))(x) = rA(t)(κ0(x)) for all x ∈ K0(C) and for all t ∈ T (A).

Denote by λ� : Aff(T (C)) → Aff(T (A)) the induced affine continuous map defined
by λ�(f)(τ) = f ◦ λ(τ) for all f ∈ Aff(T (A)) and τ ∈ T (C). When (κ0, λ) is com-
patible, denote by γ� : Aff(T (C))/ρA(K0(C)) → Aff(T (A))ρA(K0(A)) the induced
continuous map.

Let A be a unital simple C∗-algebra. The Elliott invariant of A, denote by Ell(A)
is the following six tuples

Ell(A) = (K0(A), K0(A)+, [1A], K1(A), T (A), rA).

Suppose that B is another unital simple C∗-algebra. We write Ell(A) ∼= Ell(B),
if there is an order isomorphism κ0 : K0(A) → K0(B) such that κ0([1A]) = [1B],
an isomorphism κ1 : K1(A) → K1(B) and an affine homeomorphism κρ : T (B) →
T (A) such that (κ0, κρ) is compatible.

Definition 2.5. Let A be a C∗-algebra. Let a, b ∈ Mn(A)+. Following Cuntz, we
write a � b if there exists a sequence (xn) ⊂ Mn(A) such that limn→∞ x∗

nbxn = a.

If a � b and b � a, then we write a ∼ b. The relation “∼” is an equivalence relation.
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Denote by W (A) the Cuntz semigroup of the equivalence classes of positive elements
in ∪∞

m=1Mm(A) with orthogonal addition and order “�”. In particular, when A has
stable rank one, if p, q ∈ Mn(A) are two projections then p ∼ q if and only if they
are von Neumann equivalent. Denote by Cu(A) the Cuntz semigroup W (A ⊗ K)
with order “�”.

Definition 2.6. Let A be a C∗-algebra. Denote by A1 the unit ball of A. Aq,1
+ is

the image of the intersection of A+ ∩ A1 in Aq
+.

Definition 2.7. Let A and B be two unital C∗-algebras and let ϕ : A → B be a
homomorphism. We write ϕ∗i : Ki(A) → Ki(B) for the induced homomorphisms
on K-theory and [ϕ] for the element in KK(A, B) as well as KL(A, B) if there is no
confusion. We also use ϕ‡ : U(M∞(A))/CU(M∞(A)) → U(M∞(B))/CU(M∞(B))
for the induced homomorphism. Suppose that T (A) and T (B) are both non-empty.
Then ϕT : T (B) → T (A) is the affine continuous map induced by ϕT (τ)(a) =
τ(ϕ(a)) for all a ∈ A and τ ∈ T (A). Denote by ϕcu : Cu(A) → Cu(B) the semigroup
homomorphisms which preserve of the order.

We use KLe(A, B)++ for the subset of elements κ ∈ KL(A, B) such that
κ(K0(A) \ {0}) ⊂ K0(B) \ {0} and (κ([1A]) = [1B])).

Definition 2.8. Denote by C the class of those unital C∗-algebras C which are
finite dimensional C∗-algebras or those C which are the pull-back:

C ��������

πe

���
�
� C([0, 1], F2)

(π0,π1)

��
F1

(ϕ0,ϕ1) �� F2 ⊕ F2,

(1)

where F1 and F2 are finite dimensional C∗-algebras and ϕi : F1 → F2 are homo-
morphisms. These C∗-algebras are also called one dimensional non-commutative
CW complexes (NCCW). C∗-algebra C can also be written as

C = {(f, a) ∈ C([0, 1], F2) ⊕ F1 : ϕ0(a) = f(0) and ϕ1(a) = f(1)} (2)

and is also called Elliott-Thomsen building block. Denote by C0 those C∗-algebras
C in C with K1(C) = {0}.

C∗-algebras in C are semiprojective (proved in [4].

Definition 2.9. Let A be a unital simple C∗-algebra and let S be a class of unital
C∗-algebras. We say A is TAS, if for any ε > 0, any finite subset F ⊂ A and any
a ∈ A+\{0}, there exists a projection p ∈ A and C∗-subalgebra C ∈ S with 1C = p

such that

‖px − xp‖ < ε and dist(pxp, C) < ε for all x ∈ F and (3)

1 − p � a. (4)

In the case that S = C, then we say that A has generalized tracial rank at most
one and write gTR(A) ≤ 1. If gTR(A) ≤ 1, we may say A is TAC. In the above
definition, if C ∈ C0, then we say A is in TAC0.
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It is proved in [12] that, if gTR(A ⊗ Q) ≤ 1, where Q is the UHF-algebra with
K0(Q) = Q, then A ⊗ Q ∈ TAC0(Cor. 29.3 of [12]. By a result in [24], this implies
that A ⊗ U is TAC0 for all UHF-algebras U of infinite type.

Denote by N1 the class of unital simple amenable C∗-algebras in the UCT class
such that gTR(A ⊗ U) ≤ 1 for some UHF-algebra U of infinite type.

Denote by Z the Jiang–Su algebra of unital simple C∗-algebra with Ell(Z) =
Ell(C) which is also an inductive limit sub-homogeneous C∗-algebras [13]. Recall
that a C∗-algebra A is Z-stable if A ∼= A ⊗ Z. Denote by NZ

1 those C∗-algebras
in N1 which are Z-stable.

Remark 2.10. Recall [6] that the finite CW complexes TII,k (or TIII,k) are defined
to be a 2-dimensional connected finite CW complex with H2(TII,k) = Z/k and
H1(TII,k) = 0 (or 3-dimensional finite CW complex with H3(TIII,k) = Z/k and
H1(TIII,k) = 0 = H2(TIII,k)). For each n, there is a space Xn which is of the form

Xn = [0, 1] ∨ S1 ∨ S1 ∨ · · · ∨ S1 ∨ TII,k1 ∨ TII,k2 ∨
· · · ∨ TII,ki ∨ TIII,m1 ∨ TIII,m2 ∨ · · · ∨ TIII,mj .

Let Pn ∈ M∞(C(Xn)) be a projection with rank r(n, 1). Let

An = PnM∞(C(Xn))Pn

⊕ pn⊕
i=2

Mr(n,i)(C)

and Fn =
⊕pn

i=1 Mr(n,i)(C). Fix a point ξ ∈ Xn and denote by πξ : An → Fn by
πξ(f, a) = f(ξ) ⊕ a, where f ∈ PnM∞(C(Xn))Pn and a ∈ ⊕pn

i=2Mr(n,i)(C). Let
En be a finite dimensional C∗-algebra and let ϕ0, ϕ1 : Fn → En be two unital
homomorphisms. Define

Cn = {(c, a) ∈ C([0, 1], En) ⊕ An : c(0) = ϕ0 ◦ πξ(a) and c(1) = ϕ1 ◦ πξ(a)}.
It is proved in [12] (see Theorems of 13.41 and 29.4 of [12]) that every C∗-algebra
in NZ

1 can be written as simple inductive limit of C∗-algebras of the form Cn above
(up to isomorphism).

3. Approximate Embeddings

Definition 3.1. Denote by S a class of unital C∗-algebras which has the follow-
ing properties: (a) S contains all finite dimensional C∗-algebras, (b) tensor prod-
ucts of finite dimensional C∗-algebras with C∗-algebras in S are in S, (c) S is
closed under direct sums, (d) every C∗-algebra in C are weakly semiprojective,
and (e) if S ∈ S, J ⊂ S is a closed two-sided ideal of S, ε > 0 and F ⊂ S/I is
a finite subset, then there exists C∗-subalgebra C ⊂ A/I such that C ∈ S and
dist(x, C)< ε for all x ∈ F .

It is proved in [12] (see Lemma 3.20 in Definition [12] that the class C in 2.8
satisfies (a)–(e).

The following is proved in [31].
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Proposition 3.2. (cf. Lemma 2.1 of [31]) Let S be a class of unital C∗-algebras
in Definition 3.1 and let U be a UHF-algebra of infinite type. Let A be a unital
separable simple stably finite exact C∗-algebra. Then A ⊗ U is TAS if and only if
there is η > 0 such that, for any ε > 0 and any finite subset F ⊂ A⊗U, there exists
a projection p and a C∗-subalgebra B ⊂ A ⊗ U with 1B = p and B ∈ S such that

τ(p) > η for all τ ∈ T (A ⊗ U), (5)

‖px − xp‖ < ε and dist(pap, B) < ε for all x ∈ F . (6)

Proof. This is a slight refinement of Lemma 2.1 of [31]. It should be noted, however,
that finitely generated assumption on C∗-algebras in S is not really needed. As in
the proof of Lemma 3.2 of [35], let γ < εi+1/14. Choose a subset F ′ ⊂ Bi such
that, for each x ∈ F , there exists x′ ∈ F ′ such that ‖x − x′‖ < εi. For any γ > 0,

there exist of ϑ > 0 and a finite subset G ⊂ Bi with the following property: if E

is another C∗-algebra p ∈ E is a projection and ϕ : Bi → E is a homomorphism
satisfying ‖pϕ(b)−ϕ(b)p‖ < ϑ for all b ∈ G, then there exists a unital homomorphism
ϕ̄ : Bi → pEp such that ‖ϕ̄(x′) − pϕ(x′)p‖ < γ for all x′ ∈ F ′.

Then, as in the proof of Lemma 2.1 of [31], one choose B′
i+1 := �(Bi) ⊕ F. By

property (e) in Definition 3.1, there exists a unital C∗-subalgebra B′′
i+1 ∈ �(Bi)

with B′′
i+1 ∈ S such that

dist(�(x′), B′′
i+1) < γ/2 for all x′ ∈ F ′. (7)

Put Bi+1 = B′′
i+1 ⊕ F. Then the rest of the proof remains the same.

We will also use the following characterization for C∗-algebras in TAS.

Theorem 3.3. (Theorem 2.2 of [37]) Let S be a class of unital C∗-algebras in
Definition 3.1 and let A be a unital separable simple C∗-algebra with T (A) �= ∅ and
with finite nuclear dimension. Suppose that there are two sequences of contractive
completely positive linear maps: ϕn : A → Bn and hn : Bn → A satisfying the
following:

(i) Bn ∈ S for each n ∈ N,

(ii) hn is an embedding for each n ∈ N,

(iii) limn→∞ ‖ϕn(a)ϕn(b) − ϕn(ab)‖ = 0 for all a, b ∈ A and
(iv) limn→∞ supτ∈T (A) |τ ◦ hn ◦ ϕn(a) − τ(a)| = 0 for each a ∈ A. Then A ⊗ Q is

TAS.

Lemma 3.4. Let C and A be two unital separable simple amenable C∗-algebras.
Suppose that C ⊗ U has finite nuclear dimension and gTR(A ⊗ U) ≤ 1 for some
UHF-alegbra U of infinite type. Suppose also that there exists an order isomorphism

κ0 : (K0(C ⊗ U), K0(C ⊗ U)+, [1C⊗U ]) → (K0(A ⊗ U), K0(A ⊗ U)+, [1A⊗U ]),

an affine homeomorphism λ : T (A⊗U) → T (C ⊗U) such that (κ0, λ) is compatible
and there exist a sequence of unital contractive completely positive linear maps
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ψn : C ⊗ U → A ⊗ U such that

lim
n→∞ sup

τ∈T (A)

|τ(ψn(a)) − λ(τ)(a)| = 0 for all a ∈ C ⊗ U and (8)

lim
n→∞ ‖ψn(ab) − ψn(a)ψn(b)‖ = 0 for all a, b ∈ C ⊗ U. (9)

Then gTR(C ⊗ U) ≤ 1.

Proof. By [24], it suffices to show that gTR(C⊗Q) ≤ 1. Since U ⊗Q ∼= Q and the
assumption holds when we replace U by Q, we may assume that U = Q. Let C1 =
C ⊗U and A1 = A⊗U. For unital separable simple C∗-algebras with finite nuclear
dimension, we use a characterization for TAC0 in [37]. We will show that there
exist a sequence of unital C∗-algebras Bn ∈ C0 and a sequence of monomorphisms
hn : Bn → C1 such that

lim
n→∞ sup

τ∈T (C1)

|τ(hn ◦ ψn(c)) − τ(c)| = 0 for all c ∈ C1. (10)

Then, by Theorem 3.3 (Theorem 2.2 in [37], gTR(C1) ≤ 1.

By the assumption, we have

rA1(τ)(κ0(x)) = rC1(λ(τ))(x) for all x ∈ K0(C1). (11)

Let {Gn} be an increasing sequence of finite subsets of A1 such that ∪∞
n=1Gn is

dense in A1. For each n, there exists a C∗-subalgebra Bn ⊂ A1 with 1Bn = pn such
that Bn ∈ C0 and a contractive completely positive linear map Ln : A1 → Bn such
that

‖pnx − xpn‖ < 1/2n+3 for all x ∈ Gn, (12)

‖Ln(x) − pnxpn‖ < 1/2n+3 for all x ∈ Gn and (13)

τ(1 − pn) <
1

2n+3 max{‖g‖+ 1 : g ∈ Gn} for all τ ∈ T (A1). (14)

In particular,

lim
n→∞ ‖Ln(ab) − Ln(a)Ln(b)‖ = 0 for all a, b ∈ A1. (15)

It follows from Theorem 2.5 of [2] that Cu(A1) = V (A1) � LAff+(T (A1)). Since
both A1 and C1 have stable rank one, the map Γ : Cu(A1) → Cu(C1) defined by

Γ([p]) = κ−1
0 ([p]) and Γ(f)(λ(τ)) = f(τ) (16)

for all projections p ∈ A1 ⊗ K, f ∈ LAff+(T (A1)) and τ ∈ T (A1) is a semigroup
isomorphism. Moreover, Γ is order preserving, preserves the suprema and preserves
the relation of compact containment. Denote by jn : Bn → A1 the embedding and
denote by jcu

m : Cu(Bn) → Cu(A1) the morphism induced by jm. It follows from
the existence part of a result in [29] that there is, for each n, a homomorphism
hn : Bn → C1 such that hcu

n = Γ ◦ jcu
m . Since jm is the embedding and Γ is an

isomorphism, hcu
n does not vanish. It follows that hn is an embedding.
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Put ψn = Ln ◦ ψ′
n. Let {Fn} be an increasing sequence of finite subsets of C1

whose union is dense in C1. By passing to a subsequence, without loss of generality
we may assume that, for each n,

sup
τ∈T (A1)

|τ ◦ ψn(c) − λ(τ)(c)| <
1

2n+1(max{‖c‖ + 1 : c ∈ Fn})
for all c ∈ Fn and (17)

dist(ψ′
n(c),Gn) < 1/2n+2 for all c ∈ Fn. (18)

Let gc ∈ Gn such that

‖ψ′
n(c) − gc‖ < 1/2n+3 for all c ∈ Fn. (19)

We then estimate that

λ(τ)(hn ◦ ψn(c)) = Γ ◦ jcu
m (ψn(c))(τ) = ̂jm(ψn(c))(τ)

= τ(ψn(c)) ≈1/2n+3 τ(Ln(gc)) ≈1/2n+3 τ(pngcpn)

≈1/2n+3 τ(gc) ≈1/2n+3 τ(ψ′
n(c))

≈1/2n+3 λ(τ)(c)

(20)

for all τ ∈ T (A1), where the first approximation follows from (19), the second
follows from (13), the third follows from (14), the fourth follows from (19) and the
last one follows (17). In other words,

sup
t∈T (C1)

|t(hn ◦ ψn(c)) − t(c)| < 1/2n for all c ∈ C1. (21)

Then, by applying Theorem 3.3, gTR(C1) ≤ 1.

4. Uniqueness and Existence Theorems

The following follows from a result in [12].

Theorem 4.1. Let X be a compact metric space, let C = C(X), let A1 ∈ A1, let U

be a UHF-algebra of infinite type and let A = A1 ⊗U. Suppose that ϕ1, ϕ2 : C → A

are two unital monomorphisms. Suppose also that

[ϕ1] = [ϕ2] in KL(C, A) (22)

(ϕ1)T = (ϕ2)T and ϕ‡
1 = ϕ‡

2. (23)

Then ϕ1 and ϕ2 are approximately unitarily equivalent.

Proof. This follows immediately from Theorem 12.7 of [12]. Define, for each a ∈
A1

+ \ {0},
∆(â) = inf{τ(ϕ1(a)) : τ ∈ T (A)}/2. (24)

It is clear that ∆ : Aq,1
+ \ {0} → (0, 1) is non-decreasing map. We have

τ(ϕ2(a)) = τ(ϕ1(a)) ≥ ∆(â) for all a ∈ A1
+ \ {0}. (25)

Then the theorem follows Theorem 12.7 of [12].
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Definition 4.2. Let A be a unital separable stably finite C∗-algebra with T (A) �=
∅. There is a splitting exact sequence with the splitting map JA

c :

0 → Aff(T (A))/ρA(K0(A)) → U∞(A)/CU∞(A)
πA
K1→ K1(A) → 0 (26)

(see [32]). In particular, πA
K1

◦ JA
c = idK1(A). In what follows, for each such unital

C∗-algebra A, we fix one JA
c .

For a fixed pair of unital stable finite C∗-algebras C and A with T (C) �= ∅ and
T (A) �= ∅, we fix JC

c and JA
c . Suppose that ϕ : C → A is a unital homomorphism.

Define ϕρ : K1(C) → Aff(T (A))/ρA(K0(A)) by

ϕρ = (id − JA
c ◦ πA

K1
) ◦ ϕ‡ ◦ JC

c . (27)

Note that πA
K1

◦ ϕρ = 0. Moreover,

πA
K1

◦ ϕ‡ ◦ JC
c = ϕ∗1. (28)

Suppose that ψ : C → A is another unital homomorphism such that ψ∗1 = ϕ∗1
and ϕρ = ψρ. Then, by (28),

ϕ‡ ◦ JC
c = ψ‡ ◦ JC

c . (29)

Thus, if ψT = ϕT , then ϕ‡ = ψ‡.
Suppose that κ ∈ KLe(C, A)++, λ : T (A) → T (C) is an affine continuous

map and γ : U(M∞(C))/CU(M∞(C)) → U(M∞(A))/CU(M∞(A)) is a con-
tinuous homomorphism. We say (κ, λ, γ) is compatible, if (κ|K0(C), λ) is com-
patible, γ|Aff(T (C))/ρA(K0(C)) = λ�, where λ� is defined in Definition 2.4, and
κ|K1(C) = πA

K1
◦ γ ◦ JC

c (which is independent of choice of JC
c ).

Therefore we also have the following:

Corollary 4.3. Let X be a compact metric space, let C = C(X), let A1 ∈ A1, let U

be a UHF-algebra of infinite type and let A = A1 ⊗U. Suppose that ϕ1, ϕ2 : C → A

are two unital monomorphisms. Suppose also that

[ϕ1] = [ϕ2] in KL(C, A) (30)

(ϕ1)T = (ϕ2)T and ϕρ
1 = ϕρ

2. (31)

Then ϕ1 and ϕ2 are approximately unitarily equivalent.

The following is well known.

Proposition 4.4. Let X be a compact metric space and let Xn be a sequence
of polyhedrons such that C(X) = limn→∞(C(Xn), sn). Then, for any ε > 0 and
any finite subset F ⊂ C(X), there exists an integer k ≥ 1 such that, for any
n ≥ k there is a unital ε-F-multiplicative contractive completely positive linear
maps Ln : C(X) → C(Xn) such that

‖sn,∞ ◦ Ln(f) − f‖ < ε for all f ∈ F . (32)

J. 
To

po
l. 

A
na

l. 
20

18
.1

0:
44

7-
46

9.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

ifi
c.

co
m

by
 E

A
ST

 C
H

IN
A

 N
O

R
M

A
L 

U
N

IV
ER

SI
TY

 o
n 

04
/1

8/
19

. R
e-

us
e 

an
d 

di
st

rib
ut

io
n 

is
 st

ric
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s a
rti

cl
es

.



May 17, 2018 14:46 WSPC/243-JTA 1850014

458 H. Lin

Proof. For any ε > 0 and any finite subset F ⊂ C(X), there is an integer k1 ≥ 1
such that dist(f, sn,∞(C(Xn)) < ε/2 for all n ≥ k1. To simplify the notation,
without loss of generality, we may assume that ‖f‖ ≤ 1 for all f ∈ F . Put Bn =
sn,∞(C(Xn)). Since C(X) is amenable, there exists a unital contractive completely
positive linear map Φn : C(X) → Bn such that

‖Φn(f) − f‖ < ε/4 for all f ∈ F . (33)

Since sn,∞(C(Xn)) is amenable, there exists a unital contractive completely positive
linear map Ψn : sn,∞(C(Xn)) → C(Xn) such that

sn,∞ ◦ Ψn(f) = f (34)

for all f ∈ sn,∞(C(Xn)). For all f, g ∈ F , since

sn,∞ ◦ Ψn(fg) = fg = sn,∞ ◦ Ψn(f) · sn,∞ ◦ Ψn(g) = sn,∞(Ψn(f)Ψn(g)),

there is an integer k2 > n such that

‖sn,m ◦ Ψn(fg) − sn,m ◦ Ψn(f)sn,m ◦ Ψn(g)‖ < ε/2 (35)

for all m ≥ k2 and f, g ∈ F . Put k = k1k2. For m ≥ k, define Lm = sk1+1,m ◦
Ψk1+1 ◦ Φk1+1 : C(X) → C(Xm). m = 1, 2, .... It follows from (33) and (34) that
Lm is ε-F -multiplicative. Moreover, by (33) and (34),

‖sm,∞ ◦ Lm(f) − f‖ < ε for all f ∈ F .

Lemma 4.5. Let X be a compact metric space, let A ∈ N1, let U be a UHF-
algebra of infinite type and let B = A ⊗ U. Suppose that κ ∈ KLe(C(X), B)++,

λ : T (B) → Tf (C(X)) is a continuous affine map and suppose that γ :
U∞(C(X))/CU∞(C(X)) → U∞(A)/CU∞(B) is a continuous homomorphism such
that (κ, λ, γ) is compatible. Then there exists a sequence of unital contractive com-
pletely positive linear maps ϕn : C(X) → B such that, for any finite subset
P ⊂ K(C(X)),

[ϕn]|P = κ|P for all sufficiently large n, (36)

lim
n→∞ ‖ϕn(fg) − ϕn(f)ϕn(g)‖ = 0 for all f, g ∈ C(X), (37)

lim
n→∞ max

τ∈T (B)
|τ ◦ ϕn(f) − λ(τ)(f)| = 0 for all f ∈ C(X)s.a. and (38)

lim
n→∞dist(〈ϕn(v)〉, γ(v̄)) = 0 for all unitaries v ∈ Mm(C(X)), m = 1, 2, . . . .

(39)

(See 14.5 and 2.20 of [19] for notations in (39).)
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Proof. We first note that, for any compact metric space Y, Tf (C(Y )) �= ∅. This is
well known, but to see this, let {yn} be a dense sequence in Y. Define

t(f) =
∞∑

n=1

f(yn)/2n for all f ∈ C(Y ). (40)

It is clear that t gives a faithful tracial state on C(Y ).
We will write C(X) = limn→∞(C(Xn), ιn), where each Xn is a polyhedron and

ιn,∞ : C(Xn) → C(X) is injective (see Satz 1, p. 229 of [9] and see also [26]). Put
C = C(X) and Cn = C(Xn), n = 1, 2, . . . .

Put κn = κ ◦ [ιn,∞] and γn = γ ◦ ι‡. Define λn : T (A) → Tf (Cn) by λn(τ)(f) =
λ(τ)(ιn,∞(f)) for all f ∈ Cn and τ ∈ T (A), n = 1, 2, . . . . Note that (κn, λn, γn) is
compatible since (κ, λ, γ) is compatible. Note also that since κ ∈ KLe(C, A)++ and
ιn,∞ is injective, κn ∈ KLe(Cn, A)++. It follows from Theorem 21.14 of [12] that
there exists a unital monomorphism hn : Cn → A such that

[hn] = κn, (hn)T = λn and h‡
n = γn, n = 1, 2, . . . . (41)

By applying Proposition 4.4, we may assume that there are contractive completely
positive linear maps Ln : C(X) → C(Xn) such that

lim
n→∞ ‖Ln(f)Ln(g) − Ln(fg)‖ = 0 for all f, g ∈ C and (42)

lim
n→∞ ‖ιn,∞ ◦ Ln(f) − f‖ = 0 for all f ∈ C. (43)

Define ϕn = hn ◦ Ln, n = 1, 2, . . . . One easily checks that {ϕn} meets the require-
ments.

4.6. Let A be a unital separable stably finite simple C∗-algebra with T (A) �= ∅
and let X be a compact metric space. Suppose that λ : T (A) → Tf (C(X)) is an
affine continuous map. Define λ� : C(X)s.a. → Aff(T (A)) by λ�(f)(τ) = λ(τ)(f)
for all f ∈ C(X)s.a.. Since λ(τ) ∈ Tf (C(X)), λ� is strictly positive in the sense that
λ�(f) > 0 for all f ∈ C(X)+ \ {0}. Put

∆0(f̂) = inf{λ�(f)(τ) : τ ∈ T (A)} (44)

for all f ∈ C(X)1+. Note that, since T (A) is compact, 1 ≥ ∆0(f̂) > 0 for all
f ∈ C(X)1+. Thus ∆ = 3∆0/4 gives a non-decreasing function from C(X)q,1

+ \ {0}
to (0, 1).

For any finite subset H0 ⊂ C(X)q,1
+ , there exist σ > 0 and a finite subset

H ⊂ C(X)s.a. satisfying the following: for any unital contractive completely positive
linear map Φ : C(X) → A

τ ◦ Φ(g) ≥ ∆(ĝ) for all g ∈ H0, (45)
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provided that

max
τ∈T (A)

|τ ◦ Φ(f) − λ(τ)(f)| < σ for all f ∈ H. (46)

Theorem 4.7. Let X be a compact metric space, let A ∈ N1 and let B = A ⊗ U,

where U is a UHF-algebra of infinite type. Suppose that κ ∈ KLe(C(X), B)++,

λ : T (A) → Tf (C(X)) is a continuous affine map and suppose that χ : K1(C(X)) →
Aff(T (B))/ρA(K0(B)) is ahomomorphism such that (κ, λ) is compatible. Then there
exists a unital monomorphism h : C(X) → B such that

[h] = κ, hρ = χ and hT = λ. (47)

(Here J
C(X)
c and JB

c are fixed.)

Proof. Let ∆ be induced by λ as defined in 4.6. Define γ : U(M∞(C(X))/CU(M∞
(C(X)) → U(M∞(B))/CU(M∞(B))) as follows:

γ|Aff(T (C(X)))/ρC(X)(K0(C(X))) = λ� and (48)

γ|
J

C(X)
c (K0(C(X)))

= χ ◦ π
C(X)
K1

+ JA
c ◦ κ ◦ π

C(X)
K1

. (49)

Then (κ, λ, γ) is compatible.
Let {Fn} be an increasing sequence of finite subsets of C(X) such that its union

is dense in C(X). Let {εn} be a decreasing sequence of positive numbers such that∑∞
n=1 εn < ∞. We will apply 12.7 of [12] with C = C(X). Let H1,n ⊂ C(X)q,1

+ \{0}
(in place of H1) be a finite subset, σ1,n > 0 (in place of γ1) , σ2,n > 0, δn > 0 (in
place of δ), Gn ⊂ C(X) (in place of G) be a finite subset, Pn ⊂ K(C(X)) (in
place of G) be a finite subset, H2,n ⊂ C(X)s.a. (in place of H2) is a finite subset,
Un ⊂ U∞(C(X))/CU∞(C(X)) (in place of U) for which [Un] ⊂ Pn is a finite
subset required by 12.7 of [12] for εn and Fn, n = 1, 2, . . . . We may assume that
{H1,n} and {Pn} are increasing. By applying Lemma 4.5, one obtains a sequence
of unital contractive completely positive linear maps ϕn : C(X) → B such that ϕn

is δn-Gn-multiplicative,

[ϕn]|Pn = [κ]|Pn , (50)

max
τ∈T (A)

|τ ◦ ϕn(f) − λ(τ)(f)| < σ1,n for all f ∈ H2,n and (51)

dist(〈ϕn(v)〉, γ(v̄)) < σ2,n for all v ∈ Un, (52)

n = 1, 2, . . . . By 4.6, we may also assume that

τ ◦ ψn(g) ≥ ∆(ĝ) for all g ∈ H1,n. (53)

It follows from 12.7 of [12] that there exists a sequence of unitaries un ∈ B such
that

‖Ad un ◦ ϕn+1(f) − ϕn(f)‖ < εn for all f ∈ Fn n = 1, 2, . . . . (54)
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Define ψ1 = ϕ1, ψ2 = Adu1 ◦ ϕ1, ψ3 = Adu2 ◦ ψ2, and ψn+1 = Adun ◦ ψn,

n = 1, 2, .... Then, by (54),

‖ψn+1(f) − ψn(f)‖ < εn for all f ∈ Fn n = 1, 2, . . . . (55)

Since
∑∞

n=1 εn < ∞, {Fn} is an increasing sequence and ∪∞
n=1Fn is dense

in C(X), it is easy to see that {ψn(f)} is Cauchy for every f ∈ C(X). Let
h(f) = limn→∞ ψn(f) for f ∈ C(X). It is clear that h : C(X) → B is a unital
homomorphism. Moreover,

[h] = κ in KL(C(X), B) hT = λ and h‡ = γ. (56)

Since γ(τ) ∈ Tf (C(X)) for each τ ∈ T (B), h is also injective.

5. The Main Results

We begin with the following lemma.

Lemma 5.1. Let C be a unital separable amenable C∗-algebra and let α ∈ Aut(C)
be such that τ(c) = τ(E(c)) for all c ∈ C�αZ and for all τ ∈ T (C�αZ), where E is
the canonical conditional expectation. Let A be a unital C∗-algebra with T (A) �= ∅.
Suppose that λ : T (A) → T (C �α Z) is a surjective continuous affine map. Suppose
ϕ : C → A is a unital monomrophism and ψn : C �α Z → A is a contractive
completely positive linear map, n = 1, 2, . . . , such that

lim
n→∞ ‖ψn(a)ψn(b) − ψn(ab)‖ = 0 for all a, b ∈ C �α Z, (57)

lim
n→∞ ‖ψn(c) − ϕ(c)‖ = 0 for all c ∈ C and (58)

τ ◦ ϕ(a) = λ(τ)(a) for all a ∈ C and τ ∈ T (A). (59)

Then, for any ε > 0 and any finite subset set F ⊂ C �α Z, there exists N ≥ 1 such
that

sup
τ∈T (A)

|τ ◦ ψn(a) − λ(τ)(a)| < ε for all a ∈ F (60)

and for all n ≥ N.

Proof. We first show that, for any τ ∈ T (A),

lim
n→∞ |τ ◦ ψn(c) − λ(τ)(c)| = 0 for all c ∈ C �α Z. (61)

Fix τ ∈ T (A). If (61) fails, then there exist at least one c �= 0 in C �α Z, one
τ ∈ T (C �α Z) and a subsequence {nk} such that

lim inf
k
|τ ◦ ψnk

(c) − λ(τ)(c)| = η > 0. (62)

Since the state space of C �α Z is weak*-compact, one can choose a limit point t

of {τ ◦ ψnk
}. Then there exists a sequence {n′

k} ⊂ {nk} such that

lim
k→∞

|τ ◦ ψn′
k
(c) − t(c)| = 0 for all c ∈ C. (63)
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By (57), t is a tracial state. Let E : C → C(X) be the canonical conditional
expectation. Then, by the assumption, t(c) = t(E(c)) for all c ∈ C. By combining
with (63),

lim
n→∞ |τ ◦ ψn′

k
(c) − τ ◦ ψn′

k
(E(c))| = 0 for all c ∈ C. (64)

However, by (58) and by (64)

lim
n→∞ |τ ◦ ψn′

k
(c) − λ(τ)(c)| = lim

n→∞ |τ ◦ ψn′
k
(c) − λ(τ)(E(c))|

= lim
n→∞ |τ ◦ ψn′

k
(c) − τ ◦ ϕ(E(c))|

= lim
n→∞ |τ ◦ ψn′

k
(E(c)) − τ ◦ ϕ(E(c))| = 0

(65)

for all c ∈ C. This contradicts with (62). So the claim is proved.
Suppose that the lemma is not true. There exist ε0 > 0, a finite subset F , a

sequence of tracial states {τk} ⊂ T (B), and an increasing sequence {nk} of integers
such that

max
a∈F

|τk ◦ ψnk
(a) − λ(τk)(a)| ≥ ε0 (66)

for all k ≥ 1. We will again use the fact that the state space of C �α Z is weak*-
compact. Let t0 be a limit point of {τk ◦ ψnk

} in S(C �α Z). It follows from (57)
that t0 ∈ T (C �α Z). For each c ∈ C �α Z,

lim
k→∞

|τk ◦ ψnk
(c) − t0(c)| = 0 for all c ∈ C �α Z. (67)

However, t0(c) = t0(E(c)) for any c ∈ C �α Z. This implies that

lim
k→∞

τk ◦ ψnk
(E(c)) = t0(E(c)) = t0(c) for all c ∈ C �α Z. (68)

It follows that

lim
k→∞

|τk ◦ ψnk
(c) − tk ◦ ψnk

(E(c))| = 0 for all c ∈ C �α Z. (69)

On the other hand, by (58),

lim
k→∞

|τk ◦ ψnk
(E(c)) − λ(τk)(c)| = lim

k→∞
|τk ◦ ϕ(E(c)) − λ(τk)(E(c))| = 0 (70)

for all c ∈ C �α Z. In particular, for any a ∈ F ,

lim
k→∞

|τk ◦ ψnk
(a) − λ(τk)(a)| = 0. (71)

This contradicts with (66).

We now prove the following:

Theorem 5.2. Let X be an infinite compact metric space and let α : X → X be a
minimal homeomorphism. Then gTR((C(X) �α Z) ⊗ U) ≤ 1 for any UHF-alegbra
U of infinite type.
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Proof. By [24], it suffices to show that gTR((C(X) �α Z) ⊗ Q) ≤ 1. Let C =
C(X)�α Z and C1 = C ⊗Q. We will use the result in [7] that C1 has finite nuclear
dimension (when X has finite covering dimension, it was proved in [34]).

Note that C1 is a unital separable simple amenable Z-stable C∗-algebra. By
the Range Theorem (Theorem 13.41) in [12], there is a unital separable simple
C∗-algebra A in UCT class with gTR(A) ≤ 1 such that

(K0(C1), K0(C1)+, [1C1 ], K1(C1), T (C1), rC1)

= (K0(A), K0(A)+, [1A], K1(A), T (A), rA). (72)

Since C1
∼= C1 ⊗ Q, we may assume that A ∼= A ⊗ Q.

Let κ ∈ KLe(C1, A)++ which gives the part of the above identification:

(K0(C1), K0(C1)+, [1C1 ], K1(C1)) = (K0(A), K0(A)+, [1A], K1(A)).

Let λ : T (A) → T (C1) be an affine homeomorphism given by (72) which is com-
patible with κ. Put κ0 = κ|K0(C1) and κ1 = κ|K1(C1). Let ıT : T (C1) → Tf (C(X))
be defined by ıT (τ)(f) = τ(ı(f)) for all τ ∈ T (C1) and for all f ∈ C(X), where
ı : C(X) → C is the embedding. By theorem 4.7, there exists a unital monomor-
phism ϕ′ : C(X) → A such that

[ϕ′] = κ ◦ [ı], ϕ′
T = ıT ◦ λ and (ϕ′)ρ = 0. (73)

Consider ψ = ϕ′ ◦ α : C(X) → A. Then [ı ◦ α] = [ı], (ı ◦ α)T = ıT . It follows that

[ψ] = [ϕ′], ψT = ϕ′
T . (74)

Note that since ψρ = ϕρ ◦ α∗1,

ψρ = (ϕ′)ρ. (75)

It follows from corollary 4.3 that there exists a sequence of unitaries {un} ⊂ A such
that

lim
n→∞ ‖u∗

nϕ′(f)un − ϕ′ ◦ α(f)‖ = 0 for all f ∈ C(X). (76)

Let C0 be the subalgebra of C whose elements have the form
∑k

i=−k fiu
i, where

fi ∈ C(X) and u ∈ C is a unitary which implement the action α, i.e. u∗fu = f ◦ α

for all f ∈ C(X). Define a linear map Ln : C0 → A by

Ln

(
k∑

i=−k

fiu
i

)
=

k∑
i=−k

fiu
i
n. (77)

Let L : C0 → l∞(A) be defined by L(c) = {Ln(c)} and let π : l∞(A) →
l∞(A)/c0(A) be the quotient map. Then π ◦ L : C0 → l∞(A)/c0(A) is a unital
∗-homomorphism. In particular, it is a covariant representation of (C(X), α). Thus
π ◦ L gives a unital homomorphism Φ : C → l∞(A)/c0(A) such that Φ|C0 = π ◦ L.

Since C is amenable, there exists a contractive completely positive linear map
Λ : C → l∞(A) such that π ◦ Λ = Φ. Let πn : l∞(A) → A be the projection
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to the nth coordinate. Put ϕ′
n = πn ◦ Λ. Then ϕ′

n : C → A is a contractive com-
pletely positive linear map. Moreover, since π ◦ Λ = Φ, we have

lim
n→∞ ‖Ln(c) − ϕ′

n(c)‖ = 0 for all c ∈ C. (78)

In particular,

lim
n→∞ ‖ϕ′

n(a)ϕ′
n(b) − ϕ′

n(ab)‖ = 0 for all a, b ∈ C and (79)

lim
n→∞ ‖ϕ′

n(a) − ϕ(a)‖ = 0 for all a ∈ C(X). (80)

Note that ϕT = ıT ◦ λ, i.e.

τ ◦ ϕ(a) = λ(τ)(a) for all a ∈ C. (81)

It follows from Lemma 5.1 that

lim
n→∞ sup

τ∈T (A)

|τ ◦ ϕ′
n(c) − λ(τ)(c)| = 0 for all c ∈ C. (82)

We then define ϕn : C1 → A ⊗ U ∼= A by ϕn(c ⊗ a) = ϕ′
n(c) ⊗ a for all c ∈ C and

a ∈ U. Then

lim
n→∞ ‖ϕn(a)ϕn(b) − ϕn(ab)‖ = 0 for all a, b ∈ C1, (83)

lim
n→∞ sup

τ∈T (A)

|τ ◦ ϕn(a) − λ(τ)(a)| = 0 for all a ∈ C1. (84)

Since C1 has finite nuclear dimension, by Lemma 3.4, the above implies that
gTR(C1) ≤ 1.

Corollary 5.3. Let X be a compact metric space, let α : X → X be a minimal
homeomorphism and let C = C(X) �α Z. Then C ⊗Z ∈ NZ

1 .

The proof of Theorems 1.2 and 1.1. It is proved in [8] that, when (X, α) is a
minimal dynamical system with mean dimension zero, C(X)�α Z is Z-stable. Thus
Theorem 1.2 follows immediately from Corollary 5.3. When X has finite dimension,
every minimal dynamical system (X, α) has mean dimension zero. So Theorem 1.1
follows.

The proof of Corollary 1.3. Let C = C(X) �α Z. By 1.2, C ∈ NZ
1 . It follows

from the Range Theorem (Theorem 13.41) in [12] that there exists a unital simple
inductive limit A of sub-homogeneous C∗-algebras described in Remark 2.10 such
that Ell(A) ∼= Ell(C). By the isomorphism theorem (Theorem 29.4) in [12], C ∼= A.

The proof of Theorem 1.4. As mentioned earlier, this can be proved without
using [12]. The “only if” part follows from [22]. For “if” part, let C = C(X) �α Z.

By [22] again, there is a unital simple amenable C∗-algebra A which satisfies the
UCT and A⊗Q has tracial rank at most one such that Ell(A) ∼= Ell(C). Using this
A, exactly the same proof of theorem 5.2 shows that TR(C ⊗ Q) ≤ 1.
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The following is of course a consequence of Theorem 5.2. But it is also a corollary
of Theorem 1.4:

Corollary 5.4. Let X be an infinite compact metric space and let α : X → X be a
minimal homeomorphism. Suppose that K0(C(X) �α Z) has a unique state. Then
TR((C(X) �α Z) ⊗ Q) ≤ 1.

Proof. Put C = C(X) �α Z and C1 = C ⊗ Q. Then S[1C1 ](K0(C1)) has a single
point. Therefore it is a Choquet simplex. In particular, by 5.10 of [22], K0(C1) is
a dimension group. It is also clear that all extremal points of T (C1) maps to the
extremal point of S[1C1 ](K0(C1)). So Theorem 1.4 applies.

The above certainly applies to all cases that were studied in [20] (see Theorem 6.1
and 6.2 of [20]). It also applies to all connected X with torsion K0(C(X)).

Theorem 5.5. Let C ∈ N1 be a unital separable simple C∗-algebra and let α ∈
Aut(C) such that τ(a) = τ(E(a)) for all a ∈ C �α Z and τ ∈ T (C �α Z). Suppose
that (C �α Z)⊗U has finite nuclear dimension for some UHF-algebra U of infinite
type. Then C �α Z ∈ N1.

Proof. The proof is almost identical to that of Theorem 5.2 except that we have
to use a different existence and uniqueness theorems. Let C1 = C �α Z and C2 =
C1 ⊗ Q. We will show that gTR(C2) ≤ 1.

It follows from 4.4 of [15] that αk is strongly outer for all integer k �= 0. There-
fore C1 is simple (see Theorem 3.1 of [14]). Hence C2 is a unital separable simple
amenable Z-stable C∗-algebra. By the Range Theorem (Theorem 13.41) in [12],
there is a unital separable simple C∗-algebra A in UCT class with gTR(A) ≤ 1
such that

(K0(C2), K0(C2)+, [1C2 ], K1(C2), T (C2), rC2)

= (K0(A), K0(A)+, [1A], K1(A), T (A), rA). (85)

Since C2
∼= C2 ⊗ Q, we may assume that A ∼= A ⊗ Q.

Let κ ∈ KLe(C2, A)++ which gives the part of the above identification:

(K0(C2), K0(C2)+, [1C2 ], K1(C2)) = (K0(A), K0(A)+, [1A], K1(A)).

Let λ : T (A) → T (C2) be an affine homeomorphism above which is compatible with
κ. Put κ0 = κ|K0(C2) and κ1 = κ|K1(C2). Let ıT : T (C2) → T (C ⊗Q) be defined by
ıT (τ)(c) = τ(ı(c)) for all τ ∈ T (C2) and for all c ∈ C ⊗ Q, where ı : C⊗Q → C1⊗Q

is the embedding. Since (κ0, λ) is compatible, λ induces an isomorphism

λ̄� : Aff(T (C2))/ρC2(K0(C2)) → Aff(T (A))/ρA(K0(A)).
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Fix JC2
c and JA

c as in Definition 4.2. Define γ : U(C ⊗ Q)/CU(C ⊗ Q) →
U(A)/CU(A) as follows:

γ|Aff(T (C⊗Q))/ρC⊗Q(K0(C⊗Q)) = (ıT ◦ λ)� and (86)

γ|JC⊗Q
c (K1(C⊗Q) = JA

c ◦ κ1 ◦ ı∗1 ◦ (πK1(C⊗Q))|JC⊗Q
c (K1(C⊗Q)). (87)

By Theorem 21.9 of [12], there exists a unital monomorphism ϕ : C ⊗ Q → A such
that

[ϕ] = κ ◦ [ı], ϕT = ıT ◦ λ and (ϕ)‡ = γ. (88)

Define β = α ⊗ idU : C ⊗ Q → C ⊗ Q and consider ψ = ϕ ◦ β : C ⊗ Q → A. Then
[ı ◦ α] = [ı], (ı ◦ α)T = ıT . It follows that

[ψ] = [ϕ], ψT = ϕT . (89)

Note, since ı∗1 ◦ β∗1 = ı∗1,

ψ‡|Aff(T (C⊗Q))/ρC⊗Q(K0(C⊗Q)) = λ̄� = ϕ‡|Aff(T (C⊗Q))/ρC⊗Q(K0(C⊗Q)) and

ψ‡|JC⊗Q
c (K1(C⊗Q)) = ϕ‡ ◦ β‡|JC⊗Q

c (K1(C⊗Q))

= JA
c ◦ κ1 ◦ ı∗1 ◦ β∗1 ◦ πC⊗Q

K1
|JC⊗Q

c (K1(C⊗Q))

= JA
c ◦ κ1 ◦ ı∗1 ◦ πC⊗Q

K1
|JC⊗Q

c (K1(C⊗Q))

= ϕ‡|JC⊗Q
c (K1(C⊗Q)).

(90)

It follows that ϕ‡ = ψ‡.
By the uniqueness theorem (Theorem 12.11) of [12], there exists a sequence of

unitaries {un} ⊂ A such that

lim
n→∞ ‖u∗

nϕ′(f)un − ϕ′ ◦ α(f)‖ = 0 for all f ∈ C ⊗ Q. (91)

Let C0 be a subalgebra of C whose elements have the form
∑k

i=−k fiu
i, where

fk ∈ C ⊗ Q and u ∈ C ⊗ Q �β Z is a unitary which implement the action β, i.e.
u∗fu = f ◦ β for all f ∈ C ⊗ Q. Define a linear map Ln : C0 → A by

Ln

(
k∑

i=−k

fiu
i

)
=

k∑
i=−k

fiu
i
n. (92)

Since C ∈ N1, C ⊗ Q is in the so-called bootstrap class. Therefore so Theorem is
C2

∼= (C ⊗Q) �β Z. In particular, C2 is amenable. The same argument used in the
proof of Theorem 5.2 shows that there exists a sequence of contractive completely
positive linear map ϕn : C2 → A such that

lim
n→∞ ‖ϕn(a)ϕn(b) − ϕn(ab)‖ = 0 for all a, b ∈ C2 and (93)

lim
n→∞ ‖ϕn(a) − ϕ(a)‖ = 0 for all a ∈ C ⊗ Q. (94)
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Note that ϕT = ıT ◦ λ, i.e.

τ ◦ ϕ(a) = λ(τ)(a) for all a ∈ C ⊗ Q. (95)

It follows from Lemma 5.1 that

lim
n→∞ sup

τ∈T (A)

|τ ◦ ϕn(c) − λ(τ)(c)| = 0 for all c ∈ C. (96)

Since C2 has finite nuclear dimension, by Lemma 3.4, gTR(C2) ≤ 1. In other words,
C �α Z ∈ N1.

Remark 5.6. Let C be a unital simple separable C∗-algebra and α ∈ Aut(C). By
a refined argument of Kishimoto, as in Remark 2.8 of [27], if α has weak Rokhlin
property, then τ(auk) = 0 for any a ∈ C and any integer k �= 0. Thus τ(a) =
τ(E(a)) for all a ∈ C �α Z and all τ ∈ T (C �α Z), where E : C �α Z → C is
the canonical conditional expectation. On the other hand, if τ(a) = τ(E(a)) for all
a ∈ C �α Z and all τ ∈ T (C �α Z), by the proof of 4.4 of [15], the Z action induced
by α is strongly outer (see also Remark 2.8 of [27]). Thus, in Theorem 5.5, if in
addition, C ∈ NZ

1 , then by Corollary 4.10 of [28], C �α Z is Z-stable. In light of
this, it seems that the condition τ(a) = τ(E(a)) for all a ∈ C �α Z is a reasonable
replacement for some version of weak Rokhlin property.
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