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Symmetry-enforced chiral hinge states and
surface quantum anomalous Hall effect in the
magnetic axion insulator Bi,_,Sm, Se;

Changming Yue'?, Yuanfeng Xu'?, Zhida Song'?, Hongming Weng ®'%345 Yuan-MingLu¢,

ChenFang ©®13457 and XiDai©®8*

The existence of topological hinge states is a key signature for a newly proposed class of topological matter, the second-order
topological insulators. In the present paper, a universal mechanism to generate chiral hinge states in the ferromagnetic axion
insulator phase is introduced, which leads to an exotic transport phenomenon, the quantum anomalous Hall effect (QAHE) on
some particular surfaces determined by both the crystalline symmetry and the magnetization direction. A realistic material
system, Sm-doped Bi,Se;, is then proposed to realize such exotic hinge states by combining first-principles calculations and
Green's function techniques. A physically accessible way to manipulate the surface QAHE is also proposed, which makes it very

different from the QAHE in ordinary 2D systems.

tant physical consequences of topological matter. In most of

the cases, the bulk-boundary correspondence refers to the
existence of guaranteed gapless quasi-particle excitations on the
(d—1)-dimensional boundary (with d being the dimension of the
system), given that the symmetries required to protect such a topo-
logical state are still preserved on the boundary**. Very recently,
a new type of bulk-boundary correspondence was proposed for
a special class of topological materials called second-order topo-
logical insulators (SOTIs)"~*%, where the corresponding topological
quasi-particle states appear in the (d—2) instead of (d — 1)-dimen-
sional boundaries. In particular, non-trivial corner states (0D)
will appear at the corners of a two-dimensional SOTI and helical/
chiral hinge states (1D) will appear at some particular hinges of a
three-dimensional SOTIL. It is now understood that SOTI may be
protected by different types of symmetries, such as rotation sym-
metries'"'>", mirror symmetries®'’, inversion symmetry'*-"/, non-
symmorphic symmetries and roto-reflection symmetries'®". Some
proposals for realizing SOTI have also emerged'**, and analogues
of SOTI in superconductors'”” and even boson systems have
attracted much attention'>”>*,

Similar to the ordinary TI*****, the general definition of SOTI
can be expressed as band insulators that can not be smoothly
deformed to the atomic insulators”~ without symmetry break-
ing or closing the bulk energy gap. Unlike topological insulators,
where each surface is gapless, a generic (d — 1)-dimensional surface
of d-dimensional SOTT is gapped and theoretically can be described
by 2D Dirac equations with finite mass terms, which can be either
positive or negative to open the gap. Then, on the entire bound-
ary of a SOTI, there must be (d—2)-dimensional domain walls
between surfaces having opposite masses, at which are located gap-
less topological modes. For the 2D SOT], additional chiral or charge

_|_he bulk-boundary correspondence’ is one of the most impor-

conjugation symmetry is required to protect the corner states®,
which is difficult to realize in materials. However, for 3D SOTI, the
chiral or helical hinge states can be enforced by some bulk crys-
talline topological invariants (that is, the mirror Chern number
(MCN) C,,), but protected by more general symmetries'>'". For
example, for the helical hinge states, as first introduced in refs. ",
the existence of non-trivial hinge states can be enforced by the non-
zero mirror Chern number C,=2N defined on some particular
mirror-invariant planes, with N being an odd integer. The non-
trivial helical states will persist even when the mirror symmetry is
no longer present, and hence MCN cannot be defined. As long as
both the bulk and surfaces around that particular hinge are all fully
gapped, the only symmetry requirement to protect the non-trivial
helical mode in such cases is the time-reversal symmetry. In ref. ',
SnTe with strain along the (100) direction is proposed to be the first
realistic material that supports the non-trivial helical states on the
hinge formed between (100) and (010) surfaces.

Compared to helical hinge states, chiral hinge states are even
more stable, because no symmetry is required to protect them.
Similar to the chiral edge states in 2D quantum Hall systems"*,
the chiral hinge states associated with a specific surface will lead to
the surface quantum anomalous Hall effect (QAHE)*"*?, which is the
QAHE™" on a surface of a three-dimensional object and has never
been observed in DC transport before. In the present Letter, we
will propose that both the chiral hinge states and hence the surface
QAHE can be realized in ferromagnetic axion insulators. Although
the concept of axion insulators was proposed much earlier, its rela-
tionship to SOTI with chiral hinge states has been discussed only
very recently”’. After that, we further propose a realistic material
system, a Sm-doped Bi,Se, single crystal, to realize such an axion
insulator and SOTI with chiral hinge states. The high-quality single
crystal of Sm-doped Bi,Se, has been already obtained in ref.* with
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Fig. 1| Schematic demonstration for the emergence of hinge states. a, Chiral hinge states emerge on the domain wall of the surface states with magnetic
polarization applied perpendicular to the mirror plane. b-e, 3D Tl with C;, symmetry (b) and schematic illustration of the evolution of its surface states
and hinge states with the magnetic polarization applied along different directions (c-e). f, Proposed configuration of the magnetically doped Bi,Se; sample
that can be adopted to detect the chiral hinge states. g, Schematic plot of the energy dispersion of the corresponding hinge states in f. h, Ratio m/M| for
(010) and (100) surface states as a function of the direction of magnetization, 6. The green shaded area denotes the range of 8 where the hinge states are
formed. For a and ¢ to g, blue and green lines denote two hinge states with opposite chirality.

very low carrier density and Curie temperatures as high as 52K. The
easy axis of the magnetization has been confirmed experimentally
to be within the ab plane. On the other hand, in quantum electrody-
namics, Lorentz invariance allows, in addition to the Maxwell term,
a topological term of the form %:E - B, where the coupling strength
0 is called the axion field”. A static € is quantized to 0 or « in the
presence of time-reversal symmetry*, and =0 and = for trivial and
topological insulators, respectively. It was then realized that in the
absence of time-reversal, spatial symmetries can also quantize the
value of 6, inducing a natural generalization of topological insula-
tors*. In fact, as long as the spatial symmetry is improper (that is,
it flips the orientation of the space), a uniform 6 can take only 0
or 7. Such spatial symmetries include inversion, mirror, S, and S,.
Therefore, in Sm-doped Bi,Se,, once the ferromagnetic order has
been fully developed, the system has no time-reversal symmetry but
still has inversion and mirror symmetries, which can quantize the
6 angle to be 0 or . Moreover, for such systems the 8 angle can be
determined easily by counting the number of occupied eigenstates
with negative parity at the eight time-reversal-invariant momenta®,
according to which 3D insulators without time-reversal symmetry
can be classified into normal insulator, axion insulator, 3D quantum
Hall insulator or insulator with quantized polarization. From our
density functional theory (DFT) calculations, the effective exchange
field acting on the low-energy bands is around 20 meV, which is
much smaller than the semiconductor gap in Bi,Se, (around 0.3eV),
thus keeping the system within the axion insulator phase. We also
checked that by changing the exchange field smoothly from zero to
the actual value, the bulk gap remains open during the whole pro-
cess, which confirms that the system is truly in the axion insulator
phase. On the other hand, the parity and mirror eigenvalue for the
occupied states obtained by our calculation imply that this mate-
rial system can also be classified as a topological crystalline insula-
tor with the ‘strong index’ being odd, as introduced in ref.”’, from
which the 1D hinge state can also be inferred.

The presence of the chiral hinge states can be illustrated
schematically in Fig. 1b. Since the crystal structure of Bi,Se,
contains three vertical mirror planes, one of them can survive

the ferromagnetic order by setting the magnetization direction
perpendicular to that mirror plane, as shown in Fig. 1b. The
original Dirac surface states on different sides of the mirror plane
(S1 and S3) will acquire finite masses, which have opposite signs
forced by the mirror symmetry, as illustrated in Fig. 1b. Therefore,
on hinge H2 between surface S1 and S3 in Fig. 1b, a domain wall
between massive Dirac surface states with different mass signs is
enforced by the mirror symmetry, leading to 1D chiral states on
the corresponding hinge. Since the 1D chiral mode is stable against
any weak perturbations, when the Zeeman field rotates away from
the symmetric position and the system no longer has a mirror
symmetry, the chiral hinge states cannot disappear immediately.
However, its location can be modified or even moved from one
hinge to another once the gap on surface S1 or S3 is closed and
reopened, as illustrated schematically in Fig. 1c-e.

The above argument can be made more general. It is usually
thought that at the boundary of a region with =, there are gap-
less 2D surface states, which are nothing but the single Dirac fer-
mion in the case of topological insulators. However, if the symmetry
quantizing 0 is a spatial symmetry, which is the case for the FM
axion insulators, the 2D surface states exist only if the interface pre-
serves the symmetry, and on a surface where it is broken, a mass
gap generically exists. This leads to another interesting possibility:
the mass is forced to change signs on the entire boundary of the
topological state, creating domain walls of mass gaps®, because
either the mirror reflection or the inversion symmetry flips the sign
of the mass terms for the surface Dirac Hamiltonian. Along any
one of these domain walls, there are 1D chiral modes (that is, the
(d—2)-dimensional topological edge states), the recently discovered
boundary manifestation of the non-trivial topology in the bulk in
the absence of gapless surface states. In Fig. 1a, we illustrate the 1D
chiral modes on the surface of 3D axion insulators protected by the
improper symmetry—mirror reflection in this case.

To calculate the hinge states, we adopt an approximation where
the low-energy physics of Sm-doped Bi,Se, can be modelled by
the tight-binding Hamiltonian for the pure Bi,Se, together with a
magnetic exchange field acting on the p orbitals of both the Bi and

NATURE PHYSICS | www.nature.com/naturephysics


http://www.nature.com/naturephysics

NATURE PHYSICS ARTICLES

a C

000000000000 00000000000
000000000000 00000000000
€22 00000000000
00000000000

oigb!cgogi’épo 6060

Interface
layer

o‘.o..enoooo
o.oo..oooo‘o

°
%%’a’a’:‘s’a"a%%%-c SRR
o o o o too o .oo.ooo o 2 oo‘n‘’ooo.oo.oo.oo.oo J
7/ocoo.ooooooo
200000000000

00

00000000000

ooooeooo..e l
®0

©eoco0eoco0ecoeo0

00000000000

Fig. 2 | The structure proposed for the calculation of the hinge states.

ab, Crystal structure of Bi,Se,. X, Y and Z form the global right-handed
coordinate system. ¢, The bi-semi-infinite open boundary geometry in which
the (010) and (100) surfaces meet at the Left and Right hinges parallel to the
c direction. The structure is semi-infinite along the a and b directions, periodic
along the c direction and finite along the X direction. The length in the X
direction is 20 lattice constants. Principal layer (PL) is a group of atomic layers
that is large enough such that only adjacent PLs interact. Interface layer is a
group of atomic layers located between the two semi-infinite parts. Generally,
the interface layer is composed of the first PL along the a direction combined
with the first PL along the b direction. d, The easy direction of the magnetization
M lies in the ab plane, with @ the angle between M and the y axis.

Se atoms. Moreover, we generalize the recursive Green’s function
method*, which is widely used for the spectral functions of the sur-
face or interface states, to calculate the hinge states for the SOTI
(details given in the final section of Methods). As shown in Fig. 2c,
two hinges (labelled as Left and Right, respectively) are generated
by joining two semi-infinite slabs along different directions, namely
[1,0,0] and [0,1,0]. The hinge area can then be viewed as the left and
right ends of the interface region between the two slabs oriented
along different directions, with the cross-section perpendicular to
the ¢ axis. The projected spectral functions for the two hinge regions
can then be obtained by following the standard procedures of the
recursive Green’s function method*.

As already confirmed experimentally”, in SmBi, Se; the
magnetic moments on Sm ions ordered ferromagnetically under
T.~52K. The easy axis lies within the ab plane and can be easily
tuned by a small external magnetic field. The crystal structure of
Bi,Se, contains three vertical mirror planes and will survive the
ferromagnetic order if the magnetization M is along the [-1, 1, 0],
[0, —1, 0] and [1, 0, 0] directions, respectively (corresponding to
0=0, 2nt/3 and 4x/3 in Fig. 1b, respectively). Then, as we discussed
above, the existence of the mirror symmetry in the axion insulator
will force the mass terms on different sides of the mirror-symmetric
hinge to be opposite in sign, which guarantees the existence of the
chiral hinge states centred at that particular hinge. Interestingly,
since the chiral hinge states are topologically stable, the breaking of
the corresponding mirror symmetry (that is, by rotating the mag-
netization M away from the particular angle mentioned above), the
chiral hinge states do not disappear immediately. In fact it will dis-
appear only when the surface gap closes on either of the two nearby
surfaces. Otherwise, as long as the gap still exists on both surfaces
near the hinge, the domain wall feature still remains and the only
effect of the mirror-symmetry breaking is to modify the wavefunc-
tion of the hinge state to be asymmetric about the mirror plane.
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Table 1| Local right-handed coordinate system e, , ,, velocity v
and g-factor g of (010) and (100) surfaces, respectively.

(010) (100)

e, 3 1 0 3 _1 0

2 2 2 2
e, O 0 1 0 0 1
e, -1 _3 0 -1 RES 0

2 2 2 2
Vx 0 0.4316  0.4951 0 0.4316 0.4951
vy -0.7649 O 0 -0.7649 O 0
8, 07782 O 0 0.7782 0 0
g, 0 0.5354 -0.0957 O 0.5354 -0.0957
g, 0 0 04778 O 0 0.4778

Entries of local e, are given in terms of unit vectors of the global coordinate system x, y, z shown
in Fig. 2a. The unit of vis eV A and the unit of g is eV~

The local spectral functions at both the left and right hinges can
be obtained by projecting the imaginary part of the Green’s func-
tion to the corresponding hinge area, which can be expressed as
prrlk,@)==1n 3, ImG;(k @), where the hinge area L and
R are illustrated by the orange colour shaded block Left and Right
in Fig. 2¢, respectively. Then the hinge spectral functions can be
obtained by applying the recursive Green’s function method intro-
duced above. Alternatively the existence of chiral hinge modes can
be inferred from checking the mass terms on the nearby surfaces,
whose Hamiltonian can be written as

HSszx-ka+vy-6ky+gx-GMx+gy-6My+gz-aMZ (1)

where x, y, z form the local right-handed coordinate system and
v, g, are vectors defined in pseudo-spin space. Both the velocity
and g-factor vectors for the (100) and (010) surfaces of Sm,Bi,_,Se;,
can be obtained by the corresponding surface calculations based
on the effective tight-binding Hamiltonian with their values listed
in Table 1.

Then the mass associated with that particular surface Dirac
equation can be expressed as

(Vyxv,)- (g M+ gM,+ g.M,)
m= @)
[V, Xv,|

Bearing in mind the fact that the magnetization lies in the
ab plane and using velocity v and g-factor g listed in Table 1, we
can express m as a function of the magnetization direction 0 as
My =—0.3140|M|sin(f + =/3) and m,s=—0.3410|M|sin(6 —=/3),
which are plotted in Fig. 1h. Please note that the dimension of the
quantity m in the above equation is energy.

The mass term vanishes at d=mx/3 for the (100) surface and
0=2mn/3 for the (010) surface, indicating the surface topological
transitions at these two angles, after which the hinge states moved
from one hinge to another. As we discussed above, the chiral hinge
states can exist only when the two nearby surfaces have mass terms
with opposite signs, as indicated by the green area in Fig. 1h.

In the Fig. 3a—d, we plot the hinge spectral functions calculated
by the recursive Green’s function method for four typical magne-
tization directions: 0, ©/6, n/3 and =/2. In Fig. 3a, the magnetiza-
tion is along the Y direction, which preserves the XZ mirror plane.
As we discussed above, the mirror symmetry guarantees the sign
change for the mass terms on the nearby surfaces leading to chiral
hinge states. The energy dispersion of the hinge states on both left
and right hinges can be found by checking the spectral functions
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Fig. 3 | The projected spectral functions on the interface layer and their spatial distribution. a-d, Projected spectral functions as M is rotated from
0=0to 0=n/6,0=n/3 and O=n/2, respectively. Points {p,, ..., ps}, with k,=0, are labelled to show the spatial distribution of these pointsinetol.
e-h, Spatial distribution of the spectral functions at p, to p, labelled in a to d, showing the spatially localized states distributed around the left hinge.
i-l, Spatial distribution of spectral functions at ps to pg labelled in a to d, showing the spatially localized states distributed around the right hinge.

projected to the whole interface area, which are plotted in Fig. 3a.
Clear chiral hinge states can be found with a similar velocity around
—1.60x 10°ms™". As shown in Fig. 3e,i, the spatial distribution func-
tions for the peaks marked as p, and p, in Fig. 3a are centred at
the left and right hinges, respectively, which are fully symmetric
around the corresponding hinge due to the mirror symmetry.
Combined with Fig. 3a,e,i, we know that the left and right hinge
states all disperse positively along the ¢ direction. Further examina-
tion of the spatial distribution of the spectral weight confirms that the
chiral hinge mode on each particular hinge smoothly connects the
valence bands on the (100) surface and the conduction bands on
the (010) surface. As the magnetization angle 8 is rotated clockwise
away from zero, the surface gap on (100) is getting smaller quickly
and the hinge states are still there with a slightly modified velocity
and an asymmetric spatial distribution around the hinge, as shown
in Fig. 3f. When the magnetization angle € becomes n/3, the gap
on (100) surface closes completely, forming surface Dirac cones
on the corresponding surfaces, as indicated by the two arrows in
Fig. 3¢, which shows the topological phase transition on these sur-
faces. After the transition the connection pattern of the hinge states
changed completely, as shown in Fig. 3d, the hinge states now con-
nect within the conduction (label p,) or the valence bands (label py)
on (100) and (010) surfaces and become topologically trivial.

The existence of chiral hinge modes will cause the QAHE on
the surfaces of the Sm,Bi,_,Se;,. The experimental set-up can be
schematically plotted in Fig. 1f. By cutting the Sm Bi, ,Se, single

crystal using the focused ion beam technique to obtain the zig-zag
surface structure formed by (100) and (010) surfaces, the counter
propagating chiral hinge modes can then be induced by the hori-
zontal magnetization on the ‘ridge’ and ‘valley’ area, as shown in
Fig. 1g. After putting leads on both ridges and valleys, the surface
QAHE can be detected by standard DC measurements for the Hall
effect. In principle, we need a bulk insulating sample for the actual
detection of the surface QAHE. However, we do not need the car-
rier density to reach zero to fulfill the above condition. For systems
with a disorder potential, the bulk conductivity will vanish at zero
temperature when the chemical potential is below the mobility
gap. Therefore we should have the chance to detect surface QAHE
at a low enough temperature for a disordered sample, just like the
situation in Cr-doped Bi,Te, thin film, where the QAHE has been
observed**. In fact, bulk insulating samples have been achieved
in similar materials already* and experimental evidence of surface
gaps has also been found in some of the related systems as well*.
Therefore, we expect the proposed surface QAHE to be feasible in
the high-quality samples of this system. There is another type of
experiment that can demonstrate the existence of the chiral hinge
state. We only need to put two leads on one of the ridge or valleys
of the above-mentioned structure and the chiral hinge states will
contribute to ‘non-reciprocal’ DC transport, which manifests itself
as the difference of the DC resistance for voltages applied parallel or
anti-parallel to the hinge. Since the bulk and surface contribution
of the conductivity is always reciprocal, this type of experiment is
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easier than the DC measurement of QAHE and works even for non-
zero bulk and surface conductivity.

In conclusion, we proposed in the paper that the Sm-doped
Bi,Se, single crystal is a magnetic axion insulator and provides an
ideal material platform to realize helical hinge states on the particu-
lar hinges of the crystals. Such nontrivial hinge states demonstrate
that the magnetic axion insulator can also be viewed as higher-order
topological insulators with the new type of bulk-boundary corre-
spondence described in the paper. The surface QAHE is the most
striking observable effect caused by the chiral hinge states in the
Sm-doped Bi,Se; single crystal.
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Methods

Calculation of effective magnetic exchange field. Recently, Sm-doped Bi,Se,
magnetic topological insulators have been experimentally realized® with the Curie
temperature being about 52 K. We have simulated this system theoretically by
first-principles methods using the VASP package’~*". In the calculation,a 2Xx2x 1
supercell structure of Bi,Se, is constructed with one Bi atom being replaced by a
Sm atom. In such a SmBi,;Se;; system, Sm** is in the high-spin state and its total
magnetization strength is as large as 5.4 415 A very dense momentum and energy
grid is adopted to calculate the spin-polarized density of states of Bi and Se, which
are shown in Supplementary Fig. 1. The exchange field splitting AE of the p orbitals
can be roughly estimated by equation (3), which are about 20 meV and 10 meV for
p orbitals on Se and Bi, respectively.

/spl(s)ds /epT(e)de

3
/pl(s)ds //)T(s)ds ®)

where p, ;) (¢) is the density of states of the majority(minority) spin component
of p orbitals.

Recursive Green function method in the calculation of hinge states. To carry
out realistic calculations for the hinge states, we design a bi-semi-infinite open
boundary geometry (as shown in Supplementary Fig. 2) in which the (010)

and (100) surfaces meet at Left and Right hinges parallel to the ¢ direction.

The geometry is semi-infinite along the a and b directions, periodic along the

¢ direction, and finite along the x direction. The size along the x direction is 20
unit cells in the realistic calculation, ensuring negligible finite-size effects arising
from hybridization between left and right hinges. Principal layer (PL) is a group of
atomic layers that is large enough such that only adjacent PLs interact. Division of
ULs and LLs into PLs is a common strategy to express the Hamiltonian in the block
tridiagonal form

Hy HIRO H1R5 0
HITRO HRORO 0 HR()RI 0
ae|? Hjg O Hyp 0 Hyg, 0 .
0 H;aRi 0 Hyg. 0 Hyg 0
0 Hjg, 0 Hpy, 0 Hpp, 0
0 Hig 0 Hag 0 Hyg

where the d1agonal block Hrz,= Hpyrg, H RR; = =Hy +%; and the hopping matrix
Hyi = Hror, HR R HRoR Impl1c1t1y, each block of H is a function of
momentum k., that'is H =H. (k ). The tight-binding Hamiltonian is obtained from
the maximally localized Wannier functions constructed by the wannier90* package
interfaced to VASP*-*’. Furthermore, Zeeman terms H,=M - ¢ with the strength
obtained from the first-principles calculations mentioned in the previous section
are added to all p orbitals to simulate the ferromagnetic order arising from Sm
doping.

For simplification, H, is used to denote hoppings between the interface layer
and ULs, LLs:

HIRE(HIRO Hma 0 ) )

H,, in block tridiagonal form, is to denote the Hamiltonian of ULs,

HRORU HR[)RI 0

A
Hp,= HRORO HRORO HRORI 0 (6)
0 H} . Hyo H

RoRo “TRoRo “TReRy ™

and Hy, also in block tridiagonal form, is to denote the Hamiltonian of LLs

Hppo Hpp- O
RgRy HIRGR;
Hjp Hpp Hgp 0
Hy= RGRy TReRe TR (7)

0 H o Hppn Hppo ™
RURI ROR() RORI

Furthermore, we introduce a new ‘direct sum’ operation @ of two square
matrices A and B as

0 B, 0 B,

ABB=[A,, 0 A, 0 - 8)
0 By By

Now we have
=[Hn Hm] ©)
- T
Hj Hpg
where

Hyp=H,®Hy (10)

indicating that ULs and LLs are totally decoupled from each other.
The imaginary part of the interface Green function G, (k,, w) can be written as

Ay )= —LSGy (K, 0) 1
V1
G, G
g=| I ¢ (12)
GIR GRR
(w+in—H)G=1 (13)
Gulk,, 0+ in) = [(@+in—Hy—2,] " (14)

where X is the self-energy depicting comprehensive interactions between interface
layer and ULs, LLs. Within the approximation of PL, X, has a simple form as

1 1 §
2 =HIRgRRHIRzHIROgROROHIR0+ HIRagR(-)RaHIR(-) (15)

where 8p g and 8y Rz are the ‘surface’ Green functions of ULs and LLs, respectively.
Because H,and H, are all in triangular diagonal form, 8 » and &y o can be solved
by the standard recursive schemes™. Using equations (15, 14, 11), we Obtain the
spectral functions for the interface layer. A;, is a square matrix with its indices being
the number of orbitals in the interface layer. The trace of A, gives the integrated
spectral shown in the first row of Fig. 3.

Data availability
The data that support the findings of this study are available from the
corresponding authors upon reasonable request.
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