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Thermochemical water splitting is a promising clean method of hydrogen production of
high relevance in a society heavily reliant on fossil fuels. Using evolutionary methods and
density functional theory, we predict the structure and electronic properties of BiVO;. We
build on previous literature to develop a framework to evaluate the thermodynamics of
thermochemical water splitting cycles for hydrogen production. We use these results to
consider the feasibility of BiVO; as a catalyst for thermochemical water splitting. We show
that for BiVOs, both the thermal reduction and gas splitting reactions are thermodynam-
ically favorable under typical temperature conditions. We predict that thermochemical
water splitting cycles employing BiVO; as a catalyst produce hydrogen yields comparable
to those of commonly used catalysts.

© 2018 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.

Introduction

Many aspects of modern society depend on the production
and use of chemical fuels. Hydrogen gas is a promising
alternative to conventional modern-day fuels, as its combus-
tion only produces water as a byproduct. Hydrogen is usually
produced by steam reforming reactions with fossil fuels at
high temperatures; however, these processes generate carbon
dioxide and other greenhouse gases, motivating the search for
other methods of hydrogen generation [7].

Alternative methods for hydrogen production have been
explored. Thermochemical water splitting cycles have high
theoretical solar-to-fuel conversion efficiencies, due to their
ability to utilize the entire solar spectrum [34]. Efficiencies are
projected to be higher than in other methods, such as photo-
catalysis and photovoltaic-driven electrolysis [13,33]. In the
simplest thermochemical water splitting process, a cycle
consists of two steps: thermal reduction (TR) followed by gas
splitting (GS), and it employs a metal oxide as a catalyst. In the
TR step, solar energy is concentrated to heat a metal oxide to a
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thermal reduction temperature Trgr at which oxygen va-
cancies are produced:

MO, > MO, ;5 + %OQ @

In the GS step, carried out at a lower temperature Tgs, the
reaction of the reduced metal oxide with steam produces
hydrogen gas and regenerates the catalyst:

MO, ; + 6H,0—MO, + 6H, 2)

Analogous schemes have been explored for the splitting of
CO, into CO and O, [34]. Many binary metal oxides, such as
ZnO [25,35], Fe304 [14], and CeO, [1,6,30] have been studied for
the purpose of thermochemical water splitting. Among the
most successful was CeO,, which is regarded as the bench-
mark for the performance of other catalysts, due to fast ki-
netics and robustness to phase changes in the presence of
high amounts of oxygen vacancies [6,31]. However, CeO, de-
mands a high TR temperature (around 2000 °C) to produce
reasonable amounts of hydrogen fuel [40], making practical
implementation difficult. Additionally, there are concerns of
sublimation of this compound at high temperatures [10].

Recently, perovskite metal oxides have been proposed as
promising materials for thermochemical water splitting [23].
These materials require lower temperatures for thermal
reduction than binary metal oxides, and are resistant to
structural changes in the case of high oxygen off-
stoichiometry [8]. For instance, it has been shown that
doped lanthanum aluminate catalysts have outperformed
ceria under certain conditions [23], and other types of
lanthanum perovskites, such as strontium-doped lanthanum
manganates, have been explored due to promising experi-
mental results [3,32,40].

Many different metal oxide perovskites exist with a diverse
array of elements. Such variety opens the door for tuning of
the catalytic properties of this class of materials. In a recent
study by Emery et al. [8], a high-throughput density-functional
theory (HT—DFT) approach was used to explore 5329 different
ABOs-type perovskites. Many different compounds were
screened to determine their chemical stability and the energy
cost of forming an oxygen vacancy. The study identified many
potentially stable perovskite oxides with vacancy formation
energies close to the corresponding value in CeO,.

In this paper, we present density functional theory calcu-
lations on the perovskite BiVO; and consider its use as a
catalyst in water splitting processes. We use an evolutionary
method to predict its most stable structure and determine its
electronic properties. We then construct a supercell and
calculate the oxygen vacancy formation energy. We present a
thermodynamic framework that allows us to investigate the
favorability of thermal reduction and gas splitting reactions
when BiVOs is used as a catalyst.

Methods

Prediction of the crystal structure of BiVO; was performed
using evolutionary methods, as implemented in two different
codes, USPEX and CALYPSO. The USPEX code, developed by
Oganov et al. [22,28,29], features local structure optimization,

real-space representation and variational operators that
mimic natural evolution. In the CALYPSO code [38], the
structures are updated using the particle swarm optimization
method.

In both codes, the evolutionary search is initialized by
generating a population of structures with randomly selected
space groups. Using density functional theory (DFT), each
structure is optimized and its total energy (known as the
fitness function) calculated. Both codes were linked to the
Vienna ab-initio Simulation Package (VASP) [16—19], which
uses the projector augmented wave method with a plane
wave basis set, to perform the DFT calculations. The optimi-
zation is performed in four steps, beginning with a coarse
optimization that turns gradually finer. In the final step, the
kinetic energy cutoff for the plane-wave expansion is 600 eV.
The optimized structures thus obtained form the first gener-
ation. A new generation is now produced, some members of
which are generated randomly, while the rest descend from
the best structures (those with lowest energy) of the previous
generation. In USPEX, new structures (offspring) are generated
from parent structures by applying variational operators such
as heredity, mutation, or permutation. In CALYPSO, an
evolutionary algorithm is used to update the atomic positions
in order to produce new structures. The structures in the new
generation are optimized, and the best among them are used
to produce the next generation. The process continues until
convergence to the best structures is attained.

The density of states of the most stable structure of BiVO3
was determined using the all-electron, full-potential, linear-
ized, augmented plane wave method implemented in the
WIEN2k code [2]. Here, two regions of space are considered.
The interior region consists of non-overlapping muffin-tin
spheres centered on each atom in the unit cell, while the
interstitial region consists of the space between the spheres.
The electronic wave function is expanded in a basis set of
functions which assume different forms in different regions.
Within a muffin-tin sphere, they are atomic-like functions
expanded in spherical harmonics up to 2,,.x=10. In the inter-
stitial, they are plane waves, with a maximum wave vector
magnitude of kmax, such that Rpykmax=8, where Ry, is the
radius of the smallest muffin-tin sphere in the unit cell. The
charge density was expanded as a Fourier series with a
maximum wave vector of 14/ag, with ao as the Bohr radius.
Self-consistent field (SCF) calculations were performed until
energy convergence of 10~* Ry and charge convergence of 103
e are achieved. For the vanadium ion, a Hubbard on-site
Coulomb term, U=4 eV, and Hund's exchange term, J=0.7 eV,
were used. Spin orbit coupling (SOC) effects were included in
the calculation because of the presence of Bi, which has a large
atomic number. The modified Becke—Johnson (mB]) exchange
potential [37] was adopted in our calculations; this is known to
produce accurate band gap values in semiconductors [15].

The oxygen vacancy formation energy AEC is the energy
change upon removal of a single oxygen atom from the bulk
crystal. It is defined as follows:

1
AE] = 3 (Easos ; — EaBos) — ko 3)

where ¢ is the oxygen off-stoichiometry (6<«1), Eapos_s is the
total energy of the crystal with vacancies, Eapos is the total
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energy of the perfect crystal, and uo is the chemical potential
of an oxygen atom. Ideally, AEQ should converge as larger
supercells are used and ¢ approaches zero.

In calculating the oxygen vacancy formation energy, it is
assumed that the vacancy is neutral, as implied in (3). In some
crystals, such as ZnO [21] and ZrO, [42], the oxygen vacancy
can be doubly charged, and thus inducing n-type conductivity
via a self doping effect. However, in other materials, such as
CeO, [27], the oxygen vacancy is neutral; the extraction of an
oxygen atom is accompanied by the reduction of two neigh-
boring Ce(IV) ions to Ce(ll) ions. A similar situation occurs in
V,0s [39], where vanadium ions in the vicinity of the vacancy
are reduced from V*° to V** or even V'3,

Oxygen vacancy formation energy was calculated by
obtaining the total energy within DFT + U after optimizing a
2x2x2 supercell missing one oxygen atom and comparing it to
the energy of the bulk material. The values of U and ] are the
same as given earlier. Because one oxygen atom was removed
out of the 96 total in the supercell, 6=1/32 in our case, which is
sufficiently small that it is expected to yield an accurate result
for the oxygen vacancy formation energy.

Crystal structure and electronic properties

The results of the evolutionary search are listed in Table 1,
which shows the predicted crystal structures of BiVO; with
lowest energies. The most stable structure is orthorhombic
with space group Pnma (number 62). We have considered
different magnetic structures and found that the ground state
is ferromagnetic with a magnetic moment on each Vion given
by 1.97ug, where up is the Bohr magneton. The A-type anti-
ferromagnetic structure has an energy of 2 meV per formula
unit higher than the ferromagnetic structure. The G-type and
C-type antiferromagnetic structures have energies slightly
higher than the A-type structure. Structures with space
groups 7, 29, and 161 lack inversion symmetry, and may be of
interest for further study as possible multiferroic materials.
The calculated electronic density of states is shown in
Fig. 1. From this plot, we obtain a band gap of 2.4 eV for the
orthorhombic phase of BiVOs. The states near the conduction
band minimum are primarily contributed by V d-orbitals,
while the valence band maximum is mainly comprised of O p-
orbitals. We provide these electronic structure calculations in
the hope that it would be useful for future work regarding the
effect of vacancies on the electronic properties of this crystal
and the localized states those vacancies may form in the gap.

Table 1 — Table of crystal structures with lowest energy

found by evolutionary search. The energy of the most
stable structure is set to zero for ease of comparison.

Lattice constants (A) and

Energy

group angles (degrees) (eV/atom)
62 a=5.494,b=5.787,c=7.909;0=p=y=90 0.000
7 a=5.711,b=8.011,c=18.057;0—=y=90,3=18.439  0.014
29 a=3.263,b=7.513,c=10.263;0=p=7=90 0.042
60 a=3.253,b=7.499,c=10.253;0=B=y=90 0.043

161 a=b=c=5.708;0=p=y=59.344 0.085
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Fig. 1 — Electronic density of states for BiVO;.
Thermodynamics

For BiVO; to be a viable candidate as a catalyst for thermo-
chemical water splitting, both the thermal reduction and gas
splitting reactions should be thermodynamically favorable,
i.e., have negative free energies. In addition to the gases pre-
sent in the reaction, the free energy is affected by the oxygen
vacancy formation energy, as well as vibrational and config-
urational entropy changes.

Previous studies [24] have suggested frameworks to assess
the thermodynamics of both the TR and GS reactions of water
splitting cycles. However, analysis has focused specifically on
binary metal oxides with perfectly stoichiometric reactions. It
is difficult for such stoichiometric reactions to be thermody-
namically favorable. For instance, in order for TR and GS re-
actions to result in a negative free energy change at typical
temperatures for experiments, the entropy change in the
reduction reaction must be large and positive. This is hard to
achieve, as the stoichiometrically reduced material has
significantly less vibrational degrees of freedom. Because of
this, most of the oxides investigated seemed to have ther-
modynamically unfavorable properties, despite their
apparent successes in experimental work.

In our analysis, the reactions are taken to be non-
stoichiometric. We assume that the number of oxygen va-
cancies formed in the thermal reduction step is equal to the
number produced at equilibrium, and is small compared to
the total number of oxygen atoms in the crystal. Because the
system is in equilibrium after the thermal reduction step, the
free energy is minimized. Hence, in our framework, any
arbitrary temperature of thermal reduction, Ttg, is allowed.
Based on this, we evaluate the temperature Tgg required for
the gas splitting step to be thermodynamically favorable given
a particular Trg.

Using the methods described in Section Methods, the ox-
ygen vacancy formation energy obtained was 3.72 eV, com-
parable to the values observed in CeO, [5,26,41]. With this
energy in hand, we can examine the thermal reduction: after
heating a large crystal of BiVO; containing N oxygen atoms, M
oxygen atoms are liberated. The chemical reaction in this step
is thus
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N
3

N

BiVO; — 3

. M
BiVO, au + 502 4
The free energy AGrr of this reaction at a temperature Tty is
given by

M
AGrr = MAES — T <Asred,TTR + ESOZ,TTR> (5)

Here, AE? is the oxygen vacancy formation energy, Trg is
the thermal reduction temperature, So,r, is the standard-
state entropy of formation for O,, and AS,eqr,, is the entropy
change of the reduction of the crystal at a temperature Trg.
This term can be calculated as the sum of the contribution
from vibrational entropy change (AS,) and configurational
entropy change (AS.).

Enthalpies and entropies of formation for O,, H,, and H,0
were taken from NIST-JANAF experimental fits of the Sho-
mate equation [4], which is given by

B 1, 1 .., 1 E

AH; = AT + 7 BT” + 2CT +Z‘DT‘LT+F (6)

and

S*Aln(T)+BT+1CT2+1DT3 E +G ?)
B 2 3 2T2

where AH; is the standard-state enthalpy of formation, Sis the
standard-state entropy of formation, T is temperature and
A,B,C,D,EF, and G are empirically determined piecewise con-
stants. For a system of N harmonic oscillators, the vibrational
entropy [9] is

3N kT
Sy =3Nk+k> In (m-) 8)
i=1 1

where S, is the vibrational entropy, k is Boltzmann's constant,
T is temperature, # is the reduced Planck constant, and w; is
the angular frequency of the ith mode. Since a calculation of
the vibrational frequencies of the supercell with a vacancy is
unrealistic, we here adopt the simplified Einstein model in
which all the atoms vibrate with the same frequency w. This
approach is widely used in calculating vacancy thermody-
namics in perovskite oxides [20,36]. Hence, we write

S, — 3Nk [m (E—D + 1] ©)

If M oxygen atoms are now removed from the system, the
total number of modes should be reduced to 3N—3M. If we
assume that the vibrational frequencies are unaffected except
at the positions neighboring the vacancies, the new vibra-
tional entropy S, is

S, = (3N —3M)k + (3N — 3M — 3MZ)k In (k—T> +3MZk In <k—T>
hw hew'

(10)

Here, Z is the number of neighbors to an oxygen atom in
the crystal, and «' is the modified frequency for the atoms
neighboring the vacancies. (In this crystal, each oxygen atom
has a coordination number of 2, with two neighboring vana-
dium atoms at 2.06 A and 2.10 A.) We estimate the modified
frequency as

A ! 11)

The vibrational entropy change AS, is the difference be-
tween the new and original vibrational entropies:

/ _ kT I3)
AS, =S, - S, = —3Mk {1 +1n <%)} +3MZkIn (5) 12)

To obtain an estimate for w, we calculated phonon fre-
quencies at the I'-point using Quantum ESPRESSO [11,12], and
found frequencies ranging from 0 to 506 cm™?, corresponding
to approximately 0—720 K. As an intermediate value for the
frequency, we choose #w/k to be 360 K.

The configurational entropy change AS. is dictated by
combinatorics:

AS. —kIn {ﬁ} — kM {1 +In (%)} (13)

The second equality results from using Stirling's approxi-
mation, in the limit that N> M>>0. At equilibrium, the frac-
tion of oxygen vacancies that spontaneously form is obtained
when AG is minimum, in other words, when 0AG/0M = 0.
Substituting (13) into (5) and differentiating yields

AE? — T(Asy +3So,1)
kT

% =exp| — (14)
where As, = AS,/M is the vibrational entropy change per va-
cancy. This expression can be used to calculate the number of
oxygen vacancies formed at a given thermal reduction tem-
perature. The fraction of liberated atoms was estimated to be
on the order of 10~ at 1000 K, 10~8 at 1500 K, and 10~> at
2000 K at atmospheric pressure.

Next, the GS step can be considered. If all of the M va-
cancies are filled, the chemical reaction is
N

. N_.
3BiVO; 3y + MH,0~2BiVO; + MH, (15)

The free energy change AGgs of this reaction carried out at
a temperature Tgs is given by

AGgs = —MAH¢ g0 75 — MAES — Tgs (ASox es + MSh, 1
- MSHZO~TGS) (16)

where AH¢y, 01, i the standard-state enthalpy of formation of
H,0 at temperature Tgs, ASox 1 1S the entropy of oxidation of
the crystal at temperature Tgs, Sy, 1., is the standard-state
entropy of H, at temperature Tgs, and Sy,or, is the
standard-state entropy of H,O at temperature Tgs.

The entropy of oxidation, ASu, is given as

ASox1es = — (ASy1es + ASc) (17)

The configurational component does not change because
the number of vacancies is fixed by the thermal reduction
step, but the vibrational component changes, as it is temper-
ature dependent.

Tes should be chosen such that AGgs < 0. Because the
Shomate equation for entropy contains both logarithm and
polynomial terms in Tgs, We cannot write down a closed form
expression for Tgs in terms of Trr. Thus, we set (16) to be less
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Fig. 2 — Plot of favorable temperatures Tgs for gas splitting
reaction as a function of Trg. The region below the blue line
represents the set of temperatures at which both thermal
reduction and gas splitting are thermodynamically
favorable. (For interpretation of the references to color in
this figure legend, the reader is referred to the Web version
of this article.)
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Fig. 3 — Plot of equilibrium fraction of oxygen vacancies as
a function of T1y at atmospheric pressure and at 10> atm.

H, yield (pmol/g BiVO3)

10"

5 ﬁ“\\

0 N

P=

e \%
~

> X“ A
Q%
1 O

- \\
W\

1 1 1 1 L Ty (K)
1200 1400 1600 1800 2000

Fig. 4 — Plot of calculated hydrogen yield as a function of
temperature, evaluated at three different pressures.

than or equal to zero and solve numerically for Tgs. Because
the entropy of gas splitting is negative, the required Tgs is
bounded above. In Fig. 2 we plot the upper bound of Tgs as a
function of Trg. The plot shows that Tgs is a reasonable
number given standard values of Trg. For instance, at 2000 K,
the maximum value of Tgg is around 1072 K, which is around
the typical temperature of 1000 K for gas splitting of previously
tested compounds [24].

The fraction of oxygen vacancies that are formed at a given
temperature can be increased by lowering the pressure at
which thermal reduction is carried out. This can be calculated

Hy yield (umol/g BiVOs)

10° B
10" f

100

.
10°° 1074 1073 1072 107! 10°

Pressure (atm)

Fig. 5 — Plot of calculated hydrogen yield as a function of
pressure, evaluated at three different temperatures.

by adding a correction of —R In(P/Py) to the standard-state
entropy of O,, where Py is the atmospheric pressure. This ef-
fect is illustrated in Fig. 3. For instance, if we decrease the
pressure to 10> atm, a typical value for thermochemical water
splitting [3], we obtain a value of M/N=3.2x10"2 at 2000 K,
corresponding to a hydrogen production yield of 32 umol per
gram of the catalyst BiVOs;. This is of a similar order of
magnitude compared to lanthanum-based perovskite catalysts
[3]. We predict yields of 1.5 umol/g and 0.03 umol/g for values of
Trr given by 1750 K and 1500 K, respectively. The effects of
temperature and pressure on the yield are shown in Figs. 4 and
5, respectively. As expected, the yield increases with an in-
crease in temperature and a reduction in oxygen partial
pressure.

Conclusion

In conclusion, we demonstrate that BiVO; may be of interest
as a catalyst for thermochemical water splitting. We predict
that using BiVO3 as a catalyst for thermochemical water
splitting can produce a promising hydrogen yield. Further
work will be necessary to determine kinetics and other prac-
tical considerations of the application of this material in
thermochemical water splitting.
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