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Abstract
Roadway closures magnify the adverse effects of disasters on people since any type of 
such disruption increases the emergency response travel time (ERTT), which is of cen-
tral importance for the safety and survival of the affected people. Especially in the State 
of Florida, high winds due to hurricanes, such as the Hurricane Hermine, lead to notable 
roadway disruptions and closures that compel special attention. As such, in this paper, the 
accessibility of emergency response facilities, such as police stations, fire stations and hos-
pitals in the City of Tallahassee, the capital of Florida, was extensively studied using real-
life data on roadway closures during Hurricane Hermine. A new metric, namely Acces-
sibility Decrease Index, was proposed, which measures the change in ERTT before and 
in the aftermath of a hurricane such as Hermine. Results clearly show those regions with 
reduced emergency response facility accessibility and roadways under a disruption risk in 
the 1-week window after Hermine hit Tallahassee. City officials can pinpoint these critical 
locations for future improvements and identify those critical roadways, which are under a 
risk of disruption due to the impact of the hurricane. This information can be utilized to 
improve emergency response plans by improving the roadway infrastructure and providing 
alternative routes to public.
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1  Introduction

Roadway closures magnify the adverse effects of disasters on people since any type of 
such disruption increases the emergency response travel time (ERTT), which is of central 
importance for the safety and survival of the affected people. An emergency response plan, 
therefore, should include strategies to evaluate the conditions of existing roadway networks 
during and in the aftermath of disasters such as hurricanes (e.g., many strategies have been 
developed to alleviate the suffering of public after the infamous Hurricane Katrina). Within 
such plans, the available transportation network should be evaluated with respect to disas-
ters using historical data and/or predictions in order to assess the roadway conditions and 
identify the critical locations. Especially in the State of Florida, high winds due to hur-
ricanes, such as the Hurricane Hermine, lead to notable roadway disruptions and closures. 
Even the lower strength storms may still be strong enough to adversely affect the trans-
portation network (i.e., roadway disruptions and closures due to fallen trees, which might 
cripple the emergency response operations). Focusing on this accessibility-based analysis 
is especially critical since providing necessary aid to hurricane victims in a timely manner 
can alleviate possible adverse consequences of hurricanes.

The previous research shows that transportation accessibility has been a special interest, 
especially given the advances in computational power that has enabled the analysis of more 
computationally complex problems. Numerous studies have focused on the accessibility of 
critical facilities such as supermarkets (Widener et al. 2015), nursing homes (Saliba et al. 
2004), health care facilities (Islam and Aktar 2011; Ulak et al. 2017), multimodal facili-
ties (Ozel et  al. 2016) and shelters (Kocatepe et  al. 2016). These studies take advantage 
of geographical information systems (GIS)-based tools to perform accessibility analysis. 
However, to the authors’ knowledge, there has not been a study that is focused on both 
emergency facility accessibility based on real-life disaster data and prediction of future 
roadway disruptions. As such, the objective of this study was twofold. First, accessibility 
of emergency response facilities such as police stations, fire stations and hospitals in the 
City of Tallahassee, the capital of Florida, was extensively studied using real-life data on 
roadway closures due to Hermine. This was achieved by the temporal reconstruction of the 
reported roadway closures on the Tallahassee roadway network in the 1-week window after 
Hermine hit Tallahassee. Furthermore, new metric, namely Accessibility Decrease Index 
(ADI), was proposed, which measures the change in ERTT before and in the aftermath 
of a hurricane such as Hermine. That is, ADI value is equal to the ratio between ERTT 
before and after a hurricane. As a result of this approach, regions with reduced emer-
gency response facility accessibility were identified. In order to calculate the ADI values, 
8-min threshold value was selected for after-hurricane ERTT based on the existing litera-
ture (Blackwell and Kaufman 2002; Pons and Markovchick 2002; Pons et al. 2005; Ulak 
et al. 2017). For those regions with after-hurricane ERTT values higher than this threshold, 
ADI scores were calculated and illustrated since these regions are critical for emergency 
response. To calculate travel time between two locations, there are different available costs 
such as distance, and static and dynamic congested travel time. However, in this study, it is 
assumed that actual travel time for emergency vehicles such as police, fire and rescue and 
emergency medical services (EMS) is very close to the free flow time (FFT), considering 
that all vehicles should yield to emergency vehicles by law.

Second, hurricane-related roadway disruption probabilities were estimated for major 
roadways, which are usually utilized as evacuation or emergency response routes. Note that 
the recent improvements in the technology increased the availability of the satellite images. 
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This fact along with the development of image recognition techniques led to many studies 
in the literature in the context of satellite images data extraction (Castelluccio et al. 2015; 
Albert et al. 2017). The concept of convolutional neural network (CNN) was introduced 
in 1997 (Lawrence et al. 1997). Unfortunately, the computational power of computers was 
not sufficient at the time, and it took 20 more years for the CNN to become one of the 
most popular techniques in the machine learning field. Please see (Simard et al. 2003) for 
more information on CNN. Recent studies have also showed the incredibly high accuracy 
of CNN for a high number of classifiers (Krizhevsky et al. 2012). Lately, CNN was also 
used to extract data from satellite images for land usage classification (Zhu and Newsam 
2015), updating road data information (Costea and Leordeanu 2016), and for high wind 
risk analysis (Powell et al. 1998; Vickery et al. 2000; Amirinia and Jung 2017; Kakareko 
et al. 2017). In the current research, we used CNN and satellite images to investigate the 
hurricane-related roadway disruption probabilities by recognizing and classifying tree 
types along major roadways, calculating their fragility to wind speeds. Those results can be 
used for analyzing critical roadways, which can be disrupted by tree failures. City officials 
can pinpoint these critical locations for future improvements and enhancing emergency 
response plans.

2 � Study area, Hurricane Hermine and data

The City of Tallahassee, the capital of Florida, being the most populated city in the Leon 
County, hosts 286,272 people and is home to two major universities and a community col-
lege. The urbanized area of Tallahassee has a population of 190,894 according to the US 
Census estimate (Census 2016). The City of Tallahassee is a full service municipality pro-
viding essential services to the region: electric, gas, water solid waste, sewer, public works, 
airport, mass transit, etc. During emergency situations and disasters, the City of Tallahas-
see recognizes that a transportation system functions as a whole, and requires that each 
piece works together at all levels (i.e., institutional and operational) so that the system runs 
safely and efficiently.

Tallahassee was hit by Hurricane Hermine in September, 2016. Hermine provoked dis-
ruptions in all services in Tallahassee from 10:00 p.m. of September 1, 2016, to 4:00 a.m. 
of the next day September 2, 2016, affecting thousands of customers. Tallahassee radar 
images (AccuWeather 2017; NDAA 2017) show the time and path of Hermine as shown 
in Fig. 1. Please refer to the Hermine report by NHC at (Berg 2016) for detailed informa-
tion. Maximum speeds reached during Hurricane Hermine varied for different parts of the 
city (Fig. 2a). These high wind speeds resulted in fallen trees and roadway disruptions in 
Leon County (Fig. 2a). The roadway closure data are provided by the City of Tallahassee, 
through a mobile app called DigiTally (2017). It is a tool that connects residences directly 
with City of Tallahassee staff in order to resolve issues more effectively and efficiently. 
Users can file requests for any issues and monitor others. During Hurricane Hermine, 776 
roadway closures were reported due to fallen trees in a 1-week window (Fig. 2b). Note that 
7th day closures shown in Fig. 2b do not indicate that those closures occurred on 7th day, 
but correspond to closures which exist until 7th day. In case of an emergency, police (law 
enforcement), fire and hospital response teams are dispatched to locations of the emer-
gency. In Tallahassee, five hospitals, thirteen fire stations and fourteen police stations are 
ready to serve the public (Fig. 2c) (U.S. Census Bureau 2015).
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Fig. 1   Hurricane Hermine path over Tallahassee, FL from 09/01/16 to 09/02/16
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Fig. 2   Study area a wind speeds by US Census blocks during Hermine, b roadway closures, c US Census 
blocks and emergency response facilities
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3 � Methodology

3.1 � Accessibility of emergency response teams

Following the temporal reconstruction of the events related to the Tallahassee transpor-
tation network (e.g., roadway closures due to fallen trees), the ArcGIS “Network Ana-
lyst” tool was used to measure the transportation accessibility from police stations (law 
enforcement), fire stations and hospitals. Three components were identified as part of 
the approach: (a) origins: police stations, fire stations and hospitals, (b) destinations: 
US Census block centroids and (c) the roadway network. To find the least cost paths 
between origins and destinations (O–D pairs), an ArcGIS “OD Matrix” analysis was 
performed. Travel of the emergency vehicles was assumed to originate at the origin 
locations and end at the census block centroids, based on the least cost path. It was 
assumed that actual travel time for emergency vehicles such as police, fire and rescue or 
emergency medical services (EMS) is very close to the free flow time (FFT), consider-
ing that all vehicles should yield to emergency vehicles by law. A threshold value for the 
response time was selected based on the literature, which states that emergency response 
time should not exceed approximately 8 min (Blackwell and Kaufman 2002; Pons and 
Markovchick 2002; Pons et al. 2005; Ulak et al. 2017). For 1-week period, travel times 
were derived to identify the transportation accessibility metric considering each day’ 
roadway closures in the city. For the census blocks with more than 8-min accessibil-
ity and roadway closures due to fallen trees, travel times were compared to daily free 
flow time. For this purpose, a new metric, namely Accessibility Decrease Index (ADI), 
was proposed. ADI value is equal to the ratio between emergency response travel time 
(ERTT) before and after a hurricane event as defined in Eq. 1, which is always bigger 
than 1. Note that ADI values were not calculated for the locations where ERTT after 
the hurricane is still lower than the 8-min threshold duration, which indicates that those 
locations still have acceptable emergency response time. This analysis revealed those 
regions which have critical emergency response problems due to inaccessibility during 
and after the Hurricane Hermine.

3.2 � Sensitivity analysis for estimation of roadway disruption probability

The estimation of roadway disruption probability is a multistep problem. The first step was 
to take satellite image as an input and recognize all trees that can affect roadways during 
a hurricane (note that Fig. 3a shows a typical satellite image for the analysis used in this 
study). The CNN methodology was utilized in order to recognize the trees from these satel-
lite images. It was assumed that the trees that should be taken into consideration were in 
10 m from the center of the road. To start with, two separate CNNs were trained to identify 
the number and types of trees around the roadways. The first CNN-1 was used to recognize 
the trees from the satellite image while the second CNN-2 identified the tree type selection 
from the pre-selected images identified by CNN-1. The training set was composed of 8000 
images for CNN-1 and 2000 for CNN-2. The size of the images was 76 × 76 RGB pixels. 
The training pictures were manually selected from the City of Tallahassee satellite images. 

(1)ADI = f (x) =

{

ERTTafter

ERTTbefore

, ERTTafter > 8minutes

N/A, ERTTafter ≤ 8minutes.
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Two networks were tested on the 10% of the images and exceeded 97% and 93% accuracy 
for the CNN-1 and CNN-2, respectively.

The second step was to classify the selected trees based on their species. According to 
City of Tallahassee, there are four common tree species in Tallahassee, namely lobby pine, 
shortleaf pine, sweetgum and live oak. The third step was to approximate the geometric and 
structural characteristics of these trees. Color thresholding method was used to calculate the 
crown diameter (Stiles 1959; Deng et al. 1993). The crown diameter was used to approximate 
the other tree parameters (e.g., weight of the crown, height of the crown) necessary to calcu-
late failure probability, and data from McPherson et al. (2016) were used for this task. The 

Fig. 3   a A satellite image after classifying trees, b tree failure model, c probability of roadway disruption 
for shortleaf pine
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next step was to estimate the tree fragility curves for all recognized trees. Several studies have 
been published on the probability estimation of tree failure induced by high winds (Baker and 
Bell 1992; Gardiner 1994; Stacey et al. 1994; Asner and Goldstein 1997). In this study, the 
model given in Eq. 2 was used for the failure probability estimation. The model involves one 
failure damage mode which is failure by rupture. Figure 3b and Eqs. 2–4 illustrate the proce-
dure used for failure calculation. The wind model (ASCE 2010) is described by Eq. 2:

where b and α are constants, z is the height of tree measured from the ground and V is 
the wind speed at 10 m above the ground. The equal wind speed was assumed along the 
crown of the tree. Equation  3 characterizes the maximum force moment caused by the 
wind speed, where the forces F1 and F2 are caused by wind speed Vz , and F3 represents the 
force produced by the weight of the crown, Δx is a initial deflection produced by forces F1 
and F2.

The failure is considered when Eq. 4 is satisfied:

where � is the maximum stress in the cross section of the tree caused by the moment M and 
�r is the modulus of rupture, which depends on the species of the tree. The Monte Carlo 
simulation was applied in order to calculate the fragility curves for each tree. Figure 3c 
shows examples of fragility curves for the shortleaf pine. The final step was to calculate the 
probability of roadway disruption. Based on the fragility curves developed for each par-
ticular tree, the overall probability of roadway disruption, Pr , was calculated, where Pr is 
the occurrence probability of at least one of the N events P

(

Ei

)

 , and each event represents 
a failure of a tree along the roadway segment (Eq. 5). Note that the calculated probability 
corresponds to probability of at least one tree failure along a roadway segment, and this 
probability was referred as the roadway disruption probability. However, failure of a tree 
does not necessarily indicate a roadway closure since the fallen tree may or may not block 
the roadway. Therefore, the calculated probability was called the “disruption probability” 
rather than “closure probability.”

where Pr is the roadway segment’s disruption probability, i = 1,… ,N and N is the total 
number of trees along that roadway segment, and P

(

Ei

)

 is the probability of failure of tree 
i.

4 � Results

4.1 � Accessibility of emergency response teams

Figure  4a shows the free flow travel times from fire stations to census blocks. Major 
portions of the Southeast Tallahassee and Eastern Tallahassee appear to experience 

(2)Vz = b
(

z

10

)

�

V

(3)M = F1 ⋅ h1 + F2 ⋅ h2 + F3 ⋅ Δx

(4)𝜎r < 𝜎

(5)Pr = 1 −

N
∏

i=1

(

1 − P
(

Ei

))
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emergency response travel times (ERTT) greater than 8  min. Note that these loca-
tions are “major” geographically speaking, but not as “major” demographically speak-
ing. Southeast Tallahassee is a growing residential zoning area, available for future 
developments, drawing high attention for investors. Even without the focus on emer-
gency response planning, those regions might be considered for future improvements 

Fig. 4   Accessibility for fire stations
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(e.g., building a new fire station) to decrease the emergency response time. Rest of the 
maps in Fig. 4 displays the change in the ERTTs. Note that all the highlighted census 
blocks are the ones that have 8 min or more travel times from fire stations. Accessibil-
ity Decrease Index (ADI) in these maps shows the amount of change in the emergency 
response travel time before and after the hurricane event. For instance, if the free flow 

Fig. 4   (continued)
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travel time from one station to a census block was 5 min before hurricane and 15 min 
after the hurricane (due to roadway closures), the ADI equals to three (15/5 = 3). Note 
that there were no road closures in Day 1 since the hurricane hit the city later in the 
evening of Day 1. Also note that since Day 2 and Day 3 roadway conditions were almost 
identical, the analysis results were shown from Day 3 (Figs. 4, 5, 6).

Fig. 5   Accessibility for law enforcement (police stations)
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Figure 4b shows that there are pockets of census blocks experiencing significant changes 
in ERTTs and a significant decrease in accessibility for Day 3, 2 days after the Hermine hit 
Tallahassee. In the northeastern southeastern sections of the city, ADI was less than two 
times. Pockets with ADI values larger than ten were observed mostly in local roadways 
where residential townhouses are located. Note that Tallahassee has regions that heavily 

Fig. 5   (continued)
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inhabit trees with different types and heights all over the city. Figure 4c shows a clearance 
in the north and northeastern part in terms of ERTT value on Day 4. This is since the road-
ways were cleared from trees, ERTTs for fire stations returned to normal in those sections 
of the city. Pockets with ADI larger than ten have still experienced higher travel times since 
Day 3. Between Day 4 and Day 5, there was a slight change in ERTT from fire stations 

Fig. 6   Accessibility for hospitals
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to census blocks. Roadway closures still led to inaccessibility in Day 5 for those pockets 
with the highest ADI. Recall that those areas are located around neighborhoods with town-
houses and local streets (mostly two lanes), which are more prone to roadway closures due 
to fallen trees than major highways. On Day 6 and Day 7 (Fig. 4e, f), ERTTs for fire sta-
tions returned to daily levels as Fig. 4a shows.

Fig. 6   (continued)
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Figure 5a shows that major sections of the north, northeast and southeast of Tallahassee 
experience ERTTs above 8 min. Similar to the previous analysis, these sections are also 
open to further development even without considering emergency response. Observing 
Fig. 5, the northern Tallahassee seems to be struggling in terms of accessibility to police 
stations in the whole 1-week window. Since there was not a present police station in the 
southern Tallahassee, residences experienced reduced accessibility compared to accessibil-
ity to fire stations (Fig. 4) until Day 7 (Fig. 5f). Note that the accessibility may be better 
in real life since police vehicles may already be on patrol in the communities. However, 
under emergency conditions such as hurricanes, roadways may be closed or disrupted, and 
hence, they may not be able to patrol the area. Northern Tallahassee experienced the same 
problem, and ERTTs did not return to normal until Day 7. Pockets with the highest ADIs 
eventually returned to normal conditions on Day 6 (Fig. 6e). Those regions might be con-
sidered for infrastructure improvements or new landscape developments in order to manage 
tree failures.

Unlike fire and police stations, hospitals are heavily clustered in a certain area. This 
might be disadvantageous for certain regions even under normal conditions. As Fig.  6 
shows, a major portion of the City of Tallahassee experiences accessibility problems 
related to hospitals. Due to this critical inaccessibility, numerous pockets of census blocks 
were observed to have high ADI values. Day 4 shows that the closest pockets to the north-
ernmost hospital were in a better shape in terms of roadway closures compared to Day 3. 
On Day 5 (Fig. 6d), a clear improvement was observed in ERTTs from hospitals to census 
blocks in the northern and northeast sections of Tallahassee. South of Tallahassee still had 
small pockets of census blocks with high ADIs. Figure 6f shows that even 7 days after hur-
ricane, those parts were still experiencing a lack of accessibility to hospitals.

4.2 � Sensitivity analysis for the estimation of roadway disruption probability

As Fig.  2a clearly shows, Hermine hit different section of the town with different wind 
speeds. Wind speeds were ranging between 14 and 48 mph, which caused 776 roadway 
closures all over the town (Fig.  2b). Note that wind speed data were collected through 
43 weather stations (WeatherSTEM 2017) around the city as shown in Fig. 2a. It should 
also be noted that a different Hurricane can have different path than Hurricane Hermine. 
In order to propose a more scalable approach, this section presents a sensitivity analysis 
for estimating possible roadway disruptions. The analysis was conducted using 435 road-
way sections to estimate the roadway disruption probabilities based on the proposed CNN 
methodology. Note that these sections are demarcated by intersections, and individual sat-
ellite image was extracted for each roadway section. In order to show the usefulness of 
this approach, five major highway corridors were selected: (1) I-10, which starts from the 
City of Jacksonville in the east, passing through Tallahassee and continuing west toward 
the City of Pensacola, (2) US-90 which lies parallel to I-10, passing through the down-
town Tallahassee, (3) US-319, which extends from Georgia along the Gulf Coast through 
downtown Tallahassee, (4) US-27, which begins in the southern Florida and extends to 
the Georgia State border, and (5) SR-263, or Capital Circle SW, which encircles Tallahas-
see. Note that probability of roadway disruption would increase with the increasing num-
ber of trees along the roadway section. Figure 7a shows the disruption probability for a 
20 mph wind speed. For all the major highways, probability is below 0.10. Only one road-
way has a probability of disruption between 0.20 and 0.30. When wind speed increased to 
25 mph, roadways around hospitals started experiencing roadway disruption probabilities 
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of 0.70–1.00 (Fig. 7b). With the 30 mph wind speed, 90% of the major roadways around 
emergency response facilities experienced a probability of roadway disruption of at least 
0.70. Capital Circle South, lying from west to east at the bottom of the figures, do not 
have substantially high roadway disruption probability until 40 mph, which is mostly dif-
ferent than other major roadways. This might be due to the fact that shoulders and sections 

Fig. 7   Roadway disruption probabilities on the major highways of Tallahassee
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along this roadway do not have substantial number of trees like other major roadways, or 
shoulders may be more than enough in terms of length so that a fallen tree cannot affect 
the roadway. Right after the hurricane, this roadway section (Capital Circle South) can be 
a safe passage for emergency response. In the western sections of the city, where fire sta-
tions and police stations are clustered, major roadways have experienced high probabilities 
of roadway disruption with 40  mph wind speed. City officials might consider providing 
alternative routes for the emergency response possibilities for future hurricanes in these 
locations. 50 mph wind speed, as shown in Fig. 7e, causes 95% of the major roadway sec-
tions to have probabilities higher than 0.70. This also indicates the need to have emergency 
plans and strategies to find the safest and fastest routes for efficient emergency response 
operations.

4.3 � Comparison of predicted roadway disruptions and roadway closures reported 
during Hurricane Hermine

The proposed prediction model was utilized in order to find the roadway disruption prob-
abilities of roadway segments under different wind speeds experienced during hurricane 
Hermine. To do this, first, each roadway segment was assigned the 95th percentile wind 
speed measured at the weather station closest to that roadway segment. Based on these 
wind speeds, roadway disruption probability of each roadway segment was found and road-
ways were mapped based on this probability (Fig. 8). Following, a kernel density estima-
tion (KDE) (Brunsdon 1995; Ulak et al. 2018) approach was utilized to find the roadway 
closure density in the City of Tallahassee, which produced a closure density surface. Visual 
inspection of Fig. 8 indicates that there is a substantially strong spatial relationship between 

Fig. 7   (continued)
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high closure density locations and roadway disruption probabilities. That is, the relation-
ship trend implies that the higher the closure density, the higher the disruption probabil-
ity. It is worth noting that there are roadway segments (a) with high disruption probability 
where closure density is relatively smaller and (b) with low disruption probability where 
high closure density is observed. However, note that the roadway closure data are obtained 
from DigiTally (2017) app which is composed of user reported roadway closures. There-
fore, the roadway closure data at hand do not represent all of the closures experienced dur-
ing the hurricane (particularly local roadways are overrepresented due to the immediate 
access of the residents to these roadways). Moreover, the predicted probabilities are road-
way disruption probabilities rather than closure probabilities. That is, a disruption may or 
may not lead to a closure which would not be reflected by the closure data. Nevertheless, 
Fig. 8 still illustrates a significant spatial relationship between closure density and roadway 
disruption probability.

5 � Conclusions

This study presents a GIS-based methodology to assess and analyze the accessibility to 
critical emergency facilities (e.g., police stations, fire stations and hospitals) in the context 
of roadway disruptions due to disasters such as hurricanes. A new metric, namely Acces-
sibility Decrease Index (ADI), was proposed, which measures the change in the emergency 
response travel time (ERTT) before and in the aftermath of a hurricane such as Hermine. 

Fig. 8   Comparison between disruption probability and reported closures
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ADIs were used to identify those regions with reduced accessibility to emergency facilities 
in the aftermath of Hermine. In order to propose a more scalable approach, which can help 
city officials planning for future hurricanes, a tree failure modeling approach was also pre-
sented in order to estimate the probability of hurricane-related roadway disruptions under 
different hurricane wind speeds based on a convolutional neural network (CNN)—and sat-
ellite image-based approach.

City officials can pinpoint the identified critical locations for future improvements (i.e., 
landscaping modifications to eliminate the threat of fallen trees, and roadway geometry 
modifications) and enhancing emergency response plans (i.e., providing alternative routes 
to emergency response crews). Officials might consider having such plans in place for 
future hurricanes in the critical sections of the city depending on the facility type. There 
may be other alternatives such as patrolling emergency services or establishing new emer-
gency response facilities in these sections. Note that any suburban location close to the city 
can also be supported by these activities. However, this study focused only on the City of 
Tallahassee, and the proposed approach can be extended to other locations. Another caveat 
of this study is as follows: if roadway sections get longer, the probability of roadway dis-
ruption substantially increases with more trees along these sections. Therefore, as a future 
work, shorter and/or equal length roadway sections can be considered to increase the accu-
racy and reliability of the proposed approach. Future work also will focus on the effect 
of tree failures on downed power lines in addition to roadways, which will definitely be 
a more comprehensive analysis to solve disruption-related problems in the aftermath of a 
hurricane.
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