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The bulk–boundary correspondence1 is one of the most impor-
tant physical consequences of topological matter. In most of 
the cases, the bulk–boundary correspondence refers to the 

existence of guaranteed gapless quasi-particle excitations on the 
(d − 1)-dimensional boundary (with d being the dimension of the 
system), given that the symmetries required to protect such a topo-
logical state are still preserved on the boundary2–6. Very recently, 
a new type of bulk–boundary correspondence was proposed for 
a special class of topological materials called second-order topo-
logical insulators (SOTIs)7–14, where the corresponding topological 
quasi-particle states appear in the (d − 2) instead of (d − 1)-dimen-
sional boundaries. In particular, non-trivial corner states (0D) 
will appear at the corners of a two-dimensional SOTI and helical/
chiral hinge states (1D) will appear at some particular hinges of a 
three-dimensional SOTI. It is now understood that SOTI may be 
protected by different types of symmetries, such as rotation sym-
metries11,12,14, mirror symmetries6,10, inversion symmetry14–17, non-
symmorphic symmetries and roto-reflection symmetries18,19. Some 
proposals for realizing SOTI have also emerged13,20, and analogues 
of SOTI in superconductors17,21 and even boson systems have 
attracted much attention12,22,23.

Similar to the ordinary TI5,24–26, the general definition of SOTI 
can be expressed as band insulators that can not be smoothly 
deformed to the atomic insulators27–29 without symmetry break-
ing or closing the bulk energy gap. Unlike topological insulators, 
where each surface is gapless, a generic (d − 1)-dimensional surface 
of d-dimensional SOTI is gapped and theoretically can be described 
by 2D Dirac equations with finite mass terms, which can be either 
positive or negative to open the gap. Then, on the entire bound-
ary of a SOTI, there must be (d − 2)-dimensional domain walls 
between surfaces having opposite masses, at which are located gap-
less topological modes. For the 2D SOTI, additional chiral or charge  

conjugation symmetry is required to protect the corner states8, 
which is difficult to realize in materials. However, for 3D SOTI, the 
chiral or helical hinge states can be enforced by some bulk crys-
talline topological invariants (that is, the mirror Chern number 
(MCN) Cm), but protected by more general symmetries12,14. For 
example, for the helical hinge states, as first introduced in refs. 6,10, 
the existence of non-trivial hinge states can be enforced by the non-
zero mirror Chern number Cm = 2N defined on some particular 
mirror-invariant planes, with N being an odd integer. The non-
trivial helical states will persist even when the mirror symmetry is 
no longer present, and hence MCN cannot be defined. As long as 
both the bulk and surfaces around that particular hinge are all fully 
gapped, the only symmetry requirement to protect the non-trivial 
helical mode in such cases is the time-reversal symmetry. In ref. 10, 
SnTe with strain along the (100) direction is proposed to be the first 
realistic material that supports the non-trivial helical states on the 
hinge formed between (100) and (010) surfaces.

Compared to helical hinge states, chiral hinge states are even 
more stable, because no symmetry is required to protect them. 
Similar to the chiral edge states in 2D quantum Hall systems4,30, 
the chiral hinge states associated with a specific surface will lead to  
the surface quantum anomalous Hall effect (QAHE)31,32, which is the 
QAHE33–36 on a surface of a three-dimensional object and has never 
been observed in DC transport before. In the present Letter, we 
will propose that both the chiral hinge states and hence the surface 
QAHE can be realized in ferromagnetic axion insulators. Although 
the concept of axion insulators was proposed much earlier, its rela-
tionship to SOTI with chiral hinge states has been discussed only 
very recently37. After that, we further propose a realistic material 
system, a Sm-doped Bi2Se3 single crystal, to realize such an axion 
insulator and SOTI with chiral hinge states. The high-quality single 
crystal of Sm-doped Bi2Se3 has been already obtained in ref. 38 with 
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very low carrier density and Curie temperatures as high as 52 K. The 
easy axis of the magnetization has been confirmed experimentally 
to be within the ab plane. On the other hand, in quantum electrody-
namics, Lorentz invariance allows, in addition to the Maxwell term, 
a topological term of the form ⋅θ

π
E B

4 , where the coupling strength 
θ is called the axion field39. A static θ is quantized to 0 or π in the 
presence of time-reversal symmetry40, and θ = 0 and π for trivial and 
topological insulators, respectively. It was then realized that in the 
absence of time-reversal, spatial symmetries can also quantize the 
value of θ, inducing a natural generalization of topological insula-
tors41. In fact, as long as the spatial symmetry is improper (that is, 
it flips the orientation of the space), a uniform θ can take only 0 
or π. Such spatial symmetries include inversion, mirror, S4 and S6. 
Therefore, in Sm-doped Bi2Se3, once the ferromagnetic order has 
been fully developed, the system has no time-reversal symmetry but 
still has inversion and mirror symmetries, which can quantize the 
θ angle to be 0 or π. Moreover, for such systems the θ angle can be 
determined easily by counting the number of occupied eigenstates 
with negative parity at the eight time-reversal-invariant momenta42, 
according to which 3D insulators without time-reversal symmetry 
can be classified into normal insulator, axion insulator, 3D quantum 
Hall insulator or insulator with quantized polarization. From our 
density functional theory (DFT) calculations, the effective exchange 
field acting on the low-energy bands is around 20 meV, which is 
much smaller than the semiconductor gap in Bi2Se3 (around 0.3 eV), 
thus keeping the system within the axion insulator phase. We also 
checked that by changing the exchange field smoothly from zero to 
the actual value, the bulk gap remains open during the whole pro-
cess, which confirms that the system is truly in the axion insulator 
phase. On the other hand, the parity and mirror eigenvalue for the 
occupied states obtained by our calculation imply that this mate-
rial system can also be classified as a topological crystalline insula-
tor with the ‘strong index’ being odd, as introduced in ref. 37, from 
which the 1D hinge state can also be inferred.

The presence of the chiral hinge states can be illustrated  
schematically in Fig. 1b. Since the crystal structure of Bi2Se3 
contains three vertical mirror planes, one of them can survive 

the ferromagnetic order by setting the magnetization direction  
perpendicular to that mirror plane, as shown in Fig. 1b. The 
original Dirac surface states on different sides of the mirror plane 
(S1 and S3) will acquire finite masses, which have opposite signs 
forced by the mirror symmetry, as illustrated in Fig. 1b. Therefore, 
on hinge H2 between surface S1 and S3 in Fig. 1b, a domain wall 
between massive Dirac surface states with different mass signs is 
enforced by the mirror symmetry, leading to 1D chiral states on 
the corresponding hinge. Since the 1D chiral mode is stable against 
any weak perturbations, when the Zeeman field rotates away from 
the symmetric position and the system no longer has a mirror 
symmetry, the chiral hinge states cannot disappear immediately. 
However, its location can be modified or even moved from one 
hinge to another once the gap on surface S1 or S3 is closed and 
reopened, as illustrated schematically in Fig. 1c–e.

The above argument can be made more general. It is usually 
thought that at the boundary of a region with θ = π, there are gap-
less 2D surface states, which are nothing but the single Dirac fer-
mion in the case of topological insulators. However, if the symmetry 
quantizing θ is a spatial symmetry, which is the case for the FM 
axion insulators, the 2D surface states exist only if the interface pre-
serves the symmetry, and on a surface where it is broken, a mass 
gap generically exists. This leads to another interesting possibility: 
the mass is forced to change signs on the entire boundary of the 
topological state, creating domain walls of mass gaps43, because 
either the mirror reflection or the inversion symmetry flips the sign 
of the mass terms for the surface Dirac Hamiltonian. Along any 
one of these domain walls, there are 1D chiral modes (that is, the 
(d−2)-dimensional topological edge states), the recently discovered 
boundary manifestation of the non-trivial topology in the bulk in 
the absence of gapless surface states. In Fig. 1a, we illustrate the 1D 
chiral modes on the surface of 3D axion insulators protected by the 
improper symmetry—mirror reflection in this case.

To calculate the hinge states, we adopt an approximation where 
the low-energy physics of Sm-doped Bi2Se3 can be modelled by 
the tight-binding Hamiltonian for the pure Bi2Se3 together with a 
magnetic exchange field acting on the p orbitals of both the Bi and 
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Fig. 1 | Schematic demonstration for the emergence of hinge states. a, Chiral hinge states emerge on the domain wall of the surface states with magnetic 
polarization applied perpendicular to the mirror plane. b–e, 3D TI with C3v symmetry (b) and schematic illustration of the evolution of its surface states 
and hinge states with the magnetic polarization applied along different directions (c–e). f, Proposed configuration of the magnetically doped Bi2Se3 sample 
that can be adopted to detect the chiral hinge states. g, Schematic plot of the energy dispersion of the corresponding hinge states in f. h, Ratio ∣ ∣∕m MM  for 
(010) and (100) surface states as a function of the direction of magnetization, θ. The green shaded area denotes the range of θ where the hinge states are 
formed. For a and c to g, blue and green lines denote two hinge states with opposite chirality.
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Se atoms. Moreover, we generalize the recursive Green’s function 
method44, which is widely used for the spectral functions of the sur-
face or interface states, to calculate the hinge states for the SOTI 
(details given in the final section of Methods). As shown in Fig. 2c, 
two hinges (labelled as Left and Right, respectively) are generated 
by joining two semi-infinite slabs along different directions, namely 
[1,0,0] and [0,1,0]. The hinge area can then be viewed as the left and 
right ends of the interface region between the two slabs oriented 
along different directions, with the cross-section perpendicular to 
the c axis. The projected spectral functions for the two hinge regions 
can then be obtained by following the standard procedures of the 
recursive Green’s function method44.

As already confirmed experimentally38, in SmxBi2−xSe3 the 
magnetic moments on Sm ions ordered ferromagnetically under 
Tc ≈ 52 K. The easy axis lies within the ab plane and can be easily 
tuned by a small external magnetic field. The crystal structure of 
Bi2Se3 contains three vertical mirror planes and will survive the 
ferromagnetic order if the magnetization M is along the [−1, 1, 0], 
[0, −1, 0] and [1, 0, 0] directions, respectively (corresponding to 
θ = 0, 2π/3 and 4π/3 in Fig. 1b, respectively). Then, as we discussed 
above, the existence of the mirror symmetry in the axion insulator 
will force the mass terms on different sides of the mirror-symmetric 
hinge to be opposite in sign, which guarantees the existence of the 
chiral hinge states centred at that particular hinge. Interestingly, 
since the chiral hinge states are topologically stable, the breaking of 
the corresponding mirror symmetry (that is, by rotating the mag-
netization M away from the particular angle mentioned above), the 
chiral hinge states do not disappear immediately. In fact it will dis-
appear only when the surface gap closes on either of the two nearby 
surfaces. Otherwise, as long as the gap still exists on both surfaces 
near the hinge, the domain wall feature still remains and the only 
effect of the mirror-symmetry breaking is to modify the wavefunc-
tion of the hinge state to be asymmetric about the mirror plane.

The local spectral functions at both the left and right hinges can 
be obtained by projecting the imaginary part of the Green’s func-
tion to the corresponding hinge area, which can be expressed as 
ρ ω ω= − π ∑∕ ∈ ∕k G k( , ) 1 Im ( , )z i ii zL R L R , where the hinge area L and 
R are illustrated by the orange colour shaded block Left and Right 
in Fig. 2c, respectively. Then the hinge spectral functions can be 
obtained by applying the recursive Green’s function method intro-
duced above. Alternatively the existence of chiral hinge modes can 
be inferred from checking the mass terms on the nearby surfaces, 
whose Hamiltonian can be written as

⋅ ⋅ ⋅ ⋅ ⋅ σσ σ σ σ= + + + +H k k M M Mv v g g g (1)x x y y x x y y z zSF

where x, y, z form the local right-handed coordinate system and 
vi, g i

 are vectors defined in pseudo-spin space. Both the velocity  
and g-factor vectors for the (100) and (010) surfaces of SmxBi2−xSe3 
can be obtained by the corresponding surface calculations based 
on the effective tight-binding Hamiltonian with their values listed  
in Table 1.

Then the mass associated with that particular surface Dirac 
equation can be expressed as

=
× ⋅ + +

∣ × ∣
m

M M Mv v g g g

v v

( ) ( )
(2)

x y x x y y z z

x y

Bearing in mind the fact that the magnetization lies in the 
ab plane and using velocity v and g-factor g listed in Table 1, we 
can express m as a function of the magnetization direction θ as 
m010 = −0.3140|M|sin(θ + π/3) and m100 = −0.3410|M|sin(θ − π/3), 
which are plotted in Fig. 1h. Please note that the dimension of the 
quantity m in the above equation is energy.

The mass term vanishes at θ = π/3 for the (100) surface and 
θ = 2π/3 for the (010) surface, indicating the surface topological 
transitions at these two angles, after which the hinge states moved 
from one hinge to another. As we discussed above, the chiral hinge 
states can exist only when the two nearby surfaces have mass terms 
with opposite signs, as indicated by the green area in Fig. 1h.

In the Fig. 3a–d, we plot the hinge spectral functions calculated 
by the recursive Green’s function method for four typical magne-
tization directions: 0, π/6, π/3 and π/2. In Fig. 3a, the magnetiza-
tion is along the Y direction, which preserves the XZ mirror plane. 
As we discussed above, the mirror symmetry guarantees the sign 
change for the mass terms on the nearby surfaces leading to chiral 
hinge states. The energy dispersion of the hinge states on both left 
and right hinges can be found by checking the spectral functions 
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Fig. 2 | The structure proposed for the calculation of the hinge states.  
a,b, Crystal structure of Bi2Se3. X, Y and Z form the global right-handed 
coordinate system. c, The bi-semi-infinite open boundary geometry in which 
the (010) and (100) surfaces meet at the Left and Right hinges parallel to the 
c direction. The structure is semi-infinite along the a and b directions, periodic 
along the c direction and finite along the X direction. The length in the X 
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the interface layer is composed of the first PL along the a direction combined 
with the first PL along the b direction. d, The easy direction of the magnetization 
M lies in the ab plane, with θ the angle between M and the y axis.

Table 1 | Local right-handed coordinate system ex,y,z, velocity v 
and g-factor g of (010) and (100) surfaces, respectively.

(010) (100)

ex
3

2
− 1

2
0 − 3

2
− 1

2
0

ey 0 0 1 0 0 1

ez − 1
2 − 3

2
0 − 1

2
3

2
0

vx 0 0.4316 0.4951 0 0.4316 0.4951
vy −0.7649 0 0 −0.7649 0 0
gx 0.7782 0 0 0.7782 0 0
gy 0 0.5354 −0.0957 0 0.5354 −0.0957
gz 0 0 0.4778 0 0 0.4778

Entries of local ex,y,z are given in terms of unit vectors of the global coordinate system x, y, z shown 
in Fig. 2a. The unit of v is eV  Å and the unit of g is eV−1.
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projected to the whole interface area, which are plotted in Fig. 3a. 
Clear chiral hinge states can be found with a similar velocity around 
−1.60 × 105 m s–1. As shown in Fig. 3e,i, the spatial distribution func-
tions for the peaks marked as p1 and p5 in Fig. 3a are centred at 
the left and right hinges, respectively, which are fully symmetric  
around the corresponding hinge due to the mirror symmetry. 
Combined with Fig. 3a,e,i, we know that the left and right hinge 
states all disperse positively along the c direction. Further examina-
tion of the spatial distribution of the spectral weight confirms that the 
chiral hinge mode on each particular hinge smoothly connects the  
valence bands on the (100) surface and the conduction bands on 
the (010) surface. As the magnetization angle θ is rotated clockwise 
away from zero, the surface gap on (100) is getting smaller quickly 
and the hinge states are still there with a slightly modified velocity 
and an asymmetric spatial distribution around the hinge, as shown 
in Fig. 3f. When the magnetization angle θ becomes π/3, the gap 
on (100) surface closes completely, forming surface Dirac cones 
on the corresponding surfaces, as indicated by the two arrows in 
Fig. 3c, which shows the topological phase transition on these sur-
faces. After the transition the connection pattern of the hinge states 
changed completely, as shown in Fig. 3d, the hinge states now con-
nect within the conduction (label p4) or the valence bands (label p8) 
on (100) and (010) surfaces and become topologically trivial.

The existence of chiral hinge modes will cause the QAHE on 
the surfaces of the SmxBi2−xSe3. The experimental set-up can be 
schematically plotted in Fig. 1f. By cutting the SmxBi2−xSe3 single 

crystal using the focused ion beam technique to obtain the zig–zag 
surface structure formed by (100) and (010) surfaces, the counter 
propagating chiral hinge modes can then be induced by the hori-
zontal magnetization on the ‘ridge’ and ‘valley’ area, as shown in 
Fig. 1g. After putting leads on both ridges and valleys, the surface 
QAHE can be detected by standard DC measurements for the Hall 
effect. In principle, we need a bulk insulating sample for the actual 
detection of the surface QAHE. However, we do not need the car-
rier density to reach zero to fulfill the above condition. For systems 
with a disorder potential, the bulk conductivity will vanish at zero 
temperature when the chemical potential is below the mobility 
gap. Therefore we should have the chance to detect surface QAHE 
at a low enough temperature for a disordered sample, just like the 
situation in Cr-doped Bi2Te3 thin film, where the QAHE has been 
observed33,34. In fact, bulk insulating samples have been achieved 
in similar materials already45 and experimental evidence of surface 
gaps has also been found in some of the related systems as well46. 
Therefore, we expect the proposed surface QAHE to be feasible in 
the high-quality samples of this system. There is another type of 
experiment that can demonstrate the existence of the chiral hinge 
state. We only need to put two leads on one of the ridge or valleys 
of the above-mentioned structure and the chiral hinge states will 
contribute to ‘non-reciprocal’ DC transport, which manifests itself 
as the difference of the DC resistance for voltages applied parallel or 
anti-parallel to the hinge. Since the bulk and surface contribution 
of the conductivity is always reciprocal, this type of experiment is 
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easier than the DC measurement of QAHE and works even for non-
zero bulk and surface conductivity.

In conclusion, we proposed in the paper that the Sm-doped 
Bi2Se3 single crystal is a magnetic axion insulator and provides an 
ideal material platform to realize helical hinge states on the particu-
lar hinges of the crystals. Such nontrivial hinge states demonstrate 
that the magnetic axion insulator can also be viewed as higher-order 
topological insulators with the new type of bulk–boundary corre-
spondence described in the paper. The surface QAHE is the most 
striking observable effect caused by the chiral hinge states in the 
Sm-doped Bi2Se3 single crystal.
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Methods
Calculation of effective magnetic exchange field. Recently, Sm-doped Bi2Se3 
magnetic topological insulators have been experimentally realized38 with the Curie 
temperature being about 52 K. We have simulated this system theoretically by 
first-principles methods using the VASP package47–49. In the calculation, a 2 × 2 × 1 
supercell structure of Bi2Se3 is constructed with one Bi atom being replaced by a 
Sm atom. In such a SmBi23Se36 system, Sm3+ is in the high-spin state and its total 
magnetization strength is as large as 5.4 μB. A very dense momentum and energy 
grid is adopted to calculate the spin-polarized density of states of Bi and Se, which 
are shown in Supplementary Fig. 1. The exchange field splitting ΔE of the p orbitals 
can be roughly estimated by equation (3), which are about 20 meV and 10 meV for 
p orbitals on Se and Bi, respectively.

∫
∫

∫
∫

ερ ε ε

ρ ε ε

ερ ε ε

ρ ε ε
Δ = −↓

↓

↑

↑

E
( )d

( )d

( )d

( )d
(3)

where ρ↓(↑)(ε) is the density of states of the majority(minority) spin component  
of p orbitals.

Recursive Green function method in the calculation of hinge states. To carry 
out realistic calculations for the hinge states, we design a bi-semi-infinite open 
boundary geometry (as shown in Supplementary Fig. 2) in which the (010) 
and (100) surfaces meet at Left and Right hinges parallel to the c direction. 
The geometry is semi-infinite along the a and b directions, periodic along the 
c direction, and finite along the x direction. The size along the x direction is 20 
unit cells in the realistic calculation, ensuring negligible finite-size effects arising 
from hybridization between left and right hinges. Principal layer (PL) is a group of 
atomic layers that is large enough such that only adjacent PLs interact. Division of 
ULs and LLs into PLs is a common strategy to express the Hamiltonian in the block 
tridiagonal form
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where the diagonal block =H HR R R Ri i 0 0, =H HR R R Ri i 0 0
 and the hopping matrix 

=
+

H HR R R Ri i 1 0 1, =
+

H HR R R Ri i 1 0 1
. Implicitly, each block of H is a function of 

momentum kz, that is H⋅⋅ ≡ H⋅⋅(kz). The tight-binding Hamiltonian is obtained from 
the maximally localized Wannier functions constructed by the wannier9050 package 
interfaced to VASP47–49. Furthermore, Zeeman terms Hz = M ⋅ σ with the strength 
obtained from the first-principles calculations mentioned in the previous section 
are added to all p orbitals to simulate the ferromagnetic order arising from Sm 
doping.

For simplification, HIR is used to denote hoppings between the interface layer 
and ULs, LLs:

≡ ⋯( )H H H 0 (5)IR IR IR0 0

HP, in block tridiagonal form, is to denote the Hamiltonian of ULs,
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and HN, also in block tridiagonal form, is to denote the Hamiltonian of LLs
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Furthermore, we introduce a new ‘direct sum’ operation �⊕  of two square 
matrices A and B as
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Now we have
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indicating that ULs and LLs are totally decoupled from each other.
The imaginary part of the interface Green function GII(kz, ω) can be written as

ω
π
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where ΣR is the self-energy depicting comprehensive interactions between interface 
layer and ULs, LLs. Within the approximation of PL, ΣR has a simple form as

Σ = ≈ +† † †H g H H g H H g H (15)R IR RR IR IR R R IR IR R R IR0 0 0 0 0 0 0 0

where gR R0 0 and gR R0 0
 are the ‘surface’ Green functions of ULs and LLs, respectively. 

Because HP and HN are all in triangular diagonal form, gR R0 0 and gR R0 0
 can be solved 

by the standard recursive schemes44. Using equations (15, 14, 11), we obtain the 
spectral functions for the interface layer. AII is a square matrix with its indices being 
the number of orbitals in the interface layer. The trace of AII gives the integrated 
spectral shown in the first row of Fig. 3.

Data availability
The data that support the findings of this study are available from the 
corresponding authors upon reasonable request.
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